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Abstract

In the field of engineering dynamics, three of the main challenges associated with stochasticity re-

late to a) uncertainty modeling, b) uncertainty quantification, and c) uncertainty propagation. Ad-

dressing challenge a) relates to the development of methodologies for the interpretation/analysis

of measured/available data, as well as for subsequent estimation of pertinent stochastic models,

i.e. quantification of the underlying stochastic process/field statistics, while challenge b) relates

to quantifying the error of those estimates in a priori, if possible, manner. However, in several

engineering applications large amounts of data can be difficult to acquire for several reasons, such

as cost, data loss or corruption, as well as limited bandwidth/storage capacity. Furthermore, avail-

able data can often be highly limited and irregularly sampled, and thus, standard techniques for

spectral estimation, (e.g. Fourier decomposition), can demonstrate poor performance. Further, ad-

dressing challenge c) relates to the development of methodologies for determining complex system

response/reliability statistics, i.e. development of analytical/numerical methodologies for solving

nonlinear high-dimensional stochastic (partial) differential equations efficiently. In this regard,

the Monte Carlo simulation (MCS) has been perhaps the most versatile tool. Nevertheless, there

are cases, especially for large-scale systems, where the MCS can be computationally prohibitive.

Thus, there is a need for developing efficient approximate analytical and/or numerical approaches.

In this thesis, techniques are developed for addressing selected aspects of challenges a, b), and c).

First, a general Lp norm (0 < p ≤ 1) minimization approach is proposed for estimating

stochastic process power spectra subject to realizations with incomplete/missing data. Specifically,

relying on the assumption that the recorded incomplete data exhibit a significant degree of sparsity

in a given domain, employing appropriate Fourier and wavelet bases, and focusing on the L1 and

L1/2 norms, it is shown that the approach can satisfactorily estimate the spectral content of the

underlying process. Finally, the effect of the chosen norm on the power spectrum estimation error

is investigated, and it is shown that theL1/2 norm provides almost always a sparser solution than the

L1 norm. Numerical examples consider several stationary, non-stationary, and multi-dimensional

processes for demonstrating the accuracy and robustness of the approach, even in cases of up to

80% missing data.

Second, the challenge of quantifying the uncertainty in stochastic process spectral estimates

based on realizations with missing data is addressed. Specifically, relying on relatively relaxed as-

sumptions for the missing data and on a Kriging modeling scheme, utilizing fundamental concepts
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from probability theory, and resorting to a Fourier based representation of stationary stochastic

processes, a closed-form expression for the probability density function (PDF) of the power spec-

trum value corresponding to a specific frequency is derived. Next, the approach is extended for

determining the PDF of spectral moments estimates as well. Clearly, this is of significant im-

portance to various reliability assessment methodologies that rely on knowledge of the system

response spectral moments for evaluating its survival probability. Further, it is shown that utilizing

a Cholesky-like decomposition for the PDF related integrals the computational cost is kept at a

minimal level. Several numerical examples are included and compared against pertinent Monte

Carlo simulations for demonstrating the validity of the approach.

Third, a Wiener path integral (WPI) technique based on a variational formulation is developed

for nonlinear oscillator stochastic response determination and reliability assessment. This is done

in conjunction with a stochastic averaging/linearization treatment of the problem. Specifically, first

the nonlinear oscillator is cast into an equivalent linear one with time-varying stiffness and damp-

ing elements. Next, relying on the concept of the most probable path a closed-form approximate

analytical expression for the oscillator joint transition probability density function (PDF) is derived

for small time intervals. Finally, the transition PDF in conjunction with a discrete version of the

Chapman-Kolmogorov (C-K) equation is utilized for advancing the solution in short time steps.

In this manner, not only the non-stationary response PDF, but also the oscillator survival proba-

bility and first-passage PDF are determined. In comparison with existing numerical path integral

schemes, a significant advantage of the proposed WPI technique is that closed-form analytical ex-

pressions are derived for the involved multi-dimensional integrals; thus, the computational cost is

kept at a minimum level. The hardening Duffing and the bilinear hysteretic oscillators are consid-

ered in the numerical examples section. Comparisons with pertinent Monte Carlo simulation data

demonstrate the reliability of the developed technique.

Finally, an approximate analytical technique for assessing the reliability of a softening Duff-

ing oscillator subject to evolutionary stochastic excitation is developed. Specifically, relying on

a stochastic averaging treatment of the problem the oscillator time-varying survival probability is

determined in a computationally efficient manner. In comparison with previous techniques that ne-

glect the potential unbounded response behavior of the oscillator when the restoring force acquires

negative values, the herein developed technique readily takes this aspect into account by introduc-

ing a special form for the oscillator non-stationary response amplitude probability density function

(PDF). A significant advantage of the technique relates to the fact that it can readily handle cases of

stochastic excitations that exhibit strong variability in both the intensity and the frequency content.

Numerical examples include a softening Duffing oscillator under evolutionary earthquake excita-

tion, as well as a softening Duffing oscillator with nonlinear damping modeling the nonlinear ship

roll motion in beam seas. Comparisons with pertinent Monte Carlo simulation data demonstrate

the efficiency of the technique.
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Chapter 1

Introduction

1.1 Motivation and objectives

Quantification and management of risk becomes increasingly important in many scientific and tech-

nical fields such as engineering, economics and material science, where the effect of uncertainty

cannot be neglected. In the field of engineering dynamics, two of the main challenges associated

with uncertainty quantification relate to the modeling, and the propagation of the uncertainties.

Addressing the challenge of uncertainty modeling relates to the development of methodologies

(e.g. spectral analysis techniques) for the interpretation/analysis of measured/available data, as

well as for subsequent estimation of pertinent stochastic models, i.e. quantification of the underly-

ing stochastic process/field statistics. These uncertainties are mainly associated with (i) excitations,

i.e. environmental processes such as winds, sea waves, seismic motions, extreme events due to cli-

mate change, etc, (ii) system parameters, i.e. geometry, material properties, etc, and (iii) system

response as a result of (i) and (ii), and (iv) model error, which are the differences between the

actual system and the model used to describe the actual system, and the differences between the

real excitation and excitation model utilized in the simulations. Clearly, based on available data

(ordinarily acquired via experimental set-ups, e.g. sensors), there is a need to translate the above

uncertainties into engineering stochastic models so that structural systems are efficiently designed,

monitored, and maintained. In real-life situations, however, measured/available data most often ex-

hibit a time/space-varying behavior. For instance, most environmental processes/excitations (and

subsequently the system responses) can be realistically described as non-stationary stochastic pro-

cesses, i.e. their statistics (as well as their frequency content potentially) vary with time. Similarly,

in cases of composite/functionally-graded materials for instance, properties such as the Young’s

modulus, can be realistically modeled as non-homogeneous stochastic fields, i.e. their statistics

vary with space. Further, most often there are limited, incomplete and/or missing data. In several

engineering applications large amounts of data can be difficult to acquire for several reasons, such

as cost (e.g. expensive sensor maintenance in harsh conditions/remote areas), frequency and unpre-

dictability of the effect (e.g. earthquakes), data loss or corruption (e.g. sensor failures, power out-
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ages, etc), as well as limited bandwidth/storage capacity. Furthermore, available data can often be

highly limited and irregularly sampled. When working with limited data, standard techniques for

spectral estimation, (e.g. Fourier decomposition), can demonstrate poor performance, and without

any prior knowledge of the underlying statistics of the process, alternative (less general) analysis

techniques can be problematic in certain cases. For instance, autoregressive methods can be used

often assuming the time record is relatively long and missing data are grouped [10]. Addressing

the challenge of the uncertainty propagation relates to the development of methodologies for de-

termining complex system response/reliability statistics, i.e. development of analytical/numerical

methodologies for solving nonlinear high-dimensional stochastic (partial) differential equations

efficiently. In this regard, the Monte Carlo simulation (MCS) has been perhaps the most versa-

tile tool. Nevertheless, there are cases, especially for large-scale systems, where the MCS can be

computationally prohibitive. Thus, there is a need for developing efficient approximate analytical

and/or numerical approaches.

In uncertainty modeling, incomplete data is often a big issue to tackle, such as the missing data

in wireless sensor networks for structural health monitoring [143] and in spectral estimation (eg.

[24] ; [25]). In many cases, stochastic processes are most often described by statistical quanti-

ties such as the power spectrum. For instance, a Fourier basis is typically utilized in the spectral

estimation of stationary processes [80]. Further, similar to the stationary case, the evolutionary

power spectrum related to non-stationary processes can be estimated by employing wavelet (e.g.

[115]; [62] ) or chirplet bases [90] among other alternatives; see also [93] for a detailed presen-

tation of joint time-frequency analysis techniques. It is noted that the above spectral estimation

approaches often require a large number of complete data samples for attaining a predefined ad-

equate degree of accuracy. However, missing data in measurements is frequently an unavoidable

situation, especially in the cases where the measurement cost is very high or the data transition

loss such as in structure health monitoring [54]. In fact, missing data are possible in almost any

situation where data are collected and stored. Indicative reasons in engineering dynamics mea-

surement applications include failure and/or restricted use of equipment, as well as data corruption

and cost/bandwidth limitations. Thus, standard spectral analysis techniques that inherently assume

the existence of full sets of data, such as those based on Fourier, wavelet and chirplet transforms,

cannot be used in a straightforward manner.

To address this challenge, a large number of methods subject to missing / incomplete data

(e.g. Lomb-Scargle periodogram, iterative deconvolution method CLEAN, ARMA-model based

techniques, etc) have been developed with various degrees of accuracy; see [136] for a review. In

general, the power spectrum of many excitations in engineering applications, such as the Jonswap

spectrum [51] in sea wave modelling, can be treated as sparse. That is the dominant frequencies

of the spectrum are distributed within a relatively small interval in the frequency domain. Based

on the above sparsity property, a compressive sensing [37] based approach has recently been de-

veloped to reconstruct the missing data by utilizing a L1-norm optimization technique for both
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stationary and nonstationary stochastic processes [25]. According to the compressive sensing con-

cept and assuming a sparse signal, fewer measurements are required compared with conventional

recovery algorithms based on Shannon theorem. Nevertheless, on one hand, reconstructing the

available records, and thus, deterministically estimating/predicting missing values, rarely accounts

for the inherent uncertainty associated with the missing data. Hence, there is merit in developing

a methodology for quantifying the uncertainty in a given spectral estimate as a result of the uncer-

tainty related to the missing data in the time/space domain. On the other hand, for those signals

which are not sparse enough, L1 norm based compressive sensing method does not preform well

enough in terms of accuracy. Thus, there is still a need to improve the accuracy and efficiency of

the above method, especially for the less sparse signals.

To deal with the challenge of the propagation of the uncertainties, Monte Carlo simulation

(MCS) (eg. [102], [103], [107]), is often utilized to determine the system response statistics such

as the mean and variance (eg. [42], [96], [49]). Undoubtedly, Monte Carlo simulation is the most

versatile solution tool since it can readily address complex system and excitation modeling. In

general, the essential idea of Monte Carlo simulation (MCS) is to propagate the uncertainty from

either the input excitation or the system itself to the final output. In essence, MCS involves a

number of deterministic experiments and subsequent statistical analysis on the output responses.

With the increase of computing capacity over the past decades, MCS is widely utilized in tack-

ling various engineering problems. Among them, assessing the reliability of structural systems has

been a persistent challenge in the field of engineering dynamics with diverse applications. Further,

assessing the risk of failure, or performing a reliability based analysis of dynamical systems is

closely related to the determination of the probability that the response of the system stays below

a prescribed threshold over a given time interval. This time-dependent probability is also known

as survival probability. In this regard, several research efforts have focused on developing versa-

tile MCS based techniques such as importance sampling, subset simulation and line sampling for

reliability assessment applications; see (eg. [11],[3], [2],[106] ) for some indicative references.

Nevertheless, there are cases, especially for large scale complex systems or when the quantity of

interest has a relatively small probability of occurrence, where MCS techniques can be computa-

tionally prohibitive. In this regard, there is a need for developing alternative efficient approximate

analytical and/or numerical solution techniques [70]. In [61] and [63], an analytical stochastic av-

erage statistical linearization is used to determine the response statistics. And this method is also

applied to obtain the survival probability [118] and is extended to multiple dimension cases [65].

In this regard, in the first half of this thesis, the problems of power spectrum estimation subject

to missing data and of assessing the accuracy of the estimates are considered. Thus, a sparsity

optimization based method called Lp norm is proposed (eg. [94], [15], [139]) for re-constructing

the missing data, whereas the uncertainty of the power spectrum estimates is quantified as well.

This method can be used in cases such as structure health monitoring [54], and response system

power spectrum estimation subject to the stochastic excitations. After discussing the excitation
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estimation, the system response problem can be considered accordingly. Further, in the second

half of the thesis, approximate semi-analytical techniques are developed for stochastic response

determination and reliability assessment of structural systems. This is done in conjunction with

a stochastic averaging/linearization treatment of the problem (eg. [63], [100]), while the recently

developed path integral technique([138], [41]) is extended and employed to describe the response

of the nonlinear system as well (eg. [14], [64], [67]). It provides an analytical tool to deal with

the reliability assessment of the system response subject to stochastic excitations, such as energy

harvesting [46], earthquake engineering applications (eg. [18], [116]) the ship rolling motion in

the unidirectional beam waves [68].

1.2 Organization of the thesis

This thesis includes six chapters and two appendixes, followed by the list of cited references.

The first chapter and the last one present the general introduction section and concluding remarks

section respectively, while the rest four chapters, contain their own individual preliminary intro-

duction part, theoretical background and pertinent numerical examples demonstrating the accuracy

and efficiency of the developed techniques in each of the chapters.

Chapter 1 introduces the motivation and objectives of the current research. Besides the brief

introduction, it also provide the organization and basic contents of each chapter.

Chapter 2 presents theL1/2 norm based power spectral estimation method to deal with recorded

process realizations suffering from the missing data. Basically, it apples linear transforms such as

the discrete Fourier transform or wavelet transform, as the standard spectral estimation methods.

Relying on the L1/2 norm optimization for the sparse signal, missing data could be reconstructed to

the sparse form in the frequency domain. Compared with the compressive sensing method which

is based on the L1 norm optimization, the solution from L1/2 norm enhances the peak frequencies

parts, making them approach to the level of the original spectrum. To improve the power spectral

estimation performance of L1/2 norm method, an iterative reweighing procedure is applied before

the optimization ofL1/2 norm to deal with the multiple samples case. In this reweighing procedure,

a least square method is utilized repetitively until the error of reweighing coefficients is below the

prescribed tolerance. The reconstruction methods are shown to be extremely effective in cases

where up to 80% of the data has been lost. Further, the effect of the choice of minimization

procedure on the final reconstruction error is investigated, demonstrating a definitive link between

available sample size and most effective norm algorithm.

In Chapter 3, the challenge of quantifying the uncertainty in stochastic process spectral es-

timates based on realizations with missing data is addressed. Specifically, relying on relatively

relaxed assumptions for the missing data and on a Kriging modeling scheme, utilizing fundamen-

tal concepts from probability theory, and resorting to a Fourier based representation of stationary

stochastic processes, a closed-form expression for the probability density function (PDF) of the
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power spectrum value corresponding to a specific frequency is derived. Next, the approach is ex-

tended for determining the PDF of spectral moments estimates as well. Clearly, this is of significant

importance to various reliability assessment methodologies that rely on knowledge of the system

response spectral moments for evaluating the survival probability. Further, it is shown that utilizing

a Cholesky kind decomposition for the PDF related integrals the computational cost is kept at a

minimal level. Several numerical examples are included and compared against pertinent Monte

Carlo simulations for demonstrating the validity of the approach.

In chapter 4, a Wiener path integral (WPI) technique based on a variational formulation is de-

veloped for nonlinear oscillator stochastic response determination and reliability assessment. This

is done in conjunction with a stochastic averaging/linearization treatment of the problem. Specifi-

cally, first the nonlinear oscillator is cast into an equivalent linear one with time-varying stiffness

and damping elements. Next, relying on the concept of the most probable path a closed-form

approximate analytical expression for the oscillator joint transition probability density function

(PDF) is derived for small time intervals. Finally, the transition PDF in conjunction with a discrete

version of the Chapman-Kolmogorov (C-K) equation is utilized for advancing the solution in short

time steps. In this manner, not only the non-stationary response PDF, but also the oscillator survival

probability and first-passage PDF are determined. In comparison with existing numerical path inte-

gral schemes, a significant advantage of the proposed WPI technique is that closed-form analytical

expressions are derived for the involved multi-dimensional integrals; thus, the computational cost

is kept at a minimum level. The hardening Duffing and the bilinear hysteretic oscillators are con-

sidered in the numerical examples section. Comparisons with pertinent Monte Carlo simulation

data demonstrate the reliability of the developed technique.

Chapter 5 focuses on Softening Duffing oscillator reliability assessment subject to evolutionary

stochastic excitation. Specifically, relying on a stochastic averaging treatment of the problem the

oscillator time-varying survival probability is determined in a computationally efficient manner.

In comparison with previous techniques that neglect the potential unbounded response behavior

of the oscillator when the restoring force acquires negative values, the herein developed technique

readily takes this aspect into account by introducing a special form for the oscillator non-stationary

response amplitude probability density function (PDF). A significant advantage of the technique

relates to the fact that it can readily handle cases of stochastic excitations that exhibit strong vari-

ability in both the intensity and the frequency content. Numerical examples include a softening

Duffing oscillator under evolutionary earthquake excitation, as well as a softening Duffing oscil-

lator with nonlinear damping modeling the nonlinear ship roll motion in beam seas. Comparisons

with pertinent Monte Carlo simulation data demonstrate the efficiency of the technique.

Chapter 6 contains concluding remarks and some suggestions for potential future work, while

two Appendices related to Chapters 3 and 4 are included as well.
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Chapter 2

Uncertainty modeling: Lp-norm minimization for stochas-

tic process power spectrum estimation subject to incom-

plete data

2.1 Preliminary remarks

Reconstruction of discrete time/space signals that suffer from missing data has long been a topic

of interest across a range of fields. Whilst the most effective way to address such problems is to

sample signals more reliably, under controlled conditions, this is not always possible. ’Missing

data’ in general, refers to situations in which undesirable gaps occur in data sets. For example,

in wireless sensor network for structure health monitoring [54], such problems may be caused by

sensor failures or sampling / threshold limitations on the equipment, acquisition or usage restric-

tions on sensing or on the data itself, and even from data corruption. Re-sampling missing data

can be difficult in many cases, and often impossible when working with time-dependent stochastic

processes. For this reason, there are numerous approaches to addressing these problems by pre-

dicting missing datum values based on the available data. These include zero-padding of missing

data [76], least-squares spectral analysis [72], [105], [132], iterative spectral de-noising [53], [4],

[97], interpolative as well as autoregressive methods [39]. Clearly, in most cases the choice of the

approach is problem-dependent, and typically depends on a priori known information such as the

arrangement and amount of missing data. This chapter focuses on a class of missing data prob-

lems for which the property of ’sparsity’ is exploited to reconstruct records. A sparse discrete-time

signal can be characterized by a relatively small number of coefficients with respect to its sample

length. This sparsity may be apparent in the sampling domain, for which the majority of the data

is zero except for a handful of spikes, or sparsity can occur in some other basis or frame, such as

the frequency domain. Signal reconstruction methods that take advantage of sparsity have received

increased interest with the advent of Compressive Sensing (CS) [12], [36], a signal processing

technique in which data are purposely under-sampled.
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Regarding applications in structural engineering/dynamics, so far CS has been mostly applied

in situations where some saving in data capture time or data size is useful. For example, sensors

(especially wireless ones) that capture data for real-time structural health monitoring can be de-

signed to capture only a fraction of the data, reducing manufacturing cost. By utilizing CS with an

appropriate compression basis (in which the signal has a sparse representation), data series with far

higher resolution than those originally captured could be reconstructed. Not only would the sensors

not need to capture as much data, but also the stored data would have a small file size, negating

the requirement for compression processing at the sensor. In this regard, some preliminary recent

results exist in the literature for structural system parameters identification [140], damage detec-

tion [75], [135], [69], and real time structure health monitoring [87], [83], [48], [50]. However,

most of the aforementioned applications are restricted in the sense that they are focused on the

problem of compressing efficiently the acquired signal (assumed to be complete) for circumvent-

ing the computational burden of compressing it locally at the sensor. Nevertheless, applying CS

theory to the problem of missing data differs primarily in one respect; that is, missing data are

not necessarily intentional. Unfortunately, this removes control over one important step of CS: the

arrangement of the sampling matrix. CS relies on the choice of an appropriate sampling matrix.

For instance, uniform random Fourier matrices obey the CS requirements for sparse reconstruction

with high probability [12], [36]. Unfortunately, the missing data may not be uniformly distributed

over the record; thus, regular or large gaps of missing data can lead to lower orthogonality between

random columns of the sampling matrix. Further, even the papers that address the case of data

losses such as in [143], focus primarily on deterministic signal reconstruction (e.g. in the time

domain). Nevertheless, there are cases (e.g. system reliability assessment applications) where the

main objective may not be signal reconstruction (in the time/space domains), but rather character-

ization and quantification of the underlying stochastic process/field statistics (i.e. Power Spectrum

estimation).

Recently, Comerford et al. [25] utilized sparse signal reconstruction methods to develop

stochastic process power spectrum estimation techniques subject to signals with missing data .

The concept of the power spectrum has been indispensable for characterizing stochastic processes

that exhibit frequency-dependent properties (e.g., [110], [19], [20]). Nevertheless, to estimate the

power spectrum of a stochastic process, recorded realizations are often required, which may suffer

from previously mentioned missing data problems. Note that power spectrum estimation methods

that rely on the Discrete Fourier Transform (DFT) or on wavelet transforms for the non-stationary

case, require full, uniformly sampled data sequences; hence the need for reconstruction. In this

regard, many processes for which a power spectral model is of interest exhibit relative sparsity in

the frequency domain, and thus, sparse reconstruction methods can be ideal. In [22], a CS based

approach was developed for power spectrum estimation, in which multiple records were utilized

to iteratively update a harmonic basis matrix, demonstrating significantly improved results over

alternative methods.
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In this chapter, L1/2 norm minimization is proposed, set within a framework for power spec-

trum estimation subject to missing data. The framework utilizes a re-weighting scheme that makes

the assumption of multiple process records being available for analysis. This can be construed as

a caveat of the approach described herein but also the reason that it can be so incredibly effective

in signal reconstruction from a spectral estimation standpoint. Further, it is noted that for both

stationary and non-stationary processes for which only single records are available, windowing

and down-sampling may be applied to emulate multiple process records. Results utilizing the L1/2

norm are compared against an alternative L1 norm set in the same basis re-weighting scheme for

stationary, non-stationary and multi-dimensional stochastic process examples.

The following section comprises a brief background to identification of sparse solutions via

Lp norm (0 < p ≤ 1) minimization schemes. Further, it provides an overview of the L1 norm

re-weighting procedure that utilizes multiple stochastic process records for power spectrum esti-

mation described in detail in [22]. The re-weighting procedure is then utilized alongside L1/2 norm

minimization, further promoting sparsity. Both methods are then compared for varying numbers

of available process records for stationary, nonstationary and multi-dimensional cases.

2.2 Sparse solutions via Lp norm minimization

The condition of sparsity requires that a signal can be defined in some known basis with far fewer

coefficients than the number determined by the Shannon-Nyquist rate [31]. As an example, a

discrete time signal x in one dimension can be viewed as an N × 1 column vector. Given an

orthogonal N × N basis matrix A, in which the columns An are the basis functions, x can be

represented in terms of this basis via a set of N × 1 coefficients y, i.e.,

x =
N∑
n=1

Anyn (2.1)

The vector x is said to be K-sparse in the basis A if y has K non-zero entries and K < N , i.e.,

x =
K∑
k=1

Ankynk (2.2)

where nk are the integer locations of the K non-zero entries in y. Hence y is an N × 1 column

vector with only K non-zero elements. Therefore,

|y|L0 = K (2.3)
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where |.|L0 denotes the Lp norm defined as

|y|Lp =

(∑
n

|yn|p
) 1
p

(2.4)

Considering an under-sampled signal, transformation into a new basis (e.g., Fourier, wavelets etc.)

leads to an under-determined system of equations, i.e.,

x = By (2.5)

where B is an M ×N reduced A matrix where M < N . The assumption that a signal is uniquely

sparse in the given basis provides an objective to solving these equations. In general, if a unique

sparsest solution of an under-determined system of equations exists, it is found when theL0 norm is

minimized. According to [15], this L0 solution is said to be the exact reconstruction of the original

signal with high probability if M > CKlog(N) for some constant C, where as C increases, so

does the probability of successful reconstruction. This L0 optimization problem is non-convex

with no known exact solution [12], [5]. However, a viable alternative exists in minimizing the L1

norm instead. L1 norm minimization promotes sparsity and in many cases will yield the same

result as L0 norm minimization [86]. Further, the problem becomes convex, and may be set in a

convenient linear programming form, i.e.

min |y|L1 , subject to x = By (2.6)

Eq. (2.6) describes a basis pursuit optimization problem and can be easily solved via a gradient-

based method, e.g. [124]. This notable feature led some of the authors to applying L1 minimization

in a CS framework for estimating the relatively narrow-band (evolutionary) power spectra of sta-

tionary and nonstationary stochastic processes based on available realizations with incomplete data

[25], [22]. However, as minimizing the L1 norm does not guarantee the sparsest solution, recon-

struction can be improved, or accurately met with fewer sample data, when utilizing Lp norm

minimization with p < 1. Although such problems appear to be non-convex, it was shown in [16]

that even when finding a local minimum, exact reconstruction is possible with far fewer data than

those required for L1 reconstruction.

In fact, it was shown in [139] that p = 1/2 tends to yield the sparsest solution for 1/2 ≤ p < 1

and for 0 < p < 1/2 the sparsity degree remains relatively unaffected. Hence, in this chapter,

L1/2 norm minimization is considered to be representative of the p < 1 cases for reconstruction

of sparse signals. The herein utilized scheme for implementing the L1/2 norm is based upon on a

re-weighted least squares algorithm [16], [45]. In this regard, the L1 minimization problem in Eq.

10



(2.6) becomes

min |y|1/21/2, subject to x = By (2.7)

To minimize Eq. (2.7), the Lagrangian L(y, λ) is introduced as

L(y, λ) =
∑
n

|yn|
1
2 + λT (By− x) (2.8)

Setting the partial derivatives of Eq. (2.8) with respect to y and λ are equal to zero for

y = QBT (BQBT )−1x (2.9)

Q = diag(|y|
3
2 ). Eq. (2.9) can be solved iteratively by computing Q from the solution of each

previous iteration, i.e.,

yr = Qr−1BT (BQr−1BT )−1x (2.10)

Qr−1 = diag(|yr−1|
3
2 ) (2.11)

Note that, this algorithm is equivalent to a weighted L2 norm [45]

min
y

∑
ωny

2
n, subject to x = By (2.12)

where ωn = |yn,r−1|−3/2. As the solution is sparse, the value of many yi will tend toward zero. To

avoid division by zero in ωi as the algorithm converges to a solution, a decreasing parameter ε is

introduced to regularize the optimization problem [17], i.e.,

Qr−1 = diag
(
|yr−1|2 + εj · (E[|ys−1|2])

3
4

)
(2.13)

εj =
εj−1

10
(2.14)

where ε0 = 1 and for each εj , Eq. (2.10) is repeated until satisfying

‖yr − yr−1‖2
‖yr−1‖2

<

√
εj

100
(2.15)

Converging to the trueL1/2 solution can largely depend upon the initialization of Q. Fortunately, in

the case where multiple process records are used to estimate the power spectrum (a core assumption

of the adaptive basis method presented in the next section), a satisfactory approximation of y can

be realized on which to initialize the L1/2 norm minimization algorithm. Essentially any standard

spectrum estimation method that can process ’gappy’ records, such as least-squares (L2 norm),
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can be used to produce an average estimation of the power spectrum across the ensemble, yielding

suitable initialization coefficients for Q. The proposed initialization of Q for both stationary and

non-stationary cases is based on a least squares estimation of y. Note that when utilizing multiple

records, this initial estimation may also take advantage of the re-weighting procedure detailed in

section 2.4.

The L1/2 solution of Eq. (2.7) could be determined by the following steps

a) Initialize Q0 = BT (BBT )−1x, when inner iteration index r = 0, and initialize ε0 = 1 when

outer iteration index j = 0.

b) For each outer iteration j, calculate rth iteration (inner) yr with Eq. (2.10), and update Q
wtih Eq. (2.13), until condition Eq. (2.15) is satisfied.

c) Update εj with Eq. (2.14).

d) Repeat b)-c), until εj become enough small.

Obviously, recorded signals are rarely ever truly sparse due to two aspects. First, even low

levels of measurement noise will produce small coefficients across most bases. Further, the signals,

in practice, are nearly sparse, which means most of spectral coefficients are not exactly zero, but

small values near zero. Hence, a tolerance, ν, is included to deal with both above two aspects, and

thus, Eq. (2.6) and Eq. (2.7) are re-cast in the form,

min |y|1/21/2, subject to |By− x|L2 ≤ ν (2.16)

For the cases where either the signal is not sparse enough or the missing data are too extensive

for Lp(0 < p ≤ 1) minimization to exactly reconstruct the original signal, it is important to note

that there may still be significant advantages over a minimum L2 solution. In spectral estima-

tion, minimizing the L2 norm (similar to zero-padding) is likely to spread the solution over many

frequencies; this is because individually, large coefficients are heavily penalized. Minimizing the

Lp(0 < p ≤ 1) norm however is far more likely to yield larger individual coefficients, having the

effect of producing sharp, well-defined peaks at the key frequencies. Note that, the degree of data

missing is relatively smaller than the degree of signal sparsity discussed in this chapter.

2.3 Stochastic process representation and spectral estimation

To utilize bases in which signals are assumed to be sparse in the context of power spectrum estima-

tion, a mapping is required between the chosen basis, and a power spectrum model. Appropriate

basis functions to be used in the context of the previous section are outlined here for both stationary

and non-stationary stochastic processes.
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2.3.1 Stationary case

Starting with a stationary model of a real-valued stochastic process, its power spectrum may be

given as the ensemble average of the square of the absolute Fourier transform amplitudes of avail-

able discrete time realizations [80]; that is,

Sx(ωk) =
2∆T

N
E

∣∣∣∣∣
N−1∑
t=0

xne
−2πikn/N

∣∣∣∣∣
2
 (2.17)

where N is the number of data points, t is the data point index in the record, k is the integer

frequency for ωk (i.e. ωk =
2πk

T
, where T is the total length in time of the record) and ∆T = T/N

is the sampling time increment. Hence, the Fourier basis functions are utilized in this case.

2.3.2 Non-stationary case

A reliable spectral model providing frequency dependent information can be of significant im-

portance in investigating the response of an engineering system to stochastic input. However, a

time-invariant spectral model can only describe a stationary process, i.e. one in which the spectral

content does not change over time. This assumption of stationarity often produces a poor approx-

imation of the true process, as many important processes of interest are non-stationary in nature.

For example, the frequency content of an earthquake induced excitation can change significantly

over its duration, whereas wind systems may contain short infrequent bursts that do not conform

to the otherwise stationarity of the rest of the process. Hence, in many cases, accounting for time-

dependent properties of stochastic processes is critical in defining reliable spectral models [92],

[71]. For these reasons, evolutionary power spectrum estimation of non-stationary processes will

receive particular attention in the ensuing analysis.

For the case of non-stationary stochastic processes a time/frequency localized wavelet basis,

as opposed to the Fourier decomposition of the signal is utilized. In this regard, Nason et al. [78]

developed the wavelet based representation,

x(t) =
∑
j

∑
k

ωj,kψj,k(t)ξj,k (2.18)

where ψj,k(t) is the chosen family of wavelets and j and k represent the different scales and

translation levels respectively; ξj,k is a stochastic orthonormal increment sequence. This wavelet-

based model relies on the theory of locally stationary processes (see [29]). Next, by utilizing the

generalized harmonic wavelets [80], [81], defined in the time domain as,

ψ(m−n),k(t) =
ein∆ω(t−k) − eim∆ω(t−k)

i(n−m)∆ω(t− k)
(2.19)
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Eq. (2.18) becomes

x(t) =
∑

(m,n)

∑
k

(
√
SX(m,n),k(n−m)∆ω)ψ(m,n),k(t)ξ(m,n),k(t) (2.20)

Eq. (2.20) represents a localized process at scale (m,n) and translation (k) defined in the intervals

[m∆ω, n∆ω] and
[

kT

n−m
,
(k + 1)T

n−m

]
, with SX(m,n),k representing the spectrum SX(ω, t) at scale

(m,n) and translation (k); see also [117].

Regarding the problem of estimating the EPS of a non-stationary stochastic process based on

available/measured realizations, a wavelet process based compatible estimation approach advo-

cates that the EPS SX(ω, t) of the process X(t) is estimated by [117], [122]

SX(ω, t) = SX(m,n),k =
E
[
|WG

(m,n),k[X]|2
]

(n−m)∆ω
, m∆ω ≤ ω ≤ n∆ω,

kT

n−m
≤ t ≤ (k + 1)T

n−m
(2.21)

where WG
(m,n),k is the generalized harmonic wavelet transform (GHWT) defined as

WG
(m,n),k =

n−m
kT

∫ +∞

−∞
f(t)ψ(m,n),k(t)dt (2.22)

where the overbar denotes the complex conjugate.

Thus, the EPS can be estimated as the ensemble average of the square of the wavelet coeffi-

cients, whereas the wavelets of Eq. (2.19) serve as the basis functions.

2.4 Adaptive basis re-weighting procedure

The adaptive basis re-weighting procedure, first proposed in [22], has been shown to improve the

stochastic process power spectrum estimate to a large extent. The rationale relates to exploiting

the presence of the expectation operators in Eq. (2.17) and Eq. (2.21) for estimating power spec-

tra. Given multiple process records, the objective is to estimate the power spectrum based on the

mean square of their transform coefficients. This requires the core assumption that the individual

records are produced by the same underlying stochastic process, and thus, are compatible with the

same power spectrum. In this case, we would expect the individual record transforms to exhibit

similarities. For instance, if the spectral power is estimated to be high at a specific frequency, then

each individual record is more likely to have higher amplitude Fourier coefficients at that same

frequency. When dealing with missing data, we can use this fact to skew the reconstruction opti-

mization problem in the direction of the ensemble estimated power spectrum, in a similar way to

the L1/2 minimization presented previously.

The purpose of the re-weighting procedure is to iteratively update a weight matrix W to be
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used in a least squares optimization, as was the case with Q in Eq. (2.11). However, rather than

base W solely on the outcome of the least squares result, it is based on an ensemble mean. Once

the iterations are complete, the final W is multiplied by the basis matrix to influence the result of

the chosen Lp norm minimization. Hence, Eq. (2.6) and Eq. (2.7) become

min |y|1/21/2, subject to x = WBy (2.23)

The contribution of a single process record to the next iteration of the re-weighting matrix Ws is

given by

yk,s = (BWs−1)T (BWs−1(BWs−1)T )−1x (2.24)

where B is the reduced M ×N matrix as in Eq. (2.5) and yk,s is an N × 1 least squares estimation

of the kth signal realization’s basis coefficients, subject to the (s − 1)th re-weighted basis matrix

Ws−1. Further, odd and even functions (e.g., sine and cosine) are paired when forming the W
matrix and their combined magnitude is used for both individual weights. This is a necessary step

as the power spectrum models given by Eq. (2.17) and Eq. (2.21) do not exhibit phase-dependent

properties. For basis matrices composed of real functions, with odd and even functions of equal

frequency adjacent to one another, the W matrix is constructed in the following way

Ws = diag(ωs,n=0,1,...,N ) (2.25)

where

ωs,n =

∑
R

(√
y2
k,s,nf

+ y2
k,s,nf+1

)
R

+ c (2.26)

yk,s,nf are the scalar coefficients at positions nf from the vector yk,s, where

nf = floor(j/2) (2.27)

where floor(.) maps a real number to the largest previous integer. In Eq.(2.26), R is the total

number of process realizations in the ensemble, and c is a constant. Although in the case where

absolute sparsity (which means most of the spectral coefficients are exactly zero) is inferred, it

might be beneficial to allow weight coefficients to reduce to zero, this assumption is seldom true

when dealing with real recorded processes. Therefore, to prevent weight coefficients approaching

zero and forcing functions out of the optimization, a constant, positive bias is included. In the

following numerical examples, this is set equal to the mean weight at each iteration.

The optimization is initialized with an N × N identity matrix (i.e., without weights). The

procedure is terminated when the change in weights between iterations is considered to be very
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small,
‖Ws −Ws−1‖2
‖Ws−1‖2

< δW (2.28)

where δW is some small value, several orders of magnitude lower than the mean square of W.

The procedure is summarized as following

a) Initialize W0 as the M ×M identity matrix when iteration index s = 0.

b) For each realization, calculate yk,s with Eq.(2.24). k is the realization index.

c) Calculate the sth iteration Ws with Eq.(2.25-2.27).

d) Repeat step a)-c) until the condition Eq.(2.28) is satisfied, and obtain the final W.

e) With the obtained W, for each realization, calculate y with Eq.(2.23) by the L1/2 solution

steps described in section 2.2. And then estimate the power spectrum.

2.5 Numerical examples

The numerical examples are split into four parts. First, the ability of L1 and L1/2 norm minimiza-

tion in estimating spectra are compared for a stationary sea wave process without utilizing the basis

re-weighting procedure. This first example demonstrates the ability of the L1/2 norm minimiza-

tion in finding sparser solutions. For the remaining parts, the iterative re-weighting procedure is

introduced and implemented in both L1 and L1/2 norm minimization procedures over three sep-

arate examples, considering stationary sea wave, non-stationary earthquake and two dimensional

material property processes. For each of re-weighting examples, the reconstruction capabilities of

L1 and L1/2 norms are assessed utilizing two different sizes of record ensemble; that is, 20 process

records and 200 process records.

To assess the reconstruction efficacy in the above scenarios, time histories compatible with pre-

defined power spectra are generated. These are produced via the techniques described in [110] and

[71] for stationary and non-stationary processes, respectively. Specifically, for a stationary record,

a power spectrum compatible realization is given by

x(t) =
N−1∑
j=0

√
4SX(ωj)∆ω sin(ωjt+ φj) (2.29)

where φj are uniformly distributed random phase angles in the range 0 ≤ φj < 2π and N relates

to the discretization of the frequency domain. For non-stationary processes, SX(ωj) in Eq. (2.29)

is replaced with an evolutionary power spectrum SX(ωj , t).

Next, missing data are imposed to the simulated power spectrum compatible realizations. In

the following examples, missing data are considered to occur at random locations drawn from a
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uniform distribution of the time index i.e.,

x0(t) =


x(t), ρ(t) ≥ m

NaN, ρ(t) < m

(2.30)

where x0(t) is the realization with missing data, x(t) is the original realization, ρ is a vector

of N0 equally spaced numbers from 0 to 1 arranged in random order, and m is the fraction of

missing data. Through Eq. (2.30), the uniform distributed locations of missing data are selected

and the corresponding data values are removed, which are denoted as NaN. For each realization,

an independent uniform distribution of time index is applied. In this way, the incomplete samples

with missing data are generated.

Power spectra may be estimated based on complete realizations of Eq. (2.29) using the methods

outlined in section 2.3. They are then compared against those estimated from realizations with

simulated missing data. Specifically, a normalized power spectrum error is calculated for stationary

processes

error =

∫ ωu
0 |SE(ω)− ST (ω)|dω∫ ωu

0 |ST (ω)|dω
(2.31)

and for non-stationary processes

error =

∫ tu
0

∫ ωu
0 |SE(ω)− ST (ω)|dωdt∫ tu
0

∫ ωu
0 |ST (ω)|dωdt

(2.32)

It is important to note that the error is calculated from two spectral estimates (with missing data

and without missing data), and does not utilize the original power spectrum. This is because

the objective of this work is not to assess the accuracy of the underlying spectrum estimation

method (in this case Fourier or GHW based methods which have already been studied extensively

in this context [122], [115], [62]), but to investigate, specifically, the effect of the missing data

upon spectral estimation. Further, due to the random nature of the generated process records and

arrangement of missing data, the calculated error is a random variable for any given case. Hence,

statistics are determined for the error as well, by considering an ensemble of power spectrum

estimates obtained via repetitions of the same experiment.

2.5.1 Stationary sea wave spectrum without re-weighting

As previously mentioned, the first example is presented without utilizing the basis re-weighting

procedure to demonstrate the un-biased difference between L1 and L1/2 solutions. The fact that

L1/2 is shown to out-perform L1 indicates that it could be a more appropriate choice when es-

timating spectra from single process records (where the basis re-weighting procedure may not be
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applicable). Note that in this example, Q in Eq. (2.10) is initialized using a least squares estimation

of y,

Q0 = diag(q0) (2.33)

where

q0 = BT (BBT )−1x (2.34)

In Eq. (2.34), B is the reduced M ×N basis matrix and x is the time-history record after data have

been removed. The JONSWAP sea wave spectrum of Eq. (2.35) [51] is used to produce stationary

process time histories,

S(ω) =
ag2

ω5
e

5
4

(ωρ/ω)4γr; r = e
−
(
ω − ωρ
2σωρ

)2

(2.35)

where α = 0.03, ωρ = 0.05, γ = 3.3 and σ =


0.07, ω ≤ ωρ

0.09, ω > ωρ

.

Figures 2.1 and 2.2 show the target spectra along with the reconstructed spectra for L1 norm

and L1/2 norm minimization averaged over 20 samples and 200 samples, respectively. For these

examples, spectra were reconstructed after 75% of the data were removed via Eq. 30. While in both

figures, the L1 and L1/2 norms succeed in determining spectra that match moderately well with

the target, a trend emerges when comparing the calculated errors for spectral estimates produced

from 20 and 200 samples, which are shown as normalized histograms in Figure 2.3. Note that for

all four cases ( L1 and L1/2 norm with 20 and 200 samples), the results were repeated 500 times

to produce these histograms due to the fact that any single error result is not representative of the

full set. In both cases, the L1/2 solution leads to spectral estimates with lower error than the L1

solution. However, it is clear from Figure 2.3 that this difference becomes more prominent as the

number of samples increases. It should also be noted that even for the 20 sample case (in which

the histograms intersect), for each sample set, the L1/2 norm solution produced a lower error than

the L1 norm solution.

2.5.2 Stationary sea wave spectrum with basis re-weighting

The following example is similar to the previous one, with the exception that when solving the Lp
norm minimization problems, the weighted Fourier basis is used instead of the original orthonormal

one. The same weight matrix is used for both L1 and L1/2 norm problems, calculated again, based

on 20 and 200 process records. For theL1/2 norm minimization algorithm,Q is this time initialized
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Figure 2.1: JONSWAP stationary power spectrum estimates of Eq.(2.35) from 20 samples without
re-weighting (75% missing data)

Figure 2.2: JONSWAP stationary power spectrum estimates of Eq.(2.35) from 200 samples without
re-weighting (75% missing data)
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Figure 2.3: Distribution of error over 500 repeated estimations of Eq.(2.35) without re-weighting
for 20 and 200 samples

after taking account of the final weight matrix,

Q0 = diag(q0) (2.36)

where

q0 = (WB)T (WB(WB)T )−1x (2.37)

Figures 2.4 and 2.5 show the target spectra along with the reconstructed spectra for L1 and L1/2

norm minimization averaged over 20 samples and 200 samples, respectively. Again, 75% of the

data were removed based on Eq. (2.30). The errors with reference to the target spectrum estimates

are shown as histograms for 500 test runs in Figure 2.6 for 20 and 200 time histories. As with the

non re-weighted case, the distribution of error changes with number of samples used to estimate

the spectrum. However, when comparing Figure 2.6 to Figure 2.3, it is clear that the re-weighting

procedure has had a significant effect. Firstly, the mean error for both cases has decreased dra-

matically, this is also apparent when comparing the plotted spectra in the non re-weighted case

(Figures 2.1 & 2.2) to the re-weighted case (Figures 2.4 & 2.5). Secondly, the L1 norm solution

has also improved relative to the L1/2 solution. In fact, for 20 samples, the L1 norm solution pro-

vided a superior spectral estimate in > 70% of trials. However, in the 200 sample case, despite the

slight overlap in the histograms (Figure 6, right), for each individual trial, the L1/2 norm solution

provided the lowest error.
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Figure 2.4: JONSWAP stationary power spectrum estimates of Eq.(2.35) from 20 samples with
re-weighting (75% missing data)

Figure 2.5: JONSWAP stationary power spectrum estimates of Eq.(2.35) from 200 samples with
re-weighting (75% missing data)
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Figure 2.6: Distribution of error over 500 repeated estimations of Eq.(2.35) with re-weighting for
20 and 200 samples

2.5.3 Non-stationary earthquake spectrum with basis re-weighting

For the non-stationary case, the following time-modulated Clough-Penzien earthquake EPS model

[21] is used to generate process realizations i.e.,

SX(ω, t) = a(t)SX,2(ω) (2.38)

where

a(t) = 4(e−0.3t − e−0.6t) (2.39)

and

SX,2(ω) = S0
ω4

(ω2 − ω2
f )2 + 4ζ2

fω
2
fω

2

ω4
g + 4ζ2

gω
2
gω

2

(ω2 − ω2
g)

2 + 4ζ2
gω

2
gω

2
(2.40)

where S0 = 0.06, ζf = 0.6, ωf = 1, ζg = 0.4 and ωg = 10. The results are produced given the

same parameters as the previous stationary case with basis re-weighting, except with a GHW source

basis. A wavelet bandwidth of (n −m = 8) is used which offers a satisfactory trade-off between

time and frequency resolutions. Figures 2.7, 2.8, 2.9 and 2.10 show the estimated spectrum with

no missing data, and with 75% missing data (L2, L1 and L1/2 norm cases), respectively, for 20

realizations only. For ease of comparison, figures 2.11 and 2.12 show all three estimated spectra

compared at a single time instant (t = 1s) for both 20 and 200 realizations respectively.

As with the stationary case, the reconstructed spectra compare well with the target with as few

as 20 realizations, with a small but noticeable increase in accuracy for 200 realizations. Figure

2.13 shows error histograms for the non-stationary case. Again, when more samples are used the

L1/2 norm solution improves compared to the L1 norm solution (as before, for 200 samples, all of
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Figure 2.7: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 20 samples
(no missing data)

the individual L1/2 trials exhibit a lower error), though for the 20 sample case there is almost no

difference.

2.5.4 Two-dimensional stochastic field spectrum with basis re-weighting

Two-dimensional random fields are typically utilized for modeling material properties (e.g. [130]).

While the signal of interest is a two-dimensional field, it can be decomposed by rows or columns

into a one-dimensional vector. The two-dimensional Fourier decomposition provides a two-dimensional

basis matrix for each frequency up to the Nyquist rate. These matrices are also decomposed into

one-dimensional vectors to produce a single square basis matrix as in the one-dimensional case.

Thus, the problem is treated as in the one-dimensional case.

Further, to generate realizations, a two-dimensional generalization of Eq. (2.29) is utilized

[111], i.e.,

g(x1, x2) =
√

2
N1−1∑
n1

N2−1∑
n2

[An1n2 cos(κ1n1x1+κ2n2x1+φ(1)
n1n2

)+Ān1n2 cos(κ1n1x1+κ2n2x1+φ(2)
n1n2

)]

(2.41)

where

An1n2 =
√

2Sg(κ1n1 , κ2n2)∆κ1∆κ2 (2.42)

Ān1n2 =
√

2Sg(κ1n1 ,−κ2n2)∆κ1∆κ2 (2.43)

and xj and κj are the two-dimensional space and wave number domains respectively.

Note that records generated via Eq. (2.41) tend to exhibit a Gaussian distribution [111], [110],
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Figure 2.8: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 20 samples
(75% missing data, L2 norm reconstruction, error = 1.1)

Figure 2.9: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 20 samples
with re-weighting (75% missing data, L1 norm reconstruction, error = 0.26)
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Figure 2.10: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 20 samples
with re-weighting (75% missing data, L1/2 norm reconstruction, error = 0.26)

Figure 2.11: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 20 samples
with re-weighting at t = 1s (75% missing data)
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Figure 2.12: Clough-Penzien evolutionary power spectrum estimate of Eq.(2.38) from 200 samples
with re-weighting at t = 1s (75% missing data)

Figure 2.13: Distribution of error over 500 repeated estimations of Eq.(2.38) with re-weighting for
20 and 200 samples
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whereas a wide range of techniques exist for producing realizations compatible with a given power

spectrum and a non-Gaussian probability density function e.g., [47], [8], [109], [33]. For instance,

following [47], a Gaussian field, denoted by g(x1, x2) may be transformed into a non-Gaussian

field, f(x1, x2) by way of the transformation

f(x1, x2) = F−1
f (Fg(g(x1, x2))) (2.44)

where Fg is the Gaussian cumulative distribution function and F−1
f is the inverse cumulative dis-

tribution for the desired non-Gaussian target field f(x1, x2).

Next, following [130], the material modulus of elasticity is modelled as a homogeneous stochas-

tic field with a power spectrum and a cumulative distribution function given by

S(κ1, κ2) =
2

π
e−2(κ21+κ21) (2.45)

Ff (f(x1, x2)) =
f(x1, x2)− al

au − al
(2.46)

respectively, where au = 0.99 and al = −0.99. 80% of the data are removed at uniformly

distributed random locations and reconstructed using re-weighted L1 and L1/2 norm minimization

for 20 and 200 samples. The target spectrum with no missing data and with reconstruction via

L1/2 norm minimization are shown in Figures 2.14 and 2.16, respectively (both refer to the 200

samples case), compared with the L2 norm minimization in Figure 2.15. As with the previous

examples, histograms showing the distribution of error for repeated trials are shown (Figure 2.17)

providing greater insight into the reconstruction effectiveness. The results here are similar to those

for the re-weighted stationary case. In particular, L1 norm minimization is superior at lower sample

numbers, with L1/2 norm improving at a higher rate with increasing sample numbers. Again for

200 samples, the L1/2 norm solution appears to be always superior.

2.6 Summary

In this chapter, a general Lp norm (0 < p ≤ 1) minimization approach has been proposed for

estimating stochastic process power spectra subject to realizations with missing data. For com-

parisons, three different examples are considered including the stationary, nonstationary process

and 2 dimensional field. In particular, focusing on the L1 and L1/2 norms, it has been shown

that the approach can be significantly enhanced by an adaptive basis re-weighting scheme, while

it can satisfactorily estimate the power spectra of stationary, non-stationary, and multi-dimensional

processes. It is shown that there are clear advantages to utilizing L1/2 norm over L1 norm min-

imization in signal reconstruction for power spectrum estimation. In addition, where multiple

realizations are available for basis re-weighting, L1/2 norm is shown to provide more accurate
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Figure 2.14: Two-dimensional non-Gaussian power spectrum estimate of Eq.(2.45) from 200 sam-
ples (no missing data)

Figure 2.15: Two-dimensional non-Gaussian power spectrum estimate of Eq.(2.45) from 200 sam-
ples (80% missing data, L2 norm reconstruction, error = 1.2)
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Figure 2.16: Two-dimensional non-Gaussian power spectrum estimate of Eq.(2.45) from 200 sam-
ples with re-weighting (80% missing data, L1/2 norm reconstruction, error = 0.07)

Figure 2.17: Distribution of error over 100 repeated estimations of Eq.(2.45) with re-weighting for
20 and 200 samples
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spectrum estimations when large sample sizes are utilized. L1 norm minimization has been shown

to exhibit a greater magnitude of improvement after re-weighting when compared to L1/2. Nev-

ertheless, despite the re-weighting, the L1/2 solution still succeeds in producing sparser spectral

estimates.
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Chapter 3

Uncertainty quantification of power spectrum and spectral

moments estimates subject to missing data

3.1 Preliminary remarks

In research fields such as stochastic structural dynamics, stochastic processes are most often de-

scribed by statistical quantities such as the power spectrum. In this regard, several approaches exist

in the literature for stochastic process power spectrum estimation. For instance, a Fourier basis is

typically utilized in the spectral estimation of stationary processes [80]. Further, similar to the sta-

tionary case, the evolutionary power spectrum related to non-stationary processes can be estimated

by employing wavelet (e.g. [115]; [62] ) or chirplet bases [90] among other alternatives; see also

[93] for a detailed presentation of joint time-frequency analysis techniques.

It is noted that the above spectral estimation approaches often require a large number of com-

plete data samples for attaining a predefined adequate degree of accuracy. However, missing data

in measurements is frequently an unavoidable situation. In fact, missing data are possible in almost

any situation where data are collected and stored. Indicative reasons in engineering dynamics mea-

surement applications include failure and/or restricted use of equipment, as well as data corruption

and cost/bandwidth limitations.Thus, standard spectral analysis techniques that inherently assume

the existence of full sets of data, such as those based on Fourier, wavelet and chirplet transforms,

cannot be used in a straightforward manner.

To address this challenge, a number of signal reconstruction techniques subject to missing / in-

complete data (e.g. Lomb-Scargle periodogram, iterative deconvolution method CLEAN, ARMA-

model based techniques, etc) have been developed with various degrees of accuracy; see [136]

for a review. Indicatively, [25] developed recently a compressive sensing approach (e.g. [37])

based on L1 norm minimization for stationary and non-stationary stochastic process/field (evo-

lutionary) power spectrum estimation subject to highly incomplete data. The approach has been

shown to be particularly advantageous for cases where multiple records / realizations compatible

with a stochastic process are available. In such cases, a reweighting procedure can be introduced to

31



improve the result to a large degree [22]. Further, an artificial neural network based approach was

also developed recently having the advantage that no prior knowledge of the underlying process is

required [24].

Although all of the above methodologies can, depending on the setting, potentially provide a

relatively accurate stochastic process power spectrum estimate, they will also propagate inaccu-

racies from missing data predictions in the time domain through to the final spectral estimates.

Most of the aforementioned techniques estimate the power spectrum by reconstructing missing

parts of the data, and based on these reconstructed full data, standard spectral analysis methods

are applied. Nevertheless, reconstructing the available records, and thus, deterministically esti-

mating/predicting missing values, rarely accounts for the inherent uncertainty associated with the

missing data. Hence, there is merit in developing a methodology for quantifying the uncertainty in

a given spectral estimate as a result of the uncertainty related to the missing data in the time/space

domain.

In this manner, to quantify the uncertainty of spectral estimates subject to missing data, a

stochastic model accounting for the uncertainty in the missing data in the time/space domain can

be considered based on any available prior knowledge (e.g. an appropriately estimated probability

density function (PDF)). Further, the uncertainty in the missing data can be propagated and the

PDF for each individual power spectrum point can be determined in the frequency domain. In

this regard, [23] proposed a methodology and determined a closed form expression for the power

spectrum estimate PDF under the assumption that the (missing data) variables in the time domain

are independent Gaussian random variables. Note, however, that this approach does not consider

the correlation between the missing points, and thus, can be largely unrepresentative, for instance,

of a signal with harmonic features.

In this chapter, the approach developed in [23] is extended to account for the correlation be-

tween the missing data. Although determining the exact correlation between points is practically a

quite challenging task, an estimate can be obtained by relying on existing available data and em-

ploying various modeling schemes such as Kriging [125]. Further, an additional significant contri-

bution of the herein proposed methodology is that it is generalized to evaluate not only the power

spectrum points PDFs, but also the PDFs of the corresponding spectral moments. Clearly, this is of

considerable importance to various engineering dynamics applications such as to structural system

reliability assessment, where the survival probability (or equivalently, the first-passage time) can

be estimated approximately based on knowledge of spectral moments [134]. Several numerical

examples are included and compared against pertinent Monte Carlo simulations for demonstrating

the validity of the approach.
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3.2 Mathematical formulation

3.2.1 Stochastic process power spectrum estimate uncertainty quantification under

missing data

Consider a zero mean stationary process represented as ([27]; [91])

f(t) =

∫ +∞

−∞
A(ω)eiωtdZ(ω), (3.1)

whereA(ω) is a deterministic function and dZ(ω) is a zero mean orthonormal increment stochastic

process. The two-sided power spectrum Sf (ω) of process f(t) is then defined as Sf (ω) = |A(ω)|2.

In general, stochastic process realizations compatible with a given spectrum can be generated by

a spectral representation methodology [110] as Eq.(2.29). The realizations generated by Eq.(2.29)

exhibit the property of ergodicity [110]; hence, the power spectrum Sf (ω) of the underlying pro-

cess can be estimated by utilizing a single realization only. In this regard, and employing the

discrete Fourier transform (DFT) yields Eq.(2.17). In the following, the condition N −→ ∞ is

omitted, for convenience, under the assumption that the length is long enough to provide with an

accurate spectrum estimate. The data points are divided into 2 parts: the known points xα and

missing points xβ , where α and β are indices of the known and unknown points, respectively;

thus, Eq.(2.17) can be further cast in the form

Sf (ωk) =
T

2πN2
|M1 +M2 − i(M3 +M4)|2 =

T

2πN2
[(M1 +M2)2 + (M3 +M4)2] (3.2)

where M1 =
∑
α xα cos

(
2πkα

N

)
, M2 =

∑
β xβ cos

(
2πkβ

N

)
, M3 =

∑
α xα sin

(
2πkα

N

)
, and

M4 =
∑
α xα sin

(
2πkα

N

)
. Next, Sf (ωk) is rewritten into the simpler form

Sf (ωk) = (c1 + a′Xβ)2 + (c2 + b′Xβ)2 (3.3)

where

c1 =

√
T

2πN2

∑
α

xα cos

(
2πkα

N

)
(3.4)

c2 =

√
T

2πN2

∑
α

xα sin

(
2πkα

N

)
(3.5)

a =

√
T

2πN2

(
cos

(
2πkβ1

N

)
, cos

(
2πkβ2

N

)
, ..., cos

(
2πkβu
N

))T
(3.6)
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b =

√
T

2πN2

(
sin

(
2πkβ1

N

)
, sin

(
2πkβ2

N

)
, ..., sin

(
2πkβu
N

))T
(3.7)

and

Xβ = (xβ1, xβ2, ..., xβu)T (3.8)

where u is the number of missing points.

By virtue of the central limit theorem [7], it is reasonable in many cases to make the ap-

proximation that missing points follow a multi-variate Gaussian PDF. In this regard, the various

statistical quantities such as the mean and variance for each missing point as well as the correlation

between missing points are taken into consideration. In the ensuing analysis, it is assumed that the

mean vector µ and correlation matrix Σ of the missing data following a Gaussian distribution, i.e.

Xβ ∼ N(µ,Σ), are obtained by some available estimation scheme, such as the Kriging model; see

following section for more details.

Next, Eq.(3.3) is rearranged (see also [85] ) as a function of two variables in the form

Sf (ωk) = (c1 + aTXβ)2 + (c2 + bTXβ)2 = X2
1 +X2

2 (3.9)

It is readily seen that X1 = c1 + aTXβ ∼ N(c1 + aTµ, aTΣa) and X2 = c2 + bTXβ ∼
N(c2 + bTµ,bTΣb). Because both X1 and X2 are related to the same set of random variables

Xβ , it is obvious that they exhibit some degree of correlation. In this regard, the correlation matrix

CX1X2 of joint Gaussian variables X = (X1, X2)T is given by

CX1X2 =


aTΣa

∑
i

∑
j aibj(Σij + µ1µ2)− bTµaTµ∑

i

∑
j aibj(Σij + µ1µ2)− bTµaTµ

bTΣb


(3.10)

and the mean vector of joint Gaussian variables X1 and X2 takes the form

µX1X2
= (c1 + µ1, c2 + µ2)T (3.11)

where µ1 = c1 + aTµ, µ2 = c2 + bTµ.

Further, to determine the PDF of variable Sf (ωk) in Eq.(3.9), the celebrated input-output PDF

relationship [85] is applied, and the cumulative distribution function (CDF) of Sf (ωk) is defined

as

F (Sf ) = P (Sf ≤ s) = P [(X1, X2) ∈ Dz] =

∫∫
(X1,X2)∈Dz

fX1,X2(X1, X2)dX1dX2 (3.12)
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where fX1,X2(X1, X2) is the distribution function of variables X1 and X2, and the PDF of Sf (ωk)

is given by

fs(s) =
dF (Sf )

ds
(3.13)

Thus, taking into account Eqs. (3.9-3.13), an analytical expression for the power spectrum

PDF at a given frequency ωk is derived in the form

pSf (ωk)(s) =
d

ds

∫∫
X2

1+X2
2≤s

1

2π
√
|CX1X2 |

exp[−1

2
(X− µX1X2

)TC−1
X1X2

(X− µX1X2
)]dX1dX2

(3.14)

In this section an approach has been developed for quantifying the uncertainty in a stochastic

process power spectrum estimate subject to missing data. Specifically, a closed form analytical

expression has been derived in Eq.(3.14) for the power spectrum estimate PDF corresponding to a

given frequency. In comparison with the methodology in [23], which adopts the assumption that

missing data in a given realization are independent and identically distributed Gaussian random

variables, the rather strict assumption of independence is abandoned herein. In this manner, the

correlation between the missing data is taken into account in estimating the power spectrum PDF.

3.2.2 Kriging model for estimating correlations between missing data

Clearly, the approach developed in the previous section relies on prior knowledge of the correlation

between the missing data. Among the various available techniques in the literature for estimating

data correlation relationships a Kriging based scheme (e.g. [125]; [43] and [58]) is considered in

the ensuing analysis.

Specifically, let f(t) be a sample of a stationary stochastic process with a power spectrum

Sf (ω). Given the n known points tk, k = 1, 2, ..., n, an estimate of f(tj) at the missing point tj ,

can be obtained as a weighted linear combination of the available known points [125], i.e.,

f(tj) =
n∑
k=1

χkf(tk) + z(t) (3.15)

where χk is the weight of each known point, and z(t) is a stationary Gaussian process with zero

mean and covariance

C = cov(z(t), z(t∗)) = γ(|t− t∗|) = σ2
zR(|t− t∗|) (3.16)

where σ2
z is the constant variance of the process and R is the correlation function. Several types of
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correlation functions, such as exponential, linear and Gaussian, have been proposed in the literature

[60]. Herein, a correlation function of exponential form is adopted, i.e.

γ(h) = σ2
ze
−θ1h cos(θ2h)(1 + θ1h) (3.17)

where h = |t − t∗| is the interval between two time instants, and θ1, θ2 are constant values to be

determined. Next, σ2
z , θ1 and θ2 are obtained by

min
σ2
z ,θ1,θ2

|γ(h)− γe(h)|2 (3.18)

where γe(h) =
1

n

∑n
k=1[f(tk + h)f(tk)], and f(tk + h), f(tk) are the known points.

Further, utilizing the Kriging model of Eq.(3.15) the estimate error variance is given by

V = V ar[f∗(tj)− f(tj)] = 2
n∑
k=1

χkγ(|tk − tj |)−
n∑
k=1

n∑
v=1

χkχvγ(|tk − tv|)− σ2
z (3.19)

Next, to minimize the error variance V , a Lagrange multipliers approach is applied yielding

the equations 
∑n
k=1 χkγ(|tk − tv|) + κ = γ(|tk − tj |), (j = 1, ..., n)

∑n
k=1 χk = 1

(3.20)

to be solved for the weights χk and Lagrange multiplier κ . Further, an estimate of the missing

point is given by Eq.(3.15). Then, the covariance matrix C of the sample could be easily obtained

through Eq.(3.16).

Note that, denoting the time history vector x as x = (xβ, xα), the covariance matrix C can

be expressed as C =

Cββ Cβα

Cαβ Cαα

, where Cββ is the matrix whose rows and columns corre-

spond to the missing points xβ , while Cαα corresponds to the known points xα. In this regard, the

conditional covariance matrix Σ of the missing points is calculated as [85]

Σ = C{xβ|xα} = Cββ − CβαC−1
ααCαβ (3.21)

and the mean value can be obtained through Eq.(3.15). Overall, adopting a Kriging modeling ap-

proach in this section, the mean and covariance of missing data are estimated, and can be used as

an input to the approach developed in the previous section.
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3.2.3 Stochastic process spectral moment estimate uncertainty quantification under

missing data

For stationary random processes, the spectral moments are defined as

λm =

∫ +∞

−∞
ωmS(ω)dω (3.22)

where S(ω) is the two-sided power spectrum (e.g. [73]). Considering next the case of a zero mean

process, the zero spectral moment λ0 is equal to the mean square E[X2] of the process X (also

equal to the squared standard deviation σ2
X in this case), and the second spectral moment λ2 is the

mean square E[Ẋ2] of the derivative process X . In a similar manner as the moments of a random

variable are used to describe certain features of the related PDF, spectral moments are indispens-

able in a variety of applications such as determining approximately the survival probability (or

equivalently, the first-passage time) and assessing the reliability of structural systems (e.g. [133];

[134]; [73]).

Further, Eq.(3.22) can be recast into a discrete form in the frequency domain, i.e.

λm =
∑
k

ωmk S(ωk)∆ω (3.23)

Clearly, based on Eq.(3.23) the spectral moment can be viewed as a linear combination of

individual power spectrum points. Note that although the PDFs of the power spectrum points

S(ωk) can be obtained by the methodology developed in the previous sections, a straightforward

determination of the PDF of the spectral moment λm can be quite daunting due to the following

reasons. First, the various power spectrum points S(ωk) do not, in general, follow the same PDF

for different frequency values ωk. Second, the variables S(ωk) exhibit correlation as they are

defined by utilizing the same set of random variables.

Next, to address these challenges, a methodology based on characteristic functions is proposed.

The characteristic function of a random variable is defined as [85]

ΦX(ω) = E[eiωx] =

∫ +∞

−∞
fX(x)eiωxdx (3.24)

where fX(x) is the probability density function of X . Clearly, the characteristic function and the

PDF of a random variable form a Fourier transform pair. Further, the spectral moment Eq.(3.23)

can be construed as a quadratic transformation of missing points Xβ . The correlated variables

Xβ ∼ N(µ,Σ), where Σ can be cast into the Cholesky-like factorization form Σ = AAT (

A being a lower triangular matrix), are replaced by a new set of independent standard Gaussian
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variables Xg ∼ N(0, I) as

Xβ = µ + AXg (3.25)

Next, employing Eqs.(3.23-3.25), Eq.(3.3) can be cast in the matrix form

Sf (ωk) = (c1,k + aTkµ + aTk Xg)
2 + (c2,k + bTkµ + bTk Xg)

2 = XT
gnBkXgn (3.26)

where

Xgn = (XT
g , 1)T = (xg1, xg2, ..., xgu, 1)T (3.27)

and

Bk,vj =



ak,vak,v + bk,vbk,v, v, j ≤ u

(c1,k + aTkµ)ak,v + (c2,k + bTkµ)bk,v, j = u+ 1, v 6= u+ 1

(c1,k + aTkµ)ak,j + (c2 + bTkµ)bk,j , v = u+ 1, j 6= u+ 1

(c1,k + aTkµ)2 + (c2 + bTkµ)2, v = j = u+ 1

(3.28)

c1,k, c2,k, ak,bk are defined by Eq.(3.4-3.7).

Combining Eqs.(3.23) and (3.27), the spectral moments are given, alternatively, in the form

λm = XT
gn(
∑
k

ωmk ∆ωBk)Xgn (3.29)

whereas utilizing Eq.(3.29) the characteristic function of the spectral moments becomes [85]

Φλm(ω) = E[eiωλm ] =

∫ +∞

−∞
(2π)−

u
2 exp(−1

2
[XT
g Xg − iωXT

gn(
∑
k

ωmk ∆ωBk)Xgn])dXg (3.30)

Note that, the evaluation of Eq.(3.30) can be simplified based on the following steps. Specifi-

cally,

a) Let

Y =
1

2
[XT
g Xg − iωXT

gn(
∑
k

ωmk ∆ωBk)Xgn] (3.31)

Eq.(3.31) can be divided into two parts, i.e., Y = Y1 + Y2. The first includes the second order

terms, i.e. Y1 =
∑
k,j ckjxgkxgj ,while the second includes the first order terms plus the constant

term, i.e. Y2 =
∑
k ckxgk + ccons . Thus, Eq.(3.30) can be rewritten as

Φλm(ω) = E[eiωλm ] =

∫ +∞

−∞
(2π)−

u
2 exp(−Y1 − Y2)dxg (3.32)
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b) Similar to Eq.(3.29), Y1 can be expressed as Y1 = XT
g BY1Xg where BY1 is given by

BY1 = AT
Y1AY1 (3.33)

In Eq.(3.33) AY1 is an upper triangular matrix, and AT
Y1 is the non-conjugate transpose of AY1 . The

factorization in Eq.(3.33) is numerically implemented via a Cholesky factorization kind algorithm

[44] with the note that the diagonal elements in BY1 are complex values.

c) After obtaining the upper triangular matrix AY1 , Y may be expressed in a similar form to Y1

(after accounting for first order terms and the constant); thus simplifying the solution of the inte-

gral in Eq.(3.32). Hence

Y = (AY Xgn)T (AY Xgn) + cY (3.34)

where AY = (AY1 , au×1), and au×1 are the coefficients to account for the first order terms
∑
kXgk

in Y2 (with u being the number of missing data); and cY is a constant. A worked 2-variable exam-

ple is shown in detail in Appendix A.

d) Finally, substituting Eq.(3.34) into Eq.(3.30), the integral in Eq.(3.30) may be simplified sig-

nificantly to a function of BY1 , and the constant term cY in the form

Φλm(ω) = E[eiωλm ] = 2−
u
2 (det(BY1))−

1
2 e−cY (3.35)

whereas the spectral moments PDFs are estimated via the inverse Fourier transform of Eq.(3.30),

i.e.

pλi(s) =
1

2π

∫ +∞

−∞
Φλi(ω)eiωsdω (3.36)

In this section an efficient approach has been developed for quantifying the uncertainty in the

spectral moments estimates of an underlying stochastic process based on available realizations with

missing data. Specifically, a closed form expression has been derived in Eq.(3.30) for the spectral

moment characteristic function. The rather daunting brute force numerical evaluation of the inte-

gral appearing in the derived expression has been conveniently circumvented via a “Cholesky” kind

decomposition of the integrand function. Clearly, the development in this section is of considerable

importance (as illustrated in the following section) to various engineering dynamics applications

such as to structural system reliability assessment [134].
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3.2.4 Survival probability estimate uncertainty quantification under missing data

A persistent challenge in the field of stochastic dynamics has been the determination of the system

survival probability, i.e. the probability that the structural system response will stay below a certain

threshold over a given period of time. Many research efforts for addressing the aforementioned

challenge exist in the literature ranging from semi-analytical to purely numerical approaches (e.g.

[118]; [11]; [2]). One of the first semi-analytical approximate approaches proposed by Vanmarke

[134] that relies on the knowledge of the system response spectral moments [133] is considered

next.

Specifically, consider a linear single-degree-of-freedom (SDOF) oscillator, whose motion is

governed by the stochastic differential equation

ẍ+ 2ζ0ω0ẋ+ ω2
0x = w(t) (3.37)

where x is the response displacement, a dot over a variable denotes differentiation with respect to

time t; ζ0 is the ratio of critical damping; ω0 is the oscillator natural frequency andw(t) represents a

Gaussian, zero-mean stationary stochastic process possessing a broad-band power spectrum S(ω).

Focusing next on the stationary response of the oscillator, the response displacement and velocity

power spectra are given by [80]

SX(ω) = |H(ω)|2S(ω) (3.38)

and

SẊ(ω) = ω2SX(ω) = ω2|H(ω)|2S(ω) (3.39)

respectively; and the frequency response function H(ω) is given by

H(ω) =
1

ω2
0 − ω2 + 2iζ0ω0ω

(3.40)

According to [134] and [28], the time-dependent survival probability PB(t) of a linear oscilla-

tor given a barrier level B can be approximated by

PB(t) = exp

[
− 1

π

√
λX,2
λX,0

t · exp(− B2

2λX,0
)

]
(3.41)

where λX,m is the m-th order spectral moment of the displacement x. Note that for the specific

case of the linear oscillator of Eq.(3.37), and considering a low value for the damping ratio, i.e.

ζ0 ≤ 0.05, its response exhibits a narrow-band feature in the frequency domain due to the form

of the frequency response function (see Eq.(3.38)). In particular, it can be seen that |H(ω)|2 is a

function with a sharp peak around the oscillator natural frequency ω = ω0, and decays quickly
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for ω 6= ω0. Thus, it is reasonable to assume that the response of the linear oscillator exhibits a

pseudo-harmonic behavior [113], and the response displacement and velocity can be represented,

respectively, as

x = A cos(ω0t+ ϕ) (3.42)

and

ẋ = −Aω0 sin(ω0t+ ϕ) (3.43)

In Eq.(3.42), A and ϕ represent the response amplitude and phase processes, respectively; see also

[113] and [64] for more details. Considering next Eqs.(3.42-3.43), the independence of A with ϕ

and taking into account that E(cos2(ω0t+ ϕ)) = E(sin2(ω0t+ ϕ)) yields

E(ẋ2) = ω2
0E(x2) (3.44)

or in other words

λX,2 = ω2
0λX,0 (3.45)

Substituting Eq.(3.45) into Eq.(3.41) yields an approximate expression for the oscillator survival

probability that depends only on λX,0, i.e.

PB(t) = exp[−ω0

π
t · exp(− B2

2λX,0
)] (3.46)

In Eq.(3.46), the analytical expression for the PDF of λX,0 in the case of missing data can be

derived by the methodology described in the previous sections. After determining the PDF pλX,0 ,

the system survival probability characteristic function can be obtained as

ΦPB (ωk) = E[eiωkPB ] =

∫ +∞

−∞
eiωkPBpλX,0dλX,0 (3.47)

whereas, an inverse Fourier transform can applied to Eq.(3.47) for numerically evaluating the sur-

vival probability PDF.

3.3 Numerical examples

3.3.1 Excitation records with missing data

To demonstrate the validity of the developed uncertainty quantification approach, stationary stochas-

tic process time histories compatible with the Kanai-Tajimi-like earthquake engineering power
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Figure 3.1: Power spectrum probability densities with 10% missing data replaced by correlated
Gaussian random variables

spectrum of the form

S(ω) = S0

ω4
g + 4ζ2

gω
2
gω

2

(ω2
g − ω2)2 + 4ζ2

gω
2
gω

2
(3.48)

where ωg = 5π rad/s and ζg = 0.63 and S(0) = 0 , are generated via Eq.(2.29). To compare with

the method described in [23], a factor S0 = 0.011 is introduced to make the standard deviation

equal to 1. Next, uniformly randomly distributed missing data are artificially induced. The width

of missing data gaps is also uniformly randomly distributed and the locations of the missing data

are different for each realisation.

Figure 3.1 shows the estimated power spectrum PDFs and confidence ranges determined via the

herein developed approach for 10% missing data, and the pertinent Monte Carlo simulation is ap-

plied with the mean and variance obtained by Kriging model. For comparison purposes Figure 3.2

is the result of applying the methodology in [23], where correlations between missing data are not

taken into consideration and the missing points follow independent identical Gaussian distributions

Xβ ∼ N(0, I), the pertinent Monte Carlo simulation is applied with Xβ ∼ N(0, I). Compared with

Figure 3.2, the method developed herein provides with a smaller range, and the mean spectrum fits

the original spectrum better. Figure 3.3 shows the PDFs corresponding to frequencies 10.9 and 30.5

rad/s with 10% missing data replaced both by correlated and by independent identically distributed

Gaussian random variables. The vertical lines correspond to the spectral values without missing

data. Figure 3.4 shows the spectral moment λ0 of the excitation spectrum, compared with pertinent

Monte Carlo simulations. It can be readily seen that in all cases accounting for the correlation of

the missing data, as estimated via the Kriging model, yields spectral estimates PDFs that are much

closer to the true value.
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Figure 3.2: Power spectrum probability densities with 10% missing data replaced by independent
identically distributed Gaussian random variables

Figure 3.3: PDFs at 10.9 and 30.5 rad/s with 10% missing data replaced by both correlated and
independent identically distributed Gaussian random variables. The vertical line shows the spectral
value without missing data
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Figure 3.4: PDF of spectral moment λ0 with 10% missing data replaced by both correlated and
independent identically distributed Gaussian random variables. The vertical line shows the spectral
moment λ0 value without missing data

3.3.2 Structural response records with missing data

In the second example, consider a linear oscillator with ω0 = 10.9 rad/s, and ζ0 = 0.05. Further,

the missing data are introduced into the stationary records of the oscillator response, which are

generated by utilizing the same excitation spectrum as in the first example, and by numerically

solving the equation of motion. Similarly, the artificially induced missing data in the response

records are uniformly randomly distributed.

Figure 3.5 shows the power spectrum PDF and confidence ranges of the oscillator response

with 70% missing data determined by the herein developed methodology. For comparison purposes

Figure 3.7 is the result of applying the methodology in [23], where correlations between missing

data are not taken into consideration and the missing points follow independent identical Gaussian

distributions. As anticipated, it can be readily seen that neglecting the correlation structure in the

missing data has a bigger negative effect when considering narrow-band signals (see Figures 3.1

and 3.2 ) rather than broad-band ones (see Figures 3.5 and 3.6). In fact, for the highly correlated

oscillator response process disregarding the correlation structure yields an almost constant power

spectrum estimate value. Figure 3.7 shows the PDF of the response spectral moment λ0, compared

with pertinent Monte Carlo simulations. In Figure 3.8 the PDF of the oscillator survival probability

Eq.(3.46) with 70% missing data and a barrier level D = 0.05 is plotted and compared with

pertinent Monte Carlo simulations of Eq.(3.41).
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Figure 3.5: Oscillator response power spectrum PDF with 70% missing data replaced by correlated
Gaussian random variables

Figure 3.6: Oscillator response power spectrum PDF with 70% missing data replaced by indepen-
dent identically distributed Gaussian random variables
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Figure 3.7: PDF of response spectral moment λ0 with 70% missing data

Figure 3.8: Survival probability of oscillator response with 70% missing data and barrierB = 0.05
via Eq.(3.46); comparisons with pertinent Monte Carlo simulations of Eq.(3.41)
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3.4 Summary

In this chapter, an analytical approach for quantifying the uncertainty in stochastic process power

spectrum estimates based on samples with missing data has been developed. In this method, the

correlations between the missing data are considered by employing a Kriging model, and a closed

form expression has been derived for the power spectrum estimate PDF at each frequency. Next, the

approach has been extended for determining the PDF of spectral moments estimates and spectral

moments based survival probability assessment as well.
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Chapter 4

Uncertainty propagation: Wiener path integral based non-

linear oscillator stochastic response and survival probabil-

ity determination

4.1 Preliminary remarks

The previous two chapters discuss the excitation estimation problem, in this chapter, the system

response problem can be considered accordingly. Although Monte Carlo simulation could deal

with a large amount of stochastic problems in engineering field, its computational cost are very

high to obtain a reliable results even with the advanced Monte Carlo simulations (eg. [11], [3],

[2], [106]), especially in the case for large scale complex systems or when the quantity of inter-

est has a relatively small probability of occurrence. To deal with this issue, among the analyti-

cal methods, one of the promising frameworks relates to the concept of the Wiener path integral

(WPI). In this regard, note that although the WPI has strongly impacted the field of theoretical

physics, the engineering community has ignored its potential as a powerful uncertainty quantifi-

cation tool. The concept of path integral was introduced by Wiener [138] and was reinvented in

a different form by Feynman [40] to reformulate quantum mechanics. A more detailed treatment

of path integrals, especially of their applications in physics, can be found in a number of books

such as the one by Chaichian and Demichev [14]. Recently, Kougioumtzoglou and Spanos [64]

developed an approximate analytical WPI technique based on a variational formulation and on the

concepts of stochastic averaging/linearization for addressing certain stochastic engineering dynam-

ics problems. In this regard, relying on the concept of the most probable trajectory an approximate

expression was derived for the non-stationary response probability density function (PDF). Fur-

ther, the aforementioned technique was extended by Kougioumtzoglou and Spanos [67] to treat

multi-degree-of-freedom (MDOF) systems and hysteretic nonlinearities. In [34] the technique was

further enhanced and generalized to treat linear and nonlinear systems endowed with fractional

derivatives terms (e.g. [84]).
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The aforementioned WPI technique should not be confused with alternative numerical schemes

(commonly referred to as numerical path integral schemes [137], [77], [35]) which constitute, in

essence, a discrete version of the Chapman-Kolmogorov (C-K) equation (e.g. [89], [66], [68]).

Note that these schemes can be computationally demanding potentially; this is due to the fact

that the solution needs to be advanced in short time steps, while multi-dimensional numerical

integration needs to be performed at every time step as well.

In this chapter, a variational formulation based WPI technique is developed together with a

stochastic averaging/linearization treatment of the problem of determining response and reliability

statistics of nonlinear oscillators subject to stochastic excitation. Specifically, first the nonlinear

oscillator is cast into an equivalent linear time-variant oscillator. Next, relying on the concept

of the most probable trajectory and considering a small time interval an approximate closed-form

expression is derived for the oscillator joint transition PDF. Further, the joint transition PDF is used

in conjunction with a discrete version of the C-K equation to propagate the solution in short time

steps. In this manner, not only the non-stationary response PDF, but also the survival probability

and first-passage PDF of the nonlinear oscillator are determined. In comparison with existing

numerical path integral schemes, a significant advantage of the proposed WPI technique is that

closed-form analytical expressions are derived for the involved multi-dimensional integrals; thus,

the computational cost is kept at a minimum level. Numerical examples include the hardening

Duffing and the bilinear hysteretic oscillators. Further, pertinent Monte Carlo simulations are

included to demonstrate the reliability of the developed technique. Different from [64] where the

analytical WPI is applied focussing on the response amplitude envelope, the proposed method in

this chapter concentrates on determining the response displacement and velocity, and the reliability

based on the displacement.

4.2 Mathematical Formulation

4.2.1 Stochastic averaging treatment

The basic elements of an approximate analytical technique developed in [63] are reviewed in this

section for completeness. Consider a nonlinear single-degree-of-freedom (SDOF) oscillator whose

motion is governed by the stochastic differential equation (SDE)

ẍn(t) + βẋn(t) + z(t, xn, ẋn) = w(t) (4.1)

where a dot over a variable denotes differentiation with respect to time t; xn , ẋn , and ẍn denote the

response displacement, velocity and acceleration, respectively; z(t, xn, ẋn) is the restoring force

which can be either hysteretic or depend only on the instantaneous values of xn and ẋn; β is a

linear damping coefficient so that β = 2ζ0ω0 ; ζ0 is the ratio of critical damping; ω0 is the natural
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frequency corresponding to the linear oscillator (i.e. z(t, xn, ẋn) = ω2
0xn ); and w(t) represents a

Gaussian zero-mean white noise process with a power spectrum value equal to S0 .

Focusing next on lightly damped systems (i.e. ζ0 � 1), it can be argued (e.g. [119]) that

the response x of the oscillator of Eq.(4.1) exhibits a pseudo-harmonic behavior described by the

equations

xn(t) = A(t) cos[ω(A)t+ φ(t)] (4.2)

and

ẋn(t) = −ω(A)A(t) sin[ω(A)t+ φ(t)] (4.3)

In Eqs.(4.2-4.3), φ andA represent a slowly varying with time phase and a slowly varying with

time response amplitude, respectively. Manipulating Eqs.(4.2-4.3) yields the following expression

for the oscillator response amplitude; that is,

A(t) =

√
x2(t) +

ẋ2(t)

ω2(A)
(4.4)

Further, relying primarily on the assumption of light damping a combination of deterministic

and stochastic averaging is performed in this section for approximating the second-order SDE

Eq.(4.1) by a first-order (Ito) SDE governing the response amplitude process A. A more de-

tailed presentation/discussion of the assumptions involved and the corresponding assumed pseudo-

harmonic behavior of the response process can be found in references such as [119], [99], [142].

Applying next a stochastic averaging/linearization procedure [63], [100], a linearized version of

Eq.(4.1) becomes

ẍ(t) + β(A)ẋ(t) + ω2(A)x(t) = w(t) (4.5)

where

β(A) = β +
− 1
π

∫ 2π
0 sinΨ · z(t, A cosΨ,−ω(A)A sinΨ)dΨ

Aω(A)
(4.6)

and

ω2(A) =
1
π

∫ 2π
0 cosΨ · z(t, A cosΨ,−ω(A)A sinΨ)dΨ

A
(4.7)

Further, assuming that denotes the non-stationary oscillator response amplitude PDF, equiva-

lent time-varying damping and stiffness elements can be defined by taking expectations on Eqs.(4.6-

4.7); that is,

βeq(t) = E[β(A)] =

∫ +∞

0
β(A)p(A, t)dA (4.8)

and

ω2
eq(t) = E[ω2(A)] =

∫ +∞

0
ω2(A)p(A, t)dA (4.9)

respectively. Note that due to the definition of the equivalent linear elements of Eqs.(4.8-4.9), it
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can be argued that they inherently are slowly varying functions with respect to time. Considering

next Eqs.(4.8-4.9), the equivalent linear system of Eq.(4.5) can be cast in the form

ẍ(t) + βeq(t)ẋ(t) + ω2
eq(t)x(t) = w(t) (4.10)

It can be readily seen that the linear time-variant oscillator of Eq.(4.10) is an alternative to

Eq.(4.5) linearized version of Eq.(4.1). Further, based on a stochastic averaging approach Eq.(4.10)

can be cast in a first-order Ito SDE governing the evolution in time of the amplitude ; see [118],

[63], [119], [99] for a more detailed presentation. Related to this SDE is the Fokker-Planck (F-P)

partial differential equation

∂

∂t
p(A2, t2|A1, t1) =− ∂

∂A
[K1(A, t)p(A2, t2|A1, t1)]

+
1

2

∂2

∂A2
[K2

2 (A, t)p(A2, t2|A1, t1)]

(4.11)

where

K1(A, t) = −1

2
βeq(t)A+

πS0

2Aω2
eq(t)

(4.12)

and

K2(A, t) =

√
πS0

ω2
eq(t)

(4.13)

Eq.(4.11) governs the transition PDF of the response amplitude . In reference [63] (see also [66])

it has been shown that Eq.(4.11) is satisfied by a solution of the form

p(A, t) =
A

c(t)
exp

(
− A2

2c(t)

)
(4.14)

for p(A2, t2|A1 = 0, t1 = 0) = p(A, t). In Eq.(4.14), c(t) accounts for the variance of the transient

oscillator response process x. Specifically, substituting Eq.(4.14) into the associated F-P Eq.(4.11)

and assuming that the oscillator is initially at rest (i.e. p(A, t = 0) = δ(A), where δ is the Dirac

delta function), yields

ċ(t) = −βeq(c(t))c(t) +
πS0

ω2
eq(c(t))

(4.15)

Note that the representation of Eq.(4.15) is suitable not only for the herein considered white

noise excitation process, but also for non-stationary stochastic excitations of arbitrary evolutionary

power spectrum forms (e.g. [118], [63]). Eq.(4.15) constitutes a simple first-order ordinary dif-

ferential equation (ODE) which can be solved efficiently by standard numerical schemes, such as

the Runge-Kutta. Once solved, the nonlinear oscillator (Eq.(4.1)) non-stationary response variance

is obtained, and the time-varying equivalent linear damping and stiffness elements are determined
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via Eqs.(4.8) and (4.9), respectively.

4.2.2 Wiener path integral formulation

According to the WPI technique (e.g. [14]) the joint transition PDF p(xm, ẋm, tm|xm−1, ẋm−1, tm−1)

of the oscillator response going from a state (xm−1, ẋm−1, tm−1) at t = tm−1 to a new state

(xm, ẋm, tm) at t = tm , with tm > tm−1 can be expressed as a functional integral over the space

of all possible paths c{xm, ẋm, tm|xm−1, ẋm−1, tm−1} of the form

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) =

∫ {xm,ẋm,tm}
{xm−1,ẋm−1,tm−1}

W [x(t)][dx(t)] (4.16)

The WPI of Eq.(4.16) possesses a probability distribution on the path space as its integrand,

which is denoted by W [x(t)] and is called probability density functional. Note that the probability

density functional for the white noise process w(t) is given by (e.g. [14], [128])

W [x(t)] = Cexp

(
−
∫ tm

tm−1

1

2

w2(t)

2πS0
dt

)
(4.17)

where C is a normalization coefficient. Following next the approach proposed in [67], Eq. (4.10)

is substituted into Eq. (4.17) and the probability density functional W [w(t)] for w(t) is interpreted

as the probability density functional W [x(t)] for x(t) . This yields

W [x(t)] = Cexp

(
−
∫ tm

tm−1

1

2

[ẍ(t) + βeq,m(t)ẋ(t) + ω2
eq,m(t)x(t)]2

2πS0
dt

)
(4.18)

In Eq.(4.18) and in the ensuing analysis it is assumed that the time interval [tm−1, tm] is rela-

tively small, i.e., tm− tm−1 → 0 ; thus, βeq(t) = βeq(tm) = βeq,m and ω2
eq(t) = ω2

eq(tm) = ω2
eq,m

for t ∈ [tm−1, tm] . Further, note that even if the probability density functional is constructed,

the analytical solution of the WPI of Eq.(4.16) is a rather challenging task. To address this chal-

lenge a variational formulation is invoked in the following for determining the transition PDF

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) in an approximate manner; see [14], [64], [67] for a more de-

tailed presentation. In this regard, for the oscillator of Eq.(4.10) and for tm − tm−1 → 0 , a

Lagrangian function is defined as

L(x, ẋ, ẍ) =
1

2

(ẍ+ βeq,mẋ+ ω2
eq,mx)2

2πS0
(4.19)

Next, focusing on Eq.(4.19), the largest contribution to the WPI comes from the trajectory for

which the integral in the exponential becomes as small as possible. Variational calculus rules (e.g.
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[38]) dictate that this trajectory with fixed end points is subject to the condition

δ

∫ tm

tm−1

L(xc, ẋc, ẍc)dt = 0 (4.20)

where xc is the most probable path, namely the most probable trajectory connecting points (xm−1, ẋm−1, tm−1)

and (xm, ẋm, tm) . Eq.(4.20) yields a corresponding Euler-Lagrange equation of the form

∂L

∂xc
− ∂

∂t

∂L

∂ẋc
+
∂2

∂t2
∂L

∂ẍc
= 0 (4.21)

in conjunction with the boundary conditions

xc(tm−1) = xm−1, ẋc(tm−1) = ẋm−1,

xc(tm) = xm, ẋc(tm) = ẋm

(4.22)

Solving the boundary value problem of Eq.(4.21) together with Eq.(4.22) yields a closed form

expression for the transition PDF p(xm, ẋm, tm|xm−1, ẋm−1, tm−1); that is,

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) = Gconexp

(
−
∫ tm

tm−1

L(xc, ẋc, ẍc)dt

)
(4.23)

where Gcon is a normalization coefficient. Clearly, the primary approximation of the technique re-

lates to the fact that only the most probable path xc is considered in the evaluation of the functional

integral of Eq.(4.16) instead of all the possible paths {xm, ẋm, tm|xm−1, ẋm−1, tm−1}. It can be

argued that the concept of the most probable path can be viewed as something equivalent to the

fact that the most probable value of a random variable is the one corresponding to the maximum

value of the PDF. Substituting next Eq.(4.19) into (4.21) yields

d4xc
dt4

+ 2(1− 2ζ2
eq,m)ω2

eq,m

d2xc
dt2

+ ω4
eq,mxc = 0 (4.24)

where βeq,m = 2ζeq,mωeq,m . Eq.(4.24) is a fourth-order linear ODE which can be readily solved

analytically to obtain

xc(t) = G1exp(λc,1t) +G2exp(λc,2t) +G3exp(λc,3t) +G4exp(λc,4t) (4.25)
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where

λc,1 = (ζeq,m + i
√

1− ζ2
eq,m)ωeq,m

λc,2 = (ζeq,m − i
√

1− ζ2
eq,m)ωeq,m

λc,3 = (−ζeq,m + i
√

1− ζ2
eq,m)ωeq,m

λc,4 = (−ζeq,m − i
√

1− ζ2
eq,m)ωeq,m

(4.26)

and G1, G2, G3, G4 are complex constants to be determined by utilizing the boundary conditions

of Eq.(4.22). For simplification, Eq.(4.25) is recast into a real form as

xc(t) =C1exp(ζeq,mωeq,mt)cos(ωeq,mt) + C2exp(ζeq,mωeq,mt)sin(ωeq,mt)

+ C3exp(−ζeq,mωeq,mt)cos(ωeq,mt) + C4exp(−ζeq,mωeq,mt)sin(ωeq,mt)

(4.27)

where C1, C2, C3, C4 are real constants. In this regard, analytical expressions for C1, C2, C3, C4

have been obtained by utilizing the symbolic toolbox of MATLAB ; these are provided in the Ap-

pendix B. Further, Eqs.(4.25-4.26) are substituted into Eq.(4.23). Next, relying on the assumption

that tm− tm−1 → 0 , a Taylor series expansion is employed for the most probable path (Eq.(4.25))

around point t = tm yielding a closed-form expression for the transition PDF of the form

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) =
n4,mn7,m

π

· exp{−[(n1,mxm−1 + n2,mẋm−1 + n3,mxm + n4,mẋm)2

+ (n5,mxm−1 + n6,mẋm−1 + n7,mxm)2]}

(4.28)

where the analytical expressions of the constants n1,m, n2,m, n3,m, n4,m, n5,m, n6,m, n7,m are

provided in the Appendix B. Equivalently, using a vectorial notation Eq.(4.28) can be cast into the

Gaussian PDF form

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) =

(2π)−1|Σt|−
1
2 exp

[
−1

2
(Xt − µt)

TΣ−1
t (Xt − µt)

] (4.29)

where

Xt = (xm, ẋm)T ,µt = (µx,t, µẋ,t)
T

Σt =

 σ2
x,t ρtσx,tσẋ,t

ρtσx,tσẋ,t σ2
ẋ,t

 (4.30)
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µx,t = −
(
n5,m

n7,m
xm−1 +

n6,m

n7,m
ẋm−1

)
(4.31)

µẋ,t =

(
n3,mn5,m

n4,mn7,m
− n1,m

n4,m

)
xm−1 +

(
n3,mn6,m

n4,mn7,m
− n2,m

n4,m

)
ẋm−1 (4.32)

σx,t =
1√

2n7,m

(4.33)

σẋ,t =

√
n2

3,m + n2
7,m√

2n7,mn4,m

(4.34)

and

ρm = − n3,m√
n2

3,m + n2
7,m

(4.35)

Obviously, the joint transition PDF of Eq.(4.28) is Gaussian as anticipated given that the system

of Eq.(4.10) is linear. Further, note that in comparison with alternative approximate expressions of

the transition PDF based on a stochastic averaging treatment [112], the herein determined transition

PDF of Eq.(4.29) based on the WPI technique takes into account the correlation of the processes via

the correlation coefficient . This is important for the accuracy of the response analysis especially

during the transient phase where the oscillator response displacement and velocity are correlated

(e.g. [100]). Further, invoking the Markov property of the response process , the C-K equation

p(xm+1, ẋm+1, tm+1|xm−1, ẋm−1, tm−1) =∫ +∞

−∞

∫ +∞

−∞
p(xm+1, ẋm+1, tm+1|xm, ẋm, tm)

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1)dxmdẋm

(4.36)

holds true. Note that the Gaussian form for the short-time transition PDF is in agreement with the

concept of time-local Gaussian processes introduced by Dekker [32]. In this regard, it was shown

that even for a nonlinear system, subject to the condition tm− tm−1 → 0 , a Gaussian form for the

transition PDF together with the Chapman-Kolmogorov Eq.(4.36) can lead, in an exact manner, to

the corresponding F-P equation. In fact, the discretized version of the C-K equation in conjunction

with a Gaussian form of the transition PDF has been the core of several numerical path integral

solution schemes that have been developed recently (e.g. [77], [35], [89], [66], [68], [56]). These

schemes have proven to be highly accurate. Nevertheless, they appear to be computationally de-

manding, mainly due to the fact that high-dimensional numerical integration needs to be performed

for every time step.

To circumvent this challenge, for the quite general system considered herein, i.e. the nonlinear

oscillator of Eq.(4.1), the aforementioned numerical integration is circumvented by analytically
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evaluating the involved integrals; thus, the joint transition and non-stationary response PDF of the

oscillator can be obtained at minimum computational cost. Specifically, starting from an initial

state (x0, ẋ0, t0) with short-time transition PDFs p(x1, ẋ1, t1|x0, ẋ0, t0) and p(x2, ẋ2, t2

|x1, ẋ1, t1) of the form of Eq.(4.28) (or, alternatively, Eq.(4.29)) and utilizing the C-K Eq.(4.36),

analytical evaluation of the involved convolution integral yields the transition PDF p(x2, ẋ2, t2|x0, ẋ0, t0)

of the form

p(x2, ẋ2, t2|x0, ẋ0, t0) =
k4,2k7,2

π
exp{−[(k1,2x0 + k2,2ẋ0 + k3,2x2 + k4,2ẋ2)2

+ (k5,2x0 + k6,2ẋ0 + k7,2x2)2]}
(4.37)

The analytical expressions of the constants k1,m, k2,m, k3,m, k4,m, k5,m, k6,m, k7,m can be found

in the Appendix B. Obviously, in this manner the non-stationary joint response PDF of the original

nonlinear oscillator can be advanced in short time steps at essentially zero computational cost.

Specifically, for a given time instant t = tm−1, the transition PDF p(xm−1, ẋm−1, tm−1|x0, ẋ0, t0)

has an expression similar to Eq.(4.37); that is,

p(xm−1, ẋm−1, tm−1|x0, ẋ0, t0) =
k4,m−1k7,m−1

π
exp{−[(k1,m−1x0 + k2,m−1ẋ0

+ k3,m−1xm−1 + k4,m−1ẋm−1)2 + (k5,m−1x0 + k6,m−1ẋ0 + k7,m−1xm−1)2]}
(4.38)

Utilizing the short-time transition PDF form of Eq.(4.28), the C-K equation

p(xm, ẋm, tm|x0, ẋ0, t0) =∫ +∞

−∞

∫ +∞

−∞
p(xm, ẋm, tm|xm−1, ẋm−1, tm−1)

p(xm−1, ẋm−1, tm−1|x0, ẋ0, t0)dxm−1dẋm−1

(4.39)

can be used to determine the transition PDF at time t = tm ; that is, analytical evaluation of the

integral of Eq.(4.39) yields

p(xm, ẋm, tm|x0, ẋ0, t0) =
k4,mk7,m

π
exp{−[(k1,mx0 + k2,mẋ0 + k3,mxm

+ k4,mẋm)2 + (k5,mx0 + k6,mẋ0 + k7,mxm)2]}
(4.40)
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Equivalently, using a vectorial notation Eq.(4.40) can be cast into the Gaussian PDF form

p(xm, ẋm, tm|x0, ẋ0, t0) =

(2π)−1|Σm|−
1
2 exp

[
−1

2
(Xm − µm)TΣ−1

m (Xm − µm)

] (4.41)

where

Xm = (xm, ẋm)T ,µm = (µx,m, µẋ,m)T

Σm =

 σ2
x,m ρmσx,mσẋ,m

ρmσx,mσẋ,m σ2
ẋ,m

 (4.42)

µx,m = −
(
k5,m

k7,m
x0 +

k6,m

k7,m
ẋ0

)
(4.43)

µẋ,m =

(
k3,mk5,m

k4,mk7,m
− k1,m

k4,m

)
x0 +

(
k3,mk6,m

k4,mk7,m
− k2,m

k4,m

)
ẋ0 (4.44)

σx,m =
1√

2k7,m

(4.45)

σẋ,m =

√
k2

3,m + k2
7,m√

2k7,mk4,m

(4.46)

and

ρm = − k3,m√
k2

3,m + k2
7,m

(4.47)

Considering the case x0 = ẋ0 = 0 and integrating with respect to ẋm yields the oscillator

transient response displacement PDF p(xm, tm) of the form

p(xm, tm) =
1√

2πσx,m
exp

(
− x2

m

2σ2
x,m

)
(4.48)

4.2.3 Nonlinear oscillator survival probability determination

The WPI technique developed in section 4.2.2, besides determining the nonlinear oscillator tran-

sition and non-stationary response PDFs efficiently, can be used for determining the oscillator

reliability/first-passage statistics as well without additional significant computational effort. In this

regard, an approximate analytical technique is developed in this section for determining the sur-

vival probability PB(t) of the nonlinear oscillator of Eq.(4.1). This is defined as the probability

that the system response displacement x stays within the bounded interval [−B,B] over the time
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interval [t0, T ] ; that is,

PB(T ) = Prob{−B < x(t) < B; t0 < t < T |x(t0) = x0, ẋ(t0) = ẋ0} (4.49)

In general, it is rather challenging to calculate the survival probability exactly as it has been

defined in Eq.(4.49) with its state in continuous time; see also [118], [99]. Thus, in the following

the survival probability is calculated numerically by adopting the discretization in time introduced

in section 4.2.2. In this regard, Eq.(4.49) becomes

PB(T = tm) = Prob{−B < x(tm) < B;m = 1, ...,M |x(t0) = x0, ẋ(t0) = ẋ0} (4.50)

where tm = t0 +m4t,m = 1, ...,M and4t = (T −t0)/M . Note that Eq.(4.50) can approximate

the survival probability as closely as desired by appropriately choosing 4t . Further, it can be

readily shown that the corresponding first-passage PDF pB(T ) can be determined as

pB(T ) = −dPB(T )

dT
(4.51)

Taking into account the discretization of Eq.(4.50), the survival probability PB(T ) is obviously

given by the equation

PB(T = tm) =
M∏
m=1

Fm (4.52)

where Fm denotes the probability that x(t) stays within the range [−B,B] in the time interval

[tm−1, tm], given that no crossings have occurred prior to time tm−1 . Next, invoking the Markov

property for the process x(t) and utilizing the standard definition of conditional probability yields

Fm =
Prob[|x(tm)| < B ∩ |x(tm−1)| < B]

Prob[|x(tm−1)| < B]
=
Qm−1,m

Hm−1
(4.53)

where

Hm−1 =

∫ B

−B
p(xm−1, tm−1)dxm−1 (4.54)

and

Qm−1,m =

∫ B

−B

∫ B

−B
p(xm−1, tm−1;xm, tm)dxm−1dxm (4.55)

Note that the probabilities Hm−1 and Qm−1,m can be readily determined via the technique devel-

oped in section 4.2.2. Specifically, Hm−1 can be evaluated by utilizing Eq.(4.54). Further, taking

into account the Markov property for the response process, the joint response PDF p(xm−1, ẋm−1, tm−1;
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xm, ẋm, tm) is expressed as

p(xm−1, ẋm−1, tm−1;xm, ẋm, tm) =

p(xm−1, ẋm−1, tm−1)p(xm, ẋm, tm|xm−1, ẋm−1, tm−1)

(4.56)

Considering Eq.(4.56) Qm−1,m becomes

Qm−1,m =

∫ +∞

−∞

∫ B

−B

∫ +∞

−∞

∫ B

−B
p(xm−1, ẋm−1, tm−1)

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1)dxm−1dẋm−1dxmdẋm

(4.57)

where p(xm−1, ẋm−1, tm−1) is given by Eq.(4.40) and p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) is given

by Eq.(4.28).

4.2.4 Mechanization of the WPI based technique

The mechanization of the developed technique involves the following steps:

a) Numerical solution (e.g. standard Runge-Kutta integration scheme) of the first-order ODE

(Eq.(4.15)) to determine the system response variance c(t) .

b) Determination of the equivalent linear time-dependent damping βeq(t) and stiffness ωeq(t)

elements via Eqs.(4.8) and (4.9), respectively.

c) Determination of the oscillator short-time joint transition PDF in the form of Eq.(4.28) by

utilizing the analytical expressions of the constants n1,m, n2,m, n3,m, n4,m, n5,m, n6,m, n7,m (see

Appendix B).

d) Determination of the oscillator non-stationary joint response PDF in the form of Eq.(4.40)

in short time steps by utilizing the analytical expressions of the constants k1,m, k2,m, k3,m, k4,m,

k5,m, k6,m, k7,m (see Appendix B).

Note that steps a) to d) constitute an efficient scheme for determining approximately the non-

linear oscillator joint transition PDF and the oscillator non-stationary joint response PDF. Further,

these steps can be used as a basis for determining the nonlinear oscillator reliability statistics; that

is,

e) Determination of parameters Hm−1 and Qm−1,m via Eqs.(4.54) and (4.57), respectively.
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f) Determination of the survival probability PB(T ) via Eq.(4.52) and of the corresponding first-

passage PDF pB(T ) via Eq.(4.51).

In comparison with alternative, albeit more versatile, numerical path integral schemes for de-

termining first-passage PDFs (e.g. [56]), the herein developed technique appears significantly more

efficient computationally. This is due to the fact that the computationally demanding task of nu-

merically integrating for every time step the high-dimensional convolution integrals involved in

the C-K equation has been circumvented. In this regard, the computational cost is kept at a mini-

mum level since it is restricted, in essence, to the numerical integration of Eq.(4.15) via standard

schemes (e.g. Runge-Kutta), and to the numerical integration involved in Eqs.(4.54) and (4.57).

4.3 Numerical Examples

The Duffing hardening and the bilinear hysteretic oscillators are considered in this section to

demonstrate the reliability of the technique. For this purpose, the non-stationary response PDFs,

the survival probabilities and the first-passage PDFs obtained via the developed approximate ana-

lytical WPI technique are compared with response PDF, survival probability, and first-passage PDF

estimates obtained via pertinent Monte Carlo simulations (10000 realizations). A standard fourth-

order Runge-Kutta numerical integration scheme is employed for solving the nonlinear oscillator

differential equation of motion (Eq.(4.1)), whereas the barrier level B is expressed as a fraction

λf of the corresponding linear oscillator stationary response standard deviation, i.e., B = λfσ

where σ2 =
πS0

2ζ0ω3
0

(e.g. [100]). Further, the value 4t = tm − tm−1 = 0.1s is chosen for the

time discretization of the WPI technique, whereas the initial distributions chosen for the response

displacement and velocity PDFs are the Dirac delta function, i.e. p(x(t0, t0 = 0)) = δ(x0), and

p(ẋ(t0, t0 = 0)) = δ(ẋ0) , assuming the system is initially at rest. In the ensuing analysis a 7th

order Taylor series expansion is chosen for determining the coefficients n1,m, n2,m, n3,m, n4,m,

n5,m, n6,m, n7,m in Eq.(4.28).

4.3.1 Duffing nonlinear (hardening) oscillator

A Duffing oscillator is considered, which has been used in some engineering areas, such as energy

harvester [46]. Thus, its equation of motion is described by

ẍ(t) + β0ẋ(t) + ω2
0x(t) + εω2

0x
3(t) = w(t) (4.58)
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where the parameter ε > 0 represents the magnitude of the nonlinearity. Further, the nonlinear

restoring function z(t, x, ẋ) of Eq.(4.1) becomes

z(t, x, ẋ) = ω2
0x(t) + εω2

0x
3(t) (4.59)

Substituting Eq.(4.59) into Eqs.(4.6) and (4.7), yields

β(A) = β0 (4.60)

and

ω2(A) = ω2
0

(
1 +

3

4
εA2

)
(4.61)

Next, substituting Eqs.(4.60) and (4.61) into Eqs.(4.8) and (4.9), and considering Eq.(4.14)

yields

βeq(c(t)) = β0 (4.62)

and

ω2
eq(c(t)) = ω2

0

(
1 +

3

2
εc(t)

)
(4.63)

For comparison, the classical statistical linearization method [100] can also be used to obtain

the equivalent stiffness for duffiing oscillator as following

ω2
eq(c(t)) = ω2

0 (1 + 3εc(t)) (4.64)

In Fig.(4.1) the non-stationary response variance c(t) determined by solving Eq.(4.15) is plot-

ted for a Duffing oscillator with parameters values S0 = 0.0637, ω2
0 = 1, β0 = 0.2, ε = 0.2 (Case

1), and S0 = 0.0637, ω2
0 = 1, β0 = 0.2, ε = 1 (Case 2). It can be readily seen that the degree of

nonlinearity is significant, especially for Case 2 where the stationary response variance ( lim
t→+∞

c(t))

is approximately half of that of a corresponding linear oscillator (i.e. ( lim
t→+∞

c(t)) = σ2 = 1 ).

From Fig.(4.1), both the path integral method and statistical linearization approach approximately

match the Monte Carlo simulation at an acceptable degree. The differences occur due to fact

that both the path integral method and statistical linearization approach are the approximations of

real response. The main difference between the WPI method and MC is due to the linearization

approximation of no-linearity. In Fig.(4.2) the time-varying equivalent linear natural frequency

ωeq(t) determined via Eq.(4.9) is plotted for Case 1 and Case 2.

Further, in Figs.(4.3) and (4.4) the non-stationary response displacement PDF is plotted for

various time instants for Case 1 and Case 2, respectively. It is seen that the approximate WPI tech-
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Figure 4.1: Transient response variance c(t) of a Duffing oscillator under white noise excitation
with parameters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 0.2 (Case 1), and S0 = 0.0637,
ω2

0 = 1, β0 = 0.2, ε = 1 (Case 2); comparison with pertinent Monte Carlo simulations (10000
realizations).

Figure 4.2: Time-varying equivalent linear natural frequency ωeq(t) for a Duffing oscillator under
white noise excitation with parameters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 0.2 (Case 1),
and S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 1 (Case 2).
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Figure 4.3: Response displacement PDF for a Duffing oscillator under white noise excitation with
parameters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 0.2 (Case 1) for various time instants;
comparison with pertinent Monte Carlo simulations (10000 realizations).

nique exhibits acceptable satisfactory accuracy when compared with MCS based estimates, even

for the a higher nonlinearity case (Case 2). The difference between WPI and MC comes from the

fact that in WPI, the Gaussian distribution assumption is made. Finally, in Figs.(4.5) and (4.6), the

survival probability and the corresponding first-passage PDF for Case 1 for various barrier levels

are plotted, respectively. Similarly, in Figs.(4.7) and (4.8), the survival probability and correspond-

ing first-passage PDF for Case 2 for various barrier levels are plotted, respectively. Comparisons

with pertinent MCS (10000 realizations) are included as well demonstrating a satisfactory agree-

ment. It is noted that the irregular/non-smooth shape of the WPI based first-passage PDFs is due

to the differentiation of the survival probability (Eq.(4.51)). In this regard, the survival probability

Eq.(4.52) is assumed to have constant values over the time intervals resulting in a non-smooth rep-

resentation. Obviously, the level of non-smoothness increases when differentiation takes place. In

addition, it can be expected that WPI matches MC result better, when the nonlinearity decreases.

4.3.2 Bilinear hysteretic oscillator

A bilinear hysteretic oscillator is considered next, which has been widely studied in conjunction

with earthquake engineering applications (eg. [18], [116], [57], [13]). In this regard, its equation
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Figure 4.4: Response displacement PDF for a Duffing oscillator under white noise excitation with
parameters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 1 (Case 2) for various time instants;
comparison with pertinent Monte Carlo simulations (10000 realizations).

Figure 4.5: Survival probability for a Duffing oscillator under white noise excitation with parame-
ters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 0.2 (Case 1) for various barrier levels; comparison
with pertinent Monte Carlo simulations (10000 realizations).
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Figure 4.6: First passage PDF for a Duffing oscillator under white noise excitation with parameters
values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 0.2 (Case 1) for various barrier levels; comparison
with pertinent Monte Carlo simulations (10000 realizations).

Figure 4.7: Survival probability for a Duffing oscillator under white noise excitation with parame-
ters values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 1 (Case 2) for various barrier levels; comparison
with pertinent Monte Carlo simulations (10000 realizations).
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Figure 4.8: First passage PDF for a Duffing oscillator under white noise excitation with parameters
values S0 = 0.0637, ω2

0 = 1, β0 = 0.2, ε = 1 (Case 2) for various barrier levels; comparison with
pertinent Monte Carlo simulations (10000 realizations).

of motion takes the form

ẍ(t) + β0ẋ(t) + aω2
0x(t) + (1− a)ω2

0xyu(t) = w(t) (4.65)

where a denotes the post-elastic-to-elastic stiffness ratio, xy is the yield displacement of the system;

and u(t) is an additional variable controlling the evolution of the plastic behaviour in the structure

via the differential equation

xyu̇(t) = ẋ(t)[1−Hu(ẋ(t))Hu(u(t)− 1)−Hu(−ẋ(t))Hu(−u(t)− 1)] (4.66)

In Eq.(4.66) Hu(x) represents the Heaviside function defined as

Hu(x) =


1, x ≥ 0

0, x < 0

(4.67)

Further, the nonlinear restoring function z(x, ẋ, ẍ) of Eq.(4.1) becomes

z(x, ẋ, ẍ) = aω2
0x(t) + (1− a)ω2

0xyu(t) (4.68)
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Taking into account Eqs.(4.6) and (4.7) as well as (4.68), the equivalent linear damping and

stiffness elements take the form

β(A) = β0 +
(1− a)ω2

0

Aω(A)
Sh(A) (4.69)

and

ω2(A) = ω2
0

[
a+ (1− a)

Ch(A)

A

]
(4.70)

where Ch(A) and Sh(A) are given via the expressions [100], [13]

Ch(A) =


A

π
[A− 0.5 sin(2Λ)] , A > xy

A ,A ≤ xy
(4.71)

and

Sh(A) =


4xy
π

(
1− xy

A

)
, A > xy

0 , A ≤ xy
(4.72)

where

cos(Λ) = 1− 2xy
A

(4.73)

Further, substituting Eqs. (4.69)-(4.73) into Eqs. (4.8) and (4.9), and considering Eq.(4.14),

yields

βeq(c(t)) =β0 +
4xy(1− a)ω2

0

πc(t)

·
∫ +∞

xy

1

ω0

√
a+ (1− a)

Λ− 0.5 sin(2Λ)

π

(1− xy
A

)exp

(
− A2

2c(t)

)
dA

(4.74)

and

ω2
eq(c(t)) =ω2

0{a+ (1− a)[1− exp

(
−

x2
y

2c(t)

)

+
1

πc(t)

∫ +∞

xy
(Λ− 0.5 sin(2Λ))A · exp

(
− A2

2c(t)

)
dA]}

(4.75)

In Fig. 4.9 the non-stationary response variance c(t) determined by solving Eq.(4.15) is plotted

for a bilinear hysteretic oscillator with parameters values S0 = 0.0637, a = 0.6, β0 = 0.1,

ω0 = 1, xy = 1 . In Figs. 4.10 and 4.11 the time-varying equivalent linear natural frequency

ωeq(t) of Eq.(4.9) and damping βeq(t) of Eq.(4.8) are plotted, respectively. Further, in Fig. 4.12
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Figure 4.9: Transient response variance c(t) of a bilinear hysteretic oscillator under white noise
excitation with parameters values S0 = 0.0637, a = 0.6, β0 = 0.1, ω0 = 1, xy = 1 ; comparison
with pertinent Monte Carlo simulations (10000 realizations).

the non-stationary response displacement PDF is plotted for various time instants. Comparisons

with pertinent MCS data (10000 realizations) demonstrate a satisfactory level of accuracy. Finally,

in Figs. 4.13 and 4.14, the survival probability and corresponding first-passage PDF for various

barrier levels are plotted, respectively. Comparisons with pertinent MCS (10000 realizations) are

included as well demonstrating a quite satisfactory agreement. It can be expected that WPI matches

MC result better, when the barrier level decreases. This is due to the fact that the analytical method

considers the response satisfying Gaussian distribution, which is an approximation of real response

distribution.

4.4 Summary

In chapter 4, a WPI based technique for determining the non-stationary response PDF, the survival

probability and the first-passage PDF of nonlinear/hysteretic oscillators subject to stochastic exci-

tation has been developed. Specifically, based on a stochastic averaging/linearization treatment of

the problem, the nonlinear oscillator has been cast into an equivalent linear time-variant oscilla-

tor. Further, relying on a variational formulation and on the concept of the most probable path, a

closed-form analytical expression has been derived for the oscillator short-time transition PDF and

the oscillator transient joint response PDF has been derived. And the survival probability and the

first-passage PDF of the nonlinear oscillator is obtained through the transit probability. In compari-
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Figure 4.10: Time-varying equivalent linear natural frequency ωeq(t) for a bilinear hysteretic os-
cillator under white noise excitation with parameters values S0 = 0.0637, a = 0.6, β0 = 0.1,
ω0 = 1, xy = 1 .

Figure 4.11: Time-varying equivalent linear damping βeq(t) for a bilinear hysteretic oscillator
under white noise excitation with parameters values S0 = 0.0637, a = 0.6, β0 = 0.1, ω0 = 1,
xy = 1 .
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Figure 4.12: Response displacement PDF for a bilinear oscillator under white noise excitation with
parameters values S0 = 0.0637, a = 0.6, β0 = 0.1, ω0 = 1, xy = 1 for various time instants;
comparison with pertinent Monte Carlo simulations (10000 realizations).

Figure 4.13: Survival probability for a bilinear hysteretic oscillator under white noise excitation
with parameters values S0 = 0.0637, a = 0.6, β0 = 0.1, ω0 = 1, xy = 1 for various barrier levels;
comparison with pertinent Monte Carlo simulations (10000 realizations).
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Figure 4.14: First-passage PDF for a bilinear hysteretic oscillator under white noise excitation with
parameters values S0 = 0.0637, a = 0.6, β0 = 0.1, ω0 = 1, xy = 1 for various barrier levels;
comparison with pertinent Monte Carlo simulations (10000 realizations).

son with existing, albeit more versatile, numerical path integral schemes, a significant advantage of

the proposed WPI technique is that the computationally demanding task of numerically integrating

for every time step the high-dimensional convolution integrals involved in the C-K equation has

been circumvented. Besides, the WPI based approach takes into account the correlation of the dis-

placement x and velocity ẋ, which is important for the accuracy of the response analysis especially

during the transient phase where the oscillator response displacement and velocity are correlated.

Two different oscillators, Duffing and bilinear models, are considered to demonstrate the accuracy

and effectiveness of proposed method. In both examples, WPI method shows a quite satisfactory

agreement with pertinent Monte Carlo simulations. Due to the approximation of the linerization

of nonlinearity, it is expected that the error between the WPI and MCS becomes larger when the

degree of nonlinearity is increasing. In above two numerical examples, it only takes less than 20

minutes to calculate the results for the analytical method, while MC takes hours due to the large

number of MC times.
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Chapter 5

Uncertainty propagation: softening Duffing oscillator reli-

ability assessment subject to evolutionary stochastic exci-

tation

5.1 Preliminary remarks

In chapter 4, a WPI technique was developed (see also [141]) for determining the survival proba-

bility and first-passage PDF of nonlinear oscillators in a computationally efficient manner. In this

chapter, the softening Duffing oscillator is discussed due to the negative restoring force, which

makes the above WPI method inapplicable in this case.

The softening Duffing oscillator is a nonlinear oscillator possessing a linear-plus-cubic restor-

ing force so that the spring has a softening characteristic. This oscillator has received considerable

attention in the literature primarily due to its importance in describing the roll motion of a ship

model in beam seas (e.g. [123], [6]). Note, however, that the softening Duffing oscillator has

found applications in diverse other fields of engineering dynamics such as structural system vibra-

tion isolation (e.g. [82]), energy harvesting (e.g. [131]) and dynamics of timber structures (e.g.

[95]).

Further, although several research efforts have focused on studying the oscillator response un-

der deterministic excitation (e.g. [127], [79], [9]), limited results exist regarding the response

analysis of the oscillator when it is subjected to stochastic excitation (e.g. [98], [101], [26]).

Specifically, most of the results are based on rather heuristic approaches which inherently assume

stationarity and that the probability the response leaves the stable region is extremely small; thus,

neglecting important aspects of the analysis such as the possible unbounded response behavior

when the restoring force acquires negative values. Recently, a numerical path integral approach

was developed in [68] for determining the survival probability of a softening Duffing oscillator

subject to stochastic excitation. The unbounded character of the response was rigorously taken

into account by introducing a special form for the conditional response PDF, while the solution
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was propagated by utilizing a discrete version of the C-K equation. Note, however, that, in general,

numerical path integral schemes based on discrete versions of the C-K equation can be computa-

tionally demanding; this is due to the fact that the solution needs to be advanced in short time steps,

while convolution integrals need to be numerically evaluated at every time step as well.

In this chapter, an efficient approximate analytical technique for determining the survival prob-

ability of a softening Duffing oscillator subject to evolutionary stochastic excitation is developed.

Specifically, relying on a stochastic averaging treatment of the problem and introducing a special

form for the oscillator response PDF, the technique developed in [118] is adapted and generalized

herein to account for the special case of the softening Duffing oscillator. A significant advan-

tage of the technique is that it can readily handle cases of evolutionary stochastic excitation with

arbitrary evolutionary power spectrum (EPS) forms, even of the non-separable kind. Numerical

examples include a softening Duffing oscillator under evolutionary earthquake excitation, as well

as a softening Duffing oscillator with nonlinear damping modeling the nonlinear ship roll motion

in beam seas. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of

the technique.

5.2 Mathematical formulation

5.2.1 Softening Duffing oscillator response analysis

Consider the softening Duffing oscillator whose motion is governed by the equation

ẍn(t) + 2ζ0ω0ẋn(t) + ω2
0xn(t) + εω2

0x
3
n(t) = wx(t), ε < 0 (5.1)

where a dot over a variable denotes differentiation with respect to time t; ε denotes a negative

constant representing the magnitude of the nonlinearity degree; ζ0 is the ratio of critical damping;

ω0 is the natural frequency corresponding to the linear oscillator (i.e. ε = 0) and wx(t) represents

a Gaussian, zero-mean non-stationary stochastic process possessing an evolutionary broad-band

power spectrum Sw(ω, t). Examining Eq.(5.1), it can be readily seen that there exist values of the

response displacement x(t) for which the oscillator restoring force Fr(xn) = ω2
0xn + εω2

0x
3
n =

ω2
0xn(1 + εx2

n) reaches zero, and even negative values. Clearly, this may lead to unbounded

system response, and a special treatment is necessary to account for this behavior. Next, bearing

this qualitative behavior in mind, and focusing on lightly damped systems (i.e. ζ0 � 1 ), it can

be argued (e.g. [119]) that for Fr(xn) = ω2
0xn(1 + εx2

n) ≥ 0, or equivalently x2
n ≥ −1/ε, the

oscillator response exhibits a pseudo-harmonic behavior described by the equations Eqs. (4.2-4.4),

where φ andA represent a slowly varying with time phase and a slowly varying with time response

amplitude, respectively.

It is primarily the assumption of light damping that allows a combination of deterministic and
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stochastic averaging to be performed next and to approximate the second-order stochastic differen-

tial equation (SDE) (Eq.(5.1)) by a first-order SDE governing the response amplitude processA. A

more detailed presentation/discussion of the assumptions involved and the corresponding assumed

pseudo-harmonic behavior of the response process x(t) can be found in references (e.g. [119],

[99], [142], [63]). Next, following a stochastic averaging/linearization approach (e.g. [63], [100])

a linearized version of Eq.(5.1) becomes

ẍ(t) + 2ζ0ω0ẋ(t) + ω2(A)x(t) = wx(t) (5.2)

where the equivalent natural frequency ω(A) is given by the expression

ω2(A) =
ω2

0

πA

∫ 2π

0
cosψ(A cosψ + ε(A cosψ)3)dψ = ω2

0(1 +
3

4
εA2) (5.3)

Examining Eq.(5.3) it can be readily seen that the stiffness element of the equivalent linear

oscillator becomes zero at the critical response amplitude value Acr =
√
−4/(3ε). In this regard,

the requirement x2 ≥ −1/ε for the oscillator of Eq.(5.1) to have a bounded response is equivalently

expressed in the following by the requirement A < Acr. Bearing this qualitative aspect in mind, a

special form for the non-stationary response amplitude PDF p(A, t) is introduced next; that is,

p(A, t) =
A

c(t)
exp

(
−A2

2c(t)

)
rect(A) + Sr(t)δ(A−A∞) (5.4)

where rect(A) = Hu(A) − Hu(A − Acr), Hu(.) denotes the unit step function, c(t) is a time-

dependent coefficient to be determined, δ(.) denotes the Dirac delta function, and A∞ represents

an arbitrary response amplitude value with the property A∞ � A ∈ [0, Acr]. Further, the time-

dependent factor S(t) can be determined by applying the normalization condition
∫∞

0 p(A, t)dA =

1; this yields

Sr(t) = 1−
∫ Acr

0

A

c(t)
exp

(
−A2

2c(t)

)
dA = exp

(
−A2

cr

2c(t)

)
(5.5)

Examining the form of the non-stationary response amplitude PDF of Eq.(5.4), it can be read-

ily seen that it comprises two conceptually different terms. The first one represents a truncated

Rayleigh PDF for amplitude values in the range [0, Acr], whereas the factor S(t) in the second term

represents the probability at a specific time instant that the response grows unbounded, namely

the system response asymptotically approaches infinity. The rationale behind the choice of the

truncated time-dependent Rayleigh PDF of Eq.(5.4) relates to the fact that the linear oscillator sta-

tionary response amplitude PDF is a Rayleigh one (see also [113]). In fact, as it was shown in

[119], the non-stationary response amplitude PDF of a linear oscillator subject to Gaussian white

noise excitation is a time-dependent Rayleigh PDF of the form p(A, t) =
A

c(t)
exp

(
−A2

2c(t)

)
with
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the property lim
t→0

p(A, t) =
A

σ2
exp

(
−A2

2σ2

)
; where σ2 represents the linear oscillator stationary

response variance. In [63] it was further shown that the Rayleigh representation is suitable for

nonlinear oscillators also and under evolutionary stochastic excitation as well. It is pointed out that

a significant difference between adopting a PDF of the form p(A, t) =
A

c(t)
exp(

−A2

2c(t)
) in [63] and

introducing a PDF form of Eq.(5.4) in the herein developed technique, is that in the former case

c(t) accounts for the variance of the non-stationary response process x, whereas in the latter case

c(t) is simply a time-varying coefficient to be determined. Further, note that for the case where the

oscillator is assumed to be initially at rest, i.e. p(A0, t0 = 0) = δ(A0), the amplitude PDF p(A, t)

values will be concentrated around A = 0 for the very early part of the oscillation duration, or in

other words, lim
t→0+

c(t) = 0 which yields lim
t→0+

Sr(t) = 0; that is, the probability that the system

response will grow unbounded goes to zero as t→ 0+.

Next, relying on Eq.(5.4), it can be argued that an alternative to Eq.(5.2) equivalent linear

system is given in the form

ẍ(t) + 2ζ0ω0ẋ(t) + ω2
eq(t)x(t) = wx(t) (5.6)

where the time-dependent stiffness element ω2
eq(t) is defined as (see also [63], [118])

ω2
eq(t) =

∫ +∞

0
ω2(A)p(A, t)dA (5.7)

Note that taking into account the form of the amplitude PDF of Eq.(5.4), the time-varying

equivalent stiffness element of Eq.(5.7) also has two parts. Specifically, forA ∈ [0, Acr], ω2
eq(t) has

a bounded part, i.e. ω2
eq,B(t), whereas for A > Acr the stiffness element ω2

eq(t) exhibits negative

values; thus, yielding negative restoring force values resulting potentially in an unbounded system

response behavior. In this regard, utilizing Eq.(5.4) the bounded part ω2
eq,B(t) is determined as

ω2
eq,B(t) =

∫ Acr

0
ω2(A)p(A, t)dA (5.8)

Analytical determination of the integral in Eq.(5.8) yields

ω2
eq,B(t) = ω2

0

[
1 +

3

2
εc(t) (1− Sr(t))

]
(5.9)

Examining Eq.(5.9) it can be readily seen that the stiffness element ω2
eq,B(t) is bounded be-

tween the values 0 and ω2
0 . Specifically, assuming that the oscillator is initially at rest yields

lim
t→0+

p(A, t) = δ(A0), or in other words, lim
t→0+

c(t) = 0, which yields lim
c(t)→0+

ω2
eq,B(t) = ω2

0 . This

means that for the very early part of the oscillation duration the oscillator features an approxi-
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mately linear restoring force. Further, as time increases and the transient phase progresses, the

truncated Rayleigh PDF of Eq.(5.4) broadens as the oscillator exhibits higher amplitude values

A(t). Equivalently, the time-varying coefficient c(t) increases with time, whereas the equivalent

stiffness part ω2
eq,B(t) decreases with time. Taking into account Eqs.(5.4) and (5.9) it can be readily

shown that in the extreme case lim
c(t)→+∞

ω2
eq,B(t) = 0. Thus, the equivalent stiffness part ω2

eq,B(t)

is a non-negative and bounded quantity varying with time between the values 0 and ω2
0 . This is

in agreement with the fact that ω2
eq,B(t) corresponds to amplitude values A ∈ [0, Acr] where the

oscillator response is assumed to behave in a bounded manner.

Further, focusing on the case where A ∈ [0, Acr] and based on a stochastic averaging approach

Eq.(5.6) can be cast in a first-order SDE governing the evolution in time of the amplitude A(t); see

[119], [99], [142], [63] for a more detailed presentation. Related to this SDE is the Fokker-Planck

(F-P) partial differential equation as Eq.(4.11), where

K1(A, t) = −ζ0ω0A+
πS(ωeq,B(t), t)

2Aω2
eq,B(t)

(5.10)

and

K2(A, t) =

√√√√πS(ωeq,B(t), t)

ω2
eq,B(t)

(5.11)

The F-P Eq.(4.11) governs the evolution in time of the transition PDF p(A, t|A1, t1) for A ∈
[0, Acr] and A1 ∈ [0, Acr]. Next, a solution of the associated F-P equation p(A, t|A1 = 0, t1 =

0) = p(A, t) is attempted in the form of the truncated Rayleigh PDF of Eq.(5.4). Specifically,

substituting the truncated Rayleigh PDF into the associated F-P equation, assuming that the oscil-

lator is initially at rest (i.e. p(A, t = 0) = δ(A)), and manipulating yields the first-order nonlinear

differential equation

ċ(t) = −2ζ0ω0c(t) +
πS(ωeq,B(t), t)

ω2
eq,B(t), t)

(5.12)

to be solved numerically for the time-varying coefficient c(t). Obviously, once the time-varying

coefficient c(t) is determined, the time-dependent coefficient S(t) can be evaluated via Eq.(5.5).

Further, equations similar to Eq.(5.12) can be derived for the case of the response amplitude tran-

sition PDF in a straightforward manner. Specifically, following a similar analysis as in [121], the

transition amplitude PDF p(A, t|A1, t1) is sought in the form

p(A, t|A1, t1) =


ptr(A, t|A1, t1) +R(t, t1)δ(A−A∞) , 0 < A1 < Acr

δ(A−A∞) , A1 > Acr

(5.13)
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where

ptr(A, t|A1, t1) =
A

c(t, t1)
exp

(
−A

2 + h2(t, t1)

2c(t, t1)

)
I0

(
Ah(t, t1)

c(t, t1)

)
rect(A) (5.14)

and c(t, t1) and h(t, t1) are time-varying coefficients to be determined. Further, applying the nor-

malization condition
∫+∞

0 p(A, t|A1, t1)dA = 1 yields the time-varying coefficient

R(t, t1) = 1−
∫ Acr

0
ptr(A, t|A1, t1)dA (5.15)

where I0(.) denotes the modified Bessel function of the first kind and of zero order. In a similar

manner as before, under the condition thatA ∈ [0, Acr] andA1 ∈ [0, Acr] substituting the bounded

part of Eq.(5.13) into Eq.(4.11) and manipulating yields the first-order differential equations (see

[121] for a more detailed derivation)

dc(t, t1)

dt
+ 2ζ0ω0c(t, t1)− πS(ωeq,B(t), t)

ω2
eq,B(t), t)

= 0 (5.16)

and
dh(t, t1)

dt
+ ζ0ω0h(t, t1) = 0 (5.17)

Eqs.(5.16-5.17) are subject to the initial condition p(A2, t2|A1, t1) = δ(A2 − A1), which states

that no change of state can occur if the transition time is zero.

5.2.2 Softening Duffing oscillator reliability assessment

In this section the approach developed in [118] is adapted and generalized herein to account for

the special case of the softening Duffing oscillator and to determine the oscillator time-dependent

survival probability. This is defined as the probability PB(t) that the amplitude a stays below the

threshold Acr over a given time interval [t0, T ]; that is, Prob[A(t) ≤ Acr, over[t0, T ]|A(t0) <

Acr]. In the following, adopting the dicretization scheme applied in [118] the time domain is

divided into intervals of the form

[tm−1, tm], m = 1, 2, ...,M, t0 = 0, tM = T and tm = tm−1 + dTTeq(tm−1) (5.18)

where Teq denotes the equivalent natural period of the oscillator given by

Teq(t) =
2π

ωeq,B(t)
(5.19)
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and dT is a constant to be selected with the property dT ∈ (0, 1]. In the ensuing analysis, the

survival probability is determined assuming that it is approximately constant over the time interval

[tm−1, tm]. Clearly, for dT = 1 the time interval [tm−1, tm] corresponds to the equivalent time-

dependent natural period of the oscillator. The choice is justified by the fact that the response am-

plitude A is assumed to be approximately constant over the interval [tm−1, tm], owing to its slowly

varying character with respect to time (see section 5.2.1). Thus, the survival probability PB(T ) is

assumed to be constant over [tm−1, tm] as well. Of course, if higher accuracy is required a smaller

value for dT can be chosen. This is especially important for the case of the herein considered

softening Duffing oscillator. Specifically, taking into account Eq.(5.9) it can be readily seen that

for large enough values of the excitation intensity and/or of the nonlinearity magnitude, the equiv-

alent time-varying natural frequency ωeq,B(t) decreases significantly, or equivalently considering

Eq.(5.19), the natural period Teq(t) increases considerably. Thus, the time interval [tm−1, tm] of

Eq.(5.18) increases substantially yielding potentially unrealistically large time intervals where the

survival probability PB(T ) is assumed to be constant. This phenomenon can be readily mitigated

by selecting a small enough value for the coefficient dT .

Further, taking into account the discretization of Eq.(5.18), the survival probability PB(T ) is

given by the equation

PB(T = tM ) =
M∏
m=1

(1− Fm) (5.20)

where Fm is defined as the probability that A will cross the barrier Acr in the time interval

[tm−1, tm], given that no crossings have occurred prior to time tm−1. Next, invoking the Markovian

property for the process A and utilizing the standard definition of conditional probability yields

Fm =
Prob[A(tm) ≥ Acr

⋂
A(tm−1) ≤ Acr]

Prob[A(tm−1) ≤ Acr]
=
Qm−1,m

Hm
(5.21)

where

Hm−1 =

∫ Acr

0
p(Am−1, tm−1)dAm−1 (5.22)

and, by utilizing the relationship p(A1, t1;A2, t2) = p(A1, t1)p(A2, t2|A1, t1),

Qm−1,m =

∫ Acr

0

(∫ +∞

Acr
p(Am, tm|Am−1, tm−1)dAm

)
p(Am−1, tm−1)dAm−1 (5.23)

Next, taking into account Eqs.(5.4) and (5.13), Eqs.(5.22-5.23) become

Hm−1 = 1− exp

(
A2
cr

2c(tm−1)

)
(5.24)
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and

Qm−1,i =

∫ Acr

0

(∫ +∞

Acr
[ptr(Am, tm|Am−1, tm−1) +R(tm, tm−1)δ(Am −A∞)]dAm

)
· p(Am−1, tm−1)dAm−1

(5.25)

respectively. Taking into account the properties of the Dirac delta function, Eq.(5.25) becomes

Qm−1,m =

∫ Acr

0
R(tm, tm−1)p(Am−1, tm−1)dAm−1 (5.26)

and utilizing Eq.(5.15) yields

Qm−1,m =

∫ Acr

0
p(Am−1, tm−1)dAm−1

−
∫ Acr

0

(∫ Acr

0
ptr(Am, tm|Am−1, tm−1)dAm

)
p(Am−1, tm−1)dAm−1

(5.27)

Next, considering Eqs.(5.22), Eq.(5.27) takes the form

Qm−1,m = Hm−1 −
∫ Acr

0

(∫ Acr

0
ptr(Am, tm|Am−1, tm−1)dAm

)
p(Am−1, tm−1)dAm−1

(5.28)

Relying further on the assumption that ωeq,B(t) follows a slowly varying with time behavior,

the following approximation over a small time interval [tm−1, tm] is introduced; i.e., ωeq,B(t) =

ωeq,B(tm−1) for t ∈ [tm−1, tm]. Next, based on the slowly varying with time behavior of the

EPS, Sw(ω, t) is also treated as a constant over the interval [tm−1, tm]. Further, based on the above

assumptions, introducing the variable τm = tm−tm−1, and applying a first-order Taylor expansion

around point τm = 0, Eqs.(5.16-5.17) become (see [118] for a detailed derivation)

c(tm−1, tm) =
πSw(ωeq,B(tm−1), tm−1)

ω2
eq,B(tm−1)

τm (5.29)

and

h(tm−1, tm) = Am−1

√
1− 2ζ0ω0τm (5.30)

respectively. Furthermore, considering Eqs.(5.16) and (5.29) and applying a first-order Taylor

expansion for the time-varying coefficient cm(t) around point t = tm−1 yields

c(tm) = c(tm−1, tm) + c(tm−1)(1− 2ζ0ω0τm) (5.31)
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Next, setting

r2
m =

c(tm−1)

c(tm)
(1− 2ζ0ω0τm) (5.32)

Eq.(5.31) yields

c(tm−1, tm) = c(tm)(1− r2
m) (5.33)

Further, taking into account Eq.(5.28) and expanding the Bessel function I0(x) in the form

(e.g. [118])

I0(x) =
∞∑
k=0

(x/2)2k

k!Γ (k + 1)
(5.34)

analytical treatment of the involved double integral of Eq.(5.28) is possible yielding

Qm−1,i = Hm−1 −
(
A0 +

N∑
n=1

An

)
(5.35)

where

A0 =

[
1− exp

(
− A2

cr

2c(tm)(1− r2
m)

)][
1− exp

(
− A2

cr

2c(tm−1)(1− r2
m)

)]
(1− r2

m) (5.36)

An =
r2n
m (1− r2

m)∏n
k=1(k)2

Ln =
r2n
m (1− r2

m)

(n!)2
Ln (5.37)

and

Ln =

{
Γ [1 + n, 0]− Γ

[
1 + n,

A2
cr

2c(tm−1)(1− r2
m)

]}

·
{
Γ [1 + n, 0]− Γ

[
1 + n,

A2
cr

2c(tm)(1− r2
m)

]} (5.38)

In Eq.(5.38) Γ [γ, z] represents the incomplete Gamma function defined as Γ [γ, z] =
∫+∞
z tγ−1e−tdt.

A more detailed presentation of the derivations in this section can be found in [118].

Concisely, the developed technique comprises the following steps:

a) Determination of the time-varying coefficient c(t) via numerical solution of Eq.(5.12).

b) Determination of the bounded equivalent time-varying natural frequency ωeq,B(t) via Eq.(5.9).

c) Determination of the effective natural period Teq(t) (Eq.(5.19)) and discretization of the time

domain via Eq.(5.18).

d) Determination of the parameters Hm−1 and Qm−1,m via Eqs.(5.24) and (5.35).
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e) Determination of the survival probability PB(T ) via Eq.(5.20).

5.3 Numerical examples

5.3.1 Softening Duffing oscillator under earthquake excitation

The softening Duffing oscillator has also been used in conjunction with structural dynamics/earthquake

engineering applications such as the rocking response of a rigid block (e.g. [120]), and dynamics

of timber structures (e.g. [95]). In this regard, the non-separable earthquake excitation EPS of the

form

Sw(ω, t) = S0(
ω

5π
)2exp(−0.2t)t2exp

[
−(

ω

10π
)2t

]
(5.39)

is considered in this example. This spectrum, plotted in Fig.(5.1) for S0 = 1, comprises some

of the main characteristics of seismic shaking, such as decreasing of the dominant frequency with

time (e.g. [104]). Further, survival probabilities determined via the herein developed approximate

technique are compared with pertinent Monte Carlo simulation data (10,000 realizations). To this

aim, realizations compatible with the EPS of Eq.(5.39) are generated based on a spectral repre-

sentation approach (e.g. [71]), while a standard fourth-order Runge-Kutta scheme is employed for

solving the nonlinear equation of motion (Eq.(5.1)). The initial distribution chosen for the response

amplitude PDF is the Dirac delta function, i.e., p(A0, t0 = 0) = δ(A0), assuming the system is

initially at rest. In the ensuing analysis the value N = 60 is chosen in Eq.(5.35) for the terms to be

included in the expansion.

In Fig.(5.2), the bounded equivalent natural frequencies (Eq.(5.13)) of the oscillators with pa-

rameter values (S0 = 1 , ω2
0 = π2, ζ0 = 0.01, ε = −1), (S0 = 1 , ω2

0 = π2, ζ0 = 0.01, ε = −2),

and (S0 = 1 , ω2
0 = π2, ζ0 = 0.01, ε = −3) are plotted. In Fig.(5.3), the equivalent natural periods

for the above oscillators are plotted, whereas in Fig.(5.4) the survival probabilities determined by

Eqs.(5.20) are plotted for various barrier levels Acr =

√
− 4

3ε
; comparisons with MCS (10,000

realizations) demonstrate a quite satisfactory agreement.

5.3.2 Softening Duffing oscillator under sea wave excitation

Considering the rolling motion of a ship in unidirectional beam waves enables one to approximate

reasonably the motion as uncoupled with respect to other motions such as sway, pitch and heave;

see [123], [6], [1], [55] for a detailed presentation of the topic. Further, to take into account the

viscous and vortex components of roll damping, a nonlinear expression for the damping force of
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Figure 5.1: Non-separable earthquake excitation evolutionary power spectrum

Figure 5.2: Bounded equivalent time-varying natural frequency ωeq,B(t) for a softening Duffing
oscillator (S0 = 1 , ω2

0 = π2, ζ0 = 0.01) under earthquake excitation
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Figure 5.3: Equivalent natural period Teq(t) for a softening Duffing oscillator (S0 = 1 , ω2
0 = π2,

ζ0 = 0.01) under earthquake excitation

Figure 5.4: Survival probability for a softening Duffing oscillator (S0 = 1 , ω2
0 = π2, ζ0 = 0.01,

dT = 0.125) under earthquake excitation; comparisons with MCS (10,000 realizations)
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the form MD = 2ζ0ω0(φ̇+ ε1φ̇
3), ε1 > 0 where φ is the ship rolling angle, is commonly adopted

in the literature; indicatively, see also [114], [30], [129], [74] for some alternative polynomial and

other approximations. As far as the nonlinear restoring moment is concerned, several approxima-

tions exist in the literature with the expression MD = ω2
0(φ + ε2φ

3), ε2 < 0, being among the

most commonly adopted choices (e.g. Taylan 1999); see also [108], [126]. The aforementioned

expression, although phenomenological, manages to capture to an adequate degree the qualitative

behavior and basic physics of nonlinear ship rolling motion under beam waves (e.g. [123], [6]).

In this regard, consider next the uncoupled ship roll motion given by the equation

φ̈+ 2ζ0ω0φ̇+ 2ε1ζ0ω0φ̇
3 + ω2

0φ+ ε2ω
2
0φ

3 = w(t), ε1 > 0, ε2 < 0 (5.40)

where w(t) represents a Gaussian, zero-mean non-stationary stochastic process possessing an evo-

lutionary broad-band power spectrum Swω, t of the form

Sw(ω, t) = |g(t)|2|Froll(ω)|2SE(ω) (5.41)

In Eq.(5.41) SE(ω) denotes the stationary wave energy spectrum, whereas the functionFroll(ω)

relates the wave energy spectrum to the roll moment excitation spectrum (e.g. [59]). Although,

in general, wave energy spectra, such as the Jonswap (e.g. [52]), are narrow-band with a distinct

peak, it has been shown that the resulting roll moment excitation spectrum is significantly more

broad-band than the corresponding wave energy spectrum (e.g. [108]). This broad-band charac-

teristic of the stationary roll moment excitation power spectrum |Froll(ω)|2SE(ω) is in agreement

with the assumptions and justifies to a certain extent the applicability of the approach developed in

section 5.2. In the following, the Pierson-Moskowitz (P-M) spectrum [88], i.e. a special case of

the Jonswap spectrum of the form

SE(ω) =
D

ω5
exp

(
− G
ω4

)
(5.42)

is used for the wave energy spectrum SE(ω), where D = 1× 10−2g2, G = 120(
g

u
)4, u = 15m/s,

g = 9.8m/s2. As far as the function Froll(ω) is concerned, this is chosen to be of the rather

general form (e.g. [108]) |Froll(ω)|2 = Cω4 where the constant C is associated with beam sea

and oscillator characteristics. In the following, the value C = 3 is used. Thus, due to the effect of

multiplying Eq.(5.42) with the term “ω4” the resulting stationary roll moment excitation spectrum

|Froll(ω)|2SE(ω) becomes relatively broad-band as shown in Fig.(5.5).

Further, to demonstrate the versatility of the technique for addressing cases of non-stationary

85



excitations, a time-modulating function g(t) of the form

g(t) =

{
0.2 + 0.8 ·

[
t

a
exp

(
1− t

a

)]b}0.5

(5.43)

is utilized next, where a = 20, b = 5. As it is shown in Fig.(5.6) the function g(t) varies slowly

with time suggesting a low level of non-stationarity. In Fig.(5.7) the excitation EPS of Eq.(5.41) is

plotted.

It can be readily seen that the only qualitative difference between Eq.(5.40) and the softening

Duffing oscillator of Eq.(5.1) is the nonlinear damping term; thus, following [63] (see also [118])

an equivalent linear oscillator is given in the form

ẍ(t) + βeq(t)ẋ(t) + ω2
eq(t)x(t) = wx(t) (5.44)

where the time-dependent stiffness element ω2
eq(t) is given by Eq.(5.7), and the time-dependent

damping element βeq(t) is given by

βeq(t) = E[β(A)] =

∫ +∞

0
β(A)p(A, t)dA (5.45)

Following a stochastic averaging/linearization treatment (e.g. [118], [63]) β(A) in Eq.(5.45) is

given by

β(A) =2ζ0ω0 −
1

πAω(A)

∫ 2π

0
sinψ[2ε1ζ0ω0(−ω(A)A sinψ)3

+ ω2
0A cosψ + ω2

0ε1(A cosψ)3]dψ

=2ζ0ω0

(
1 +

3

4
ε1ω

2(A)A2
) (5.46)

It can be readily seen that the time-dependent damping element βeq(t) depends on β(A) which

in turn depends on the stiffness element ω2(A); thus, following the development in section 5.2, a

bounded part βeq,B(t) is defined as

βeq,B(t) =

∫ Acr

0
β(A)p(A, t)dA (5.47)

Substituting Eq. (5.46) into (5.47), and taking into account Eq.(5.4) yields

β(A) =2ζ0ω0{1− S(t) +
3

4
ε1ω

2
0[2c(t)− S(t)(2c(t) +A2

cr)]

+
9

16
ω2

0ε1ε2[8c2(t)− S(t)(A4
cr + 4c(t)A2

cr + 8c2(t))]}
(5.48)
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Further, Eqs. (5.10), (5.12), (5.16), (5.17), and (5.32) are updated accordingly (see also [118],

[63]) taking the form

K1(A, t) = −1

2
βeq,B(t)A+

πS(ωeq,B(t), t)

2Aω2
eq,B(t)

(5.49)

ċ(t) = −βeq,B(t)c(t) +
πS(ωeq,B(t), t)

ω2
eq,B(t)

(5.50)

dc(t, t1)

dt
+ βeq,B(t)c(t, t1)− πS(ωeq,B(t), t)

ω2
eq,B(t)

= 0 (5.51)

dh(t, t1)

dt
+

1

2
βeq,B(t)h(t, t1) = 0 (5.52)

and

r2
m =

c(tm−1)

c(tm)
(1− βeq,B(tm−1)τm) (5.53)

respectively. As in section 5.3.1 survival probabilities are determined via the herein developed

approximate technique and are further compared with spectral representation based (e.g. [71]) per-

tinent Monte Carlo simulation data (10,000 realizations). The oscillator is assumed to be initially

at rest, whereas the value N = 60 is chosen in Eq.(5.35) for the terms to be included in the expan-

sion. In Fig.(5.8) and Fig.(5.9), the bounded equivalent natural frequencies ωeq,B(t) and equivalent

natural period Teq(t) of the oscillators of Eq.(5.40) with parameter values (ζ0 = 0.01, ω2
0 = π2,

ε1 = 0.1, ε2 = −1 ), (ζ0 = 0.01, ω2
0 = π2, ε1 = 0.1, ε2 = −2 ) and (ζ0 = 0.01, ω2

0 = π2,

ε1 = 0.1, ε2 = −4 ) are plotted, respectively. In Fig.(5.10), the equivalent natural periods for

the above oscillators are plotted, whereas in Fig.(5.11) the survival probabilities determined by

Eq.(5.20) are plotted for various barrier levels Acr =

√
− 4

3ε2
; comparisons with MCS (10000

realizations) demonstrate an acceptable agreement due to the softening nonlinearity.

5.4 Summary

In chapter 5, an approximate analytical technique has been developed for determining the survival

probability of a softening Duffing oscillator subject to evolutionary stochastic excitation. Herein,

introducing a special form for the oscillator non-stationary response amplitude PDF and relying

on stochastic averaging, a rigorous and computationally efficient treatment of the problem has

been provided to deal with the negative stiffness issue. Taking advantage of this special response

amplitude PDF form, a bounded transition probability function is obtained. Further, survival prob-

ability estimates have been determined for various levels of nonlinearity magnitude. A significant

advantage of the technique relates to the fact that it can readily handle cases of stochastic excita-

tions that exhibit strong variability in both the intensity and the frequency content. Two different

examples, are considered to demonstrate the accuracy and effectiveness of proposed method. In
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Figure 5.5: Stationary roll moment excitation spectrum |Froll(ω)|2SE(ω)

Figure 5.6: Time-modulating function g(t)
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Figure 5.7: Time-modulated roll moment excitation spectrum

Figure 5.8: Bounded equivalent time-varying natural frequency ωeq,B(t) for a softening Duffing
oscillator with nonlinear damping (ε1 = 0.1 , ω2

0 = π2, ζ0 = 0.01) under sea wave excitation
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Figure 5.9: Bounded equivalent time-varying damping βeq,B(t) for a softening Duffing oscillator
with nonlinear damping (ε1 = 0.1 ,ω2

0 = π2, ζ0 = 0.01) under sea wave excitation

Figure 5.10: Equivalent natural period Teq(t) for a softening Duffing oscillator with nonlinear
damping (ε1 = 0.1 ,ω2

0 = π2, ζ0 = 0.01) under sea wave excitation
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Figure 5.11: Survival probability for a softening Duffing oscillator with nonlinear damping (ε1 =
0.1 ,ω2

0 = π2, ζ0 = 0.01, dT = 0.125) under sea wave excitation; comparisons with MCS (10,000
realizations)

both examples, the proposed method shows an acceptable agreement with pertinent Monte Carlo

simulations. Due to the approximation of the linerization of negative stiffness, it is expected that

the error between this method and MCS becomes larger when the degree of negative stiffness is

increasing.
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Chapter 6

Concluding remarks

In this chapter, the main contents of the thesis along with discussions of results are summarized and

presented. Then, suggestions of future developments for the proposed methods are also discussed.

In chapter 2, a general Lp norm (0 < p ≤ 1) minimization approach has been proposed for

estimating stochastic process power spectra subject to realizations with missing data. In particu-

lar, focusing on the L1 and L1/2 norms, it has been shown that the approach can be significantly

enhanced by an adaptive basis re-weighting scheme, while it can satisfactorily estimate the power

spectra of stationary, non-stationary, and multi-dimensional processes. It is shown that there are

clear advantages to utilizing L1/2 norm over L1 norm minimization in signal reconstruction for

power spectrum estimation. In particular, when dealing with single process records for which the

presented adaptive basis re-weighting procedure cannot be applied, L1/2 norm minimization ex-

hibits superior performance to L1 norm. In addition, where multiple realizations are available for

basis re-weighting, L1/2 norm is shown to provide more accurate spectrum estimations when large

sample sizes are utilized. Nevertheless, differences in the effect of re-weighting have been ob-

served. Although the improvement in spectrum estimation accuracy was significant for both L1/2

and L1 norm minimization when utilizing the re-weighting procedure, L1 norm minimization has

been shown to exhibit a greater magnitude of improvement after re-weighting when compared to

L1/2. This is due to the fact that the re-weighting procedure has a sparsity enhancing effect, which

leaves less room for an L1/2 solution to exhibit greater sparsity than an L1 solution. Nevertheless,

despite the re-weighting, the L1/2 solution still succeeds in producing sparser spectral estimates.

For a signal that is not truly sparse, this additional sparsity can be an advantage or disadvantage

depending on the number of samples available. For large sample sizes, the L1/2 norm minimiza-

tion has produced superior results across all of the examples. However, in the stationary and the

two-dimensional cases, for small sample sizes the opposite has been true. Thus, for small sample

numbers in particular, when dealing with reconstruction of processes for which limited information

regarding their degree of sparsity is available, estimates from both minimization schemes should

be utilized within a decision-making process.

In chapter 3, an analytical approach for quantifying the uncertainty in stochastic process power

spectrum estimates based on samples with missing data has been developed. Specifically, the cor-
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relations between the missing data are considered by employing a Kriging model, while utilizing

fundamental concepts from probability theory, and resorting to a Fourier based representation of

stationary stochastic processes, a closed form expression has been derived for the power spectrum

estimate PDF at each frequency. Next, the approach has been extended for determining the PDF of

spectral moments estimates as well. This is of considerable significance to reliability assessment

methodologies as well, where spectral moments are used for evaluating the survival probability of

the system. Further, it has been shown that utilizing a Cholesky kind decomposition for the PDF

related integrals the computational cost is kept at a minimal level.

In chapter 4, a WPI based technique for determining the non-stationary response PDF, the sur-

vival probability and the first-passage PDF of nonlinear/hysteretic oscillators subject to stochastic

excitation has been developed. Specifically, based on a stochastic averaging/linearization treatment

of the problem, the nonlinear oscillator has been cast into an equivalent linear time-variant oscil-

lator. In this regard, equivalent linear time-dependent stiffness and damping elements have been

also determined as part of the solution procedure. Further, relying on a variational formulation and

on the concept of the most probable path, a closed-form analytical expression has been derived

for the oscillator short-time transition PDF. Next, utilizing the short-time transition PDF and the

C-K equation, a closed-form expression for the oscillator transient joint response PDF has been

derived as well. Thus, the solution can be propagated in short time steps yielding not only the non-

stationary response PDF, but also the survival probability and the first-passage PDF of the nonlinear

oscillator. In comparison with existing, albeit more versatile, numerical path integral schemes, a

significant advantage of the proposed WPI technique is that the computationally demanding task

of numerically integrating for every time step the high-dimensional convolution integrals involved

in the C-K equation has been circumvented. This is due to the fact that closed-form analytical

expressions have been derived for the involved multi-dimensional convolution integrals; thus, the

computational cost is kept at a minimum level. Besides, the WPI based approach takes into account

the correlation of the displacement x and velocity ẋ, which is important for the accuracy of the re-

sponse analysis especially during the transient phase where the oscillator response displacement

and velocity are correlated.

In chapter 5, an approximate analytical technique has been developed for determining the sur-

vival probability of a softening Duffing oscillator subject to evolutionary stochastic excitation. In

the context of nonlinear stochastic dynamics, the Duffing oscillator with softening nonlinearity has

been so far treated in a manner which disregarded important aspects of the analysis, such as the

unbounded behavior the response process experiences when the restoring force acquires negative

values. Herein, introducing a special form for the oscillator non-stationary response amplitude

PDF and relying on stochastic averaging, a rigorous and computationally efficient treatment of

the problem has been provided. Taking advantage of this special response amplitude PDF form,

a bounded transition probability function is obtained. Further, survival probability estimates have

been determined for various levels of nonlinearity magnitude. A significant advantage of the tech-
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nique relates to the fact that it can readily handle cases of stochastic excitations that exhibit strong

variability in both the intensity and the frequency content.

Some future work can be done in both the missing data problem and first passage problem,

discussed in this thesis.

For the missing data problem, the idea of reweighting could actually improve the performance

of spectral estimation. Lp norm (0 < p ≤ 1) minimization approach can potential serve as a tool

for develop a power spectrum estimation for the case of sub-Nyquist sampling to reduce the cost.

Apart from the least square based reweighting procedure described in chapter 2, other potential

alternative sparsity promoting schemes can also be utilized, such as L1. Obviously, comprehensive

comparisons of all the potential methods are required to be done as a benchmark.

As far as future extensions for first passage problem, the WPI technique based survival prob-

ability determination protains to explore its applicability in the context of multiple degree of free-

dom, for different oscillator models. In this regard, the dimension reduction technique [65] is

potentially applied to improve the effectiveness of the method. Another potential direction is to

extend the proposed analytical techniques to determine directly the survival probability without

employing the short-time propagator as shown in chapter 4 and 5. In this regard, the accuracy of

the solution is anticipated to increase due to the fact that no approximations related to the lineariza-

tion of the system will be made.
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Appendix A

By factorizing part of the integrand of Eq.(3.30) (given as Y in Eq.(3.31), the solution of Eq.(3.30)

may be greatly simplified. In the following, a 2-variable case is given as an example.

For a 2-variable case, Eq. (3.29) becomes

λm = ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f (A.1)

where a, b, c, d, e, f are real constant with a > 0, c > 0, f > 0. Eq.(A.1) can be also recast into a

matrix form as

λm =

(
x1 x2 1

)


a 0.5b 0.5d

0.5b c 0.5e

0.5d 0.5e f




x1

x2

1

 (A.2)

Further, according to Eq.(3.31), Y has the form

Y =
1

2
x2

1 +
1

2
x2

2 − iω(ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f) (A.3)

The object of step 3 is to recast Eq.(A.3) into the form given by Eq.(3.34). To achieve this goal,

second order terms of Y are separated and then factorized as follows,

Y1 =
1

2
x2

1 +
1

2
x2

2 − iω(ax2
1 + bx1x2 + cx2

2)

=

(
x1 x2

)0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc


x1

x2



=

(
x1 x2

)
A′Y1AY1

x1

x2


(A.4)

97



where AY1 =


√

0.5− iωa − iωb

2
√

0.5− iωa

0

√
ω2b2

2− 4iωa
+ 0.5− iωc

, and A′Y1 is the non-conjugate transpose

of AY1 , i.e., A′Y1AY1 =

0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc

. This calculation can use the same numerical

implementation steps as a Cholesky factorization algorithm with the note that

0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc


is not a Hermitian positive-definite matrix. Then, extending Y1 to account for the first order terms

in Eq.(A.3), Y may be written as,

Y =
1

2
x2

1 +
1

2
x2

2 − iω(ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f)

=

(
x1 x2

)
A′Y1AY1

x1

x2

− iω(dx1 + ex2 + f)

= (AY


x1

x2

1

)′(AY


x1

x2

1

) + cY

(A.5)

whereAY =



√
0.5− iωa − iωb

2
√

0.5− iωa
− iωd

2
√

0.5− iωa

0

√
ω2b2

2− 4iωa
+ 0.5− iωc

bdω2

1− 2iωa
− iωe

2

√
ω2b2

2− 4iωa
+ 0.5− iωc

0 0 0


, cY = −(− iωd

2
√

0.5− iωa
)2−

(

bdω2

1− 2iωa
− iωe

2

√
ω2b2

2− 4iωa
+ 0.5− iωc

)2 − iωf .

Calculating the first term in Eq.(A.5), it can be seen that (AY


x1

x2

1

)′(AY


x1

x2

1

) takes the
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form

(AY


x1

x2

1

)′(AY


x1

x2

1

) = (m1x1 +m2x2 +m3)2 + (m4x2 +m5)2 (A.6)

where the constants m1,m2,m3,m4,m5 are calculated by AY . Hence, Y may be written as

Y = (m1x1 +m2x2 +m3)2 + (m4x2 +m5)2 + cY (A.7)

The form Eq.(A.7) is particularly useful in calculating the integral in Eq.(3.30), allowing it to be

simplified as shown

Φλi(ω) = E[eiωλi ] =

∫ +∞

−∞
(2π)−

u
2 exp(−Y )dxg

= (2π)−1
∫∫ +∞

−∞
exp[−(m1x1 +m2x2 +m3)2 − (m4x2 +m5)2 − cY ]dx1dx2

= (2π)−1

√
π

m1

∫ +∞

−∞
exp[−(m4x2 +m5)2 − cY ]dx2

=
1

2m1m4
exp(−cY )

(A.8)

For the general multi-variable case, the above steps are the same.
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Appendix B

In this Appendix, analytical expressions are provided for several coefficients used in expressions

derived in the main text. In this regard, with the aid of the symbolic toolbox of MATLAB the

analytical expressions for the coefficients C1, C2, C3, C4 of Eq.(4.25) are given by

C1 = [ẋm−1e
ζω(2tm+tm−1)sin(ωtm−1) + (xmζω − ẋm)e3ζωtmsin(ωtm) + (xm−1ζω − ẋm−1)

e3ζωtm−1sin(ωtm−1) + ẋme
ζω(tm+2tm−1)sin(ωtm)− (ẋm−1ζ + xm−1ω + xm−1ζ

2ω)

eζω(2tm+tm−1)cos(ωtm−1)− (ẋmζ + xmω + xmζ
2ω)eζω(tm+2tm−1)cos(ωtm)

+ (ẋm + xmζω)ζeζω(tm+2tm−1)cos(ω(tm − 2tm−1)) + (ẋm−1 + xm−1ζω)ζeζω(2tm+tm−1)

cos(ω(2tm − tm−1)) + xm−1ωe
3ζωtm−1cos(ωtm−1) + xmωe

3ζωtmcos(ωtm)

− xm−1ζωe
ζω(2tm+tm−1)sin(ω(2tm − tm−1)) + xmζωe

ζω(tm+2tm−1)sin(ω(tm − 2tm−1))]

/[ω(e4ζωtm + e4ζωtm−1 − 2(1 + ζ2 − ζ2cos(2ω(tm − tm−1)))e2ζω(tm+tm−1))]

(B.1)

C2 = −[ẋm−1e
ζω(2tm+tm−1)cos(ωtm−1) + (xmζω − ẋm)e3ζωtmcos(ωtm) + (xm−1ζω − ẋm−1)

e3ζωtm−1cos(ωtm−1) + ẋme
ζω(tm+2tm−1)cos(ωtm) + (+ẋm−1ζ + xm−1ω + xm−1ζ

2ω)

eζω(2tm+tm−1)sin(ωtm−1) + (ẋmζ + xmω + xmζ
2ω)eζω(tm+2tm−1)sin(ωtm)

+ (−ẋm − xmζω)ζeζω(tm+2tm−1)sin(ω(tm − 2tm−1)) + (ẋm−1 − xm−1ζω)ζeζω(2tm+tm−1)

sin(ω(2tm − tm−1))− xm−1ωe
3ζωtm−1sin(ωtm−1)− xmωe3ζωtmsin(ωtm)

− xm−1ζωe
ζω(2tm+tm−1)cos(ω(2tm − tm−1)) + xmζωe

ζω(tm+2tm−1)sin(ω(tm − 2tm−1))]

/[ω(e4ζωtm + e4ζωtm−1 − 2(1 + ζ2 − ζ2cos(2ω(tm − tm−1)))e2ζω(tm+tm−1))]

(B.2)
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C3 = −[ẋm−1(eζω(4tm+tm−1) − eζω(2tm+3tm−1))sin(ωtm−1)− ẋm(eζω(3tm+2tm−1)

− eζω(tm+4tm−1))sin(ωtm) + (ẋm−1 − xm−1ζω)ζeζω(2tm+3tm−1)cos(ω(2tm − tm−1))

− xm−1ωe
ζω(4tm+tm−1)cos(ωtm−1)− xmωeζω(tm+4tm−1)cos(ωtm)

+ (xm−1ω − ẋm−1ζ + xm−1ζ
2ω)eζω(2tm+3tm−1)cos(ωtm−1) + (xmω − ẋm−1ζ)

eζω(3tm+2tm−1)cos(ωtm) + (ẋm − xmωζ)ζeζω(3tm+2tm−1)cos(ω(tm − 2tm−1)) + xmωζ

eζω(3tm+2tm−1)(sin(tm − 2tm−1) + ζcos(ωtm))− xm−1ζωe
ζω(2tm+3tm−1)sin(ω(2tm − tm−1))

+ xm−1ζωe
ζω(4tm+tm−1)sin(ωtm−1) + xmζωe

ζω(tm+4tm−1)sin(ωtm)]

/[ω(e4ζωtm + e4ζωtm−1 − 2(1 + ζ2 − ζ2cos(2ω(tm − tm−1)))e2ζω(tm+tm−1))]

(B.3)

C4 = −[ẋm−1e
ζω(2tm+3tm−1)cos(ωtm−1) + ẋme

ζω(3tm+2tm−1)cos(ωtm)− (ẋm−1 + xm−1ζω)

eζω(4tm+tm−1)cos(ωtm−1)− (ẋm + xmζω)eζω(tm+4tm−1)cos(ωtm) + (ẋm−1 − xm−1ζω)ζ

eζω(2tm+3tm−1)sin(ω(2tm − tm−1))− xm−1ωe
ζω(4tm+tm−1)sin(ωtm−1)

− xmωeζω(tm+4tm−1)sin(ωtm) + (xm−1ω + xm−1ωζ
2 − ẋm−1ζ)eζω(2tm+3tm−1)sin(ωtm−1)

+ (xmω + xmωζ
2 − ẋmζ)eζω(3tm+2tm−1)sin(ωtm) + (xmζω − ẋm)ζeζω(3tm+2tm−1)

sin(ω(tm − 2tm−1)) + xmζωe
ζω(3tm+2tm−1)cos(ω(tm − 2tm−1))

+ xm−1ζωe
ζω(2tm+3tm−1)cos(ω(2tm − tm−1))]

/[ω(e4ζωtm + e4ζωtm−1 − 2(1 + ζ2 − ζ2cos(2ω(tm − tm−1)))e2ζω(tm+tm−1))]

(B.4)

where ω denotes ωeq,m and ζ denotes ζeq,m for simplification.

Further, to determine the analytical expression of the transition PDF of Eq.(4.28), a Taylor

series expansion has been employed to expand the expression of Eq.(4.25) for the most probable

path around point t = tm−1 . For instance, for a 3th order Taylor expansion of the form

f(t) ≈ f(tm−1) + f ′(tm−1)(t− tm−1) +
f ′′(tm−1)

2!
(t− tm−1)2 +

f (3)(tm−1)

3!
(t− tm−1)3 (B.5)

p(xm, ẋm, tm|xm−1, ẋm−1, tm−1) takes the form of Eq.(4.28), whereas the coefficients n1,m, n2,m,
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n3,m, n4,m, n5,m, n6,m, n7,m are given by

n4,m =[−(47ζ4∆t4ω4 + 96ζ3∆t3ω3 + 18ζ2∆t4ω4 + 42ζ2∆t2ω2 + 16ζ∆t4ω4 −∆t4ω4

+ 10∆t2ω2 − 12)/(12πS∆t)]0.5

(B.6)

n1,m =− (338ζ5∆t5ω5 + 809ζ4∆t4ω4 + 34ζ3∆t5ω5 + 768ζ3∆t3ω3 + 23ζ2∆t4ω4

+ 408ζ2∆t2ω2 − 24ζ∆t5ω5 + 84ζ∆t3ω3 + 72ζ∆tω − 10∆t4ω4

+ 42∆t2ω2 − 36)/(24πS∆t2n4,m)

(B.7)

n3,m =(342ζ5∆t5ω5 + 811ζ4∆t4ω4 + 60ζ3∆t5ω5 + 768ζ3∆t3ω3 + 62ζ2∆t4ω4

+ 408ζ2∆t2ω2 − 18ζ∆t5ω5 + 96ζ∆t3ω3 + 72ζ∆tω − 9∆t4ω4

+ 48∆t2ω2 − 36)/(24πS∆t2n4,m)

(B.8)

n2,m =− (87ζ4∆t4ω4 + 169ζ3∆t3ω3 + 19ζ2∆t4ω4 + 111ζ2∆t2ω2 + 19ζ∆t3ω3

+ 30ζ∆tω − 2∆t4ω4 + 14∆t2ω2 − 6)/(12πS∆tn4,m)

(B.9)

n7,m =(3− 12ζ2∆t2ω2 − 12ζ∆tω − 4∆t2ω2)0.5 ∗ (73ζ4∆t4ω4 + 152ζ3∆t3ω3

+ 6ζ2∆t4ω4 + 148ζ2∆t2ω2 + 8ζ∆t3ω3 + 48ζ∆tω + ∆t4ω4 − 4∆t2ω2

+ 12)/(24πS∆t2n4,m)

(B.10)

n6,m =[(310ζ5∆t5ω5 + 605ζ4∆t4ω4 − 14ζ3∆t5ω5 + 492ζ3∆t3ω3 − 47ζ2∆t4ω4

+ 288ζ2∆t2ω2 − 32ζ∆t5ω5 + 60ζ∆t3ω3 + 72ζ∆tω − 18∆t4ω4 + 66∆t2ω2

− 36)/(24πS∆t2)− n3,mn2,m]/n7,m

(B.11)

n5,m =[(551ζ5∆t5 + 1224ζ5∆t5ω5 − 165ζ4∆t6ω6 + 1180ζ4∆t4ω4 − 426ζ3∆t5ω5

+ 1056ζ3∆t3ω3 − 106ζ2∆t6ω6 − 74ζ2∆t4ω4 + 672ζ2∆t2ω2 − 90ζ∆t5ω5

+ 204ζ∆t3ω3 + 144ζ∆tω + 4∆t6ω6 − 44∆t4ω4 + 120∆t2ω2

− 72)/(24πS∆t3)− n3,mn1,m]/n7,m

(B.12)

where ω denotes ωeq,m and ζ denotes ζeq,m for simplification.

Note that the transition PDF does not depend on the initial tm−1 and final tm time points, but

only on the time interval ∆t = tm − tm−1 . Furthermore, with the aid of the symbolic toolbox of
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MATLAB the integration in Eq.(4.32) can be performed analytically to yield the non-stationary

response PDF of Eq.(4.33), with the coefficients k1,m, k2,m, k3,m, k4,m, k5,m, k6,m, k7,m given by

k4,m = [(n2
4,m(k2

3,m−1n
2
6,m + k2

4,m−1k
2
7,m−1 − 2k4,m−1k3,m−1n6,mn5,m + k2

4,m−1n
2
5,m

+ k2
7,m−1n

2
6,m))/M ]0.5

(B.13)

k1,m = −[n4,m(k5,m−1n1,mk
2
4,m−1k7,m−1 + k1,m−1n2,mk4,m−1k

2
7,m−1

− k3,m−1k5,m−1k4,m−1k7,m−1n2,m − k1,m−1n1,mk4,m−1n6,mn5,m

+ k1,m−1n2,mk4,m−1n
2
5,m + k5,m−1n1,mk7,m−1n

2
6,m − k5,m−1n2,mk7,m−1n6,mn5,m

+ k1,m−1k3,m−1n1,mn
2
6,m − k1,m−1k3,m−1n2,mn6,mn5,m)]/[k4,mM ]

(B.14)

k3,m = [n4,m(n3,mk
2
3,m−1n

2
6,m − n2,mn7,mk

2
3,m−1n

2
6,m − n3,mk3,m−1k4,m−1n5,mn6,m

+ n2,mn7,mk3,m−1k4,m−1n5,m + n1,mn7,mk3,m−1k4,m−1n6,m + n3,mk
2
4,m−1k

2
7,m−1

+ n3,mk
2
4,m−1n

2
5,m − n1,mn7,mk

2
4,m−1n5,m + n3,mk

2
7,m−1n

2
6,m − n2,mn7,mk

2
7,m−1n6,m)]

/[k4,mM ]

(B.15)

k2,m = −[n4,m(k6,m−1n1,mk
2
6,m−1n7,m + k2,m−1n2,mk4,m−1k

2
7,m−1

− k3,m−1k6,m−1n2,mk4,m−1k7,m−1 + k2,m−1n2,mk4,m−1n
2
5,m

− k2,m−1n1,mk4,m−1n5,mn6,m − k6,m−1n2,mk7,m−1n5,mn6,m + k6,m−1n1,mk7,m−1n
2
6,m

− k2,m−1k3,m−1n2,mn5,mn6,m + k2,m−1k3,m−1n1,mn
2
6,m)]/[k4,mM ]

(B.16)

k7,m = [(k2
4,m−1k

2
7,m−1n

2
7,m)/(k2

3,m−1n
2
6,m − 2k3,m−1k4,m−1n5,mn6,m

+ k2
4,m−1k

2
7,m−1 + k2

4,m−1n
2
5,m + k2

7,m−1n
2
6,m)]0.5

(B.17)

k6,m = −[k4,m−1k7,m−1n7,m(k4,m−1k6,m−1n5,m + k2,m−1k7,m−1n6,m − k3,m−1k6,m−1n6,m)]

/[k7,m(k2
3,m−1n

2
6,m − 2k3,m−1k4,m−1n5,mn6,m + k2

4,m−1k
2
7,m−1 + k2

4,m−1n
2
5,m

+ k2
7,m−1n

2
6,m)]

(B.18)
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k5,m = −[k4,m−1k7,m−1n7,m(k4,m−1k5,m−1n5,m + k1,m−1k7,m−1n6,m − k3,m−1k5,m−1n6,m)]

/[k7,m(k2
3,m−1n

2
6,m − 2k3,m−1k4,m−1n5,mn6,m + k2

4,m−1k
2
7,m−1 + k2

4,m−1n
2
5,m

+ k2
7,m−1n

2
6,m)]

(B.19)

ki,1 = ni,1, i = 1, 2, 3, ..., 6, 7 (B.20)

M =(k2
3,m−1n

2
2,m + k2

3,m−1n
2
6,m + k2

4,m−1k
2
7,m−1 − 2k4,m−1k3,m−1n2,mn1,m

− 2k4,m−1k3,m−1n6,mn5,m + k2
4,m−1n

2
1,m + k2

4,m−1n
2
5,m + k2

7,m−1n
2
2,m + k2

7,m−1n
2
6,m

+ n2
1,mn

2
6,m − 2n2,mn1,mn6,mn5,m + n2

2,mn
2
5,m)

(B.21)
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