
1 
 

Genetic loci associated with heart rate variability and their effects on cardiac disease risk 1 

 2 

Ilja M. Nolte
1#

, M. Loretto Munoz
1#

, Vinicius Tragante
2#

, Azmeraw T. Amare
1,3,4

, Rick Jansen
5
, 3 

Ahmad Vaez
1,6

, Benedikt von der Heyde
7,8

, Christy L. Avery
9
, Joshua C. Bis

10
, Bram Dierckx

11,12
, 4 

Jenny van Dongen
13

, Stephanie M. Gogarten
14

, Philippe Goyette
15

, Jussi Hernesniemi
16,17,18

, Ville 5 

Huikari
19

, Shih-Jen Hwang
20,21

, Deepali Jaju
22

, Kathleen F. Kerr
14

, Alexander Kluttig
23

, Bouwe P. 6 

Krijthe
24

, Jitender Kumar
8,25

, Sander W. van der Laan
26

, Leo-Pekka Lyytikäinen
16,17

, Adam X. 7 

Maihofer
27,28

, Arpi Minassian
27,28

, Peter J. van der Most
1
, Martina Müller-Nurasyid

29,30,31
, Michel 8 

Nivard
13,32

, Erika Salvi
33

, James D. Stewart
9,34

, Julian F. Thayer
35

, Niek Verweij
36

, Andrew Wong
37

, 9 

Delilah Zabaneh
38,39

, Mohammad H. Zafarmand
40,41

, Abdel Abdellaoui
13,32

, Sulayma Albarwani
42

, 10 

Christine Albert
43

, Alvaro Alonso
44

, Foram Ashar
45

, Juha Auvinen
19,46

, Tomas Axelsson
47

, Dewleen 11 

G. Baker
27,28

, Paul I.W. de Bakker
48,49

, Matteo Barcella
33

, Riad Bayoumi
50

, Rob J. Bieringa
1
, Dorret 12 

Boomsma
13,32

, Gabrielle Boucher
15

, Annie R. Britton
51

, Ingrid E. Christophersen
52,53,54

, Andrea 13 

Dietrich
55

, George B. Ehret
56,57

, Patrick T. Ellinor
53,58

, Markku Eskola1
8,59

, Janine F. Felix
24

, John 14 

S. Floras
60,61

, Oscar H. Franco
24

, Peter Friberg
62

, Maaike G.J. Gademan
40

, Mark A. Geyer
27

, 15 

Vilmantas Giedraitis
63

, Catharina A. Hartman
64

, Daiane Hemerich
2,65

, Albert Hofman
24

, Jouke-Jan 16 

Hottenga
13,32

, Heikki Huikuri
66

, Nina Hutri-Kähönen
67,68

, Xavier Jouven
69

, Juhani Junttila
66

, 17 

Markus Juonala
70,71

, Antti M. Kiviniemi
66

, Jan A. Kors
72

, Meena Kumari
50,73

, Tatiana Kuznetsova
74

, 18 

Cathy C. Laurie
14

, Joop D. Lefrandt
75

, Yong Li
76

, Yun Li
77,78,79

, Duanping Liao
80

, Marian C. 19 

Limacher
81

, Henry J. Lin
82,83

, Cecilia M. Lindgren
84,85

, Steven A. Lubitz
53,58

, Anubha Mahajan
85

, 20 

Barbara McKnight
10,14,86

, Henriette Meyer zu Schwabedissen
87

, Yuri Milaneschi
5
, Nina 21 

Mononen
16,17

, Andrew P. Morris
85,88

, Mike A. Nalls
89

, Gerjan Navis
90

, Melanie Neijts
13,32

, Kjell 22 

Nikus
18,91

, Kari E. North
9,92

, Daniel T. O'Connor
93

, Johan Ormel
64

, Siegfried Perz
94

, Annette 23 

Peters
30,94,95

, Bruce M. Psaty
10,96,97

, Olli T. Raitakari
98,99

, Victoria B. Risbrough
27,28

, Moritz F. 24 

Sinner
30,31

, David Siscovick
100

, Johannes H. Smit
5
, Nicholas L. Smith

97,101,102
, Elsayed Z. 25 



2 
 

Soliman
103

, Nona Sotoodehnia
104

, Jan A. Staessen
74

, Phyllis K. Stein
105

, Adrienne M. Stilp
14

, 26 

Katarzyna Stolarz-Skrzypek
106

, Konstantin Strauch
29,107

, Johan Sundström
108

, Cees A. Swenne
109

, 27 

Ann-Christine Syvänen
47

, Jean-Claude Tardif
15,110

, Kent D. Taylor
111

, Alexander Teumer
112

, 28 

Timothy A. Thornton
14

, Lesley E. Tinker
86

, André G. Uitterlinden
24,113,114

, Jessica van Setten
2
, 29 

Andreas Voss
115

, Melanie Waldenberger
94,116

, Kirk C. Wilhelmsen
117,118

, Gonneke Willemsen
13,32

, 30 

Quenna Wong
14

, Zhu-Ming Zhang
103,119

, Alan B. Zonderman
120

, Daniele Cusi
121,122

, Michele K. 31 

Evans
120

, Halina K. Greiser
123

, Pim van der Harst
36

, Mohammad Hassan
42

, Erik Ingelsson
8,25,124

, 32 

Marjo-Riitta Järvelin
19,46,125,126

, Stefan Kääb
30,31

, Mika Kähönen
127,128

, Mika Kivimaki
51

, Charles 33 

Kooperberg
86

, Diana Kuh
37

, Terho Lehtimäki
16,17

, Lars Lind
108

, Caroline M. Nievergelt
27,28

, Chris J. 34 

O'Donnell
20,21,129

, Albertine J. Oldehinkel
64

, Brenda Penninx
5
, Alexander P. Reiner

86,101
, Harriëtte 35 

Riese
64

, Arie M. van Roon
75

, John D. Rioux
15,110

, Jerome I. Rotter
111

, Tamar Sofer
14

, Bruno H. 36 

Stricker
24,130

, Henning Tiemeier
11,24

, Tanja G.M. Vrijkotte
40

, Folkert W. Asselbergs
2,131,132

, Bianca 37 

J.J.M. Brundel
133

, Susan R. Heckbert
10,101

, Eric A. Whitsel
9,134

, Marcel den Hoed
7,8

, Harold 38 

Snieder
1*

, Eco J.C. de Geus
13,32*

 39 

 40 

1 Department of Epidemiology, University of Groningen, University Medical Center 41 

Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands 42 

2 Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 43 

Heidelberglaan 100, 3584CX, Utrecht, The Netherlands 44 

3 School of Medicine, University of Adelaide, Adelaide, South Australia, SA 5005, Australia 45 

4 College of Medicine and Health Sciences, Bahir Dar University, 6000 Bahir Dar, Ethiopia 46 

5 Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience 47 

Campus Amsterdam, VU University Medical Center/GGZ inGeest, 1081 BT Amsterdam, The 48 

Netherlands 49 

6 School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran 50 



3 
 

7 Department of Immunology, Genetics and Pathology, Medical Genetics and Genomics, 51 

Uppsala University, Uppsala 75237, Sweden 52 

8 Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden 53 

9 Department of Epidemiology, Gillings School of Global Public Health, University of North 54 

Carolina, Chapel Hill, NC, 27599, USA 55 

10 Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 56 

Seattle, WA, 98104, USA 57 

11 Department of Child and Adolescent Psychiatry/Psychology, Department of Child and 58 

Adolescent Psychiatry, PO Box 2060, 3000 CB Rotterdam, The Netherlands 59 

12 The Generation R Study Group, Erasmus MC, PO Box 2060 3000 CB Rotterdam, The 60 

Netherlands 61 

13 Department of Biological Psychology, Behavioral and Movement Sciences, VU University, 62 

1081 BT Amsterdam, The Netherlands 63 

14 Department of Biostatistics, School of Public Health, University of Washington, Seattle, 64 

WA, 98195, USA 65 

15 Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada 66 

16 Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland 67 

17 Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 68 

33014, Finland 69 

18 Department of Cardiology, Heart Hospital, Tampere University Hospital, Tampere 33521, 70 

Finland 71 

19 Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland 72 

20 Framingham Heart Study, Framingham, MA, 01702, USA 73 

21 Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, 74 

20892, USA 75 



4 
 

22 Department of Clinical Physiology, Sultan Qaboos University Hospital, Muscat – Al 76 

Khoudh 123 , Sultanate of Oman 77 

23 Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University 78 

Halle-Wittenberg, 06097 Halle (Saale), Germany 79 

24 Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 80 

2060, 3000 CB Rotterdam, the Netherlands 81 

25 Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 82 

75237, Sweden 83 

26 Laboratory of Experimental Cardiology, Department of Heart and Lung, Heidelberglaan 84 

100, 3584 CX, University Medical Center Utrecht, Utrecht, the Netherlands 85 

27 Department of Psychiatry, University of California, San Diego, San Diego, CA, 92093, 86 

USA 87 

28 Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San 88 

Diego, CA, 92161, USA 89 

29 Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center 90 

for Environmental Health, 85764 Neuherberg, Germany 91 

30 Department of Medicine, University Hospital Munich, Ludwig-Maximilians-University, 92 

80539 Munich, Germany 93 

31 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 94 

80336 Munich, Germany 95 

32 EMGO+ Institute for Health and Care Research, VU University & VU University Medical 96 

Center, 1081 HV Amsterdam, The Netherlands 97 

33 Department of Health Sciences, University of Milano, 20122 Milano, Italy  98 

34 Carolina Population Center, University of North Carolina, Chapel Hill, NC, 27599, USA 99 



5 
 

35 Department of Psychology, The Ohio State University, 1835 Neil Avenue,Columbus, Ohio, 100 

43210, USA 101 

36 Department of Cardiology, University of Groningen, University Medical Center Groningen, 102 

PO Box 30001, 9700RB, Groningen, The Netherlands 103 

37 MRC Unit for Lifelong Health and Ageing, University College London, 33 Bedford Place, 104 

London WC1B 5JU, UK 105 

38 Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny 106 

Park, London SE5 8AF, UK 107 

39 University College London Genetics Institute, University College London WC1E 6BT, UK 108 

40 Department of Public Health, Academic Medical Center (AMC), University of Amsterdam, 109 

1105 AZ Amsterdam, The Netherlands 110 

41 Department of Obstetrics and Gynaecology, Academic Medical Centre, University of 111 

Amsterdam, 1105 AZ, Amsterdam, The Netherlands 112 

42 Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos 113 

University, Muscat Al-Khoudh 123, Sultanate of Oman 114 

43 Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA 115 

44 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, 116 

GA, 30322, USA 117 

45 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of 118 

Medicine, Baltimore, MD, 21205, USA 119 

46 Unit of Primary Health Care, Oulu University Hospital, Oulu, 90220, Finland 120 

47 Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala 75237, 121 

Sweden 122 

48 Department of Genetics, Center for Molecular Medicine, University Medical Center 123 

Utrecht, 3584 CX, Utrecht, The Netherlands 124 



6 
 

49 Department of Epidemiology, Julius Center for Health Sciences and Primary Care, 125 

University Medical Center Utrecht, Utrecht, The Netherlands 126 

50 College of Medicine, Mohammed Bin Rashid University, Dubai Healthcare City, PO Box 127 

505055, United Arab Emirates 128 

51 Department of Epidemiology and Public Health, University College London, London 129 

WC1E 6BT, UK 130 

52 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, 131 

USA 132 

53 Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, 133 

Cambridge, MA, 02114, USA 134 

54 Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Rud, 135 

Norway 136 

55 Department of Child- and Adolescent Psychiatry, University of Groningen, University 137 

Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands 138 

56 Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, 139 

Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 140 

57 Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, 141 

Geneva 1211, Switzerland 142 

58 Cardiac Arrhythmia Service & Cardiovascular Research Center, Massachusetts General 143 

Hospital, Boston, MA, 02114, USA 144 

59 Department of Cardiology, University of Tampere School of Medicine, Tampere 33014, 145 

Finland 146 

60 University Health Network and Mount Sinai Hospital Division of Cardiology, Department 147 

of Medicine, University of Toronto, Ontario M5S, Canada 148 

61 Toronto General Research Institute, University Health Network, Toronto, Canada 149 



7 
 

62 Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska 150 

University Hospital, University of Gothenburg, Gothenburg, Sweden 151 

63 Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala 152 

University, Uppsala 75237, Sweden 153 

64 Interdisciplinary Center Psychopathology and Emotion regulation, Department of 154 

Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 155 

RB, Groningen, The Netherlands 156 

65 CAPES Foundation, Ministry of Education of Brazil, Brasília,-DF 70040-020, Brazil 157 

66 Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University 158 

Hospital and University of Oulu, Oulu, 90220, Finland 159 

67 Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland 160 

68 Department of Pediatrics, University of Tampere School of Medicine, Tampere 33014, 161 

Finland 162 

69 INSERM U970, Paris Descartes University, Paris, 75006, France 163 

70 Department of Medicine, University of Turku, Turku 20520, Finland 164 

71 Division of Medicine, Turku University Hospital, Turku 20521, Finland 165 

72 Department of Medical Informatics, Erasmus Medical Center, 3015 CE Rotterdam, The 166 

Netherlands 167 

73 ISER, Essex University, Colchester, Essex, CO4 3SQ, UK 168 

74 Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular 169 

Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, 170 

3000, Belgium  171 

75 Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, 172 

University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands 173 



8 
 

76 Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics, Medical 174 

Center – University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, 175 

Germany 176 

77 Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA 177 

78 Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA 178 

79 Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599, 179 

USA 180 

80 Division of Epidemiology, Department of Public Health Sciences, Penn State University 181 

College of Medicine, Hershey, PA, 17033, USA 182 

81 Division of Cardiovascular Medicine, University of Florida College of Medicine, 183 

Gainesville, FL, 32611, USA 184 

82 Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los 185 

Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, 186 

90502, USA  187 

83 Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, 188 

Torrance, California, 90502, USA 189 

84 Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, 190 

University of Oxford, Oxford OX3 7BN, UK 191 

85 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK 192 

86 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 193 

98109, USA 194 

87 Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Basel, CH-4056, 195 

Switzerland 196 

88 Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK 197 



9 
 

89 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 198 

Bethesda, MD 20892, USA 199 

90 Department of Internal Medicine, Division of Nephrology, University of Groningen, 200 

University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands 201 

91 Department of Cardiology, University of Tampere, School of Medicine, Tampere 33014, 202 

Finland 203 

92 Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, 204 

27599, USA 205 

93 Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA 206 

94 Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for 207 

Environmental Health, 85764 Neuherberg, Germany 208 

95 German Center for Diabetes Research, 85764 Neuherberg, Germany 209 

96 Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, 210 

98195, USA 211 

97 Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA  212 

98 Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 213 

20521, Finland 214 

99 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 215 

Turku 20520, Finland 216 

100 The New York Academy of Medicine, New York, NY, 10029, USA 217 

101 Department of Epidemiology, School of Public Health, University of Washington, Seattle, 218 

WA 98195, USA 219 

102 Seattle Epidemiologic Research and Information Center, Veterans Affairs Office of 220 

Research and Development, Seattle, WA 98108, USA 221 



10 
 

103 Epidemiological Cardiology Research Center (EPICARE), Division of Public Health 222 

Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA 223 

104 Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and 224 

Epidemiology, University of Washington, Seattle, WA, 98101, USA 225 

105 Heart Rate Variability Lab, Washington University School of Medicine, St. Louis, MO, 226 

63108, USA 227 

106 First Department of Cardiology, Interventional Electrocardiology and Hypertension, 228 

Jagiellonian University Medical College, 31-008 Cracow, Poland 229 

107 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic 230 

Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany 231 

108 Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 232 

Uppsala 751 85, Sweden 233 

109 Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The 234 

Netherlands 235 

110 Université de Montréal, Montreal, Quebec, H3T IJ4, Canada 236 

111 Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and 237 

Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 238 

California, 90509, USA  239 

112 Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, 240 

Germany 241 

113 Department of Internal Medicine, Erasmus University Medical Center, 3015 CE Rotterdam, 242 

the Netherlands 243 

114 Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy 244 

Aging NCHA), 2300 RC Leiden, The Netherlands 245 



11 
 

115 Institute of Innovative Health Technologies - IGHT Jena Ernst-Abbe-Hochschule Jena, 246 

07745 Jena, Germany 247 

116 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German 248 

Research Center for Environmental Health, 85764 Neuherberg, Germany 249 

117 Departments of Genetics and Neurology University of North Carolina, Chapel Hill, NC, 250 

27599, USA 251 

118 The Renaissance Computing Institute, Chapel Hill, NC, 27599, USA 252 

119 Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake 253 

Forest School of Medicine, Winston-Salem, NC, 27157, USA 254 

120 Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National 255 

Institutes of Health, Baltimore, MD 21224, USA 256 

121 Institute of Biomedical Technologies, CNR - Italian National Research Council, 20090 257 

Milan, Italy 258 

122 KOS Genetic SRL, 20091 Bresso (Milano), Italy 259 

123 German Cancer Research Centre, Division of Cancer Epidemiology, 69210 Heidelberg, 260 

Germany 261 

124 Department of Medicine, Division of Cardiovascular Medicine, Stanford University School 262 

of Medicine, Stanford, CA 94305, USA 263 

125 Department of Epidemiology and Biostatistics, School of Public Health, Faculty of 264 

Medicine, St. Mary’s campus, Imperial College London, London W2 1PG, UK 265 

126 Biocenter Oulu University of Oulu, Oulu, 90014, Finland 266 

127 Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland 267 

128 Department of Clinical Physiology, University of Tampere, School of Medicine, Tampere 268 

33014, Finland 269 

129 Cardiology Section, Boston Veteran’s Administration Healthcare, Boston, MA, 02132, USA 270 



12 
 

130 Inspectorate for Health Care, 2511 VX the Hague, The Netherlands 271 

131 Institute of Cardiovascular Science, University College London, 222 Euston Road, London 272 

NW1 2DA, UK 273 

132 Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 3501 DG 274 

Utrecht, The Netherlands 275 

133 Department of Physiology, Institute for Cardiovascular Research, VU University Medical 276 

Center , De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands 277 

134 Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA 278 

 279 

#,* These authors contributed equally to this work. 280 

 281 

Corresponding authors 282 

Eco J.C. de Geus, PhD  283 

Department of Biological Psychology 284 

Behavioral and Movement Sciences  285 

VU University 286 

van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands 287 

Tel: +31 20 59 88813  288 

Email: j.c.n.de.geus@vu.nl 289 

 290 

Ilja M. Nolte, PhD 291 

Unit of Genetic Epidemiology and Bioinformatics 292 

Department of Epidemiology 293 

University Medical Center Groningen 294 

PO Box 30001, 9700 RB Groningen, The Netherlands 295 

mailto:j.c.n.de.geus@vu.nl


13 
 

Tel. +31 50 36 10946 296 

E-mail: i.m.nolte@umcg.nl 297 

 298 

Harold Snieder, PhD 299 

Unit of Genetic Epidemiology and Bioinformatics 300 

Department of Epidemiology 301 

University Medical Center Groningen 302 

PO Box 30001, 9700 RB Groningen, The Netherlands 303 

Tel. +31 50 36 10887 304 

E-mail: h.snieder@umcg.nl 305 

 306 

 307 

 308 

 309 

ABSTRACT  310 

Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with 311 

greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide 312 

association studies for three HRV traits in up to 53,174 individuals of European ancestry we detect 313 

17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in 314 

NDUFA11 and KIAA1755), eQTLs (influencing GNG11, RGS6, and NEO1), or are located in genes 315 

preferentially expressed in the sinoatrial node (GNG11, RGS6, and HCN4). Genetic risk scores 316 

account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with 317 

heart rate (-0.74 < rg < -0.55) and blood pressure (-0.35 < rg < -0.20). These findings provide 318 

clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a 319 

key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-320 

channel induced pacemaker membrane hyperpolarization. 321 

mailto:i.m.nolte@umcg.nl
mailto:%20h.snieder@umcg.nl
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Heart rate variability (HRV) is a physiological variation in cardiac cycle duration. When measured 323 

under supine or sitting conditions, resting HRV is most prominently centered around the frequency 324 

of respiration (~0.25 Hz) and the intrinsic blood pressure rhythm (~0.1 Hz). This reflects 325 

modulation of tonic activity in the cardiac vagal nerves originating in cortical and subcortical nuclei 326 

1
 by oscillatory input at the brainstem level from cardiorespiratory coupling, lung stretch-reflexes, 327 

and arterial chemo- and baroreceptors 
1, 2

. This vagal gating gives rise to oscillatory vagal effects on 328 

the pacemaker potentials in the sinoatrial node that scales with the tonic activity in the vagal nerves 329 

and provides a source of beat-to-beat variation in heart rate. Due to its good reproducibility 
3
 and 330 

ease of measurement, HRV is a widely used non-invasive research and clinical tool to quantify the 331 

degree of vagal control of heart rate 
4
.  332 

 Loss of cardiac vagal control as indexed by low HRV is associated with mortality in patients 333 

with cardiovascular disease 
5
. Animal research further supports a role for cardiac vagal activity in 334 

preventing sudden death and ventricular fibrillation 
6
. In addition, hypertension 

7
, end-stage renal 335 

disease 
8
 and diabetes 

9
 are all associated with low HRV. Although the above associations may 336 

partly reflect impaired cardiac vagal control caused by these diseases, lowered HRV does not 337 

simply indicate disease severity as it also predicts all-cause mortality 
10

 and cardiac morbidity and 338 

mortality 
11, 12

 in apparently healthy individuals.  339 

Large inter-individual differences in HRV exist in the basal resting state. Family and twin 340 

studies have uniformly confirmed a substantial genetic contribution to resting HRV with 341 

heritability estimates between 25% and 71% 
13

.  Candidate gene studies based on current 342 

knowledge of parasympathetic nervous system biology have not yielded results that hold up in 343 

replication
14

. To improve our understanding of the genetic basis of HRV, we performed a two-stage 344 

meta-analysis of genome-wide association studies (GWAS) in up to 53,174 individuals of 345 

European ancestry on three HRV traits (the standard deviation of the normal-to-normal inter beat 346 

intervals [SDNN], the root mean square of the successive differences of inter beat intervals 347 
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[RMSSD], and the peak-valley respiratory sinus arrhythmia or high frequency power 348 

[pvRSA/HF]). These HRV traits were measured during resting, basal recordings ranging in length 349 

from ultrashort 10-s electrocardiograms (ECGs) to up to 90 minutes of sitting or from 2-12 hours 350 

of daytime recording. Relevance of the identified loci for other ethnicities was examined in data 351 

from 11,234 Hispanic/Latino and 6,899 African-American individuals. In silico post-GWAS 352 

analyses were performed to test for association with cardiac disease risk factors and disease 353 

outcomes and to provide insights into the biological mechanisms by which the identified loci 354 

influence cardiac vagal control and its effect on HRV.  355 

We detect 17 SNPs in eight loci harboring several genes preferentially expressed in the 356 

sinoatrial node and significant negative genetic correlations of HRV with heart rate and blood 357 

pressure. These findings provide clinically relevant biological insight into heritable variation in 358 

vagal heart rhythm regulation, with a key role for genetic variants in proteins (RGS6, GNG11) 359 

known to influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane 360 

hyperpolarization. 361 

 362 

RESULTS 363 

New loci associated with HRV 364 

We meta-analyzed results from GWAS on three HRV traits (see Methods for details) performed by 365 

20 cohorts of European ancestry in up to 28,700 individuals (Figure 1; Supplementary Fig. 1-3; 366 

Supplementary Tables 1-4). Using a significance threshold of 1x10
-6

, 23 single nucleotide 367 

polymorphism (SNPs) in 14 loci that were associated with one or more of these HRV traits were 368 

taken forward for wet lab genotyping or in silico replication in 11 cohorts including up to 24,474 369 

additional individuals of European ancestry, followed by a second stage meta-analysis 370 

(Supplementary Data 1).  371 
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After stage 2, we identified 17 lead SNPs (11 independent) in eight loci (Table 1) that 372 

reached genome-wide significance (p < 5x10
-8

). The loci on chromosomes 14 and 15 contained 373 

three and two independent signals, respectively (Supplementary Fig. 3). Conditional analysis 374 

confirmed the presence of independently associated variants in these loci (Supplementary Table 5). 375 

In total, nine independently associated SNPs in seven loci were detected for SDNN, nine 376 

independently associated SNPs in eight loci for RMSSD, and five independently associated SNPs in 377 

five loci for pvRSA/HF. Many of the SNPs were associated with at least two of the HRV traits 378 

(Supplementary Data 1). In four loci, the lead SNPs differed between traits but were in linkage 379 

disequilibrium (LD) with each other (0.24<r
2
<0.90) (Table 1). Forest plots show little heterogeneity 380 

in the genetic associations across the entire set of cohorts for all SNPs (Supplementary Fig. 4). Sex-381 

stratified analyses did not show differences in SNP effects between men and women for the 382 

genome-wide associated loci (Supplementary Table 6). Separately meta-analyzing across cohorts 383 

with short laboratory rest recordings versus longer term ambulatory recordings did not suggest 384 

sensitivity of the results to these different recording methods (Supplementary Table 7). Results of 385 

VEGAS gene-based analyses corroborated those of the SNP-based analyses (Supplementary Note 386 

1). 387 

 388 

Variance explained  389 

Weighted genetic risk scores based on the independent SNPs that reached genome-wide 390 

significance after the second stage meta-analysis were computed for the three HRV traits and used 391 

to predict RMSSD, SDNN, and pvRSA/HF in adults from the Lifelines (n=12,101) and NESDA 392 

(n=2,218) cohorts, adolescents from the TRAILS-Pop cohort (n=1,191), and children from the 393 

ABCD cohort (n=1,094) (Table 2). The multi-SNP genetic risk scores were all significantly 394 

associated with HRV and the percentages of variance explained for the corresponding traits were 395 
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1.0-1.4% for SDNN, 1.1-2.4% for RMSSD, and 0.9-2.6% for pvRSA/HF. Cross-trait explained 396 

variances of genetic risk scores were close to those for the corresponding trait.  397 

To test the contribution of SNPs that did not reach genome-wide significance, we performed 398 

polygenic risk score analyses using increasingly more lenient significance thresholds and 399 

determined the percentages of explained HRV in the same four cohorts (Supplementary Fig. 5; 400 

Table 3). Maximal variance explained by the polygenic risk score was 0.8-1.4% for SDNN, 0.9-401 

2.3% for RMSSD, and 0.9-2.3% for pvRSA/HF. This was reached at relatively small numbers of 402 

SNPs (≤71) with additional SNPs adding more noise than signal.  403 

The total variance explained by common SNPs (SNP-based heritability) estimated by 404 

Genomic Restricted Maximum Likelihood or LD score regression analysis varied between 10.8 and 405 

13.2%, with only small differences in estimates across methods and HRV traits (Supplementary 406 

Note 2). 407 

 408 

Generalization to other ethnicities 409 

In data from up to 11,234 Hispanic/Latino individuals, five SNPs in five of the eight loci identified 410 

for RMSSD, seven SNPs in six of the seven loci for SDNN, and three SNPs in three of the five loci 411 

for pvRSA/HF showed a statistically significant association that was consistent in direction with the 412 

association in individuals of European ancestry (Table 4). In data from 6,899 African-Americans, 413 

four SNPs from four of the eight loci were associated with RMSSD, three SNPs in three of the 414 

seven loci with SDNN, and none with pvRSA/HF. In the combined meta-analysis in a maximum of 415 

71,675 participants from all ethnicities, one SNP (rs6123471 on chromosome 20) was no longer 416 

significant (Table 4). 417 

 418 

Correcting HRV for heart rate  419 
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The strong inverse association between HRV and heart rate reflects the well-established 420 

simultaneous biological effect of cardiac vagal activity on heart rate 
15

 and HRV 
16

, but it also 421 

expresses a mathematical dependency of the variance in inter beat interval (IBI) on the mean IBI 422 

that is unrelated to the underlying biology. We conducted three analyses to test whether the 423 

association of the HRV SNPs was robust to correction of the HRV traits for heart rate 424 

(Supplementary Table 8). First, we used a recently developed analytical technique
17

 to obtain the 425 

meta-analysis for the coefficient of variation of SDNN and RMMSD from the summary statistics of 426 

the HRV and resting heart rate meta-analyses
18

. The coefficient of variation detects the amount of 427 

IBI variability relative to the mean IBI of each subject, and deals with the proportionality-based 428 

dependence of HRV on heart rate
19

. Second, we established the effect of the 17 HRV SNPs on the 429 

coefficients of variation for SDNN and RMSSD in the Lifelines, NESDA and TRAILS-Pop 430 

cohorts, and meta-analyzed the results. Third, we use a mediation analysis in these same cohorts to 431 

see how much of the SNP effects on the three HRV measures was mediated by heart rate. In all 432 

three analyses, we find some attenuation of the HRV SNP associations. The average mediation of 433 

the association by heart rate was ~28%. However, the correction for heart rate left most of the HRV 434 

SNP associations intact, particularly in the first analysis that used the full discovery sample.  435 

 436 

Association of the HRV SNPs with resting heart rate  437 

Because the HRV traits reflect cardiac vagal activity, we expected the HRV SNPs to have an effect 438 

on resting heart rate. We performed a lookup of the 17 HRV SNPs in a GWAS meta-analysis on 439 

resting heart rate in 85,787 individuals 
18

. Out of the 17 HRV lead SNPs, 11 were associated with 440 

heart rate after correcting for multiple testing (Supplementary Table 9). All effects were in the 441 

expected direction such that the HRV decreasing allele was associated with higher heart rate 442 

(Supplementary Fig. 6). Six of the HRV SNPs were not significantly associated with heart rate, 443 

including our top hit on chromosome 19 (rs12974991 in NDUFA11: p RMSSD = 4.6x10
-46

; p heart 444 
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rate = 0.18). Analysis of summary statistics of the HRV and heart rate meta-analyses as 445 

implemented in the gtx R package showed that multi-SNP genetic risk scores for HRV were 446 

significantly associated with heart rate (Supplementary Table 11, panel a). 447 

Additionally, genetic risk scores based on the independent genome-wide significant HRV 448 

SNPs from the combined stage 1 and 2 meta-analysis were tested for association with heart rate in 449 

the Lifelines, NESDA, TRAILS-Pop and ABCD cohorts (Supplementary Table 9, panel b). The 450 

three multi-SNP risk scores of the HRV traits explained a small, but mostly significant percentage 451 

of variance in heart rate (0.09-1.13%). Polygenic risk score analysis showed that adding HRV SNPs 452 

below the genome-wide significance threshold did not further increase the variance explained in 453 

heart rate (Supplementary Fig. 5; Supplementary Table 9, panel c).  454 

The reverse question, whether SNPs with effects on heart rate are associated with HRV, was 455 

also investigated. The 21 heart rate SNPs identified by the GWAS meta-analysis on heart rate
18

 456 

explained between 0.2 and 0.9% of the variance in the three HRV traits (Supplementary Notes, 457 

Supplementary Table 10).  458 

 459 

Association with cardiometabolic traits and diseases 460 

In addition to heart rate we examined the association of the 17 HRV-associated SNPs with other 461 

confirmed risk factors for cardiac, metabolic and renal disease traits and endpoints using data from 462 

large-scale GWAS meta-analyses (Supplementary Table 11). Multi-SNP risk scores were computed 463 

based on our 17 top SNPs and we tested their association with the outcomes.  464 

 No effects of risk scores using the 17 HRV SNPs were observed for systolic or diastolic 465 

blood pressure, body mass index, renal function, heart failure, sudden cardiac death, coronary artery 466 

disease, atrial fibrillation, or type 2 diabetes. Only for atrial fibrillation we observed individually 467 

significant SNPs. These two highly significant SNPs (rs10842383 near LINC00477, p= 3.45x10
-7

 468 

and rs2680344 in HCN4, p=4.34x10
-7

 (Supplementary Table 12) had large opposite effects on atrial 469 
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fibrillation, while both decreased HRV. In addition to these lookups that were restricted to genome-470 

wide significant SNPs, we employed bivariate LD score regression
20

 that uses the full GWAS 471 

summary statistics of the HRV and cardiometabolic traits and diseases to compute genetic 472 

correlations. The genetic correlations systematically pointed to an overlap in the genetic variants 473 

causing low HRV and increased risk for disease (i.e., negative correlations with systolic and 474 

diastolic blood pressure, coronary artery disease, heart failure, sudden cardiac death, BMI, and type 475 

2 diabetes) compatible with clinical relevance of the HRV SNPs identified, although significance 476 

was reached only for systolic and diastolic blood pressure after correction for number of outcomes 477 

tested (Supplementary Table 11). 478 

 479 

Potential functional impact of the HRV variants 480 

To identify functional variants tagged by the 17 HRV SNPs, we performed various post-GWAS 481 

annotation (Supplementary Fig. 7). In silico annotation (Supplementary Data 2) showed that the 482 

lead SNP for SDNN on chromosome 19 was a non-synonymous SNP (rs12980262 in NDUFA11) 483 

and that the lead SNPs for RMSSD (rs12974991) and pvRSA/HF (rs12974440) were in perfect LD 484 

with this SNP (Table 1; Supplementary Data 2). SNP rs129080262 was characterized as deleterious, 485 

with a SIFT score of 0.01 and a PolyPhen score of 0.753 indicating a possibly damaging effect. 486 

Functional variant analyses using RegulomeDB confirmed that rs12980262 and rs12974440 in 487 

NDUFA11 on chromosome 19 likely have functional consequences (Supplementary Table 13) by 488 

binding to transcription factors or influencing the chromatin state. SNP rs6123471 in the locus on 489 

chromosome 20 was in high LD with two non-synonymous SNPs in the KIAA1755 gene 490 

(rs3746471 [r
2
=0.94] and rs760998 [r

2
=0.55]) that are predicted to yield tolerated, benign amino 491 

acid changes (Supplementary Data 2). 492 

We examined if the 17 HRV SNPs were expression quantitative trait loci (eQTLs) in a large 493 

whole-blood database. Four of the HRV SNPs were significantly (false discovery rate <5%) 494 
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associated with gene expression in blood (Supplementary Table 14): rs1812835 with expression of 495 

NEO1, rs4899412 with expression of RGS6, and rs180238 and rs4262 with expression of GNG11. 496 

These four SNPs were all in strong LD with the top eQTL SNPs for these genes (r
2
>0.70) and lost 497 

significance after conditioning on the corresponding top eQTL. The eQTLs for NEO1 and RGS6 498 

were replicated in at least one other whole blood eQTL study (Supplementary Table 14). The eQTL 499 

for GNG11 was replicated in the medulla (p=2.8x10
-4

) and the anterior tibialis artery (p=8.1x10
-9

). 500 

None of the 17 SNPs reached significance in a smaller heart eQTL database. 501 

Nine of the 17 HRV SNPs were in high LD (r
2
>0.70) with SNPs associated with 502 

methylation level of one or multiple CpG sites (methylation quantitative trait loci [mQTLs]) in 503 

whole blood (Supplementary Table 15). Two of the HRV SNPs that were eQTLs also influenced 504 

methylation of the same gene in whole blood, strongly suggestive of a regulatory function for those 505 

SNPs. eQTL rs1812835 in NEO1 was associated with methylation level of cg11357013, 506 

cg19281068, cg11552023 and cg17150474. eQTL rs4262 was associated with methylation level of 507 

cg08038054 and cg06439941 in GNG11. The other two eQTLs SNPs did not achieve genome-wide 508 

significance level for an association with methylation, but eQTL rs4899412 in RGS6 was in high 509 

LD with a proxy SNP (rs2238280) that was associated with methylation level of cg19493789, 510 

which is located in a CpG island shelf near RGS6.  511 

Five other HRV SNPs were (in high LD with) mQTLs but were not themselves eQTLs. For 512 

example, HRV SNPs rs12974991, rs12974440, and rs12980262 (chromosome 19) were associated 513 

with methylation level of multiple CpG sites (cg22854549, cg03715305, and cg19211619) located 514 

in or nearby NDUFA11, but were not associated with expression level of NDUFA11 in whole 515 

blood. Such mQTLs may well exert a regulatory effect on NDUFA11 in other tissues. DEPICT 516 

tissue enrichment analysis (Supplementary Data 3; Supplementary Table 16, Supplementary Fig. 8) 517 

showed NDUFA11 expression was weak in blood, but enriched in heart, sensory, and endocrine 518 

tissues. 519 
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 520 

DISCUSSION  521 

This meta-analysis of GWAS for HRV yielded 17 lead SNPs (11 independent) in eight loci that 522 

were genome-wide significantly associated, six of which generalized to individuals of African-523 

American and Hispanic/Latino ethnicity. Various ways that correct HRV for its mathematical 524 

dependency on resting heart rate attenuated the SNP effects, but largely left the associations intact. 525 

Together, the hits in the eight loci explained 0.9-2.6% of the variance in resting HRV in four 526 

independent cohorts of European ancestry.  Details of known biological functions of the genes 527 

closest to these loci are given in the Supplementary Note 6.  528 

 We noted a strong enrichment of our HRV loci in a previously conducted meta-analysis of 529 

GWAS for resting heart rate 
18

, a known risk factor for cardiac morbidity and mortality
21, 22

. SNPs 530 

in five of the 21 resting heart rate loci (i.e. LINC00477 (C12orf67), SYT10, GNG11, HCN4, and 531 

KIAA1755) were associated with HRV at genome-wide significance level and six more attained 532 

nominal significance, with associations always in the expected direction. Genetic risk scores for 533 

HRV traits were also significantly associated with heart rate and LD score regression confirmed that 534 

the allelic variants that decrease HRV in parallel increase heart rate. This suggests to us that part of 535 

the HRV SNPs exert their effect on heart rate through oscillatory modulation of pacemaker activity 536 

by the vagal nerves.  537 

 Supplementary Figure 9 depicts the two routes by which acetylcholine released by the vagal 538 

nerves in the sinoatrial node is known to influence heart rate, both of which are supported by our 539 

results in GNG11, RGS6, and HCN4. By binding the muscarinic type 2 receptor (M2R) and 540 

dissociating the G protein heterotrimer (Gαβγ) into a Gαi/o subunit and a Gβγ component, 541 

acetylcholine inhibits the ongoing depolarization of the pacemaker cells by β1/β2-adenylatecyclase 542 

activation of funny (If) channels and calcium channels 
23

. In parallel, it acts to actively 543 

hyperpolarize the pacemaker cells by activation of the GIRK1/4 channel. Each route accounts for 544 



24 
 

about half of the tonic decrease in heart rate upon vagal stimulation 
23

, but the response time for 545 

M2R-GIRK effects on the sinus rate is much shorter than for the M2R-HCN2/4 or the β1/β2-546 

adenylatecyclase signaling pathways. Only signaling through the Gβγ component is fast enough 547 

(~0.3s) to rapidly track changes in vagal outflow to the sinoatrial node, e.g. as they occur within the 548 

duration of a single respiration (~4.5s), whereas signaling through the α subunit is too slow (>3s) to 549 

track such phasic changes in acetylcholine release 
1, 24

. GIRK signaling, therefore, accounts for most 550 

of HRV due to the phasic oscillation in vagal activity 
24

, but it accounts for only half of the tonic 551 

vagal effects on heart rate.  552 

 The above leads to HRV only partially capturing the vagal effects on heart rate. Additional 553 

reasons for the imperfect relation between HRV and vagal effects on heart rate 
1, 2

 are individual 554 

differences in: (i) resting respiration rate and depth; (ii) the amplitude of the intrinsic 0.1 Hz 555 

oscillations related to both vagal and sympathetic blood pressure regulation through the baroreflex 556 

loops; (iii) mechanotransduction or intracellular pathways stimulated by sinoatrial stretch , or (iv) 557 

the efficiency of the actual vagal gating process. These processes can have a strong impact on HRV, 558 

but less so on mean heart rate. We found six SNPs in four loci, including our top hit (rs12974991 in 559 

NDUFA11), that may act on the individual differences in these processes as they had no discernible 560 

effect on heart rate, in spite of their significant impact on HRV.  561 

 The genome-wide significant SNPs in GNG11, RGS6, and NEO1 were eQTLs and in strong 562 

LD with the top mQTLs and eQTLs for the corresponding genes. Two of these (GNG11, RGS6) 563 

readily provide a biological hypothesis to account for the associations detected in the meta-analysis. 564 

The C alleles of rs4262 and rs180238 of GNG11 coding for the γ11 subunit of the heterotrimeric G-565 

protein complex Gαβγ cause decreased expression of this subunit and were associated with lower 566 

HRV. The effects of the GNG11 eQTLs associated with lower HRV are likely to lower the 567 

availability of the γ11 subunit, thereby reducing Gβγ component-induced GIRK activation. This 568 
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potentially blunts the heart rate change in response to the oscillatory changes in cardiac vagal 569 

activity.  570 

 The regulator of heterotrimeric G-protein complex signaling, type 6 (RGS6) gene on 571 

chromosome 14 was found to be linked to three independent signals for SDNN and RMSSD. RGS6 572 

acts as a critical negative regulator of M2R signaling in the sinoatrial node of the heart rapidly 573 

terminating Gβγ signaling and thus curtailing vagal lowering of the heart rate 
25, 26

. The results of 574 

our meta-analysis are consistent with a role for RGS6 in decreasing HRV previously hinted at by 575 

animal experimentation
23, 27

 and a human case report 
27, 28

. The T allele of our eQTL RGS6 SNP 576 

(rs4899412) causes increased expression of RGS6. By increasing RGS6 expression, the T allele acts 577 

as a gain-of-function mutation that gives rise to a decrease in GIRK channel signaling and the 578 

observed decrease in HRV. Of note, Rgs6 
-/- 

mice, that show the expected increase in HRV, are 579 

characterized by a strong bradycardia and an increased susceptibility to AV block and atrial 580 

fibrillation which is attributed to an enhancement of GIRK-induced sinoatrial and atrioventricular 581 

node hyperpolarization by removing the negative regulation of Gβγ by RGS6.
23, 26, 28

  582 

 The association of the rs2680344 SNP in HCN4 is puzzling because HCN signaling does not 583 

involve the fast M2R-GIRK channels and cannot translate rapid vagal fluctuation into beat-to-beat 584 

variation in inter beat interval length, i.e. HRV. The effect of the HCN4 SNP on HRV may be 585 

secondary to its effects on the average slope of the diastolic depolarization
29

. The HCN4 protein is a 586 

key component of the If channel
30-32

 that generates the pacemaker potential by a gradual 587 

depolarization of the sinoatrial myocyte cell membrane during diastole. This 'pacemaker 588 

depolarization' phase is known to be slowed by loss-of-function mutations in the HCN4 that lead to 589 

lower heart rate 
31

 and the If is the known site of action for ivabradine and other therapeutic agents 590 

used to slow heart rate in angina patients 
32

. Of note, both ivabradine treatment 
33

 and loss-of-591 

function mutations increase the risk for atrial fibrillation 
34

. In contrast, gain-of-function mutations 592 

in the sensitivity of HCN4 for cAMP lead to higher heart rate 
30

 . This leads us to hypothesize that 593 
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the A allele of rs2680344 in HCN4 either is itself a gain-of-function mutation or tags such a 594 

mutation because it increases heart rate
18

.  595 

  High HRV is associated with lower morbidity and mortality in patients with cardiovascular 596 

disease 
5
, hypertension 

7
, end-stage renal disease 

8
, and diabetes 

9
, but also in apparently healthy 597 

individuals 
11, 12

. Using LD Score regression on meta-GWAS summary statistics from various risk 598 

factors and endpoints we find some evidence for overlap in the genetic variants causing low HRV 599 

and increased risk for disease, but significance was reached only for systolic and diastolic blood 600 

pressure after correction for multiple outcomes tested. These genetic correlations are compatible 601 

with causal effects of cardiac vagal control in the etiology of disease, but they could also be 602 

ascribed to reversed causality, where the disease process leads to lower cardiac vagal control. A 603 

strength of this study in this regard is that analyses were confined to individuals in good cardiac 604 

health, i.e. cohorts excluded patients with existing cardiovascular diseases or medication potentially 605 

impacting HRV. Because we selected individuals in good cardiac health reverse effects of disease 606 

on HRV seem less likely, although some latent pathology could have been present. However, an 607 

alternative explanation that is harder to rule out is that the genetic correlation derives from 608 

pleiotropic effects of genetic variants common to both outcomes. 609 

 Further strengths of this study were the consistency of results across the different HRV traits 610 

used to capture cardiac vagal control and the generalization of the HRV SNP effects to different 611 

ancestries, in spite of known ethnic differences in absolute resting HRV 
35

. Results also held in men 612 

and women separately and across a very large range of mean cohort ages spanning from early 613 

childhood to the late middle ages; in spite of a strong reduction in HRV values with aging 
36

. 614 

 Although effects of age and sex on HRV were taken into account in the analyses, many 615 

other factors were not. The ideal design would have corrected for the known effects of respiration 616 

depth and rate on HRV, which are independent of vagal activity 
37

. These could not be added as 617 

covariates because they were not available in most cohorts. We were liberal in excluding other 618 
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covariates like BMI, smoking and exercise in the GWAS analyses. These traits are substantially 619 

heritable themselves and adjusting for heritable covariates can bias the genome-wide association 620 

effects 
38

 or even induce non-existing associations through collider bias 
39

. Finally, instructions on 621 

pre-ECG recording behaviors like physical activity, and caffeine, alcohol, or nicotine use were not 622 

rigorously standardized across cohorts. 623 

 Direct clinical relevance of most current GWAS findings is still low and our study is no 624 

exception. Potential future clinical use of our findings hinges on the ability of our genetic variants 625 

to capture (sub)cortical, brainstem and medullary transmission of tonic vagal activity to the 626 

sinoatrial node, not just the impact of that activity on heart rate. Subcortical generation of tonic 627 

vagal activity is an important biomarker for cardiovascular health and potentially modifiable by 628 

interventions on psychosocial stress 
40

 and lifestyle habits 
41

. It can even be a transdiagnostic 629 

biomarker for psychopathology and executive cognitive functioning possibly by reflecting the 630 

integrity of prefrontal cortex functioning 
42

. Genetic markers for HRV may prove useful as 631 

instrumental variables in Mendelian Randomization 
43

 to test causal hypotheses on the effects of 632 

centrally generated vagal activity on behavioral and health outcomes.  633 

 In conclusion, this meta-analysis detects a critical role for genetic variation in Gβγ and HCN 634 

signaling in explaining individual differences in HRV. The HRV variants detected can help guide 635 

further investigations of the functional consequences and potential therapeutic implications of 636 

individual differences in sinoatrial Gβγ signaling. 637 

 638 

METHODS 639 

 640 

Study cohorts 641 
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Appropriate IRB approval and  informed consent from participants in all participating cohorts was 642 

obtained. Full information on consent procedures and details of the IRB boards are provided in the 643 

Supplementary Note 8. 644 

 645 

HRV measurement 646 

In this study we investigated three HRV traits: the standard deviation of the normal-to-normal inter 647 

beat intervals (SDNN), the root mean square of the successive differences of inter beat intervals 648 

(RMSSD), and the peak valley respiratory sinus arrhythmia (pvRSA) or high frequency power 649 

(HF). SDNN and RMSSD were derived from the inter beat interval (IBI) time series obtained from 650 

the R waves in the electrocardiogram (ECG) 
4
. HF was calculated from Wavelet or Fourier 651 

decomposition with power obtained from a high frequency band of either 0.15-0.40 Hz or 0.15-0.50 652 

Hz. A time domain measure of RSA was derived by pvRSA using a respiratory signal co-registered 653 

with the ECG. Estimates of pvRSA are obtained by subtracting the shortest IBI during heart rate 654 

acceleration in the inspiration phase from the longest IBI during heart rate deceleration in the 655 

expiration phase.  656 

HRV traits were extracted from the IBI time series preferably based on 2 to 10 minute 657 

periods of ECG in a standardized setting, at rest and in a sitting/supine position. If ambulatory data 658 

was available, we advised cohorts to extract a period of sitting still in the evening, when this proved 659 

feasible. Supplementary Table 2 lists the actual way HRV was assessed by the participating cohorts. 660 

For the cohorts analyzed in stage 2 we extended our HRV measurements to include cohorts with 661 

10s and/or 20s ECG recordings, as RMSSD and SDNN based on these ultra-short recordings have 662 

shown a good agreement with 4 to 5 min recordings 
3
. Furthermore, since IBI time series require 663 

reliable detection of the R-wave only, a three-lead ECG was considered sufficient while the use of 664 

more leads was encouraged. For pvRSA, an additional respiration signal of sufficient quality to 665 

detect beginning and end of inspiration and expiration was needed. 666 
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SDNN and RMSSD have prevailed in epidemiological studies because they are more easily 667 

assessed in large cohorts and, as noted above, can be obtained even from short ECG recordings. HF 668 

and pvRSA were available in fewer cohorts, but they better reflect the cardiorespiratory coupling that 669 

drives the oscillatory modulation of vagal effects in the sinoatrial node. In the typical resting 670 

respiratory frequency range, these time- and frequency-domain measures of RSA are much less 671 

contaminated by oscillations in cardiac sympathetic control than SDNN (and other measures of HRV 672 

that span a broader frequency range). This is due to the temporal dynamics of the sinoatrial node 673 

signaling pathway that acts as a low pass filter allowing only oscillations in vagal effects to translate 674 

into HRV, whereas for sympathetic effects or vagal effects at progressively higher respiratory 675 

frequencies the node acts as a leaky integrator causing more tonic changes in heart rate 
1
. Phasic 676 

modulation of vagal effects is therefore captured most purely by pvRSA or HF. Because pvRSA 677 

and HF are conceptually similar and highly correlated with each other (r>0.80) across a wide range 678 

of values for respiration and heart rates 
44

 we grouped the analyses on pvRSA and HF under the 679 

label pvRSA/HF. 680 

 681 

Study population 682 

Cohorts that had data on at least one of the three HRV traits and genome-wide data were invited to 683 

participate in the first (discovery) stage of the Genetic Variance in Heart Rate Variability (VgHRV) 684 

consortium. The stage 1 discovery analysis was performed in up to 28,700 individuals of European 685 

ancestry from a maximum of 20 cohorts. Independent cohorts with either genome-wide or gene-686 

centered array data or with the ability to perform wet-lab genotyping on the single nucleotide 687 

polymorphism (SNPs) taken forward from the first stage were included in the second (replication) 688 

stage. This stage included additional data from up to 24,474 individuals from 11 cohorts of 689 

European ancestry (see Supplementary Tables 1-4 for cohort descriptions and details). 690 

 691 
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Association analysis: stage 1 (discovery) 692 

The following exclusion criteria were applied a priori: (1) individuals with heart disease (e.g. 693 

angina, past myocardial infarction, left ventricular failure) and (2) individuals known to use 694 

antidepressants (particularly tricyclic antidepressants) and all anticholinergic agents (e.g. digoxin, 695 

atropine, and acetylcholinesterase inhibitors) because of the strong effects that these drugs have on 696 

HRV. Individuals reporting over the counter use of anticholinergic agents were not excluded. 697 

Imputation of SNPs was done to extend and create similar SNP databases between cohorts 698 

using different genotyping platforms. Most of the cohorts used the HapMap Phase II release 22 699 

CEU panel as reference, but later releases (e.g. release 24) or other reference datasets (e.g. 700 

1000Genomes) were also used (Supplementary Table 4). 701 

Each cohort performed linear regression analyses on all available HRV traits using an 702 

additive SNP model adjusting for age at the time of ECG recording, sex, principal components - to 703 

adjust for population stratification - and other study-specific parameters; all HRV traits were log-704 

transformed because of the skewness of their distributions. Only autosomal associations were 705 

examined. Analyses were performed for all individuals as well as for men and women separately. 706 

 707 

Stage 1 meta-analysis 708 

Prior to meta-analysis, quality control of all uploaded cohort files was performed using the 709 

QCGWAS package 
45

. In case of issues the cohorts were notified and problems were solved. Using 710 

the QCGWAS results, specific imputation quality and allele frequency thresholds were set for each 711 

cohort. 712 

An inverse-variance, fixed-effects meta-analysis was performed for RMSSD and SDNN for 713 

which SNPs of the different cohorts were merged based on rs-id. For pvRSA/HF we performed a 714 

sample size weighted meta-analysis using z-scores with METAL 
46

, since we combined results of 715 

two HRV phenotypes (pvRSA and HF) that have different units and ranges, and therefore 716 
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incomparable SNP effect sizes. To get an idea of the size of the SNP effect on pvRSA/HF, we 717 

obtained effect sizes and standard errors from an additional fixed-effect meta-analysis on the 718 

GWAS results of the (majority of) cohorts that measured HF. Results of the meta-analyses were 719 

double genomic control corrected
47

 to control for potential inflation as a result of population 720 

stratification within and between cohorts. The results included all SNPs that met the following 721 

selection criteria: (a) a minor allele frequency in the meta-analysis of >1%, and (b) present in at 722 

least one third of the cohorts. This resulted in 2,555,913 SNPs being analyzed for SDNN, 2,534,714 723 

SNPs for RMSSD, and 2,628,894 SNPs for pvRSA/HF. For each trait separately, SNPs with a p 724 

<1x10
-6

 were clumped for linkage disequilibrium (LD) using pairwise LD checking in SNAP 
48

 to 725 

ascertain independent primary and secondary signals (r
2
<0.1). A total of 23 lead SNPs in 14 loci 726 

were selected for follow-up in the second (replication) stage.  727 

 728 

Stage 2 meta-analysis 729 

Stage 2 cohorts applied the same exclusion criteria and performed the same association analysis as 730 

in the discovery stage, but analyses were restricted to the 23 lead SNPs. If a SNP was not available 731 

in a cohort, the best available proxy was used instead based on strongest LD according to the 732 

1000Genomes database. To verify homogeneity of the results in the stage 2 cohorts with those in 733 

the stage 1 cohorts, the stage 1 meta-analysis effect sizes of the 23 SNPs were correlated to the 734 

effect sizes obtained in each cohort for each of the HRV traits. If a negative correlation (r<0) was 735 

found, the cohort/trait pair was excluded from stage 2 analysis. For this reason results from one 736 

cohort for SDNN were excluded. The replication results were then meta-analyzed per trait using an 737 

inverse variance fixed-effects meta-analysis for RMSSD and SDNN and a sample size p weighted 738 

meta-analysis using z-scores in METAL
46

 for pvRSA/HF. SNPs were matched based on rs-id. Next 739 

the association results from both stages were combined in the same way. A SNP was only 740 

considered to be significantly associated to HRV if it satisfied the following criteria: 1) it had p 741 
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<1x10
-6

 in stage 1, 2) it had a one-sided p<0.05 in the stage 2 meta-analysis congruent with the 742 

direction of effect in the stage 1 meta-analysis, and 3) it had a genome-wide significant p< 5x10
-8

 /3 743 

(two-sided) in the combined meta-analysis of stage 1 and 2 results, correcting for the testing of 744 

three separate traits. 745 

 746 

Conditional analysis 747 

In the discovery stage independent SNPs were selected for follow-up based on LD clumping 748 

(r
2
<0.1). To confirm independence between these SNPs within the loci on chromosome 14 and 15 749 

we applied the conditional-and-joint analysis as implemented in the Genome-wide Complex Trait 750 

Analysis software package 
49

 to the stage 1 summary statistics of RMSSD and SDNN with the 751 

genotype data of the NESDA cohort 
50

 of 1,925 individuals as the LD reference dataset. In addition, 752 

cohort-level individual data on log-transformed RMSSD and SDNN of 12,101 individuals from the 753 

Dutch Lifelines cohort 
51

 were analyzed using linear regression analysis with age and sex as 754 

covariates conditioned on the other associated SNP(s) within the locus.  755 

 756 

Gene-based association analysis (VEGAS) 757 

We performed gene-based testing with the full set of ~2.5M HapMap SNPs from GWAS results of 758 

all three phenotypes, using VEGAS (Supplementary Table 17). This software has the advantage of 759 

accounting for LD structure and the possibility to define a range beyond the gene bounds to include 760 

promoter, 5’UTR, intronic, and 3’UTR regions into the analysis. We defined a 50kb extra window 761 

beyond the genes, considered every SNP in this window for the gene-based analysis, and ran the 762 

analyses per chromosome with up to 10
6
 permutations. A p <2.5x10

-6
 (=0.05/~20.000 genes) was 763 

considered as the threshold for significance. 764 

 765 

Variance explained 766 
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The Lifelines and NESDA cohorts were used for genetic risk score and polygenic risk score 767 

analyses in order to determine the percentage of variance explained by independent HRV SNPs that 768 

were genome-wide significant, and by SNPs meeting increasingly lenient significance thresholds, 769 

respectively. Lifelines and NESDA represent examples of a population-based cohort and a cohort 770 

ascertained on case-control status (for major depressive disorder). Both recruited adult participants. 771 

To test the stability of explained variance across the life span we repeated this analysis in two other 772 

Dutch cohorts, the adolescent TRAILS-Pop cohort 
52

 (age 10-18) and the ABCD cohort consisting 773 

of young children (age 5 to 7) 
53

.  774 

For the genetic risk score, stage 1+2 summary statistics were used for the selection of HRV 775 

SNPs. No correction was needed for ABCD as genotyping in this cohort had finished only after 776 

completion of the meta-analyses. However, the NESDA cohort had been included in both stage 1 777 

and 2, TRAILS-Pop in stage 1, and Lifelines in stage 2, so the effect sizes and standard errors of the 778 

HRV SNPs were corrected to subtract the effects of those cohorts in order to obtain independent 779 

validation cohorts 
54

. Also, only SNPs were used in the genetic risk score if they remained genome-780 

wide significant after analytically subtracting these cohort's effects from the meta-analysis. Genetic 781 

risk scores of the remaining SNPs (Lifelines: SDNN(9), RMSSD(7), pvRSA/HF(5) ; NESDA: 782 

SDNN(9), RMSSD(11), pvRSA/HF(5); TRAILS-Pop: SDNN(10), RMSSD(11), pvRSA/HF(5)) 783 

weighted by the adjusted effect size were calculated for the participants of all four cohorts and 784 

regressed on the three HRV traits (pvRSA/HF was not available in Lifelines). Explained variance 785 

was computed as the change in R
2
 from a model with and without the genetic risk score, while 786 

adjusting both for age, sex, and principal components.  787 

To compute the polygenic risk scores, the imputed genotypes were first converted to best-788 

guess genotypes. This was done regardless of the imputation quality, since it was previously shown 789 

that even low-quality SNPs might contribute to the variance explained by SNPs 
54

. The SNP set was 790 

further pruned for LD using PriorityPruner (http://prioritypruner.sourceforge.net/) to select 791 

http://prioritypruner.sourceforge.net/
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independent SNPs, taking the significance of the SNP in the discovery meta-analysis of each of the 792 

HRV traits into account. This provided three LD-pruned SNP sets. Polygenic risk scores were then 793 

calculated in PLINK 
55

 using significance thresholds of 5x10
-8

, 5x10
-7

, 5x10
-6

, 5x10
-5

, 5x10
-4

, 0.005, 794 

0.05, 0.5, and 1 and associated with the three HRV traits and resting heart rate in the Lifelines, 795 

NESDA, TRAILS-Pop, and ABCD cohorts. For NESDA and TRAILS-Pop pruning and polygenic 796 

risk score analysis was based on analytically corrected results, since these cohorts were part of stage 797 

1 of our study 
54

.  798 

 799 

Heritabilities and genetic correlations  800 

We applied genomic restricted maximum likelihood analysis implemented in the Genomic Complex 801 

Trait Analysis software package 
56

 in the Lifelines cohort (Supplementary Table 18) to estimate the 802 

percentages of additive phenotypic variance that can be explained by common SNPs (i.e. common 803 

SNP heritability denoted as h
2

SNP). For this analysis, SNPs from the HapMap Phase 3 project were 804 

selected to obtain a set of independent SNPs. We further used LD score regression to estimate the 805 

heritabilities of the three HRV traits and the genetic correlation among HRV traits and with heart 806 

rate 
20

 . The GWAS meta-analysis summary statistics for RMSSD, SDNN, and pvRSA/HF were 807 

obtained from stage 1 of the current study, and the GWAS meta-analysis summary statistics for 808 

heart rate from the discovery stage of a recent GWAS meta-analysis for heart rate 
18

. The LD scores 809 

required by the method were computed using 1000Genomes data of Europeans. The heritabilities of 810 

the three HRV measurements were estimated using the univariate model of this method. Cross-811 

phenotype LD score regression analysis was performed using the LDSC tool (LD SCore) to 812 

estimate genetic correlations between pairs of phenotypes 
20

. 813 

In addition, we used the Oman Family Study (OFS) 
57

 to perform univariate and bivariate 814 

analyses in five multigenerational highly inbred pedigrees to estimate the heritabilities for and the 815 
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genetic correlations between log-transformed RMSSD, SDNN, HF, and heart rate using SOLAR 816 

(v7.2.5) 
58

. 817 

 818 

Generalization to other ethnicities 819 

We further examined the generalization of loci identified after meta-analysis of stage 1 and 2 results 820 

to other ethnicities using data from 11,234 individuals of two Hispanic/Latino cohorts, and 6,899 821 

individuals from five African-American cohorts (Supplementary Tables 1-4). Stage 3 meta-analyses 822 

were performed in the same way as in stage 2 of this study to assess the effect of the HRV 823 

associated SNPs in individuals of Hispanic/Latino and African-American ancestry, in the combined 824 

set of European and Hispanic/Latino ancestry, in the combined set of European and African-825 

American ancestry, and in all three ethnicities combined. Here we applied the same criteria for 826 

significance as in stage 2 described above, i.e. a SNP was only considered to be significantly 827 

associated to HRV if: 1) it had p<1x10
-6

 in stage 1 meta-analysis in European individuals, 2) it had 828 

a one-sided p<0.05 in the new ethnicity specific meta-analysis congruent with the direction of effect 829 

in the stage 1 meta-analysis in European individuals, and 3) it had a genome-wide significant 830 

p<5x10
-8

/3 (two-sided) in the combined meta-analysis. 831 

 832 

Correcting HRV for heart rate  833 

The well-known inverse association between HRV and heart rate in part reflects a dependency of 834 

the variance in IBI on the mean IBI that is unrelated to cardiac vagal activity 
59

. That is, the slower 835 

the heart rate, the longer the IBI, and therefore, any proportionally minor beat-to-beat differences in 836 

IBI are more pronounced at slower heart rates. This occurs on top of the well-established dual effect 837 

of cardiac vagal activity that lowers heart rate and increases HRV 
15, 16

. Although these two 838 

mechanisms (biological, mean-variance dependency) are impossible to completely separate, we 839 

conducted three analyses to test whether the HRV SNPs were robust to correction for the mean IBI.  840 
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First, we corrected SDNN and RMSSD for their dependency on mean IBI by using the 841 

coefficient of variation, which is a more parsimonious solution
19

 than the logarithmic approach 842 

suggested by Monfredi et al.
29

. We obtained the summary statistics for the resting heart rate GWAS 843 

meta-analysis
18

 from: https://walker05.u.hpc.mssm.edu/ and used the GWIS procedure 
17

 to infer a 844 

GWA analysis of the coefficient of variation of the SDNN and the RMSSD. We approximated the 845 

coefficients of variation by (SDNN/X)*100% and (RMSSD/X)*100% respectively, where X equals 846 

60000/heart rate. Transformation from heart rate to IBI is required as both terms in the coefficient 847 

of variation (HRV and IBI) are in milliseconds, whereas the heart rate GWAS meta-analysis used 848 

heart rate in beats per minute. As the coefficients of variation were skewed we used a log-849 

transformation. As an example of the linear approximation by GWIS we assume that the increaser 850 

effect of 1 allele for an SDNN SNP is +0.2 with the same SNP reducing heart rate by -0.1. Given a 851 

mean SDNN of 100 and mean heart rate of 60 we can then approximate (omitting some nuances 852 

adequately explained in Nieuwboer et al.
17

) the effect of the SNP on the coefficient of variation of 853 

the SDNN as: 854 

  (
        

              
)     (

   

          
)           

We used the delta method to approximate a standard error for the effect of the SNP given that we 855 

know the standard deviations for the SNP effects on SDNN and HR, and their dependence. We 856 

obtain the dependence from analysis with LD score regression
20

. 857 

Second, we performed association analyses for our 17 top SNPs on the actual log-858 

transformed coefficients of variation of SDNN and RMSSD computed in the Lifelines, NESDA, 859 

and TRAILS-Pop cohorts and then meta-analyzed these results. Because pvRSA and HF are 860 

expressed on different scales, such a meta-analysis was not feasible for pvRSA/HF. 861 

Third, we repeated the association analysis for our 17 top SNPs on SDNN, RMSSD and 862 

pvRSA/HF in the Lifelines, NESDA, and TRAILS-Pop cohorts with and without adjusting for heart 863 

rate as a covariate and performed mediation tests with the Sobel test to assess the mediation effect 864 

https://walker05.u.hpc.mssm.edu/
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of heart rate on the HRV-SNP association. Significance of the Sobel t-value was determined using a 865 

bootstrap procedure (n=10,000 permutations). The meditation p-values of the three cohorts for 866 

SDNN and RMSSD and two for pvRSA/HF (as this was not available in Lifelines) were next meta-867 

analyzed to determine the significance of mediation and to compute the percentage of the SNP 868 

effect on HRV that was mediated through its effects on heart rate. We note that this is likely an 869 

overcorrection because the HRV SNPs are expected to influence heart rate through a common 870 

biological mechanism, i.e. changes in cardiac vagal activity. 871 

 872 

Association of the HRV SNPs with heart rate  873 

We conducted a look-up of the 17 (11 independent) HRV lead SNPs identified in this study using 874 

the results of a recent GWAS meta-analysis for heart rate 
18

. A HRV associated SNP was 875 

considered to be significantly associated with resting heart rate if the GWAS meta-analysis result 876 

for heart rate was <0.05/11=0.0045. Three separate HRV weighted multi-SNP genetic risk scores 877 

were calculated from ten (SDNN), eleven (RMSSD), and five (pvRSA/HF) HRV SNPs, 878 

respectively (based on all genome-wide significant SNPs for the respective HRV trait in the stage 879 

1+2 meta-analysis). These were tested for their effect α on resting heart rate using the gtx package 880 

in R (https://cran.r-project.org/web/packages/gtx), which approximated α by (Σω × β × seβ
−2

) /(Σω2 881 

× seβ
−2

) with seα ≅ √(1/ Σω
2
 × seβ

−2
), where ω is the effect of the SNP on HRV, β is the effect of the 882 

SNP on heart rate and seβ is the standard error of β. This approximation requires only single SNP 883 

association summary statistics extracted from GWAS results 
60

.The effects of the multi-SNP genetic 884 

risk scores were considered as statistically significant when the p was less than 0.0045 (correcting 885 

for 11 traits; heart rate and the 10 cardiometabolic traits described below).  886 

In addition to these lookups that were restricted to genome-wide significant SNPs, we 887 

employed LD score regression
20

 that uses the full summary statistics of the HRV and heart rate 888 

GWAS meta-analyses to compute genetic correlations. 889 
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We further examined the variance in resting heart rate explained by multi-SNP genetic risk 890 

scores (based on the lead SNPs only) and of the full polygenic risk scores for HRV in the four 891 

Dutch cohorts Lifelines, NESDA, TRAILS-Pop, and ABCD. The identical approach was used as 892 

done previously for the computation of variance explained in the HRV traits themselves. 893 

 894 

Association of heart rate SNPs with HRV 895 

We also performed reverse analyses to detect the effects of heart rate SNPs on the HRV traits. In 896 

our GWAS meta-analysis results for SDNN, RMSSD, and pvRSA/HF we performed a look-up for 897 

the 21 previously identified heart rate SNPs by Den Hoed et al.
18

. A heart rate associated SNP was 898 

considered to be significantly associated with HRV if the p was <0.05/21=0.0024. The 21 heart rate 899 

SNPs were tested in a multi-SNP risk score for their effect on the HRV traits using the gtx approach 900 

as described above. 901 

To examine the variance explained in the HRV traits by the 21 heart rate SNPs, multi-SNP 902 

genetic risk scores and polygenic risk scores based on the heart rate SNPs were computed in the 903 

Lifelines, NESDA, TRAILS-Pop, and ABCD cohorts and these were tested for association with the 904 

available HRV traits. For the multi-SNP genetic risk scores weights were either the original SNP 905 

effect sizes on heart rate (for NESDA, TRAILS-Pop, and ABCD) or corrected because of 906 

participation of the cohort in the GWAS meta-analysis (Lifelines). Only 15 of the 21 SNPs were 907 

used in the Lifelines cohort because five SNPs lost genome-wide significance after subtracting the 908 

SNP effects of the Lifelines cohort. One other SNP (rs826838) was removed because it was in LD 909 

(r
2
=0.15) in Lifelines with a more significant heart rate SNP (rs7980799). 910 

 911 

Association with cardiometabolic traits and diseases  912 

We estimated the joint effect of the HRV SNPs on cardiometabolic and renal disease traits and 913 

endpoints. The traits included were systolic and diastolic blood pressure , body mass index  and 914 
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urinary albumin excretion as well as estimated glomerular filtration rate based on creatinine . The 915 

clinical outcomes used were heart failure , coronary artery disease , atrial fibrillation , sudden 916 

cardiac death , and type 2 diabetes. The relevant consortia (Supplementary Table 11) and/or 917 

corresponding authors of the studies were contacted with the request to perform a lookup and 918 

provide summary GWAS meta-analysis results for our list of 17 SNPs.  919 

The association analyses consisted of the same three steps as used for heart rate. First, we 920 

checked the p of our HRV SNPs (or their proxies) in the cardiometabolic trait or disease GWAS 921 

meta-analysis results. Second, three separate HRV weighted genetic risk scores were calculated 922 

from eleven (RMSSD), ten (SDNN), and five (pvRSA/HF) HRV SNPs, respectively (based on all 923 

genome-wide significant SNPs for the respective HRV trait in the stage 1+2 meta-analysis). These 924 

were tested for their effect on the clinical outcomes using a regression model in the gtx package in 925 

R as described above for the association of the HRV SNPs with heart rate. The effects of the genetic 926 

risk scores were considered as statistically significant when the p was less than 0.0045 (0.05/11, 927 

correcting for heart rate and the 10 traits and diseases).  928 

In addition to these lookups that were restricted to genome-wide significant SNPs, we 929 

employed LD Score regression
20

 that uses the full GWAS summary statistics of the HRV and 930 

cardiometabolic traits and diseases to compute genetic correlations. 931 

 932 

Search for known functional SNPs (in silico annotation) 933 

We followed an in silico bioinformatics-based approach 
61

 to search and annotate SNPs in the 934 

regions surrounding the 17 identified HRV SNPs. For this purpose SNP positions were converted 935 

from National Center for Biotechnology Information (NCBI) build 36, Human Genome 18, to 936 

NCBI build 37, Human Genome 19, (GRCh37/hg19) using the NCBI Genome Remapping service 937 

tool (http://www.ncbi.nlm.nih.gov/genome/tools/remap). For ±1Mb regions surrounding the SNPs, 938 

we downloaded the according variance call format file from the 1000 Genomes Project. We used 939 

http://www.ncbi.nlm.nih.gov/genome/tools/remap
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data of 503 European ancestry individuals from 1000 Genomes Project Phase 3 (version 5.a.) to 940 

calculate LD between the HRV SNP and all other SNPs within the area. SNPs in moderate to high 941 

LD (r
2
≥0.5) were subsequently selected and annotated by ANNOVAR software 

62
 for functionality. 942 

For all non-synonymous SNPs loss-of-function and gain-of-function was determined by using the 943 

sorting intolerant from tolerant (SIFT)  and polymorphism phenotyping (PolyPhen)  prediction 944 

scores. A SNP was categorized as deleterious if the SIFT score was ≤0.05 or the PolyPhen score 945 

was between 0.957 and 1 (probably damaging). 946 

We used RegulomeDB to integrate results from the RoadMap Epigenomics and ENCODE 947 

projects to identify variants that are likely to have functional consequences using the lead SNPs 948 

identified for the three HRV traits. We distilled information on transcription factor binding and 949 

chromatin states for SNPs that showed most evidence of being functional, i.e. for SNPs with a 950 

RegulomeDB score <4.  951 

Finally, all the HRV SNPs and those that were in high LD (r
2
≥0.8) with them were looked-952 

up in the National Human Genome Research Institute GWAS catalogue to check for association 953 

with other complex traits or diseases identified in previous GWAS studies 
63

. 954 

 955 

eQTL analyses 956 

We performed expression quantitative trait locus (eQTL) analysis in whole blood in order to 957 

identify regulatory variants that were associated with the HRV SNPs using the gene-expression 958 

database from NESDA 
50

 and NTR 
64

 cohorts. The sample used for this analysis consisted of 4,896 959 

individuals of European ancestry. For complete details on the sample and the procedures, see 
65

. 960 

 eQTL effects were tested with a linear model approach using MatrixeQTL 
66

 with 961 

expression level as dependent variable and SNP genotype values as independent variable. In this 962 

study we only tested cis effects for our HRV SNPs, meaning that the probe was at a distance < 1Mb 963 

from the SNP on the genome according to GRCh37/hg19. For each probe set that displayed a 964 
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statistically significant association with at least one SNP in the cis region, we identified the most 965 

significantly associated SNP (top eQTL). Conditional eQTL analysis was carried out by first 966 

residualizing probe set expression using the corresponding top eQTL and then repeating the eQTL 967 

analysis using the residualized data. 968 

All HRV SNPs with significant results in the NESDA/NTR eQTL data were looked up in 969 

two other independent whole blood eQTL databases, eQTLs in lymphoblastoid cell lines, eQTLs in 970 

ten different brain regions, and a heart eQTL database. 971 

 972 

mQTL analyses 973 

We obtained mQTL results from a previously published study 
67

.  In short, genome-wide DNA 974 

methylation data was generated using Illumina 450k arrays for 3,841 whole blood samples. 975 

Corresponding genotype data was imputed using the Genome of the Netherlands
68

 reference panel. 976 

In order to determine the effect of nearby genetic variation on methylation levels (cis-mQTLs), we 977 

performed cis-mQTL mapping using 3,841 samples for which both genotype data and methylation 978 

data were available. To this end, we calculated the Spearman rank correlation and corresponding p-979 

value for each CpG-SNP pair. We only considered CpG-SNP pairs located no further than 250kb 980 

apart. To correct for multiple testing, we empirically controlled the false discovery rate at 5%. We 981 

compared the distribution of observed p-values to the distribution obtained from performing the 982 

analysis on permuted data. Permutation was done by shuffling the sample identifiers of one data set, 983 

breaking the link between the genotype data and the methylation data. We repeated this procedure 984 

10 times to obtain a stable distribution of p-values under the null distribution. The false discovery 985 

rate was determined by only selecting the strongest effect per CpG in both the real analysis and in 986 

the permutations. 987 

 988 

Gene prioritization using four bioinformatics approaches  989 
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Potentially causal genes for the associations identified by GWAS were identified using four 990 

previously described bioinformatics tools: ToppGene, Endeavour, MetaRanker, and DEPICT 991 

(Supplementary Table 19). To this end, we first retrieved positional coordinates for all lead SNPs 992 

according to GRCh37/hg19. These coordinates were used to extract all genes located within ±40kb 993 

of lead SNPs using the UCSC genome browser. The identified genes subsequently served as input 994 

for ToppGene and Endeavour, together with two genes with established roles in sinus node function 995 

(HCN4) and synaptic signal transmission (ACHE) that served as training genes. For MetaRanker, 996 

we first combined results of the stage 1+2 meta-analyses of GWAS for the three HRV traits, 997 

retained the association with the lowest p for lead SNPs that were identified for multiple traits, and 998 

subsequently provided SNPs, p-values, and the same two test genes (HCN4 and ACHE) as input. 999 

For DEPICT - arguably the most powerful and informative of the four methods - we used results 1000 

from the stage 1 meta-analysis for all SNPs that reached a p for association <10
-5

 as input, for each 1001 

of the three HRV outcomes separately. In order for genes to be prioritized by the combined four 1002 

approaches, they needed to be either: 1) selected by DEPICT for at least one of the three HRV 1003 

outcomes; or 2) identified by at least two of the three remaining tools (ToppGene, Endeavour and/or 1004 

MetaRanker). 1005 

 1006 

Network and functional enrichment analyses 1007 

We performed gene network and enrichment analysis using the GeneMANIA algorithm, which uses 1008 

data resources on genetic interactions, protein-protein, co-expression, shared protein domains, and 1009 

co-localization networks. To build a functional interaction network we selected genes as input for 1010 

this analysis using the following criteria: (a) genes implicated by gene prioritization using the four 1011 

bioinformatics approaches described above, (b) the genes closest to our 17 HRV SNPs, (c) genes to 1012 

which linked (r
2
 > 0.50) non-synonymous SNPs mapped, (d) genes to which other linked (r

2
 > 0.80) 1013 

SNPs mapped, (e) genes identified by VEGAS, and (f) expression probe gene names significantly 1014 
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associated with HRV eQTLs (false discovery rate <0.01). The input gene list was extended to 100 1015 

by their most strongly interacting genes and a weighted composite functional association network 1016 

was constructed 
61

. Subsequently, functional enrichment analysis of all genes of the constructed 1017 

interaction network against Gene Ontology (GO) terms was performed to find the most enriched 1018 

GO terms (Supplementary Table 20). Significantly enriched GO terms (false discovery rate <0.10) 1019 

were visualized as highlighted boxes within their corresponding GO tree depicted by the RamiGO R 1020 

package 
69

 (Supplementary Fig. 10). 1021 

 1022 

Tissue and gene-set enrichment analyses 1023 

We used DEPICT for a tissue enrichment analysis to tabulate tissues that are enriched for 1024 

expression of genes located within ±40kb of SNPs with a p<10
-5

 association with the HRV traits. 1025 

DEPICT calculates the likelihood of every known gene to be a member of, amongst others, KEGG, 1026 

GEO, or REACTOME-based gene sets (N=14,461) to create reconstituted gene sets. It then 1027 

determines which of these reconstituted gene sets are enriched for the HRV genes. A graphical 1028 

representation of DEPICT’s reconstituted gene set enrichment analysis (p<0.05 after Bonferroni 1029 

correction for examining three HRV traits) was generated using a script that is based on an affinity 1030 

propagation clustering algorithm by Frey et al. 
70

. Interactions between gene sets are considered 1031 

significant if the Pearson coefficient, which is based on the number of genes that are shared 1032 

between gene sets, is >0.3. 1033 

 1034 

Data availability 1035 

Summary statistics of the meta-analyses are available on request from the corresponding authors 1036 

after a formal data access request procedure and approval by the VgHRV consortium. 1037 
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1236 
Figure 1: Manhattan plots of the meta-analyses of stage 1 GWAS results for (a) SDNN, (b) 1237 

RMSSD, and (c) pvRSA/HF in up to 28,700 individuals of European ancestry.  1238 

Only SNPs with a minor allele frequency >1% and that were present in at least 1/3 of the sample are 1239 

plotted. Significant loci are shown in blue, suggestive ones in red. The blue horizontal line 1240 

represents the genome-wide significance threshold. Genes closest to the lead SNPs are indicated for 1241 

the loci that were genome-wide significantly associated with the trait after the stage 1+2 combined 1242 

meta-analysis. 1243 

 1244 

  1245 
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Table 1: Stage 1+2 combined meta-analysis results for SDNN, RMSSD, and pvRSA/HF of loci 1246 

that were genome-wide significant (p<(5x10
-8

)/3) in the analysis of individuals of European 1247 

ancestry.  1248 

Locus Chr SNP 
Position 

(bp) 
(build36) 

Closest 
 Gene 

Annotation Trait 
Allele Stage 1 + 2 

E/O N EAF β(SE) p-value 

1 19 

rs12974991
a
 5845584 

NDUFA11 

IN RMSSD A/G 43205 0.078 -0.116(0.008) 4.57E-46 

rs12974440
a
 5845386 IN pvRSA/HF† A/G 29527 0.073 -0.244(0.019) 1.91E-41 

rs12980262
a
 5844058 M SDNN A/G 46046 0.076 -0.060(0.006) 2.30E-23 

2 12 rs10842383 24663234 
LINC00477 
(C12orf67) 

IG, HR
i
 

SDNN 

C/T 

47808 0.863 -0.049(0.004) 9.33E-31 

RMSSD 43223 0.862 -0.065(0.006) 2.45E-29 

pvRSA/HF† 31085 0.865 -0.124(0.013) 1.20E-25 

3 6 rs236349 36928543 PPIL1 IG 

SDNN 

G/A 

51379 0.651 -0.033(0.003) 3.70E-25 

RMSSD 46795 0.655 -0.035(0.004) 9.10E-17 

pvRSA/HF† 33654 0.645 -0.069(0.009) 3.16E-15 

4 12 

rs7980799
b
 33468257 

SYT10 

IN, HR
ii
 RMSSD A/C 44210 0.390 -0.039(0.004) 3.19E-20 

rs1351682
b
 33490042 IG, HR

iii
 pvRSA/HF† G/A 30643 0.437 -0.073(0.009) 5.70E-15 

rs1384598
b
 33514166 IG, HR

iv
 SDNN T/A 47358 0.432 -0.023(0.003) 7.37E-13 

5 7 
rs4262

c
 93389364 

GNG11 

UTR5, Q, 
HR

v
 

SDNN 
C/T 

49005 0.390 -0.028(0.003) 4.26E-17 

pvRSA/HF† 31281 0.388 -0.050(0.010) 1.84E-11 

rs180238
c
 93388383 UP, Q, HR

vi
 RMSSD C/T 44420 0.333 -0.034(0.004) 7.99E-16 

6 

14b 
rs4899412

d
 71534015 

RGS6 

IN, Q 
SDNN T/C 48252 0.253 -0.026(0.004) 3.13E-13 

rs2052015
d
 71556806 RMSSD T/C 45492 0.165 -0.036(0.006) 3.56E-10 

14c rs2529471 71883022 IN SDNN C/A 49619 0.429 -0.021(0.003) 1.88E-12 

14a rs36423 71422955 IG 
SDNN 

T/G 
48182 0.129 -0.033(0.005) 6.25E-13 

RMSSD 45419 0.127 -0.040(0.006) 5.36E-11 

7 
15a rs2680344 71440538 HCN4 IN, HR

vii
 SDNN A/G 51370 0.777 -0.024(0.004) 4.88E-11 

15b rs1812835 71294557 NEO1 IN, Q RMSSD A/C 44421 0.418 -0.025(0.004) 5.18E-10 

8 20 rs6123471 36273570 KIAA1755 UTR3, HR
viii

 RMSSD T/C 46789 0.534 -0.024(0.004) 1.30E-08 

NOTE: Only SNPs that were independently associated (i.e. lead SNPs) to the traits are shown. At 1249 

some loci lead SNPs were the same for the different traits, at other loci there were different 1250 

(dependent) lead SNPs for the different traits. SNPs are sorted according to p-value of the combined 1251 

meta-analysis per locus. Genome-wide significant association (two-sided p<5x10
-8

), corrected for 1252 

testing three traits (i.e. p<5x10
-8

/3), is shown in bold. Effect alleles were chosen to reflect an 1253 

increased risk for low levels of HRV, hence β's are all negative. 1254 

Chr: chromosome; bp: base pair position based on build 36 (hg18); EAF: effect allele frequency; 1255 

Allele E/O: effect allele/other allele; β: effect size; SE: standard error of β; N: sample size; IN: 1256 

intronic variant; M: missense variant; IG: intergenic variant; UP: upstream variant (within 2kb); 1257 

UTR5: variant in the 5' untranslated region; UTR3: variant in the 3' untranslated region; Q: 1258 

associated with an eQTL; HR: HRV SNPs that are in pairwise LD (based on SNAP, HapMap 1259 

release 22 CEU) with identified loci associated with heart rate (HR) from den Hoed et al. (2013): 
i
 1260 

r
2
=1 between rs10842383 and rs17287293[HR]; 

ii
 same SNP; 

iii
r
2
=0.782 between rs1351682 and 1261 

rs7980799[HR]; 
iv

 r
2
=0.695 between rs1384598 and rs7980799[HR]; 

v
 r

2
=0.570 between rs4262 1262 

and rs180242[HR]; 
vi

 r
2
=0.893 betweenrs180238 and rs180242[HR]; 

vii 
r
2
=0.505 between 1263 

rs2680344 and rs4489968[HR]; 
viii 

r
2
=1 between rs6123471 and rs6127471[HR]; 1264 

a
 these SNPs are all in perfect LD (r

2
=1); 

b
 r

2
=0.782 between rs7980799 and rs1351682; r

2
=0.695 1265 

between rs7980799 and rs1384598; r
2
=0.903 between rs1351682 and rs1384598; 

c
 r

2
=0.600 1266 

between rs4262 and rs180238; 
d
 r

2
=0.237 between rs4899412 and rs2052015;  1267 

†p-value, allele, EAF, N from p-value weighted meta-analysis of all cohorts using METAL and β, 1268 

SE from inverse-variance meta-analysis of only HF cohorts using GWAMA. 1269 
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Table 2: Explained variance in HRV traits in the Lifelines (n=12,101), NESDA (n=2,118), 1270 

TRAILS-Pop (n=1,191), and ABCD (n=1,094) cohorts by the weighted multi-SNP genetic risk 1271 

score based on the independent genome-wide significant SNPs in the stage 1+2 meta-analysis. 1272 

 1273 

    Lifelines   NESDA   TRAILS-Pop   ABCD 

trait risk score 
N 

SNPs p-value ΔR
2
   

N 
SNPs p-value ΔR

2
   

N 
SNPs p-value ΔR

2
   

N 
SNPs p-value ΔR

2
 

SDNN SDNN 9 6.3E-33 1.00%   9 4.9E-10 1.39%   10 8.0E-05 1.28%   10 7.8E-04 1.03% 

SDNN RMSSD 7 1.1E-30 0.93% 
 

11 7.5E-10 1.35% 
 

11 6.3E-06 1.69% 
 

11 3.5E-05 1.56% 

SDNN pvRSA/HF 5 6.4E-25 0.75% 
 

5 5.2E-07 0.89% 
 

5 8.7E-07 1.99% 
 

4 4.3E-03 0.75% 

                 RMSSD SDNN 9 8.3E-37 1.13% 
 

9 2.0E-11 1.54% 
 

10 4.4E-06 1.73% 
 

10 4.7E-04 1.11% 

RMSSD RMSSD 7 8.8E-37 1.13%   11 6.1E-12 1.62%   11 5.3E-08 2.42%   11 2.5E-06 2.01% 

RMSSD pvRSA/HF 5 1.5E-30 0.93% 
 

5 2.0E-11 1.54% 
 

5 2.1E-09 2.92% 
 

4 8.1E-04 1.02% 

                 pvRSA/HF SDNN 7 n.a. n.a. 
 

9 1.5E-13 1.58% 
 

10 4.3E-05 1.38% 
 

10 2.0E-03 0.87% 

pvRSA/HF RMSSD 6 n.a. n.a. 
 

11 7.1E-14 1.62% 
 

11 1.3E-06 1.93% 
 

11 1.5E-05 1.70% 

pvRSA/HF pvRSA/HF 5 n.a. n.a. 
 

5 7.7E-17 2.01% 
 

5 1.4E-08 2.64% 
 

4 1.8E-03 0.89% 

NOTE: ΔR
2
 is the difference in percentage of explained variance by the multi-SNP genetic or 1274 

polygenic risk score between the models with and without the risk score while adjusting both for 1275 

age, sex, and principal components. 1276 

For Lifelines, NESDA, and TRAILS-Pop the weights (i.e. effects sizes) and number of genome-1277 

wide significant SNPs included in the risk score were adjusted by analytically extracting the 1278 

cohort's effect size and standard error from the meta effect size and standard error, respectively, and 1279 

recalculating the p-value based on these adjusted effect sizes and standard errors, since these 1280 

cohorts were included in stage 1 and/or 2. 1281 

n.a.=not available. 1282 

 1283 
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Table 3: Explained variance in HRV traits in the Lifelines (n=12,101), NESDA (n=2,118), 1284 

TRAILS-Pop (n=1,191), and ABCD (n=1,094) cohorts by the optimal polygenic risk scores 1285 

computed at the p-value threshold that explained the largest percentage of phenotypic variance. 1286 

 1287 

trait risk score cohort p cutoff N SNPs p-value ΔR
2
 

SDNN SDNN Lifelines <5E-7 13 6.8E-27 0.82% 
  NESDA <5E-8 6 2.6E-08 1.16% 
  TRAILS-Pop <5E-5 64 1.1E-04 1.23% 
  ABCD <5E-5 71 9.4E-05 1.39% 

SDNN RMSSD Lifelines <5E-8 8 2.4E-23 0.71% 
  NESDA <5E-6 23 1.2E-07 1.05% 
  TRAILS-Pop <5E-8 8 1.2E-04 1.23% 
  ABCD <5E-7 13 2.8E-06 2.00% 

SDNN pvRSA/HF Lifelines <5E-8 7 3.1E-19 0.58% 
  NESDA <5E-8 4 3.5E-05 0.64% 
  TRAILS-Pop <5E-7 6 9.7E-06 1.61% 
  ABCD <5E-5 67 9.2E-04 1.01% 

RMSSD SDNN Lifelines <5E-7 13 8.9E-31 0.95% 
  NESDA <5E-8 6 1.6E-10 1.46% 
  TRAILS-Pop <5E-8 7 8.3E-06 1.63% 
  ABCD <5E-5 71 1.6E-04 1.30% 

RMSSD RMSSD Lifelines <5E-7 12 2.8E-30 0.94% 
  NESDA <5E-7 10 2.7E-10 1.43% 
  TRAILS-Pop <5E-7 11 3.4E-07 2.13% 
  ABCD <5E-7 13 3.8E-07 2.34% 

RMSSD pvRSA/HF Lifelines <5E-8 7 1.4E-25 0.78% 
  NESDA <5E-8 4 3.6E-09 1.25% 
  TRAILS-Pop <5E-7 6 3.7E-08 2.47% 
  ABCD <5E-8 67 8.4E-04 1.02% 

pvRSA/HF SDNN NESDA <5E-8 6 1.1E-12 1.52% 
  TRAILS-Pop <5E-8 7 5.0E-05 1.36% 
  ABCD <5E-5 71 5.4E-04 1.09% 

pvRSA/HF RMSSD NESDA <5E-7 10 5.6E-14 1.69% 
  TRAILS-Pop <5E-7 11 3.3E-06 1.78% 
  ABCD <5E-7 13 1.9E-06 2.06% 

pvRSA/HF pvRSA/HF NESDA <5E-8 4 4.4E-13 1.58% 
  TRAILS-Pop <5E-7 6 1.6E-07 2.25% 
  ABCD <5E-5 67 1.6E-03 0.90% 

NOTE: Weighted polygenic risk score were determined based on independent SNPs in the stage 1 1288 

meta-analysis. For NESDA and TRAILS-Pop the weights (i.e. effects sizes) and p-values were 1289 

adjusted by analytically extracting the cohort's effect size and standard error from the meta effect 1290 

size and standard error, respectively, and recalculating the p-value based on these adjusted effect 1291 

size and standard error, since these cohorts were included in stage 1. 1292 

n.a.=not available. 1293 
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Table 4: Meta-analysis results for the identified loci in other ethnicities and combined meta-1295 

analysis results with European ancestry.  1296 

Locus Chr SNP Trait 
Allele Hispanic/Latino 

 
African American 

 
EUR+HIS+AfAm 

E/O N EAF β (SE) p-value 
 

N EAF β (SE) p-value 
 

p-value 

1 19 

rs12974991 RMSSD A/G 11233 0.065 
-0.162 
(0.018) 

7.05E-20 
 

6673 0.455 
-0.077 
(0.033) 

1.10E-02 
 

1.86E-63 

rs12974440 pvRSA/HF† A/G 404 0.048 
-0.518 
(0.174) 

3.06E-03 
 

1900 0.019 
-0.189 
(0.158) 

3.41E-01 
 

4.53E-41 

rs12980262 SDNN A/G 11233 0.048 
-0.161 
(0.070) 

1.04E-02 
 

6675 0.093 
-0.046 
(0.030) 

6.48E-02 
 

1.57E-24 

2 12 rs10842383 

SDNN 

C/T 

11233 0.854 
-0.053 
(0.012) 

2.45E-06 
 

6676 0.955 
0.056 

(0.026) 
9.83E-01 

 
7.61E-33 

RMSSD 11233 0.854 
-0.064 
(0.012) 

1.38E-07 
 

6673 0.955 
0.065 

(0.030) 
9.86E-01 

 
4.23E-32 

pvRSA/HF† 404 0.830 
-0.140 
(0.095) 

1.40E-01 
 

1901 0.959 
0.068 

(0.104) 
6.79E-01 

 
4.98E-25 

3 6 rs236349 

SDNN 

G/A 

11234 0.684 
-0.034 
(0.009) 

6.15E-05 
 

6676 0.724 
-0.017 
(0.011) 

6.57E-02 
 

1.76E-28 

RMSSD 11234 0.684 
-0.034 
(0.009) 

1.67E-04 
 

6673 0.724 
-0.021 
(0.013) 

4.79E-02 
 

5.88E-20 

pvRSA/HF† 404 0.704 
-0.164 
(0.080) 

4.13E-02 
 

1901 0.729 
0.004 

(0.043) 
4.87E-01 

 
4.64E-15 

4 12 

rs7980799 RMSSD A/C 11234 0.269 
-0.031 
(0.010) 

1.23E-03 
 

6488 0.097 
-0.029 
(0.021) 

7.70E-02 
 

1.57E-22 

rs1351682 pvRSA/HF† G/A 404 0.348 
-0.166 
(0.077) 

3.19E-02 
 

1901 0.142 
-0.082 
(0.058) 

6.91E-02 
 

2.00E-14 

rs1384598 SDNN T/A 11234 0.307 
-0.026 
(0.009) 

1.80E-03 
 

6676 0.146 
-0.024 
(0.015) 

5.41E-02 
 

2.88E-15 

5 7 
rs4262 

SDNN 

C/T 

11234 0.427 
-0.016 
(0.008) 

2.39E-02 
 

6676 0.608 
-0.028 
(0.011) 

5.87E-03 
 

5.36E-19 

pvRSA/HF† 404 0.410 
-0.014 
(0.074) 

8.46E-01 
 

1901 0.618 
-0.055 
(0.043) 

1.15E-01 
 

1.50E-11 

rs180238 RMSSD C/T 11234 0.367 
-0.024 
(0.009) 

4.05E-03 
 

6673 0.474 
-0.032 
(0.011) 

2.77E-03 
 

8.07E-19 

6 

14b 

rs4899412 SDNN T/C 11234 0.329 
-0.012 
(0.009) 

8.27E-02 
 

6676 0.419 
-0.009 
(0.010) 

1.86E-01 
 

5.96E-13 

rs2052015 RMSSD T/C 11234 0.173 
-0.015 
(0.012) 

9.94E-02 
 

6673 0.098 
-0.001 
(0.020) 

4.83E-01 
 

1.94E-09 

14c rs2529471 SDNN C/A 11233 0.485 
-0.018 
(0.008) 

1.38E-02 
 

6676 0.543 
0.003 

(0.010) 
3.83E-01 

 
2.08E-12 

14a rs36423 
SDNN 

T/G 
11234 0.193 

-0.021 
(0.011) 

2.41E-02 
 

6676 0.160 
-0.030 
(0.015) 

1.79E-02 
 

1.60E-14 

RMSSD 11234 0.193 
-0.017 
(0.011) 

7.05E-02 
 

6673 0.160 
-0.034 
(0.016) 

1.72E-02 
 

1.02E-11 

7 
15a rs2680344 SDNN A/G 11234 0.681 

-0.005 
(0.009) 

2.97E-01 
 

6676 0.450 
-0.024 
(0.011) 

1.32E-02 
 

2.90E-11 

15b rs1812835 RMSSD A/C 11234 0.426 
-0.012 
(0.009) 

8.83E-02 
 

1388 0.140 
-0.009 
(0.033) 

3.98E-01 
 

5.30E-10 

8 20 rs6123471 RMSSD+ T/C 11234 0.560 
-0.001 
(0.009) 

4.40E-01 
 

6673 0.739 
0.020 

(0.013) 
5.67E-02 

 
5.14E-06 

NOTE: SNPs sorted as in Table 1 according to the European ancestry combined meta-analysis p-1297 

value per locus. Significant ps are shown in bold (see text for criteria). Effect alleles were chosen to 1298 

reflect an increased risk for low levels of HRV, hence β's are all negative. 1299 

Chr: chromosome; bp: base pair position based on build 36 (hg18); Allele E/O: effect allele/other 1300 

allele; EAF: effect allele frequency; β: beta/effect size; SE: standard error of β; EUR: European; 1301 

HIS: Hispanic/Latino; AfAm: African American.  1302 

†p-value, allele, EAF, N from z-score weighted meta-analysis of all cohorts using METAL and β, 1303 

SE from inverse-variance meta-analysis of only HF cohorts using GWAMA.   1304 

+ β of participants of European ancestry differs significantly from that of participants from African-1305 

American (diff β = 0.044, p =0.0012) or Hispanic/Latino ancestry (diff β = -0.023, p= 0.0195). 1306 

 1307 


