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Chapter 1

Introduction

1.1 Problem Scope and Motivation

The work presented in this thesis concentrates on problems under the umbrella of Dis-

tributed Computing and the Machine Learning area of Computer Science. More precisely

the work focuses on Majority Problems in Random Walk and Population Protocol mod-

els in distributed settings as well as Unsupervised Clustering Problems. The distributed

models we consider involve agents whose computational power is limited in some fashion,

contrary to models allowing more powerful agents.

We live in an information age. Computing in various degrees is ubiquitous, in every

walk of life, it is ever present. As a complex society, we are becoming ever more reliant

on technology. We have came a long way from the advent of computers, being feasible for

solely large corporations, transcending to consumers having their own at home - which

was thought never possible. Further along in recent years which have focused on desktop

machines but the adoption rate of mobile devices is well past the tipping point. The

number of smartphone owners has increased from 400 million to 1.9 billion in the past

eight years. These smart devices allow us to always be connected to services and each

other via the internet.

As a society and in modern culture, we are wanting to be always connected. We

yearn for tasks to be automated, or aid in decision making - so much so that phone

applications can control the energy usage in our homes, turn o� our lights and appliances

from anywhere and now more recently, control our cars ignition, with the cars being able

to drive themselves.

Some of these applications can be achieved on a single device e�ciently, but other

systems may not perform so well. This could be a result of the application being too

complex that it takes too much processing power to compute in a feasible amount of time

- or it may be simpler, but the quantity of data data is so large that it has an adverse

a�ect on computational performance. After all, by always being connected and using

online services we create 2.5 quintillion bytes of data daily, 90% of the worlds data being

produced in the last two years alone [80]. This has given rise to the information age.

Vast amounts of data, generated from social networks, internet of things, multimedia,

1
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too large and complex for traditional storage and computational mechanisms, referred

to as 'Big Data' [74].

In light of the this, it could be argued that the uses and applications of technology

in the modern era is outpacing Moore's Law for single machines, reinforced by recent

announcements from hardware vendors that Moore's law is slowing [49] - exceeding ex-

pectations of the original prediction it would hold for a decade subsequent to the laws

inception in 1965 [104]. It is not a sound strategy to rely on the density of transistors

on silicon chips to double every two years as a solution to these problems.

The roots of distributed systems have been studied since the 1960s in operating

system architectures in singular machines, with processes communicating via message

passing models. The �eld advanced with the principles being applied to local networks,

the predecessor of the internet, ARPANET, and ultimately the internet as we know it

today. A shift to smarter systems in recent years is becoming standard to remedy the

modern limitations on all singular technological devices - utilizing the power of multiple,

distributed machines to complete tasks. Intelligently architected topologies that are scal-

able in terms of power and size, machines connected to each other able to work in synergy.

Many businesses that harness 'Big Data' and the opportunities that come with it are

opting to transfer their operations from utilizing independent servers to these intelligent

systems, or 'clouds' referred to commonly. Most notable examples of these distributed

systems are Microsoft's Azure platform [50] and Amazon Web Services platform [19].

There are many advantages of these systems, which include virtualized resources, paral-

lel processing, security, and data service integration with scalable data storage [74]. The

increase of organizations in industry shifting to these platforms is telling in isolation,

further highlighting the drivers and motivation surrounding the topic that is distributed

computing and algorithms being developed for them in the research community.

The same reasons motivate the work in this thesis regarding clustering algorithmics,

a branch of unsupervised machine learning - albeit in a more experimental setting. With

the rise of big data, as mentioned, concurrently rises problems with dealing with this

data. Whether it be storage, manipulation or visualization, there is a need in research

and industry to understand the data and derive meaningful information. There have

been many advances in architectural solutions to store big data intelligently with the

aim of fast data retrieval in mind, some examples being Hadoop [28] an alternative to

the lack of scalability from the standard SQL solutions.

A growing problem with big data in research is developing algorithms to aid in dis-

covering salient information from it that isn't easy to obtain heuristically. This is tackled

under the umbrella of machine learning, with advances in supervised learning methods

such as classi�cation modelling, examples being determining if customers will buy a prod-

uct or not (propensity to purchase), feeding back a binary result. Another supervised

method of regression modelling, following on from the previous example, to determine

how much revenue a customer will potentially generate, feeding back a real value. The

subtopic of machine learning relevant to this thesis is unsupervised clustering algorithms,
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which contrary to supervised, is more exploratory in nature. Clustering is used to group

samples together based on some similarity metric, preprocessing data so that they and

similar samples can be retrieved quickly or used as a form of meta analysis to derive

information. Whether it be for grouping similar web pages together more e�ectively to

provide users with almost instantaneous search results relating to keywords or grouping

customers together based on buying habits, demographic or other user speci�ed descrip-

tors or even clustering DNA sequences based on edit distance. A result of the data deluge

is large technology corporations such as Microsoft, Google, Amazon, Facebook, IBM are

investing heavily in machine learning algorithmic research [108] and a large number of

scienti�c applications for extensive experiments are currently deployed in the cloud and

will continue to increase because of the lack of available computing facilities in local

servers, reduced capital costs, and increasing volume of data produced and consumed by

the experiments [100].

The parallels drawn between these research areas are evident in the models and

methodologies we use to solve the problems in the following chapters. All scenarios are

embedded in the foundation of graph theory. We consider the local relationships of ver-

tices in graphs and how these can be used in the context of communication, information

dissemination and also community derivation. The work in the following chapters is

grounded in this premise and propose a variety of protocols to solve majority problems

in random walk and population protocol models, as well as algorithms that use only local

relationships to determine graph partitions.

1.2 Background

The following subsections discuss the recent work in related �elds of research to the work

presented in this thesis.

1.3 Algorithms

This section will describe useful algorithmic concepts, from design to analysis of per-

formance. An algorithm is similar to a recipe in the sense of following a routine to

solve some problem. More speci�cally, they are mathematical processes executing se-

quential instructions, or concurrent instructions to solve some problem that a computer

understands.

1.3.1 Design

Designing algorithms is a complex task - they must be correct and also e�cient. The con-

cept of algorithm design as stated in [113] relies on two bodies of knowledge, techniques

and resources.

Firstly, techniques. The area of algorithms is multidisciplinary in its facet. In the

area of Computer Science speci�cally, algorithm design draws from and capitalizes on
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the wealth of knowledge at our �ngertips. For instance, there are various data structures

that can be incorporated into an algorithm, each with its own insert, update and delete

costs. There are other in�uencing techniques and paradigms such as dynamic program-

ming, divide and conquer, back-tracking and many others. The decision of techniques to

combine and use is as a result of each heuristic process.

Secondly, resources. As stated, the general area of computer algorithms is widely

researched. There exists abundant research papers on any speci�c �eld, with constant

advances pushing the boundaries of human knowledge. Understanding this and what

algorithms are available already is greatly important in algorithm design. Currently

known information can be built upon into and incorporated into newer algorithms.

1.3.2 Analysis

Algorithms can be studied and analyzed in a machine independent way, the take-home

lesson in [113]. They can be compared and contrasted against each other in a variety

of settings using asymptotic analysis of varying degrees of complexity - generally, with-

out the need of implementation. Another machine independent way of determining an

algorithms performance is based on the existence of a Random Access Machine (RAM)

whereby each operation in the algorithm accessing memory is classed as one time step -

although this method is not used in this thesis.

Asymptotic analysis is denoted using 'Big O Notation', a more abstract level of

analysis which does not consider high levels of granularity such as the way an algorithm

accesses memory, or how frequently it does so. Using said notation, the best, average and

worse-case complexities of algorithms can be studied and compared easily and e�ectively,

independent of machine or implementation.

De�nition. Big O: A theoretical measure of the execution of an algorithm, usually the

time or memory needed, given the problem size n, which is usually the number of items

in the dataset.

Generally, algorithms are compared on their order of growth as a function relative to

n, f
(
n
)
. There exist many esoteric functions, but the most commonly seen functions are

constant, logarithmic, linear, quadratic, cubic and exponential in nature. The di�erence

in time complexity between varying orders of growth becomes more apparent for larger

instances of n.

For the work presented in this thesis, we analyze our proposed solutions to problems

in terms of Big O notation. The speed and correctness all available and proven in

subsequent chapters.

1.4 Distributed Computing

Two bodies of work constituting two chapters in this thesis are focused in the research

area of Distributed Computing. We proposed multiple distributed algorithms in various
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distributed settings and models, discussed in detail in later chapters. But �rstly, some

general de�nitions to supplement the work in Chapter 2 and Chapter 3.

De�nition. Distributed Setting: There are many topologies of machines that make up

a distributed setting, but generally these machines are networked in some way, whether

it be wireless or physically and have no central or controlling aspect. These machines

can then communicate via these physical or wireless links and pass messages through

them.

De�nition. Distributed Algorithm: Unlike sequential algorithms, these algorithms are

designed to work in synergy although running concurrently on separate processors in

di�erent machines via communication protocols. Unlike parallel algorithms which have

a shared memory resource (and usually multiple processors on one machine), distributed

algorithms have their own independent memory and processor.

As de�ned above, distributed computing is a current research topic driven by the

rise in popularity of cloud architectures, being adopted by industry and academia for

business and research related purposes. These architectures are a topology of machines

connected together that communicate in some fashion to solve a problem that arises from

segregated memory on all machines. Although, some systems can be developed to not

rely so heavily on inter-process communication by utilizing shared memory resources [87].

Each machine works independently of one another, but work together to solve algorithmic

problems and agree consensus on de�ned issues that arise from such architectures.

Many models can be embedded into a distributed system, with parallel algorithms

working concurrently on multiple processes on one machine, using shared or individual

memory. The model studied in this thesis are distributed algorithms adopting a message

passing model. In this model there exists one algorithm copied on multiple machines

that can work independently of the network topology and ultimately determine and dis-

seminate the correct result or consensus to all machines to ensure they are in a consistent

state.

De�nition. State: Machines in a distributed setting can communicate through physical

or theoretical links adhering to some algorithmic process or protocol. These algorithms

or protocols have an initial state, before solving or attempting a task has begun. There

can be many intermediate states in between initiation and the �nal state of task being

completed and result dissemination.

The evaluation and design of these algorithms adhere to the same paradigms outlined

in the previous section with the additional caveat of network stability and failure, which

can be included or excluded depending on the model.

1.5 Machine Learning

The �nal body of work in this thesis is related to the area of Machine Learning - a term

to encapsulate techniques and algorithms used to infer information from large datasets.
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Described as "the �eld of study that gives computers the ability to learn without being

explicitly programmed"by Samuel [110]. An ever increasingly relevant area for research

in a wide array of domains as the amount of data produced is increasing at a rapid rate

from a multitude of sources, known as 'Big Data'.

De�nition. Big Data: Large and complex data sets, though existing already for decades,

is currently being generated at a rapid rate as a result of the inception of smart devices,

internet of things, social media, amongst many others. The consensus for general traits

of big data are as follows; Volume, data too large to store easily in traditional databases.

Variety, data comes in structured format, examples being age, salary, location and also

arriving unstructured, in formats such as text, blogs, statuses. Volatility, data can be

static, such as birth place, date of birth, but can also be dynamic, examples being current

address, employer, current music track being played, with di�erent levels of dynamism.

Machine learning is the umbrella that covers a wide range of computational problems,

including a host of feature tuning problems. The work in this thesis is concerned specif-

ically with areas of supervised and unsupervised learning methods, de�ned as follows.

De�nition. Supervised Learning: The task of inferring a function from labelled training

data. Supervised learning procedures take two parameters, a set of vectors X and a set of

corresponding labels y inferring desired output. Algorithms are typically trained on 70%

of the dataset (function generation) and evaluated on the remaining 30% to determine

performance of the function. Formally, given a training set (xi, yi) for i = 1..n, we want

to create a supervised model f that will predict label y for a new x.

De�nition. Unsupervised Learning: The task of inferring a function to describe hidden

structure information from unlabelled data. Unsupervised learning procedures take a set

of vectors X and produce a set of labels y. As the data is unlabelled, it is di�cult to

evaluate the performance of these algorithms as there is no error or residuals to study.

The goal of machine learning is a solution to remedy the problem of designing and

implementing explicit algorithms on a per problem basis, which in practice is highly

infeasible. Machine learning solutions contain generalized algorithms that learn through

éxperienceánd can apply the knowledge that aid in determining outcomes to varying

problems. The umbrellas that these algorithms are encapsulated by are de�ned as follows.

De�nition. Classi�cation Problems: the process of determining if an object from a

set X belongs to a speci�c group or not, or belonging to a set of groups or not. This

is binary valued and multi-valued classi�cation respectively. As a supervised learning

problem, these algorithms learn based on a training subset of data points z from X and

corresponding ground truth labels in y to determine the outcome for the remaining X−z
samples, which can then be evaluated to determine performance.

De�nition. Regression Analysis: the process of determining real-valued outcomes. An-

other supervised learning problem, these algorithms learn based on a training subset of
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data points z from X and corresponding ground truth labels in y (actual real-values) to

determine the outcome for the remaining X − z samples.

De�nition. Clustering Problems: the process of determining what group, or segmen-

tation of X, an object from a set X belongs to using various similarity metrics. As an

unsupervised learning algorithm, the training data X has no ground truth labels y to

learn from.

De�nition. Recommender Problems: the process of determining suggesting an object

to a person based on data derived from their habits. An unsupervised learning algorithm

that uses training data X with no ground truth labels y to learn from.

1.6 Research Areas and Recent Work

The following subsections contain recent work in the speci�c problems we study, including

the models and complementary theories.

1.6.1 Distributed Majority Problems

Distributed settings are copious in topologies and communication mechanisms based on

models with varying constraining impositions and therefore recent advances are numer-

ous. Recent works on the problem of distributed majority include many papers solving

consensus, problems in which all machines must agree on a common value, while being

fault tolerant. These problems are important in determining control of distributed sys-

tems. An article covering optimal distributed algorithms for minimum weight spanning

trees, counting problems and leader elections was published in 1987, new algorithms

were presented that improved on many previous results [33]. A recent article studies

the complexity of leader election problems in distributed settings, more speci�cally ran-

domized implicit election [83]. New algorithms for fast Byzantine leader elections in

dynamic networks were proposed by Augustine et al. whereby all nodes are aware of

all information in the distributed network [31]. Recently, the reduction of multivalued

consensus to binary consensus has been shown in [23, 38, 60]. Angluin et al [23] provide

an approximate solution to solve this problem which also tolerates Byzantine behavior,

the �rst population protocol of its kind. Ezhilchelvan et al [60] produce the �rst random-

ized consensus protocol that doesn't require a priori knowledge of the values that can

be proposed by the processes. The notion of using a charge was �rst proposed by Birk

et al [38] to solve a majority voting problem, in which they combine e�cient spanning

forest algorithms with a �charge fusion� algorithm.

1.6.2 Random Walks

Random walks have been extensively studied in many academic disciplines - due to their

lightweight and local nature. There is vast literature available covering the topic, its

variants and many applications, notably monographed in [78, 79] and more recently
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in [114]. Applicable work related to results in this thesis are shown in [32] by Avin et al.

Work in this paper proved that random walks can cover all the vertices of dynamic graphs

in �nite, possibly exponential time when the dynamic graphs either evolve in a Markovian

way or they are always connected, i.e. to prevent a random walker becoming isolated

at a vertex. They also show that a lazy random walk covers any connected dynamic

graph in polynomial time in the size of the graph and that a simple random walk will

also cover a dynamic graph itself is obtained by sampling from a certain probability

distribution in polynomial time. A rigorous framework for the design and analysis of

random walk algorithms in dynamic networks is proposed in [112]. In the same paper a

fast distributed algorithm for dissemination was proposed which utilised random walks,

employing a fully-distributed token forwarding mechanism. Random walks have also

proved useful in developing fast byzantine agreement algorithms.

We also study random walks [78] in the context of community detection as intuitively

random walkers remain inside communities longer due to high edge density. Random

walks were used to determine distance between pairs of vertices in [119], which was

further developed to study biased random walkers in which walkers would orientate

towards vertices of high common neighbours in [120].

1.6.3 Population Protocols

Population protocols are a model of distributed computing in which agents cooperate

to collectively perform computational tasks. This model limits the agents individual

computational resource and they have no control over the interaction schedule of agents.

The agents instead interact in pairwise fashion according to a random scheduler governed

by some fairness condition. The interaction between agents may update the local state

of one or both participants with the goal of having all agents converge to some state that

represents the output of some computation.

The �rst protocols were proposed by Angluin et al. [27] to stably compute any predi-

cate in the class de�nable by formulas of Presburger arithmetic, which includes Boolean

combinations of threshold-k, majority, and equivalence modulo m. The protocols pro-

posed in this paper have been expanded upon as they are useful in representing abstractly

various network models such as wireless sensor networks [59, 103], chemical reaction net-

works and gene regulatory networks [41].

An objective of some population protocols closely related to the contents of this

thesis is majority problems or determining consensus in a network. The work in [103]

propose models to solve binary consensus in which agents begin in one of two states

and ultimately converge with all agents knowing the initial majority. Similar models are

proposed in [16, 55] to solve complementary tasks such as leader election, a task in which

all agents must eventually converge with only one in a leader state.

Recent work has been proposed in [16, 46, 55, 56] to understand the complexity

of these aforementioned tasks in this distributed model, speci�cally the time relative to

the number of states each node can store. The work by Alistarh et al. [15] considers
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the relation between number of allowable states in a protocol and the time complexity

and propose improved algorithms to problems in the majority and leader election do-

main. The book written by Michail et al. [93] further provides a detailed composition of

population protocols.

1.6.4 Clustering

The advent of modern clustering arrived subsequent to the proposed algorithm by Girvin

and Newman [71], a modularity based method in which edges with the highest betwee-

ness centrality were trimmed from the graph until k clusters were derived. Betweeness

is a metric used to determine the activeness of an edge in the network, i.e. edges of

high through-�ow. Edges with a high through-�ow are considered to be intra-cluster

edges connecting communities and therefore should be cut �rst. This method is com-

putationally expensive, approximation techniques were developed such as random-walk

betweeness [98] as the recalculation of the betweenness value is essential in determining

meaningful communities. Many papers have built upon the foundations of this algo-

rithm in [42, 99] and made augmentations to determine overlapping clusters [73, 76].

We consider algorithms grounded in connectivity centric models, such as hierarchical

clustering [66]. The problem of clustering is an inter-disciplinary �eld and research is

segregated. There have been many algorithms to solve the problem, but the solutions

are generally data driven. There is currently no universal agreed upon de�nition of clus-

tering with well de�ned metrics for comparison, but work to address these de�ciencies

has been made in [52]. Benchmark graphs were devised in [71] with modi�cations and

adaptions in [29, 43, 47, 84, 117]. Clustering speci�c evaluation metrics were introduced

in [64, 88, 107]. The lack of adherence to a standard evaluation pipeline can lead to an

unstructured, chaotic �eld. The work by Fortunato in [63] serves as a useful guide for

any aspiring researcher in this area from all disciplines.

1.7 Summary of Results

1.7.1 Distributed Majority Problems in Random Walk Models

The results we obtained in this area have been published in [67] and are presented in

Chapter 2. In the work presented we propose and analyze a distributed protocol that

will determine consensus for the Majority Color Problem (MCP).

The work presented here is based upon the work in [89] where a similar protocol

was used but in the context of population protocols. Our protocol guarantees that if a

majority exists, then eventually each node in the network will learn of the initial majority

color.

Originally, if no majority existed then our protocol would leave an arbitrary assign-

ment of colors between nodes in the network. In later studies and documented in the
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journal version of this paper, a new state was added such that if there is no majority,

each node also eventually learns this fact - now discovering and distributing equality.

Our protocol requires only three bits of memory per node and uses a simple token

message, two bits in size. We assume the network is unknown to the nodes, meaning

they know nothing of their neighbors or topology. Similarly, each node does not have a

unique identi�er, meaning the token can not keep track of where it has been. The nodes

simulate a random walk as subsequent to every turn, a neighbor is selected at random

to receive the token.

We show correctness of our protocol for any connected graph and even for a natural

class of dynamic graphs. We show upper and lower bounds on the convergence time of

our protocol and discuss termination. We also provide a variant of our protocol, in which

the token uses a counter that can count only up to n log n, where n is the number of

network nodes.

Subsequent to the publication of this work, we looked at further extending this pro-

tocol to solve variations of the MCP. We build on and provide adaptations of the original

protocol to solve k-surplus problem.

The original protocol will determine the absolute majority color in the network,

whereby more than n/2 network nodes are of one color. With the introduction of k colors,

there may exist a color that is more abundant than all remaining colors individually, in

direct comparison, but there is no color that is believed to be the majority by more than

half the network nodes - this is the case of relative majority. We provide a way to use our

augmented distributed protocol to determine consensus of equality, absolute and relative

majority for k colors.

We analyze di�erent mechanisms for these protocols in terms of the memory required

for the nodes or token(s) used to perform the random walk(s). Finally, we also consider

random walks that can count the di�erence of colors and we show upper bounds on the

counter value by using coupling arguments.

A simulation of the protocols proposed in this work has been created using Python

and is available for use in [8].

1.7.2 Distributed Majority Problems in Population Protocol Models

In this research area we presented e�cient population protocols for several variants of

the majority problem [68]. Initially we make an important amendment allowing for

the discovery and propagation of equality in this setting. We propose memory e�cient

protocols in populations with an arbitrary number of colors, represented by k-bit labels.

Speci�cally, the protocols are asymptotically optimal for testing absolute majority and

relative majority in populations with C colors. The protocols we propose rely on dynamic

formulation of the majority problems as opposed to solving static majority which has

been widely studied in the past. The case of dynamic majority refers to the case were

original colours can change in time due to some external factor (which may alter the
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outcome of the majority protocol). Another salient result shown in this section is the

inauguration of a framework to allow for multi-stage population protocols to be designed.

1.7.3 Clustering in Structured Graphs

In the context of this research area we present a method of clustering data inspired by

methods such as hierarchical clustering and theories from phylogenetics or evolutionary

biology in which natural hierarchies are derived from the network. Our method uses the

local relationships in the network topology to create constraints that dictate the order in

which vertices and clusters should be merged. The objective is to create a hard clustering

procedure which retrieves consistent clusters on identical graphs. We propose multiple

ways to generate constraints based on the local relationships in the graph, which can

a�ect the generated clustering hierarchy. We study the procedure on simple networks,

standard in most clustering papers and discuss the steps which we took to augment the

procedure into the �nal variant. We provide a ranking mechanism for the captured data

and order the constraints respectively. The clustering building method borrows concepts

from phylogenetics, with the options to include or exclude additional concepts such as fan

triplets and forbidden triplets. We show comparisons with other clustering methods on

various real-networks and synthetic networks, including popularised benchmark graphs

and discuss the performance using clustering speci�c evaluation metrics. We discuss the

advantages and disadvantages of such a method and areas of future research. We provide

other prototype functions such as thresholding which allows early termination, which is

useful when considering post processing techniques.

1.8 Thesis Structure

1.8.1 Chapter 2

The work in this chapter is focused on the conference paper published in [67] and the

adapted journal version. The topic is of distributed majority problems - more speci�cally,

the majority color problem. The chapter explains the problem area, the model and

proposes a very e�cient solution in time and space in static and dynamic settings.

1.8.2 Chapter 3

The contents of this chapter is focused on the conference paper published in [68] in which

we present novel memory-e�cient population protocols for several variants of majority

problem including dynamic formulation of majority problems.

1.8.3 Chapter 4

The work presented in this chapter proposes a new method to locally sample data points

and build clusters agglomeratively using this derived information. We look at various

termination criterions, speci�ed k (where k is the number of desired clusters), as well as
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thresholding functions and analyze the performance of our method on a set of benchmark

graphs and parameters. We assess the performance of our method against the evaluation

metrics speci�ed in [63].

1.8.4 Chapter 5

The �nal chapter concludes the work presented in this thesis and discusses open problems

and further channels of related research. We also state the impact of our work in the

�eld in our �nal remarks.

1.9 Authors Contribution

The work presented in Chapter 2 is based on the paper [67], originally co-authored by

Leszek G¡sieniec, David D. Hamilton, Russell Martin and Paul G. Spirakis. Further

research was made with the addition of Jurek Czyzowicz and Evangelos Kranakis which

resulted in a journal version of this paper. The work in Chapter 3 is based on the

paper [68] co-authored by L. G¡sieniec, D.D. Hamilton, R. Martin, P. Spirakis, and

G. Stachowiak. Chapter 4 is a study based on unsupervised clustering algorithms, co-

authored by L. G¡sieniec, D.D. Hamilton and R. Martin. The remaining work presented

here is written by the student for this PhD project and supervised by R. Martin and

L. G¡sieniec.



Chapter 2. Introduction 13

Title Authors Appeared

The Match-Maker: Constant Space
Distributed Majority via Random Walks [67]

L. G¡sieniec,
D.D. Hamilton
R. Martin

and P. Spirakis

1SSS 2015

The Match-Maker: Journal [51]

J. Czyzowicz,
L. G¡sieniec,

D.D. Hamilton,
E. Kranakis,
R. Martin,

and P. Spirakis

TBD

Deterministic Population Protocols
for Exact Majority and Plurality [68]

L. G¡sieniec,
D.D. Hamilton,
R. Martin,
P. Spirakis,

and G. Stachowiak

2OPODIS 2016

Agglomerative Phylogenetic Clustering
L. G¡sieniec,

D.D. Hamilton,
and R. Martin

TBD

Table 1.1: A table of the author's publications and co-authors.

1SSS 2015: 17th International Symposium on Stabilization, Safety, and Security of Dis-

tributed Systems, 2015

2OPODIS 2016: The 20th International Conference on Principles of Distributed Sys-

tems, 2016





Chapter 2

Majority Problems in Random Walk

Models

2.1 Introduction

In this chapter we consider solving majority problems in distributed networks utilizing

random walks and limited memory. We propose and analyze here a simple protocol for

consensus on the majority color in networks whose nodes are initially one of two colors.

Our protocol guarantees that, if a majority exists, then eventually each node learns the

majority color. If there is no majority, each node also eventually learns this fact. Our

protocol requires only three bits of memory per node and uses a simple token message,

two bits in size, that performs a random walk. We show correctness of our protocol for

any connected graph (even unknown to the nodes) and also for a natural class of dynamic

graphs. We show upper and lower bounds on the convergence time of our protocol. We

discuss termination and we also provide a variant of our protocol which the token uses

a counter that can count only up to
√
n log n, where n is the number of network nodes.

Our basic (memoryless) protocol takes only O(n log n) expected time on the clique which

surprisingly does not deviate from the cover time of the random walk, and O(n2m) time

on any connected undirected network of m edges. This bound is matched from below by

the path. Using this majority protocol, we show extensions so that nodes can conclude if

there is a k-surplus (one of the two colors exceeds the other by k or more), and extensions

to three or more colors, so that nodes can conclude if there is an absolute or relative

majority. We analyze di�erent mechanisms for these protocols in terms of the memory

required for the nodes or token(s) used to perform the random walk(s). Finally, we also

consider random walks that can count the di�erence of colors and we show upper bounds

on the counter value by using coupling arguments.

2.1.1 The problem, model and motivation

Consider an undirected and connected graph (or network) G = (V,E) with |V | = n

vertices (nodes) and |E| = m edges (links). Initially, each node is colored either blue

15
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(BLUE) or red (RED). In the sequel we use X for X = BLUE (resp. RED) to denote

RED (resp. BLUE), i.e. if X is a color then X is its �complement�. No node can store

more than a �xed number of bits, in fact, not more than 3 bits. The main problem is

to devise a correct and e�cient distributed procedure executed by the network nodes

which can communicate with neighbors via constant-size messages. Eventually, all nodes

must agree on the initial majority color, if such a majority exists. In the case when no

majority exists, the nodes must also eventually ascertain that knowledge. We call this

the Majority Color Problem (MCP). The main purpose of the work in this chapter is to

propose and analyze a speci�c algorithmic procedure which solves the MCP, with only

O(1) bits of memory per node and O(1) bits per message passed between nodes.

We also consider the k-Surplus Problem, that is determining whether one of the two

colors occurs on k (or more) vertices than the other color. We further consider the case

when there are more than two colors, where �majority� can now mean �absolute majority�

(where one color is on more vertices than all other colors combined), or a �relative

majority� (where one color beats any other single color in a one-on-one comparison,

also sometimes called a �plurality�). For more than two colors, we consider how we can

adopt our solution to the MCP (for two colors) to solve these other problems and how

to implement these mechanisms in terms of their memory usage. First let us describe

our model.

We assume that the network is synchronous in that executions of our protocols are

coordinated in time and performed in sequence. Speci�cally, the random walker moves,

performs an action, updates itself and the network nodes in one step of the clock. We

analyse the runtime of our protocols according to these steps. We consider here networks

that are unknown to the nodes, where each node knows only the links to its neighbors.

We also consider dynamic networks in which neighbors may change from round to round.

Because of the above, we allow a node to select a random link incident to it and send a

message via that link. In other words, we allow nodes to initiate and maintain a random

walk in the unknown graph.

Random walks have been extensively studied in distributed computing in the context

of problems like exploration and information dissemination. In this chapter we show

that random walks are suitable, in particular they are very e�cient in time and space,

to solve the MCP. The random walk acts here like the match-maker person (in olden

times) in several countries, going from village to village and trying to match boys (BLUE)

with girls (RED). Upon encountering a boy, the match-maker gets his �color� and places

him in a �matched� condition and then proceeds to �nd a corresponding girl via the

random walk in the network. Hence, we call our proposed protocol �The Match-Making

Algorithm�.

Correct majority protocols using messages only a few bits in size, that only perform

random walks, are very useful from a security point of view since:

(a) The origin of a random walk cannot be traced back.
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(b) An eavesdropper that intercepts a token (of a few bits), doing a random walk, cannot

infer anything about the vote of a particular person, nor the result of the voting

(assuming that they cannot determine if the process has converged to the �nal result).

As we shall see, our proposed solution satis�es (a) and (b), and can be used in unknown

(and even dynamic) networks, without the need of any centralized controller or vote

aggregator.

One of the important measures of performance of a random walk is the cover time:

De�nition 2.1. Cover Time: consider a random walk on an undirected, connected

graph, starting at node v. Let tv be the minimum time for the walk to visit all of G's

vertices at least once. Let E(tv) be the expected value of tv. The (expected) Cover Time

of G, denoted C(G), is

C(G) = max
v∈V (G)

E(tv).

In this work we also consider dynamic networks i.e. graphs where the neighbors of

every node change in an adversarial way in each round of the global clock. However, we

assume that our dynamic networks change due to a benign adversary that satis�es three

properties:

De�nition 2.2. Benign adversary: an adversary that changes the graph structure per

round is benign if and only if

1. The adversary is oblivious to any random choices made by our protocol.

2. For any two nodes u,v and any time t0, the edge {u, v} shall (re)appear in time

(round) t0 + t1, with t1 bounded above by some �nite integer β (which may depend

on the number of nodes, n, in the graph).

3. The adversary maintains the nodes of the graph (no node deletions or insertions).

We call β the tolerance time of the dynamic graph.

The dynamic graphs we consider are controlled by a benign adversary as we can

guarantee that the nodes in the graph are maintained and the edges between a pair of

nodes will reappear at some point in the future, de�ned by β. Combined with the fact

a benign adversary is oblivious to the transitions of our protocol, we can guarantee that

our protocol will converge on a dynamic graph with these properties. Contrary to this,

on a dynamic graph controlled by a malicious adversary, as our protocol in this chapter

relies on the graph structure to solve the problem we cannot guarantee the protocol will

converge. For example, the random walker may become isolated on a node and never be

able to transition to another.

2.1.2 Our Results

We provide here a simple distributed algorithm called BASIC that uses only (1) 3 bits

of memory per node, (2) a single token of 2 bits long, and (3) always converts the color
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of all n nodes in the graph to the initial majority color, if such a color exists. Our

algorithm, in its basic form, does not terminate but converts all colors to the majority

color in �nite time, even in unknown or dynamic graphs (assuming a benign adversary as

in Def. 2.2). One can equip the system with a global clock readable by all nodes allowing

termination of our process with high probability (w.h.p.)1 if the value of n is known by

the vertices. We provide a method to compute a lower bound on the convergence time

of BASIC for any given initial placement of node colors. If there is no majority, BASIC

will also converge, in the sense that every node will become aware of the fact that no

majority exists, and this knowledge will persist forever in each node after a �nite number

of steps of the BASIC protocol.

We show that BASIC converts all nodes to the majority color in expected O(n log n)

time for the clique graph and in at worst O(n2m) time for any connected graph. Our

bound for the clique matches the cover time of the random walk. Our bound for arbitrary

graphs is tight on the line. We consider random walks that can count the di�erence in the

number of colors visited, and show non-trivial upper bounds on the counter value in order

for such procedures to work correctly. Finally, we consider related problems such as the

k-surplus problem (does one color appear on k or more nodes than the other?) and the

extension of the majority problem for three or more colors, with di�erent interpretations

of the meaning of �majority�.

Outline of the Chapter

This chapter is organized as follows:

Section 2.2 considers the MCP, and our proposed (random-walk based) protocol for

solving that problem. We show our �BASIC� protocol is correct and give a general upper

bound for convergence in any connected graph.

Section 2.4 considers the special case of the clique Kn, showing the Θ(n log n) con-

vergence time for BASIC on Kn.

Section 2.5 describes a method for �nding a lower bound on the convergence time for

BASIC in a general graph by computing matchings in the graph using the Hungarian

method.

Section 2.6 investigates terminating the BASIC protocol. The description of BASIC

in Section 2.2 indicates that the procedure does not terminate, although it does converge

to the correct solution in polynomial-time (in the size of the graph). With additional

information, say, the use of a global clock, we show how BASIC can terminate with the

correct solution (with high probability).

Section 2.7 considers a special case of graphs with a small cover time, and how BASIC

could be made to terminate (with high probability) in that case, by using a counter that

only requires a small amount of memory.
1�With high probability� means with probability at least 1 − c

n
for some constant c, where n is the

number of nodes in the graph.
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All the previous sections consider only static graphs. Section 2.8 considers a class of

dynamic graphs. These graphs can vary according to a benign adversary (see Def. 2.2),

and BASIC still correctly solves the MCP problem in polynomial-time (with high prob-

ability).

Sections 2.10, 2.11, and 2.12 discuss problems related to MCP. In particular, we

consider the k-surplus problem (determining if one color occurs on k or more vertices

than the other in the graph), and majority in the case of three or more colors. For more

than two colors, �majority� can mean �relative majority� or �absolute majority�, and we

consider both meanings (Sections 2.11 and 2.12, respectively).

Finally, we conclude with some discussion of the use of random walks vs. population

protocols in Section 2.14.

2.1.3 Previous Work

Our proposed method is inspired by the work in [89] where a similar protocol was used

in the context of population protocols. Here we convert the ideas of [89] into a message-

passing protocol that employs random walks and we prove its correctness for unknown

static networks and for a certain natural class of dynamic networks. For the clique and

for general graphs we show expected convergence time of O(n log n) and O(n2m) respec-

tively, while the corresponding times in [89] were O
(

n2 logn
|majority|−|minority|

)
and O(n6).

Avin et al [32] have proved that random walks can cover all the vertices of dynamic

graphs (in �nite, possibly exponential, time) when the dynamic graphs either evolve in

a Markovian way or they are always connected. Our model of dynamic graphs is not

covered by those models because our dynamic graph can evolve in an adversarial way

and may also not be connected at any (or all) rounds during the execution of the BASIC

algorithm. Because of the �nite expected cover time of the model of Avin et al, it can

be easily shown that our protocol is also correct for those dynamic graphs.

Other works on distributed majority include [23, 60, 96] which show how to reduce

multivalued consensus to binary consensus. However, such protocols assume either a

stronger network with broadcast [96] or randomization [60].

The notion of using a charge was �rst proposed by Birk et al [38] to solve a similar

problem, in which they combine an e�cient spanning forest algorithm with a �charge

fusion� algorithm. That paper proposes a stronger model to solve a more general problem,

which has more requirements and enables direct access to neighbors. Also, their solution

relies on larger memory and additional computation.

In contrast, our method for the MCP (with two colors) requires only a single token

of 2 bits able to perform a random walk in the network, and is always correct in the

sense that if an initial color majority exists, then eventually all nodes agree on the

majority color, or correctly conclude there is no majority color if none was present at

the start of the protocol. Our method performs no artihmetic calculations and instead

represents a �nite state machine. The topology of the graph is unknown to the vertices
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and vertices are anonymous. For basic notations on probability, martingales and random

walks, see [18, 62, 97].

2.2 The Majority Color Problem

Our proposed method presumes the existence of a single token (message), initially in

some arbitrary node which performs a random walk around the graph. The protocol,

described in Section 2.2.1, is a slightly modi�ed version of the original match-maker

protocol given in [67], one in which a new �color� (namely, one we call NEUTRAL) has

been introduced that allows for ties in the network to be determined.

Each node stores information as an ordered pair that denotes its state in the form

(color, importance). The �rst component, �color� can have a value in {RED,BLUE,
NEUTRAL} and begins with a color RED or BLUE. The second component denotes

�importance� which can have a value in {HIGH,LOW} and begins in the state HIGH.

The token can have a value belonging to {RED,BLUE,NEUTRAL} and begins as

NEUTRAL.

To save space in what follows, we abbreviate RED, BLUE, NEUTRAL, HIGH,

and LOW as R,B,N,H,L, respectively.

2.2.1 The Match-Making Algorithm with Equality (BASIC)

Our proposed method to solve the MCP is provided here in the form of a state transition

table. Note that in the protocol below, only transitions where the state of the token

and/or one of the vertices changes are included. Interactions not listed do not result in

any change of state for the token, nor the node with which it is interacting.

We provide the state transitions below for the Match-Maker with Equality protocol

that we call BASIC. The protocol will convert all nodes to the majority color if such

a color exists, or all nodes will be converted to NEUTRAL if there is no such initial

majority.

In the description of the interactions below, we note that C ∈ {R,B}, and X,Y ∈
{R,B,N}. Further, for C ∈ {R,B}, C denotes the �opposite� color, e.g., if C = R, then

C = B.

The token begins with the state (color) N , and can take on one of the states (colors)

R,B, or N during the protocol.

The �Process stage� designations in the table are mnemonics to help us understand

the Match-Making Algorithm. Intuitively, BASIC is looking to match pairs of vertices

that begin with opposite colors. When the token is in state N , it is looking to begin a

match between opposite colored vertices. When the token has color C (in {R,B}), it is
looking for a node with color C that has high importance, i.e., to complete a matching

between these oppositely colored vertices. The �Inform� transition is to allow the token

to pass information to vertices about the majority color (or what the token currently



Chapter 3. Majority Problems in Random Walk Models 21

Initialization: Each node v begins in state (Cv, H) and the token begins in state N at a
random node.

Transition table:
Process Token Node New token New node
stage state state state state

Begin Matching N (C,H) C (N,L)

Complete Matching C (C,H) N (N,L)
Inform X (Y, L) X (X,L)

Figure 2.1: The BASIC protocol.

�believes� is the majority color). The correctness of BASIC is proven in Theorem 2.3,

which is formalizing the statements above.

Note that the random walks de�ned here for the token are �extended� or �lazy� in

the sense that the token may choose to stay at the same node (of degree dt at round t)

with probability 1
dt+1 . Also note that, in each round only one node executes the protocol

because there is a single token in the network.

2.2.2 Correctness and convergence of BASIC

Theorem 2.3. (Correctness of BASIC) In any static undirected, connected, �nite graph

G = (V,E), protocol BASIC eventually turns the color of every node to the initial ma-

jority color, even if the graph and its size are unknown to the nodes.

Proof. The token matches each node of color C ∈ {R,B} and high importance (i.e. as all

nodes are initially) to a node of color C of high importance, and both vertices turn to low

importance. Thus, the initial (high importance) nodes are matched in RED-BLUE pairs.

If a majority color C initially existed, then eventually the token will �nd it (by visiting

all nodes), and then it will walk in the graph converting all nodes (of low importance)

to the color C, leaving all nodes with the knowledge that C is the majority color. If no

majority color existed at the start of the protocol, all nodes will eventually be converted

to the state (N,L), and the token will have state N . Speci�cally, after the last RED-

BLUE match occurs and after the token visits every node one additional time, all nodes

have the correct conclusion that no majority existed.

For every color matching that needs to be made, the token's random walk needs time

at most equal to the cover time of G. Finally, it needs only the cover time of G in order

to convert the color of all nodes to the �rst majority color having no match (if there

was a majority), or the cover time to ensure that each node knows that there was no

majority. So, the token needs, at worst, n + 1 cover times to convert all colors to the

initial majority color (if there was an initial majority). We also know that the expected

cover time of any �nite connected graph G is �nite with probability 1. By linearity of

expectation, and since the walks are one after the other, the total time to convergence

to the initial majority is �nite with probability 1.
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Corollary 2.4. The BASIC protocol needs an expected number of rounds at most equal

to (n + 1) · E(C(G)) until convergence. For any connected graph with n nodes and m

edges, BASIC converges in expected time O(n2m).

Proof. BASIC needs at most n
2 cover times to match appropriate colors of high impor-

tance and at most n2 cover times to �nd a new color of high importance every time. Then

BASIC needs a �nal cover time to convert all node colors to the majority color. Finally,

we use the fact that E(C(G)) ∈ O(nm) for any connected graph G. [11]

Remark 2.5. For any class of graphs with known stronger bounds on the cover time, such

bounds can obviously be used to strengthen the expected convergence time for that graph

class in Corollary 2.4. For example, the cover time of the clique Kn is Θ(n log n). Then

Corollary 2.4 gives a convergence time of O(n2 log n) for BASIC, better than the O(n4)

bound implied the cover time bound for a general graph (as, of course, m = n(n−1)/2 for

Kn). We show later that BASIC converges even faster than O(n2 log n). See Lemma 2.7

in Section 2.4.

Remark 2.6. BASIC will also converge (i.e. it works correctly) on any directed strongly

connected graph. Theorem 2.3 only relies on the token being able to match pairs of

vertices (of high importance) having opposite colors (and �nd a suplus color, if one

exists). Strong connectivity of a digraph guarantees that such matching of vertices is

possible in a digraph. The direction of edges matter in the matching of vertices in regards

to the expected cover time as the random walker can only use edges one-way.

We note, however, there are examples of digraphs for which the cover time is ex-

ponential, such as the family of digraphs referred to as �combination locks� [36, 95].

Corollary 2.4 could be suitably modi�ed in the case of (strongly connected) digraphs by

using an appropriate bound on the cover time for a particular digraph.

Next, we examine other aspects of the BASIC protocol, before considering the addi-

tional problems mentioned in the Introduction. First, let us consider the special case of

the clique.

2.3 Execution of BASIC in a simple graph

This section demonstrates an example execution of the BASIC protocol, de�ned in

Figure 2.1. The example execution applies BASIC on a graph where n = 5 and there

exists a majority where |RED| > |BLUE|.
Table 2.1 traces the execution from the initialization step (step 0), when the token

t is placed at an arbitrary vertex, to the state when all vertices have been converted to

the initial majority color. Each row consists of the step number, the state of t (where

t = {color, location}), the state of all the vertices (uppercase representing high in�uence

and lowercase representing low in�uence of a color) and �nally the transition which should

be executed given the current state of the graph. The transitions are Begin Matching,

Complete Matching and Inform, abbreviated to BM , CM and I respectively.
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Step t a b c d e Transition

0 Initialization, token placed at a in state N
1 {N, a} (B, H) (B, H) (R, H) (R, H) (R, H) BM
2 {B, b} (N, L) (B, H) (R, H) (R, H) (R, H) None
3 {B, a} (N, L) (B, H) (R, H) (R, H) (R, H) I
4 {B, c} (B, L) (B, H) (R, H) (R, H) (R, H) CM
5 {N, e} (B, L) (B, H) (N, L) (R, H) (R, H) BM
6 {R, b} (B, L) (B, H) (N, L) (R, H) (N, L) CM
7 {N, d} (B, L) (N, L) (N, L) (R, H) (N, L) BM
8 {R, b} (B, L) (N, L) (N, L) (N, L) (N, L) I
9 {R, a} (B, L) (R, L) (N, L) (N, L) (N, L) I
10 {R, c} (R, L) (R, L) (N, L) (N, L) (N, L) I
11 {R, d} (R, L) (R, L) (R, L) (N, L) (N, L) I
12 {R, e} (R, L) (R, L) (R, L) (R, L) (N, L) I
13 {R, b} (R, L) (R, L) (R, L) (R, L) (R, L) I (no change)
14+ {R,*} No change in any node's state hereafter I (no change)

Table 2.1: Trace table for an execution of BASIC.
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2.4 BASIC on the Clique

Let G = Kn = the clique of n nodes, and let us consider the convergence time of BASIC

on Kn. Assuming that both BLUE and RED nodes are (still) present in the clique, let

us de�ne a �phase� as the time required in the random walk until a BLUE node or a

RED node becomes NEUTRAL in color (i.e. a �Begin Matching� ' transition takes place

or a �Complete Matching� transition takes place). Let bt, rt be the number of BLUE and

RED nodes, respectively, at phase t. Initially b0 + r0 = n at the start of the process, but

we immediately have either b1 = b0 − 1 or r1 = r0 − 1, as a �Begin Matching� transition

will take place in round 1.

The time, T , of BASIC until convergence is T = T1 +T2 +T3, where T1 = the sum of

all the times for the token to match two high-importance nodes of the opposite colors,

T2 = the sum of all times for the token to discover the next color of high importance

to match, and T3 = the �nal cover time to convert all colors to the majority (or, in the

case of no majority, the time to convert all nodes to NEUTRAL once the last match has

been made).

Since we are considering Kn, during phase t, the probability that the random walk

�nds a matching node of the opposite color is bt
n (if it starts from a RED node) or rt

n

(if it starts from a BLUE node). Thus, the expected time until success (i.e. �nding a

matching node of opposite color) is bounded above by n
bt

(resp. n
rt
) depending on the

case, as this is the expectation of a geometric random variable.

Since the high importance colors are matched in pairs, we have (in each matching)

rt+2 = rt − 1 and bt+2 = bt − 1. Let a be the phase at which the minority color has

only one node with that color. Both expectations of T1 and T2 are bounded above by∑a+2
t=1

n
bt

+
∑a+2

t=1
n
rt
. This sum is n( 1

b1
+ 1

b1−1 + · · ·+ 1) + n( 1
r1

+ 1
r1−1 + · · ·+ 1), i.e., at

worse n ·Hn (Hn = the nth harmonic number, where the harmonic number is
∑n

i=1
1
i ).

Also, the expected cover time is Θ(n log n) for the clique, so T3 ∈ Θ(n log n). Thus,

Lemma 2.7. The expected convergence time of BASIC on Kn is 2nHn + n log n ∈
Θ(n log n), independently of the placement of the original colors. This matches the ex-

pected cover time of the clique, and thus is optimal.

2.5 A Lower Bound for BASIC in Static Graphs

We now examine what we can say about lower bounds for BASIC in general static graphs.

2.5.1 Match-Making De�nes a Weighted Bipartite Graph

Let G be a static graph with some initial (arbitrary) distribution of RED and BLUE

colors. Consider B = {u1, . . . , uκ}, the set of all nodes ui ∈ V with BLUE color, and

R = {v1, . . . , vλ}, the set of all nodes vi ∈ V with RED color. (So κ + λ = n). Let wij
= the length (number of edges) of a shortest path between ui and vj in G.
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Consider now the bipartite graph U = (B,R) with node sets B,R and edges eij of

weights w(eij) = wij . Consider any particular sequence of random walks of the token in

BASIC that matches all the red-blue pairs. Let the token start (say) in u1 and match it

with v1. Then the token departs uncolored from v1 until it meets a blue node, say u2,

again. Note that (1) each ui is matched to a �new� vi (not in {v1, . . . , vi−1}), and (2)

from each vi the token seeks for a �new" ui (not matched yet). Thus, the total time until

convergence is at least the sum of the weights of two matchings in G, (a) the matching

{ui, vi}, call it M1, and (b) the matching {vi, ui+1}, call it M2 (until all minority color

nodes (say B) are matched). Let T be the time until convergence. In time T , the random

walk process must hit the edges of the two matchings de�ned.

Figure 2.2: Bipartite Matching

Thus,

T ≥ (weight(M1) + weight(M2)) · h

where h is the minimum time to hit a subsequent node on the other side, which implies

E(T ) ≥ (weight(M) + weight(M ′)) · hmin (2.1)

where M = the minimum weight matching in U(B,R), M ′ = the minimum weight

matching in U(B,R) −M , and where hmin
def
= the minimum hitting time of G = the

minimum (over all u, v) of the expected time for a random walk starting at u to reach v

for the �rst time. The proof of Eq. (2.1) is done using linearity of expectation. Thus,

E(T ) ≥ 2 · weight(M) · hmin. (2.2)

If we know the initial placement of colors, then we can compute weight(M) (and

weight(M ′)) via a variation of the well-known Hungarian method [72] and the relaxed

integer program Π. In the program below, wi,j is the length of the shortest path be-

tween vertices vi and vj of opposite colors and xi,j is the participation of the edge in the

minimum matching between vi and vj , i.e. 1 if it's in the shortest path and 0 if not.
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Π : minimize
∑
i,j

wi,jxi,j

subject to∑
j

xi,j = 1 ∀i ∈ B

∑
i

xi,j = 1 ∀j ∈ R∑
i,j

xi,j = the number of vertices of the minority color

xi,j ≥ 0, ∀i ∈ R, j ∈ B.

The Hungarian method (see [72]) shows that this is an integral relaxation in the sense

that any extreme point of the polytope of Π's constraints is the incidence vector of a

(perfect) matching with respect to the minority's color (see also [101], exercise E). A

primal-dual method can compute the weight of M in time O(n3) [72]. Thus,

Lemma 2.8. Given G and the placement of the original color, we can compute a lower

bound on the time of BASIC until convergence in O(n3).

Note that the bound of Eq. (2.2) is a very crude one. In fact, even if we know the

matchings M1 (of min weight) and M2 (of second min weight), the walk requires, for

each subsequent pair (ui, vi) or (vi, ui+1) a hitting time on the remaining colors of high

importance at that time. This increases by at least the smallest distance between two

nodes of the same color and of high importance every time.

Using the idea above, we can show a lower bound for the BASIC protocol on the line

with n vertices.

De�nition 2.9. A (k, `) RED-BLUE line (on n = k + ` nodes) is a path of n nodes

consisting of a red path of k nodes, joined to a blue path of ` nodes.

Lemma 2.10. The lower bound on the time of BASIC on a (
⌊
n
2

⌋
,
⌈
n
2

⌉
) RED-BLUE line

(with n odd) is Θ(n3).

Proof. The weight of each edge on the bipartite graph U is the square of the shortest

distance between the particular red/blue pair because of the random walk, and more

than n/4 such edges have weight which is Θ(n).

The lower bound above matches the upper bound given by Corollary 2.4 for the line.

2.6 Terminating the BASIC Process in Static Graphs

As de�ned in Section 2.2.1, BASIC never terminates, i.e. the token continues its random

walk inde�nitely, depsite the fact that the protocol converges in (expected) polynomial-

time on an undirected graph.
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We can supply BASIC with a termination criterion assuming:

1. The existence of a global clock, and

2. that each node v knows an upper bound n′ ≥ n on the size of the graph.

Let T be the time (number of steps of the random walk) required for BASIC to converge.

For any connected, undirected graph, we know (from Corollary 2.4) that

E(T ) ≤ (n+ 1)E(C(G)) ≤ (n+ 1)2mn ≤ 2n4. (2.3)

By Markov's inequality (see, e.g., [97]) we have

Prob(T ≥ n E(T )) ≤ 1

n
(2.4)

implying that

Prob(T ≥ 2n5) ≤ 1

n
. (2.5)

Therefore, BASIC can terminate (with probability of correctness at least 1− 1
n) as follows:

Termination Criterion: Each node v reads the global clock. When the global clock shows

2n′5 elapsed time steps, then node v reports its current color as the majority color and

stops executing BASIC.

Remark 2.11. Alternatively, if the token itself has a clock (or can count the number of

time steps it has made in the random walk), the token itself can terminate the random

walk after walking for 2n′5 time steps. Each node then reports its current color as the

majority color. This requires that the token has knowledge of n′, and a counter that can

record an integer up to the size of 2n′5.

2.7 Walks with Limited Counters in Graphs of Small Cover

Time

One bene�t of BASIC is the circulation of a single token in the graph, having only 2 bits

of memory. Suppose that, similar to Remark 2.11, we allow the token to be equipped with

a counter, but this time it uses its counter to record the number of RED/BLUE colors

it sees. Then a single cover time of the graph clearly su�ces for a randomly walking

token to count the number of both colors in the graph and thus determine majority.

Every time the token �rst encounters a color, it must mark the node as �visited� to avoid

double-counting.

This simple procedure requires a counter that can count up to n (the size of the

graph). We describe here a modi�cation of this procedure, with the bene�t that the

counter of the token needs only be able to count up to ω(
√
n log n).

Basically, we equip the token with a counter (initially zero) and we start its random

walk at an arbitrary node. The counter keeps the di�erence δt = bt − rt (bt, rt are the
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number of BLUE and RED nodes that have been visited by time t) by setting δt ← δt+1

when the token encounters an unvisited BLUE node, and δt ← δt − 1 when the token

encounters an unvisited RED node. Each time the token visits a node, if the status of

the node is �unvisited� the token changes it to �visited� to avoid double-counting. After

a time at least equal to a cover time, the token checks if the δt is positive or negative and

then it performs another �nal walk to convert all nodes to the majority color (BLUE if

δt > 0, RED if δt < 0, otherwise NEUTRAL when δ = 0).

Clearly, if |δt| ≤ g for all t until convergence (for some number g), then the counter

will report correctly, provided it can count up to some number g′ strictly greater than g.

We show here that g is enough to be set to some value ω(
√
n log n) for this procedure

to correctly report the majority with high probability. Our argument works under the

following assumption.

Assumption A: Let pt be the probability that the counter visits an unvisited majority

color in the round t, and qt be the probability that the counter visits an unvisited minority

color in round t. We assume that pt ≥ qt.

Assumption A is easily shown to hold when the colors are initially placed randomly

in the vertices, and when the minimum degree of G is at least α log n for some α ≥ 2.

Without loss of generality, assume that the initial majority color is BLUE. We con-

sider a quite standard coupling process (δt, δ′t) where δt = bt − rt and δ′t is the current
location of a simple random walk on (a subset of) the integers with a holding probability,

i.e., a random walk on (a subset of) Z that can either increase or decrease by 1 with

equal probablity, or remain stationary with (the remaining) positive probability. We give

the details of this coupling below.

Let ∆(δt) = δt+1 − δt, and ∆(δ′t) = δ′t+1 − δ′t the corresponding increase or decrease

in the random walk. There are nine cases to consider in the coupling, depending upon

the values of ∆(δt) and ∆(δ′t). The nine cases, together with the coupling probabilities

are listed below. We need to de�ne the coupling probabilities xi for each of the cases.

(∆(δt),∆(δ′t)) Coupling probability

(0, 0) x1

(0, 1) x2

(0,−1) x3

(1, 0) x4

(1, 1) x5

(1,−1) x6

(−1, 0) x7

(−1, 1) x8

(−1,−1) x9

First of all, we note that we want to couple the processes so that δt ≥ δ′t for all t,

so that if, for example, δ′t = bt then we guarantee that δt = bt too. This immediately

implies that we have x2 = x7 = x8 = 0.
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Secondly, to keep the coupling as tight as possible, we set x3 = x4 = 0.

We also have other conditions on the values xi as follows:

x1 + x5 + x6 + x9 = 1 and xi ≥ 0 ∀i (2.6)

x9 = qt (2.7)

x5 + x6 = pt (2.8)

x5 = x6 + x9 (2.9)

x5 + x6 + x9 = pt + qt (2.10)

Condition (2.6) come from the fact that the xi form a probability distribution. (2.7)

comes from the de�nition of the probability qt, i.e., the chance of the token �nding an

unvisited minority color, and similarly (2.8) is from the de�ntion of pt. Equation (2.9) is

from the fact the the process ∆(δ′t) is describing a simple random walk, i.e., Pr(∆(δ′t) =

1) = Pr(∆(δ′t) = −1). We note that pt + qt is the probability that the value of ∆(δt) is

non-zero.

Thus, solving for the values of xi, we get the following coupling probabilities below

(we show only the non-zero values):

(∆(δt),∆(δ′t)) Coupling probability

(0, 0) 1− pt − qt
(1, 1) 1

2(pt + qt)

(1,−1) 1
2(pt − qt)

(−1,−1) qt

With these probabilities, we have E(∆(δ′t)) = 0 and |∆(δ′t)| ≤ 1. We can apply the

inequality of Azuma (e.g., see [97]) to the martingale ∆(δ′t) with bounded di�erence. By

Azuma's Inequality we then have |δ′t| ∈ O(
√
n log n) through a period of a cover time

Θ(n log n).

Thus, the di�erence of colors counted will never exceed c
√
n log n in the minority

direction (w.h.p.) and will end up with a correct value in the majority direction. There-

fore:

Lemma 2.12. For any static unknown graph G where (a) Assumption A holds and (b)

E(C(G)) ∈ O(n log n), the counter of the token needs to count only up to ω(
√
n log n) in

order to report the majority color w.h.p.

2.8 The BASIC Protocol in Dynamic Graphs

We consider now the execution of the BASIC protocol in dynamic graphs with benign

adversaries with tolerance β. Recall De�nition 2.2 for the meaning of �benign adversary

with tolerance β�.



Chapter 3. Majority Problems in Random Walk Models 31

Lemma 2.13. For any two nodes u,v, for any time t1, with the token being at node u at

time t1, the probability that the token will visit node v at time at most t1 + β is at least(
1
n

)β.
Proof. Suppose the token is at node u at round t1. Consider that the edge uv appears

again in round t1 + β′, where β′ ≤ β. The event Au,v =�the token stays at u for β′ − 1

times and then chooses edge {u, v} which then exists� has probability

ϕ =

β′∏
i=1

(
1

di + 1
)

where di is the degree of node u at round t1 + i. But then ϕ ≥ ( 1
n)β , since β′ ≤ β, and

n− 1 ≥ di ≥ 0 ∀i (so n ≥ di + 1 ≥ 1).

Lemma 2.13 allows us to conclude that BASIC works correctly on dynamic graphs.

Corollary 2.14. The BASIC protocol converts all node colors to the initial majority color

(if any) in any dynamic graph, with a benign adversary, in �nite time with probability 1.

Proof. The events Auv are each a geometric stochastic process of bounded variance. They

are also independent of each other. Thus the (total) variance of the cover time of each

walk is bounded.

Then we also have the following result:

Theorem 2.15. The BASIC protocol converts all node colors to the initial majority color

(if any) in expected time at most nβ+2 in any dynamic graph with a benign adversary

with tolerance β.

Proof. The token needs at most n cover times to match all possible color-pairs. Each

cover time is at least the cover time due to the repetition of the event Au,v n times. The

expected time to visit all nodes is then at most n2 · Aui,ui+1 where u0, . . . , un−1 is any

permutation of the vertices, i.e. at most n2 · 1ϕ = nβ+2.

2.9 BASIC with multiple tokens

In all sections up to this point, we have considered the use of a single token to solve the

MCP.

We can consider speeding up this process by using multiple tokens, each performing

a random walk in the graph. This raises issues of concurrency and contention resolution,

namely what happens at a node that is visited by multiple tokens during one step of the

random walk? To keep things as simple as possible, we will assume that a node visited by

several tokens will interact with each token one at a time in some arbitrary order, with

suitable state transitions occurring with each interaction (and that these interactions all

happen within the same time step of the random walk).
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Another issue that arises with multiple tokens using the BASIC procedure from

Section 2.2.1 is that this may result in the tokens trying to report inconsistent information

to the vertices, a state in which BASIC cannot recover from. There are two examples

where this may occur, when the number of vertices is odd and there is a majority and

when the number of vertices is equal and there is equality. These scenarios require the

tokens to interact in some manner to resolve the inconsistency, either to annihilate each

other and report equality or to disable tokens reporting neutral when there is in fact a

majority being reported by another.

To see this, consider a graph having 2n + 1 vertices, where n are initially colored

BLUE and n+ 1 are initially colored RED. Obviously this graph has RED as a majority

color, but two (or more) tokens using the BASIC procedure can (eventually) result in

one of the tokens being colored NEUTRAL and the other token being colored RED, each

token attempting to convert all vertices to report their own color (RED or NEUTRAL)

as the majority color, in a never-ending process that does not stabilize to the correct

result.

Similarly, in a graph with 2n vertices, initially with n RED and n BLUE, a series

of interactions could result in one token being colored RED and the other BLUE, with

each token attempting to �recolor� (i.e. inform) the vertices in the graph to match their

own color, but the truth is that there is a tie for the majority, so, again, the process does

not stabilize to the correct solution.

The crux of both of these problems is that, using BASIC as previously de�ned, each

token is unaware of the other tokens (or even if other tokens exist at all) and the color

they are (or may be) carrying, and, critically, tokens do not (cannot) interact with one

another. Some new method is necessary to avoid these failure issues identi�ed above.

We de�ne the procedure MultiBASIC in Figure 2.3 below (the pre�x �Multi� refers to

the fact that there can be two or more tokens performing the procedure). There are two

essential di�erences. Intuitively, we can see that a node �remembers� its initial coloring,

in that a node of �high� importance remains �high� until a �Complete Matching� stage

occurs at that node. Only then does that node understand that it has been matched with

a color of the opposite type. The second di�erence is that tokens can become �disabled�.

A �disabled� token still continues performing a random walk on the graph, but it ceases

to recolor vertices, and simply looks for an unmatched node (i.e. one that has not yet

changed from its initial state) to begin a new matching procedure, at which point the

token becomes �active� again. These two token states (active or disabled) are denoted

by A and D, respectively in Table 2.3. Tokens do not interact with one another.

Each token begins the protocol in state (N,A), and each node begins in state (C,HC),

where C ∈ {R,B} is its initial color.
Note that in the transition table below, it is always the case that C ∈ {R,B} (as

before, C is the �opposite� of color C), and X,Y ∈ {R,B,N}. As before, we only list

transitions where the state of a token and/or a node changes, all other interactions leave

both token and node states unchanged.
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Process Token Node New token New node
stage state state state state

Begin Matching (N,A) (C,HC) (C,A) (N,HC)

Complete Matching (C,A) (X,HC) (N,A) (X,LC)

Inform (X,A) (Y,LC) (X,A) (X,LC)

Disable Token (N,A) (N,HC) (N,D) (N,HC)

Activate Token (and
(N,D) (C,HC) (C,A) (N,HC)

Begin Matching)

Figure 2.3: The MultiBASIC protocol.

The solution to the MCP, from the point of view of a node, is that the (current

belief for the) majority color is C ∈ {R,B} if the state of a node is (C,HC) or (N,HC).

Alternatively, the (current belief of the) majority color is X ∈ {R,B,N} if the state of
the node is (X,LC) (for some C ∈ {R,B}).

In contrast to the BASIC protocol, each node now requires four bits to store its

state (using two bits for the current belief of majority color, and two bits for one of

the four possible states HR, LR, HB, and LC). Also, the token requires three bits, two

for the current color (R,B, or N) it is carrying, and one bit for denoting wheter it is

active/disabled.

Theorem 2.16. MultiBASIC correctly solves the MCP on any connected graph.

Proof. This proof is very similar in nature to that of Theorem 2.3, noting that each

initial color C on a node will turn the state of another node from (·, HC) to (·, LC), and

vice-versa.

If there is a surplus of one color C ∈ {R,B}, after a �nite series of token/node

interactions, all vertices that started in state (C,HC) will end up in state (N,LC). At

that point, there still exists (at least) one node in state (C,HC), and/or there is (at least)

one token in state (C,A) (in which case there is at least one node in state (N,HC)), with

all other tokens being colored C or N .

Eventually, every token will end up in one of the two states (C,A) or (N,D), with

at least one in the former state, which will correctly inform all vertices of the majority

color C.

In the case of a tie for #RED and #BLUE, the token that completes the �nal C to

HC matching at a node (for a C ∈ {R,B}, turning the state of that node to (N,LC)),

will remain active (i.e. its state is (N,A) and remains so forever more as there are no

nodes in state (·, HC) for C ∈ {R,B}) to inform all vertices that the (correct) solution

to the MCP is N .

Remark 2.17. We note, in fact, that the MultiBASIC procedure still remains correct

if only one token uses it to solve the MCP (with the vertices following the transitions

de�ned in Figure 2.3).

Remark 2.18. Noting that a node can never reach a state (C,HC) for some C ∈ {R,B}
during execution of MultiBASIC, we can alter the MultiBASIC protocol by exchanging
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the �Complete Matching� transition in Figure 2.3 for the pair of state transitions in the

table below (keeping all other transitions the same):

Process Token Node New token New node
stage state state state state

Complete Matching
(C,A) (N,HC) (N,A) (N,LC)

(C,A) (C,HC) (C,A) (N,LC)

Figure 2.4: Speeding up the MultiBASIC protocol.

2.10 The k-surplus Problem

We now consider the adaptation of BASIC to a new, yet related problem, the k-surplus

problem, for k ≥ 1. As a reminder to the reader, given a connected graph where each

node is originally colored BLUE or RED, the k-surplus problem is to determine (and

inform all nodes) if one of RED or BLUE occurs k or more times than the other color.

(The MCP is therefore the same as the 1-surplus problem.) For simplicity, we will use

the phrase �k-surplus� as shorthand for �the k-surplus problem.�

By adapting BASIC in a natural manner, we can provide a protocol to solve k-surplus.

Speci�cally, we give an algorithm that converges in �nite time, i.e., we can determine if

one color outnumbers another and inform all vertices, where by �inform� we mean that

each node will eventually converge on a common value of RED (if RED outnumbered

BLUE by k or more), BLUE (similarly), or NEUTRAL (if neither color outnumbered

the other by k or more). This algorithm is guaranteed to converge to the correct answer,

and will �nd (and inform all nodes) in �nite time.

Similar to BASIC, our solution to k-surplus involves a token performing a random

walk on the graph. Informally, our protocol is still �matching� opposite colors, but now

the token is capable of counting up to the value k. So the token can attempt to match

(up to) k vertices of one color to the opposite color. Once all opposite pairs of colors have

been matched, the token simply continues to walk in the graph. If there is a k-surplus

(i.e. RED outnumbered BLUE by k or more, or vice-versa), the token will (eventually)

determine that and inform all nodes by recoloring them to the surplus color. If there is

not a k-surplus, the token will inform all nodes of that fact as well, by recoloring them

to NEUTRAL.

We provide the state transitions below for the k-surplus protocol. This protocol is

a natural extension of BASIC. For this proposed method we assume the existence of a

single token which is initially placed in some arbitrary node. The token will store a pair

of states in the form (color, surplus). The color which the token can adopt is either

R,B, or N (short for RED, BLUE, or NEUTRAL as in BASIC), and will start as N

initially. The surplus is an integer i where i ∈ Z and 0 ≤ i ≤ k. Initially the surplus is 0.

The nodes in the graph store information similar to what they stored in BASIC,

namely an ordered pair (color, importance) which are initialised as (C,H), where C is a
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color belonging to {R,B}. Throughout the k-surplus protocol, we always have the �rst
component of each node's state is in {R,B,N} and the second component in each node's

state is either H or L.

In the interactions in Fig. 2.5, we note that C ∈ {R,B} and X ∈ {R,B,N}. As

before, for C ∈ {R,B}, C denotes the �opposite� color, e.g., if C = R, then C = B. Note

also that α ∈ Z with 1 ≤ α < k.

Process Token Node New token New node
stage state state state state

Begin Matching
(N, 0) (C,H) (C, 1) (N,L)
(C,α) (C,H) (C,α+ 1) (N,L)

Ignore (C, k) (C, ·) (C, k) (C, .)

Complete Matching
(C, 1) (C,H) (N, 0) (N,L)

(C,α) (C,H) (C,α− 1) (N,L)

(C, k) (C,H) (C, k − 1) (N,L)

Inform
(C, k) (X,L) (C, k) (C,L)
(C,α) (X,L) (C,α) (N,L)
(N, 0) (X,L) (N, 0) (N,L)

Figure 2.5: State transitions for k-surplus.

Theorem 2.19. (Correctness) In any static undirected, connected, �nite G = (V,E),

the k-surplus protocol of Fig. 2.5 eventually turns the color of every node to the color

having k-surplus (if there was a k-surplus) or to NEUTRAL (if there was no k-surplus),

even if G and its size are unknown to the nodes.

Proof. The token matches each node of color X and high importance (i.e. as initially)

to a node of color X of high importance, and both nodes turn to low importance. Thus,

the initial (high-importance) nodes are paired in RED-BLUE pairs. The only di�erence

between BASIC and the k-surplus protocol is that the token can be attempting to perform

up to k matches at the same time (whereas in BASIC the token could only do one match

at a time.)

If a k-surplus majority color X initially existed, then eventually the token will �nd

it by visiting all nodes and increasing the surplus count stored in the token to the value

k. The token will then walk the graph converting all nodes (of low importance) to the

k-surplus color X. Note that for a �nite G, the token's random walk needs at most a

time equal to the cover time of G every time it needs to match a color and each time it

needs to start a new matching. Once all RED-BLUE matches have been made, another

cover time will su�ce to establish if there is a k-surplus or not, and a �nal cover time of

G in order to convert the color of all nodes to the k-surplus color, or to NEUTRAL if

no k-surplus initially existed.

Since G is �nite and connected, the cover time of G is �nite, and hence the k-surplus

protocol will converge in �nite time.

Remark 2.20. The k-surplus protocol on a �nite, connected graph G will converge in

time at most (n + 1) · E(C(G)). This follows similarly to Corollary 2.4. Indeed, the
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convergence time for k ≥ 2 is no worse than the convergence time for k = 1, which is

identical to the MCP, as being able to search for more matching pairs simultaneously

can only decrease the convergence time.

Remark 2.21. In contrast to the BASIC protocol, for k-surplus the token needs to be

able to count up to k, and hence requires Θ(log k) bits in order to perform this task.

Remark 2.22. We proposed MultiBASIC to utilize several tokens to speed up solving

the MCP. Unlike that problem, it is not possible to utilize more than one token to solve

k-surplus without allowing the tokens to interact with one another, since one token could

count there are ` more RED than BLUE and another could count there are m more RED

than BLUE, where `+m ≥ k, but ` < k and m < k.

2.11 Absolute Majority

Let us now consider the case of more than two colors in the graph, and the problem of

determining if one color has an absolute majority, i.e., is there one color that outnumbers

the set, taken collectively, of other colors?

Suppose that k denotes the number of colors that initially exist in the graph, and let

us assume that the nodes are aware of k. We denote the set of colors by {C1, . . . , Ck}.
One idea is to use BASIC as a building block to solve this problem. A natural

solution for the Absolute Majority Color Problem, henceforth abbreviated as �AbMCP�,

is to sequentially run the BASIC protocol k times, once for each color in an �One vs.

Other� fashion. In other words, we consider the color Ci versus the set of all other

colors C−i
def
= {C1, . . . , Ci−1, Ci+1, . . . , Ck}, considered temporarily as a single �color�,

and determine if the color Ci or the �color� C−i is the solution to the corresponding

two-color MCP (or, indeed, if there is a tie).

However, the inherent problem in running BASIC in this sequential manner is that

the BASIC protocol in its simplest form does not terminate. Thus, there is no mechanism

to stop one iteration for the color C1 (versus all other colors) and begin the next iteration

of BASIC for the color C2.

Therefore, our proposed method to solve AbMCP is to run k copies of BASIC in

parallel. What this means is that each node will maintain an ordered k-tuple, where

each element of the k-tuple is itself an ordered pair. The ith element of this k-tuple

corresponds to an execution of the BASIC protocol where Ci is compared to the set C−i

(considered as a single color, as mentioned previously). The token also maintains an

ordered k-tuple, where each element in the k-tuple corresponds to the execution of the

BASIC protocol of Ci versus C−i.

The transitions of BASIC described in Fig. 2.1 would be modi�ed, operating on each

coordinate of the k-tuple to compare Ci with the �color� C−i. We leave it to the reader

to work out the details, but the generalization should be natural. We assume that the

token interacts with a node on each component of a node's k-tuple in a single step of the

random walk.
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As an alternative, k tokens could be used instead, where token ti operates on the ith

component of a node's k-tuple. As another alternative, several tokens could operate in

parallel with suitable adaptation of the MultiBASIC protocol from Section 2.9, adapted

to account for operating on k-tuples of information in the vertices. (In this case, tokens

might become �disabled� on speci�c coordinates of the k-tuples while remaining active

on other coordinates.)

In any case, what is the solution to AbMCP? If Ci is the absolute majority color,

then each node's k-tuple will converge to (C−1, C−2, . . . , Ci, . . . , C
−k).

If there is no absolute majority color, then the ith component of each node's k-tuple

will converge either to C−i or toN , the second case only occurring when |Ci| =
∑

j 6=i |Cj |,
where |Ci| is the number of nodes originally colored Ci. A node simply checks its k-tuple

to determine the (current) conclusion on the existence of an absolute majority, keeping

in mind that the information present in the k-tuple can possibly be inconsistent until

convergence has occurred.

The correctness of BASIC ensures the correctness of this AbMCP protocol. The

running time of the AbMCP protocol satis�es the same running time bounds as BASIC

(under the assumption that the token/node interactions happen for each component in

one time step of the random walk).

Note that each node now requires Θ(k) bits of memory to correctly perform the

AbMCP protocol and record the result (i.e. k copies of BASIC, each using O(1) bits of

memory), and, for similar reasons (assuming a single token), the token also needs Θ(k)

bits of memory.

2.12 Relative Majority

In the previous section we studied the case of absolute majority, by which one color has

the largest majority over the sum of the other colors combined. In this section we study

and propose a solution to the case of relative majority, in which one color beats each

other color in the network in a direct comparison (solely between those two colors). We

use the abbreviation �RelMCP� to refer to the Relative Majority Color Problem.

As in the last section, our proposed solution to this problem is based on running

several executions of the BASIC protocol in parallel. In particular,
(
k
2

)
instances are

required to run in parallel, one for each pairwise comparison between the k colors.

Each node in the network will operate with a
(
k
2

)
-tuple, where each component of the

tuple is itself an ordered pair. A particular component will correspond to the comparison

of two colors under the BASIC protocol. Obviously each node must have the same

ordering of the components of the their tuples to arrive at a consistent answer (e.g. the

color pairs can be arranged in lexicographic order in the tuple).

One token, itself with a
(
k
2

)
-tuple, can execute these BASIC protocols, operating in

a component-wise fashion interacting with the nodes according to BASIC for each pair

of colors. Again we assume that the token can do all
(
k
2

)
updates on each component of
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its tuple (and those of the node it is interacting with) in one step of the random walk.

Alternatively, several tokens can be used to execute all of the BASIC protocols. In this

case either the collection of protocols is partitioned in some fashion amongst the tokens

and/or they are utilizing versions of the MultiBASIC protocol de�ned in Section 2.9 to

avoid the potential problems described there with the use of multiple tokens.

Note that the entire collection of
(
k
2

)
pairwise comparisons of colors is necessary to

determine an answer to RelMCP. If, say, the comparison of C1 and C2 is left out, then

it could be the case that C1 beats each other color Ci for i ≥ 3, and similarly for C2.

Without the comparison between C1 and C2 , we would be unable to conclude if C1 or

C2 has the relative majority, or if those colors were tied.

A node's
(
k
2

)
-tuple is initialized with components equal to (Ci, HCi) for any com-

parison that involves its original color Ci, otherwise it is initialized with the component

(N,LCj ) (or (N,LCk
)) in order to capture the result of the comparison of the colors Cj

and Ck for j 6= i and k 6= i.

A node examines its
(
k
2

)
-tuple to determine the solution to RelMCP. This tuple could

be displaying inconsistent information about the solution, but once all
(
k
2

)
processes

converge, the set of inequalities can be resolved to determine if one color has the relative

majority, or if two or more colors tie for most present in the graph. Note that the(
k
2

)
-tuple also allows determination of all of the order statistics on the colors, i.e. which

color(s) is (are) largest, second largest, etc.

Finally, with the suitable use of a single token, or multiple tokens operating on

di�erent subsets of the pairwise comparisons, or multiple tokens utilizing variants of the

MultiBASIC protocol, this process will converge correctly on all coordinates of the
(
k
2

)
-

tuple, allowing each node to conclude on the (non)existence of a color having relative

majority.

For relative majority �nding in the manner described, each node will utilize Θ
((

k
2

))
bits of memory, as will the token (or set of tokens). With suitable consideration, using

only one token, we could instead equip each node with only O(1) bits of memory, and

a token with Θ
((

k
2

))
bits, where the token itself performs the random walk and com-

parisons to determine the answer to RelMCP. Each node utilizes only O(1) bits for its

contribution to a BASIC protocol with the token, and an additional O(1) bits to record

the outcome of the protocol as reported to itself by the token.

2.13 Relative Majority Simulation Example

In this section we show how BASIC can be used to solve relative majority via our

described implementation.

Here we consider a complete graph, where n = 4 and k = 3. There exists a relative

majority of green vertices in the graph. The following �gures are displayed in order of

the execution. The �rst four �gures show the initialisation of the Instance Controller (a

class which interprets the token vector and the state of all instances upon each step of the
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algorithm) and the
(
k
2

)
BASIC instances [(Red−Blue), (Red−Green), (Blue−Green)].

In each pairwise BASIC instance, vertices of participating color are initialised high

importance (denoted by h on each vertex) and vertices of non-participating colors are

initialised low importance (denoted by l on each vertex). For example, consider vertex

v1 with initial color BLUE. In this example where k = 3, the vertex has 3 instances

such that v1 = ((B,H), (B,L), (B,H)). The reasoning for this initialisation is due to

blue participating in the �rst and third duels.

At every step the IC instance interprets the token vector based on the state of each

BASIC instance, which is displayed at the top of each IC �gure. Consider the �rst

instance (r > b), the token at this index will contain 1 if r > b, 0 if r = b or -1 if r < b.

The decision value is the current belief that is being disseminated through the network

based on the interpretation of the token vector. The protocol terminates after 11 steps

and informs all vertices in all instances the relative majority has been found.

(a) IC Initialisation (b) RB Initialisation

(c) RG Initialisation (d) BG Initialisation



Chapter 3. Majority Problems in Random Walk Models 40

(e) IC Step 1 (f) IC Step 2

(g) IC Step 3 (h) IC Step 4

(i) IC Step 5 (j) IC Step 6
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(k) IC Step 7 (l) IC Step 8

(m) IC Step 9 (n) IC Step 10

(o) IC Step 11
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2.14 Future Work

Several problems remain open.

The use of a �nite-state machine in each node in our protocols bear a strong resem-

blance to the Population Protocol model of Angluin, et al [27]. It is well-known [25] that

the computational power of the basic Population Protocol model coincides with the class

of semi-linear predicates, consisting of all predicates de�nable by the �rst-order logical

formulas of Presburger arithmetic [70].

However, simple extensions such as the Mediated Graph Protocol (MGP) model [44]

in which each network link is characterized by a state drawn from a �nite set allow more

complex computations, and, in particular, testing all graph properties decidable by a

non-deterministic Turing machine with linear space that takes as input the adjacency

matrix of the input graph.

Analogously, one could ask about the computational power of systems based on the

random walk (combined, say, with �nite-state machines as we are using here), a biased

random walk [81], multiple random walks [17], and other extensions.

Furthermore, one can look at deterministic counterparts of the random walk. A good

example is the rotor-router mechanism [105] also known as the Propp Machine [86].

On �rst look, the rotor-router would guarantee O(n2) MCP computation on the path,

comparing to the cubic performance of the (usual) random walk. However, it appears

that the rotor-router's performance on cliques would likely be less e�cient than the

O(n log n) bound from Section 2.4 in the worst case.

Finally, it could be interesting to study the Majority Color Problem on non-trivial

special classes of graphs as complete graphs can be solved in O(n log n) expected time

and O(n2m) time on any connected undirected graph. Using Corollary 2.4, any upper

bound on the expected cover time for a class of graphs immediately translates into an

upper bound on the convergence time of BASIC. For example, it is known that the cover

time for any regular graph on n vertices is at most 2n2, giving an upper bound of O(n3)

for convergence of BASIC on such graphs [61].



Chapter 3

Deterministic Population Protocols

for Absolute Majority and Plurality

3.1 Introduction

The model of population protocols adopted in the work of this chapter was proposed �rst

in the seminal paper by Angluin et al. [21] and popularised later in [24]. Their model

provides a suitable theoretical framework for studying pairwise interactions within a large

collection of anonymous (indistinguishable) entities, also referred to as agents, equipped

with little computational power. The entities are modelled as �nite state machines.

When two entities engage in interaction they mutually access their local states and, on

the conclusion of the encounter, their states get updated according to the global (shared)

transition function. In the asynchronous model, also adopted in the work of this chapter,

the order of interactions in consecutive rounds is unpredictable but fair, i.e., none of the

pairs of entities can be starved from interaction. In this model, the main emphasis is on

feasibility of the solution, subject to the limit on the number of states available to the

entities. In the probabilistic model, in each round the random scheduler picks a pair of

entities uniformly at random. In the presence of the random scheduler, on the top of

space restrictions, one is also interested in the time complexity of a speci�c distributed

task. A population protocol terminates if all participating entities eventually agree on

some value represented by dedicated states, independently of the order of interactions.

This value can re�ect the colour or the size of selected majority [22, 24, 67, 90], the

identity of the leader [12, 13, 55], but also completion of more complex tasks such as

network formation [92], counting [94], and others.

The adopted computation model of the work in this chapter, encompasses a popula-

tion A of n entities, each equipped with a O(k)-bit memory, where 2k is the bound on

the number C of colours present in the population. This is in contrast to the majority

settings considered earlier in [22, 24, 67, 90] where only two original colours were per-

mitted. Here each entity is coloured with exactly one of C available colours and a k-bit

label representing this colour is kept in the entity's memory.

43
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As indicated before, the entities communicate in pairs in an asynchronous manner.

The main task in the majority problem is to identify the most frequent colour in the

population. Due to presence of more than two colours in the population, we distinguish

between the absolute majority, i.e., where one colour dominates all others taken together,

and the relative majority, also known in the literature as plurality consensus, where

the population is expected to agree on (one of) the most frequent colour(s). We also

distinguish between the static majority in which the original colours of entities cannot

be altered in time - the assumption used in the past work on majority protocols [22,

24, 67, 90], and the dynamic majority in which the original colours of entities can be

changed in due course by an external force, and by doing so may alter the outcome of

the majority protocol. This is the main reason why in our model the entities must store

their original colour, which could be altered at any time but only by the external force,

in addition to O(k) memory bits required during interactions and to report the majority

on the conclusion of the computation process.

The model with the external force adopted by the work in this chapter was considered

earlier in [91] under the name computing with stabilizing inputs. Note that the dynamic

protocol described in Section 3.3 is a special variant of self-stabilization, as state alter-

ations done by the external force are permitted only between certain (colour indicating)

states. We would also like to emphasise that protocols for absolute majority presented in

Section 3.4 and the relative majority in Section 3.6 refer to earlier work on composition

of population protocols from [20].

In our model, entities interact using a classical population protocol, i.e., via global

grammars mapping pairs of states to pairs of states. In particular, no exchange of local

memories happens during pairwise interactions. The entities use their local memory

in order to organise the sub-protocols executed and in order to draw local conclusions.

Thus, if we count the states needed for entities' interactions, we require only Θ(k) states

in our algorithms for absolute and relative majority, and only a constant number of states

for protocols computing static and dynamic majority of two colours. In addition, we need

only O(k) bits of local memory per entity in our absolute and relative majority protocols

in order to handle up to 2k colours, which is optimal in terms of space requirements.

3.1.1 Related Work

The population protocol model was initially introduced to simulate behaviour of ani-

mal populations [21, 22]. In [21] we can �nd a formal de�nition of computations in

populations where pairwise interactions of �nite-state agents advance the computation.

The authors showed a fundamental result that any predicate which is semi-linear can

be stably computed by such protocols. In the introduction of their paper, they present

a protocol for majority which is exactly the same as the protocol in Section 3.2 of this

chapter. In [91] the authors present several models of population protocols including

protocols in which each entity of the population is allowed to have some memory, and

they discuss several classes of computable predicates in those models. In the �rst pages,
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they present a protocol for majority as in [21], which is almost the �rst protocol presented

here. We have included this �rst protocol in this chapter because we add a detailed ex-

planation about reporting ties. Self-stabilizing population protocols were de�ned in [26]

and properties of such protocols were demonstrated. Stabilizing population protocols in

the presence of faults were considered in [53].

In due course, population protocols proved to be a useful abstraction in diverse

environments including, e.g., wireless sensor networks [20, 58, 102], chemical reaction

networks [46], and gene regulatory networks [41]. A large portion of work devoted to

population protocols refers to the majority problem. In particular, in [24] the authors

study populations with entities governed by 3 states and propose a probabilistic popu-

lation protocol for approximate majority, i.e., where the initial di�erence between the

volumes of the two colours does not fall below ω(
√
n log n). The algorithm stabilises in

O(n log n) rounds with high probability. It also tolerates groups of o(
√
n) entities express-

ing Byzantine behaviour. Further analysis of this protocol and its 4-state amendment

leading to the �rst e�cient exact majority protocol can be found in [90]. Another aspect

referring to the parallelism of majority population protocols in the presence of a random

scheduler has been studied by Alistarh et al. in [14]. They proposed a poly-logarithmic

time majority protocol for entities equipped with memories of size O(1/ε+log n log 1/ε),

for any ε > 0. They also study the respective lower bounds. In a very recent work [12]

Alistarh et al. consider a wide spectrum of time and space trade-o�s for population

protocols and they propose a fast Split-Join majority algorithm stabilising in O(log3 n)

parallel rounds with high probability. An interesting extension of population protocols

to the random walk model can be found in [67]. Please note that neither of the majority

algorithms discussed above is able to report the tie.

The relative majority variant considered in this chapter is well known in the literature

under the name of plurality consensus. In contrast to the deterministic sequential model

adopted in the work presented in this chapter, so far plurality consensus was considered

solely in the gossiping model. In this model, in a sequence of synchronous rounds each

entity contacts a random neighbour simultaneously. Moreover, the protocols converge

under the assumption that the number of entities supporting the winning colour must

exceed those supporting any other colour by a su�ciently large bias. In this model one

explores parallelism of connections aiming at protocols stabilising rapidly with high prob-

ability. Doerr et al. [54] explored the power of two choices in complete graphs, proposing

a stabilisation protocol in the binary case requiring constant memory and message size.

Their protocol converges in O(log n) rounds assuming a bias of size Ω(
√
n log n). A

more rigorous analysis of this protocol can be found in [48], also in networks modeled

by regular graphs, for which the authors provide tight bounds on convergence time as a

function of the second-largest eigenvalue of the graph. In [34] Bechetti et al. consider a

plurality consensus protocol based on a sequence of local majority agreements with three

randomly chosen neighbours during each round requiring bias Ω(
√
Cn · log n). The pro-

tocol converges in Θ(min{C, n1/3} · log n) rounds using Θ(logC) memory and message
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size, where C refers to the number of original opinions. In later work [35] the authors

solve general plurality consensus in complete graphs via undecided-state dynamics using

an extra state to accommodate intermediate disagreements. They propose the notion of

monochromatic distance which re�ects on the di�erence between the initial colour con-

�guration from the closest monochromatic solution. Their plurality protocol converges

with a logarithmic overhead on the top of the monochromatic distance. A more recent

study on plurality consensus in noisy communication channels can be found in [65].

There is also growing interest in exact-space complexity in probabilistic plurality

consensus. In particular, in [37] Berenbrink et al. proposed a plurality consensus protocol

converging in O(logC · log logn) synchronous rounds using only logC+(log logC) bits of

local memory. They also show a slightly slower solution converging in O(log n · log log n)

rounds using only logC+4 bits of local memory. This disproves a conjecture by Becchetti

et al. [35] implying that any protocol with local memory logC + O(1) has the worst-

case running time Ω(k). In [69] Gha�ari and Parter propose an alternative algorithm

converging in O(logC log n) rounds while having message and local memory sizes based

on logC + O(1) bits. In addition to the above, some work on the application of the

random walk in plurality consensus protocols can be found in [35, 67].

3.1.2 Our results and organisation of the chapter

The work in this chapter documents the study space-optimal population protocols for

several variants of the majority problem. The work presents space-e�cient algorithms

for majority with many colours, and these algorithms are obtained by using a combi-

nation of known protocols for simple majority. In Section 3.2 we discus an amendment

allowing majority protocols to report a tie (equality) if neither of the two original colours

dominates the other. In Section 3.3 we discuss a solution to the dynamic version of the

majority problem in which the original colours assigned to the entities can be changed

by an external force. Such a solution is a special case of self-stabilizing population pro-

tocols which were considered in [26]. We discuss it here to prepare the ground for our

space-optimal protocols for many colours.

We consider space-e�cient majority protocols in populations with an arbitrary num-

ber C of colours represented by k-bit labels, where k = dlogCe. In Section 3.4 we present
an asymptotically space-optimal O(k)-bit protocol for the absolute majority, i.e., a proto-

col which answers the question whether one colour dominates all others taken together.

In Section 3.6 we propose a multistage O(k)-bit protocol for relative majority, where

all most frequent colours eventually become aware of their dominance, and all nodes

learn about the most frequent colour with the largest label. In Section 3.7 the chapter

concludes with �nal comments and a list of open problems.

3.2 Population protocol for static majority with equality

This section reformulates the algorithm for majority presented in [21].
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Initially each entity a ∈ A obtains its original colour ca, being one of the three

available denoted by integers −1, 0, and 1. Thus, the main goal in our reformulation

of majority protocols is to determine whether there are more 1's than (−1)'s (green

domination), more (−1)'s than 1's (red domination), or whether there is a tie between

the two. In other words, our majority protocols aim at determining the sign of the

expression: ∑
a∈A

ca.

If this sign is positive, there are more 1's, if negative, there are more (−1)'s, and if

the sum is 0, we report equivalence between the two competing colours. During the

communication process each entity a ∈ A has an attributed state sa. In due course we

will also use the notion of knowledge of entities, which includes information about the

state and the original colour of the entity.

Throughout the computation process the entities can be in one of the three strong

states [−1], [0], and [1] or the three weak states 〈−1〉, 〈0〉, 〈1〉. In the begining, each entity
a ∈ A with attributed colour ca = x is in state [x]. With each state s we associate a

weight w(s) such that w([x]) = x and w(〈x〉) = 0. This association is illustrated by the

table in Fig. 3.1.

state s weight w(s)

[−1] −1
[0], 〈−1〉, 〈0〉, 〈1〉 0
[1] 1

Figure 3.1: The states and their weights.

In due course, when two entities a, b ∈ A interact the shared transition function

determines their resulting states. And, in particular, if an entity in a strong state [x]

meets another in a weak state 〈y〉, the weak state becomes 〈x〉 and the strong state

remains unchanged. If during a meeting a strong state [x], for x 6= 0, meets [0] then only

state [0] is changed to 〈x〉. Finally, if [1] interacts with [−1] both states are changed

to [0]. Other type of encounters does not change the states of entities. The respective

shared transition function is illustrated by the table in Fig. 3.2.

sa\sb [−1] [0] [1] 〈−1〉 〈0〉 〈1〉
[−1] ([−1], [−1]) ([−1], 〈−1〉) ([0], [0]) ([−1], 〈−1〉) ([−1], 〈−1〉) ([−1], 〈−1〉)
[0] (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) ([0], 〈0〉) ([0], 〈0〉) ([0], 〈0〉)
[1] ([0], [0]) ([1], 〈1〉) ([1], [1]) ([1], 〈1〉) ([1], 〈1〉) ([1], 〈1〉)
〈−1〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈−1〉, 〈−1〉) (〈−1〉, 〈0〉) (〈−1〉, 〈1〉)
〈0〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈0〉, 〈−1〉) (〈0〉, 〈0〉) (〈0〉, 〈1〉)
〈1〉 (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈1〉, 〈−1〉) (〈1〉, 〈0〉) (〈1〉, 〈1〉)

Figure 3.2: The transition table for static majority protocol with ties.

Lemma 3.1 (Invariant 1). Initially, the sum S =
∑

a∈Aw(sa) equals to
∑

a∈A ca, and

its value remains unchanged during the computation process.
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Proof. Follows directly from the de�nition of the transition function.

Observation If the sum S is negative, it declares majority of reds (denoted by −1),

positive S indicates majority of greens (denoted by 1), otherwise S refers to the tie.

Lemma 3.2 (Invariant 2). The value of the sum R =
∑

a∈A |w(sa)| decreases mono-

tonically throughout the communication process and it stabilises eventually on the value

R�n = |S|.

Proof. At any stage of the algorithm R represents the number of strong states [−1] and

[1] still present in the population. According to the transition function the number of

such states can only decrease when two states [1] and [−1] annihilate one another during

a direct interaction. Thus, eventually the sum R stabilises on the original di�erence

between the number of strong states |S|.

We conclude this section with a theorem.

Theorem 3.3. The population protocol presented in this section computes majority and

returns equality if neither of the colours dominates the other.

Proof. According to the observation and the two lemmas, if a majority exists, the remain-

ing entities in strong states of the dominating colour will recolour all entities accordingly.

Otherwise, the annihilation of the last pair of states ([1], [−1]) results in obtaining two

entities with states [0] which in due course will change states in all other entities to 〈0〉.
Finally, if neither of the states [1] or [−1] is initially present in the population all entities

remain in the neutral state [0].

3.3 Population protocol for dynamic majority with equality

In this section we consider a variant of population protocols in which the original colours

(attributes) of entities could be altered by an external force for some unspeci�ed, however

limited, period of time. After this initial period, the relevant population protocol is

expected to eventually stabilize. The model of changing inputs from [20] and the concept

of composing several population protocols as described in [91] are the inspirations for our

approach here. In essence, we reformulate the majority algorithm from [20] and show

how to modify this reformulation so that it can be used as a subprotocol for our next

section.

We assume that an entity is aware when its original colour changes, and is able to

modify its current state as a result, but such a change is again governed by common state

transition rules for all entities. We also assume that it is not possible for the external

force to alter the original colour of an entity while it is simultaneously interacting with

another entity.

We use the protocol we propose here as a subroutine in more structurally complex

population protocols for the absolute majority in Section 3.4, and for the relative majority

in Section 3.6.
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The population protocol presented below determines whether there are more original

1's, more (−1)'s, or there is a tie after the last intervention of the external force. For the

purpose of our protocol each entity a ∈ A must store its original colour ca ∈ {−1, 0, 1},
and this stored colour can be altered only by the external force at any time. Besides

the colour, the entity maintains a state sa governed by the shared transition function.

More formally, an entity's knowledge refers to the pair (ca, sa). We de�ne �ve strong

states:[−2], [−1], [0], [1], [2], and three weak states 〈−1〉, 〈0〉, 〈1〉. Before the protocol is

initiated, if ca = x we set sa = [x]. On the conclusion all entities are in state

• [1], [2] or 〈1〉 if there are more 1's than (−1)'s,

• [−1], [−2] or 〈−1〉 if there are less 1's than (−1)'s, and

• [0] or 〈0〉 when there is a tie.

We de�ne the weight function, w(s), on a state s as w([x]) = x and w(〈x〉) = 0, see the

table in Fig. 3.3.

s w(s)

[−2] −2
[−1] −1

[0], 〈−1〉, 〈0〉, 〈1〉 0
[1] 1
[2] 2

sa, ca = 1 changes to c′a = −1 s′a
[0], 〈−1〉, 〈0〉, 〈1〉 [−2]

[1] [−1]
[2] [0]

sa, ca = −1 changes to c′a = 1 s′a
[0], 〈−1〉, 〈0〉, 〈1〉 [2]

[−1] [1]
[−2] [0]

Figure 3.3: The weight function w(s) and the state transition rules when recolouring
occurs by an external force.

During execution of the majority protocol we maintain two invariants:

1.
∑

a∈A ca =
∑

a∈Aw(sa), and

2. for each a ∈ A, |w(sa)− ca| ≤ 1.

The two invariants are preserved thanks to carefully crafted state transition rules and

counterparting alterations of an entity's state caused by changes of the original colour ca
imposed by the external force. When the colour ca is changed to c′a = ca + δ, the state

is changed from sa to s′a = [w(sa) + δ]. Note that this rule preserves both invariants

1 and 2. This is illustrated by the table to the right in Fig. 3.3 describing how states

are changed when ca = 1 is changed to c′a = −1, or vice-versa. In this table we do not

consider, for example, combinations of states sa = [−1], [−2] with colour ca = 1 because

of the invariant 2.

In what follows we describe what happens to the states when two entities a, b ∈ A
interact. If a strong state [1] or [2] meets a weak state 〈y〉 or [0], then this second state

becomes 〈1〉. If a strong state [−1] or [−2] meets a weak state 〈y〉 or [0], then the latter
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state becomes 〈−1〉. If a strong state [0] meets a weak state, the weak state is changed

to 〈0〉. If [1] meets [−1] or [2] meets [−2], they are both changed to [0]. If [2] meets

[−1], they are changed to [1] and [0] respectively. If [−2] meets [1], they are changed

to [−1] and [0] respectively. Other encounters do not result in state alteration. This is

illustrated by the table in Fig. 3.4 which does not take into account encounters between

entities where both are in weak states, because they do not result in state alteration.

sa\sb [−2] [−1] [0] [1] [2]

[−2] ([−2], [−2]) ([−2], [−1]) ([−2], 〈−1〉) ([−1], 〈−1〉) ([0], [0])
[−1] ([−1], [−2]) ([−1], [−1]) ([−1], 〈−1〉) ([0], [0]) (〈1〉, [1])
[0] (〈−1〉, [−2]) (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) (〈1〉, [2])
[1] (〈−1〉, [−1]) ([0], [0]) (〈1〉, [1]) ([1], [1]) ([1], [2])
[2] ([0], [0]) ([1], 〈1〉) ([2], 〈1〉) ([2], [1]) ([2], [2])
weak (〈−1〉, [−2]) (〈−1〉, [−1]) (〈0〉, [0]) (〈1〉, [1]) (〈1〉, [2])

Figure 3.4: The state transition table for interacting entities for dynamic majority.

Lemma 3.4. The invariants 1 and 2 are preserved during execution of the majority

protocol.

Proof. First, we consider interactions between pairs of entities.

Invariant 1 is preserved, because for any state transition, if the weight of one entity

is reduced, then the weight of the other is increased by the same (absolute) value. Also,

if colour ca is changed, then the weight w(sa) is changed too by the same value.

Invariant 2 is preserved because during every interaction of entities |w(sa)| can only

decrease and w(sa) does not change its sign. So if ca = 1, then sa is initially in the

interval [0, 2] and it remains in this interval. The reasoning in the remaining cases when

ca = 0 or −1 is analogous.

Now we consider the invariants when the external force changes the colour of an

entity. Suppose that an entity is coloured ca = 1 and its colour is changed to c′a = −1

(the other case will be similar).

Invariant 1 is preserved by the choice of the transitions shown in the table in the

right of Fig. 3.3. The left hand side of the equation in invariant 1 decreases by 2 (since

the colour changes from 1 to −1). If the state of the entity was sa ∈ {[0], 〈−1〉, 〈0〉, 〈1〉},
the new state is s′a = [w(sa)− 2] = [−2]. Hence the corresponding weight changes from

w(sa) = 0 to w(s′a) = −2, so the right hand side of invariant 1 also decreases by 2 (i.e.,

preserving the invariant). Similarly, if sa = [1], then the new state is s′a = [−1], hence the

contribution to the right hand side of invariant 1 from the entity changes from w(sa) = 1

to w(s′a) = −1, again a decrease by 2. We can check the remaining case, where sa = [2],

in an analogous manner.

Invariant 2 is also maintained by the rules that govern how the entity's state is

updated when its colour is changed by an external force. E.g., ca = 1 changing to

c′a = −1 means that the new weight w(s′a) ∈ {0,−1,−2} from the rules in Fig. 3.3.
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Lemma 3.5. The value of R =
∑

a |w(sa)| does not increase after the last intervention
of the external force. Moreover the value of R stabilises when eventually there are no two

entities a, b ∈ A such that w(sa) > 0 and w(sb) < 0.

Due to Lemma 3.5 the majority process stabilises in three possibile con�gurations

with respect to C�n
def
=
∑

a∈A ca (where ca is referring to the �nal colour of the entity

a, after any external forces have stopped changing the colours of entities). If on the

conclusion C�n > 0, there must be some entities in states [1] or [2] which would earlier

ensure that all weak states and the state [0] are switched to 〈1〉. If C�n < 0, there must

be some entities in states [−1] or [−2] which would earlier ensure that all weak states

and the state [0] are switched to 〈−1〉. However, if on the conclusion C�n = 0, there are

no entities in states [x] with x 6= 0 and the last entity that reached state [0] will have a

chance to alter all weak states to 〈0〉.

3.4 Absolute majority

The work in the remaining part of the chapter works under the assumption that the

population is coloured with an arbitrary number C of colours, where 2k−1 < C ≤ 2k, for

some integer k ≥ 1 that is known to all entities. Each colour is denoted by a k-bit label

l[0..k − 1], and single labels are attributed to entities with the relevant colours. As in

previous sections, we interpret the individual bits l[i] in this label as −1 or 1, rather than

more standard 0 or 1. Each entity is assumed to own an extra O(k) bits used to support

the computation process, including interaction with other entities in the population.

In this section we present an asymptotically optimal O(k)-bit population protocol

computing absolute majority, i.e., answering whether there exists a colour which domi-

nates all the remaining colours in the population taken together. The absolute majority

algorithm presented here is a combination of the static majority protocol introduced in

Section 3.2, and later referred to as P1, as well as the dynamic majority protocol from

Section 3.3, from now on referred to as P2. We recall that protocol P2 assumes full

knowledge of entities and it is using two types of state transitions: (1) imposed by the

external force and altering original colours associated with entities, and (2) caused by

the interaction with other entities in the population.

Memory organisation Each entity uses O(k) bits of memory to accommodate:

1. The k-bit label l[0..k − 1] representing the original colour of the entity,

2. An array s[0..k − 1] representing k independent instances of protocol P1, and

3. An instance of protocol P2 with the external force based on k instances of P1.

For the purpose of our algorithm we de�ne k independent instances of static majority

protocols P1(i), for i = 0, . . . , k − 1, such that colours competing in P1(i) refer to the

bits l[i] drawn from each entity in the population. Assume l∗[0..k − 1] is a k-bit label of
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the colour of the absolute majority in the population. One can observe that when the

majority protocols stabilise, for all i = 0, . . . , k − 1, each bit l∗[i] must be in majority

reported by P1(i) via entry s[i]. Thus, if the absolute majority exists, one can run k

static majority protocols P1(i) to determine the majority colour. However, if there is no

absolute majority the protocol proposed above may still return a false positive �winner�.

This can happen, e.g., if no entity has a colour with the label in which all bits are set

to 1s but the majority of bits l[i], for all i = 0, .., k − 1 for all entities are 1's. In such

case, the non-existing colour with the label �lled with 1s would be wrongly recognised

by the entities as the absolute majority. In order to overcome this clear de�ciency of

the protocol, an extra (�nal) test is performed with the help of protocol P2 to decide

whether the returned colour is in the absolute majority.

3.4.1 Algorithm Absolute-Majority

Initialisation Stage

1. Before execution of the algorithm, each entity a ∈ A sets for itself s[i] = [1] if

l[i] = 1 and [−1] otherwise, for all i = 0, .., k − 1. This choice refers to the belief

that its original colour ca is in majority. And, indeed, each entity initially adopts an

extra colour 1 (denoting membership in the majority) for the purpose of protocol

P2.

2. Later, during pairwise interactions between entities, the current states in s[i] get

updated by the relevant majority protocols P1(i), for each i = 0, . . . , k − 1 inde-

pendently. And if at any time the contents of s[i] and l[i] do not re�ect its initial

setting, the belief of the entity changes to −1. However, this belief becomes 1 again

as soon as the consistency between bits in s[0..k − 1] and l[0..k − 1] is restored.

This consistency measure determines actions of the external force in protocol P2.

Stabilisation Stage

1. At �rst, the majority algorithm stabilises on all protocols P1(i), for i = 0, . . . , k−1,

which allows each entity to establish the �nal relationship between the correspond-

ing bits in s[0..k − 1] and l[0..k − 1]. This, in turn, determines the extra colour (1

or −1) of the entity adopted for the purpose of protocol P2.

2. When eventually protocol P2 also terminates and concludes with colour 1 in ma-

jority, all entities receive con�rmation that the �nal states in s[0..k − 1] refer to

the absolute majority colour l∗[0..k− 1]. Otherwise, the entities learn that none of

the colours is in the absolute majority.

Note that all protocols described above run simultaneously right from the beginning, and,

in particular, protocol P2 works at least for some time on unstable data. Nevertheless, as

the bits generated by protocols P1 eventually stabilise, thanks to protocol P2's tolerance

of dynamic changes, the absolute majority (if such exists) is con�rmed. We conclude

with this theorem.
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Theorem 3.6. Algorithm Absolute-Majority computes absolute majority on populations

with at most 2k colours with the help of O(k) memory bits in each entity.

Proof. If an absolute majority colour exists (represented as a k-bit label l[0..k−1]) then,

when the k independent instances of P stabilize, each P1(i) stabilizes in the bit l(i).

In fact, each bit of the label of the colour of the absolute majority is then reported by

P1(i) via its entry s[i]. However, the population still needs to verify this since, in case

of no absolute majority colour, the above protocol may return a false positive "winner"

. This can happen if for each i there is an absolute majority bit but the whole tuple

of these bits does not correspond to a colour in the population. In order for this case

not to be wrongly understood as the absolute majority , we need a verifying step. This

is exactly what protocol P2 does. In fact, P2 always runs a test to decide whether the

returned supposed absolute majority colour is indeed the absolute majority. Protocol P2

works for some time on unstable data. However, after a time t by which all P1(i) have

stabiized, protocol P2 shall also stabilize either by concluding that the assumed majority

colour (indicated by colour 1 in the algorithm) is indeed an absolute majority, or it shall

stabilize reporting nonexistence of the absolute majority colour to all entities. Note that

each time P2 has to check only one supposed majority colour against all others, treated

as a single colour −1 in the algorithm. The above proof works due to the established

fact that P2 tolerates dynamic changes in the input colours.

3.5 Absolute Majority Example

Here we provide an example of the absolute majority protocol, referencing the memory

allocation stated in Section 3.4. Recall we de�ned the memory allocation for each entity

A in the graph, a k-bit label l, an array s storing each instance of protocol P1 and a bit

which stores the instance of P2 that reports if the initial value of l in A is in the majority

color. We also use one �nal instance of P2 to verify whether the initial majority color

has been found.

Figure 3.5: Absolute Majority Example

The example in Figure 3.5 illustrates this memory allocation where there exists an

initial majority color in entities A1, A3 and A4 of 1011. Each index in array s stores

the protocol P1 for each column in l. For example, consider the column l1 and s1, there

exists two colors 1 and 0, the only 0 appearing from entity A2. As a result of this, the
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value of each entity for element s1 = 1 as 1 is the majority color. For the column at

index l2, s2 stores the initial majority color in this instance which is 0. This is repeated

for all corresponding indexes in l and s until the correct result has been found. Each

entity stores an instance of P2 which reports if the entities majority color l is equal to

the determined majority color s. As sA1 = lA1 , P2A1
= 1. Conversely, as sA2 6= lA2 ,

P2A2
= 0. The �nal bit, is one �nal instance of P2 on the previous instance of P2 which

determines the majority color in this instance. As 1 is the majority color and is reported

in all rows, the protocol has veri�ed the initial majority color has been found.

3.6 Relative majority

As in Section 3.4, in this section we assume that the population is attributed with

an arbitrary number C of colours, where 2k−1 < C ≤ 2k, for some integer k ≥ 1

that is known to all entities. Each colour is denoted by a k-bit label l[0..k − 1], where

l[i] ∈ {−1, 1}. Each entity is assumed to have extra O(k) bits used to support the

computation process, including communication with other entities in the population.

The relative majority problem refers to the task of �nding the most frequent colour in

the population. Note that there can be more than one colour that is the most frequent.

In such case the colour with the latest in the lexicographical order label l∗[0..k − 1] is

declared as the winner.

Computing relative majority is a more complex task, comparing to the absolute

majority, as here one needs to collect evidence con�rming that the winning colour beats

any other colour in the population. At �rst we describe a protocol for the relative

majority which only �nds the winner l∗[0..k − 1]. This is done by marking all entities

possessing this colour with the winning label. In this setting, the colour in the relative

majority always exists. The case in which the uniqueness of the majority colour is

required is commented later in Section 3.6.2.

In the relative majority protocol, instead of engaging in the total comparison (via

majority computation) in pairs formed of any two colours, which would require O(k2)-bit

memories, we propose a solution similar to �nding maximal elements in parallel stages

based on duels. In each stage the winning colours perform pairwise duels via majority

protocols to reduce the number of winners by half.

This multi-stage computation is made feasible thanks to pipelining of dynamic ma-

jority protocols P2 which gradually stabilise starting from the lowest stage and �nishing

at the highest stage of the dueling process. The diagram in Figure 3.6 demonstrates the

dueling process between C colors.

Stages are enumerated by descending numbers from the lowest stage k − 1 to the

highest 0. In stage i, for all i = k − 1, .., 0, two colours are in the same group if their

k-bit labels l[0..k − 1] share i-bit pre�x l[0..i− 1] (in stage 0 all labels form one group).

In this stage agents in one group aim at �nding the majority colour label in each group.
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Figure 3.6: Relative Majority Duels

Memory organisation. Each entity a ∈ A uses O(k) bits of memory to accommodate:

1. The k-bit label l[0..k−1] representing the original colour of the entity. This colour

is �xed (never changed) throughout the computation process.

2. The k-bit label c[0..k − 1] represents current colours c[i] of the entity in each

consecutive stage i, with the decreasing index i = k − 1, .., 0. On the conclusion

of stage i, if label l[0..k − 1] is declared as the winner in the group of labels with

pre�x l[0..i], the value c[i] equals to ±1, otherwise c[i] = 0. All entities with the

winning colour l[0..k − 1] in its group in higher stage i − 1 have the value c[i] set

to l[i]. Before the stabilisation of P2(i− 1) the value c[i] re�ects the current belief

of the entity about this value.

3. An array s[0..k − 1] representing states s[i] in k independent instances of protocol

P2(i) associated with colours c[i]. The computations with respect to P2(i) are

performed only if the two interacting entities have the same label pre�x l[0..i− 1].

Otherwise protocol P2(i) is not executed. We emphasise here that computations

in P2(i) can change values c[i− 1] whose change in turn cause alteration of states

s[i− 1]. Also, changes in c[i] can change c[i− 1].

3.6.1 Algorithm Relative-Majority

Initialisation Stage Before execution of the algorithm, each entity sets c[i] = l[i] and

s[i] = [1] if c[i] = 1 and [−1] otherwise, for all i = 0, .., k − 1.

Stabilisation Stage

1. The algorithm stabilises �rst on protocol P1(k − 1), as at the beginning of the

pipeline there is no external force, and then subsequently on protocols P2(k − 2),

P2(k − 3), . . ., P2(0).

2. An entity believes that its colour wins on stage i if, either c[i] = −1 and s[i] ∈
{[−1], [−2], 〈−1〉}, or c[i] = 1 and s[i] ∈ {[0], [1], [2], 〈0〉, 〈1〉}. The states [0], 〈0〉
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correspond to a tie and in this case the lexicographically larger label becomes the

winner. If the entity believes its label l[0..k − 1] is the winner in stage i, it sets

c[i−1] = l[i−1] and adjusts s[i−1] as speci�ed in protocol P2(i−1) if c[i−1] gets

changed. If, to the contrary, the entity believes it did not win, it sets c[i− 1] = 0

and also adjusts s[i − 1] should change occur in c[i − 1]. Note, that in both cases

changes in c[i− 1] are propagated to c[i− 2] and further on.

3. Eventually protocol P2(0) stabilizes. At that time entities that win in stage 0 hold

the winning majority colour.

Theorem 3.7. Algorithm Relative-Majority computes relative majority on population

with at most 2k colours with the help of O(k) memory bits in each entity.

Proof. The memory requirement follows directly from the formulation of the protocol.

In order to prove correctness, we proceed by induction on stage numbers i taken in

reverse order. The colours c[k−1] do not change during the protocol so in some moment

tk−1 protocols P2(k − 1) stabilize and states s[k − 1] stop being changed. These states

determine unique winning k-bit colours in groups corresponding to all possible pre�xes

l[0..k − 2].

Now let i > k − 1 be a stage number. By inductive hypothesis in some time ti+1,

protocols P2(i+ 1) stabilize and states s[i+ 1] stop being changed. They indicate unique

winning k-bit colours in groups corresponding to each pre�x l[0..i]. So, since ti+1 colours

c[i] are ±1 for these winners, 0 for others and do not change anymore. Thus, in some

later time ti, protocols P2(i) stabilize and states s[i] cease being changed. From the

formulation of the protocol these �nal states s[i] determine the winning k-bit colours in

groups corresponding to pre�xes l[0..i− 1].

Finally ,at some time t0, protocols P2(0) stabilize and all entities compute states s[0]

corresponding to the unique winning k-bit colour amongst all of them.

3.6.2 Uniqueness in relative majority

As indicated at the beginning of Section 3.6, one may want to report only unique relative

majority colours, i.e., when there is exactly one, the most frequent colour. And indeed

if the winning colour l∗ is not unique, there must exist some other colours which lost to

l∗ in a tie at some stage. The purpose of the mechanism presented below is to encounter

such ties (if they exist) and to distribute this information to all entities in the population.

This can be done by performing an additional dissemination protocol with the help of

an extra bit c′ drawn from the set {0, 1}. This dissemination protocol is run by each

entity in conjunction with the relative majority protocol described above, and its actions

are governed by the current belief of the entity whether it is a winner or not and by

encountered or not ties in duels. The following four rules govern values of the extra bit

c′.

Initially, (1) in each entity the extra bit c′ is set to 0 to denote that the entity does

not carry any information about ties between the winners. This value can be changed
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to 1 if (2) the colour of the entity is still a potential winner (did not lose any duel yet in

the most recent climb through the stages) and at some stage its duel ends up in a tie; or

if (3) the colour of the entity is already deemed as the loser and it meets another entity

with the colour still being a potential winner and its extra bit c′ = 1. And (4) the extra

bit c′ can be changed back to 0 if and only if the colour of its owner is deemed as loser

and it meets another entity with the colour still being a potential winner and its extra

bit c′ = 0.

In due course the values of each extra bits c′ can be altered several times according to

the rules 1, 2 or 3. However, when eventually the relative majority protocol determines

the winning colour l∗ in stage 0, only entities coloured with l∗ are able to change values

of extra bits in other entities. Now, if the extra bit associated with entities coloured by l∗

is 0, i.e., the winning colour has never experienced a tie, all other entities are eventually

informed accordingly by rule 4. And, if the extra bit associated with entities coloured

by l∗ is 1, i.e., the winning colour has encountered a tie in the past, all other entities are

eventually informed accordingly by rule 3.

3.7 Conclusion

The work in this chapter presented memory-e�cient population protocols for several

variants of the majority problem.

In Section 3.2 we show how to amend majority protocols to report ties. The proposed

protocol relies on a relatively large number of states used by entities. One can show a

more space-e�cient solution limited to six states. Also in a wider context, in our solutions

the emphasis was on asymptotic space optimality. One open problem, however, is to

determine more exact bounds on the number of states required to compute the considered

types of majorities for a given number of colours C. Another interesting problem refers

to the time complexity and parallelism of considered majority problems in the presence of

a random scheduler. Finally, one can ask what other computations are possible through

a composition of several �partially self-stabilizing� (sub)protools.





Chapter 4

Agglomerative Phylogenetic

Clustering in Structured Graphs

4.1 Overview

Heuristically nonuniform data appears structureless on initial inspection. The process

of identifying the heterogeneity in the data and grouping elements is the process of clus-

tering. Clustering has been a focal point in many multidisciplinary academic �elds for

decades, a problem which still hasn't been satisfactorily solved. The salient contribut-

ing factors are that there are a wide variety of applications for clustering across these

disciplines and the data has a wide variety of formats, such as text, multimedia, web

pages, biological, sociological amongst many others. The applications, domains and data

types are diverse and the solutions are di�cult to generalize. This has resulted in the

creation of many constrained and problem dependent algorithms. Another contributing

factor is that the research is often fragmented, studied in various academic disciplines

and further subdivided into subdivisions of each discipline. For example, in computer

science, clustering is studied in machine learning, databases and data-mining. There is

little e�ort to address this research area in a interdisciplinary and uni�ed way [9].

Clustering in the context of this thesis is grounded in machine learning, as unsuper-

vised learning algorithms. Contrary to supervised learning, datasets generally are not

accompanied by truth labels. This creates obstacles when applying evaluation methods

to clustered data and adds a layer of subjectivity in regards to the `best' clustering for

any given scenario.

Given the broad nature and setting of clustering, many models exist to solve the

problem. The area we will focus on in this chapter is distance-based algorithms. These

methods are very popular due to their generality and applicability to data types of

varying degrees - providing a correct distance metric is used [9].

In this section, we propose an algorithm inspired by hierarchical clustering, more

speci�cally the agglomerative variant in which each data-point is a cluster initially -

59
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these clusters are successively merged using one of three common strategies, ward, com-

plete or average linkage schemes (the similarity values calculated post merging of two

clusters). The method is also inspired by phylogenetics, a branch of biology that stud-

ies evolutionary relationships between biological entities - a notable example being the

phylogenetic tree of life. In recent years there has been an exponential increase of se-

quence data being produced from various sources and the study of phylogenetics and

the building of phylogenetic trees has become an integral part in biological studies. The

work in [85] discusses and provides new tools to represent and manipulate phylogenetic

trees visually. Hierarchical clustering and phylogenetics are are inherently similar but

separate - we have synergised key concepts from these areas with the aim to produce a

new algorithm to aid in identifying clusters in various datasets.

4.2 Our Results

The solution we propose is based on agglomerative hierarchical clustering and phylo-

genetic or evolutionary trees. A salient feature of the algorithm is that it focuses on

local sampling to assist in determining overall network structure. As a result of such,

many of the initial redundant values from all pairwise computations in a network are

dropped, which is a fundamental step in classic hierarchical clustering mechanisms. In

our algorithm we consider pairwise and ternary relationships in the data, up to one step

away from the root node. From the information inherent to the local environments we

create a set of triplets, which are used as constraints in our method. The algorithm will

then catalogue this information and interpret the triplets with the goal to derive good

clustering. We present in this chapter multiple variations of the algorithm with accompa-

nying analysis, beginning at the most incubative form in terms of strictly adhering to the

rules of phylogenetics to more complex forms that allow for a more �exible rule set. We

introduce new parameters to alleviate the problems inherent in a simpler approach and

ultimately provide an augmentable algorithm that is robust and scalable across various

datasets.

More speci�cally, considering an undirected graph G, we want to generate a set T of

constraints from the local structure of the vertices in G. Using the constraints in set T

we construct a set of clusters C in a similar fashion to how evolutionary trees are built in

phylogenetics. Note we use a set initially to adhere to phylogenetic building rules until we

introduce the notion of ranking. Henceforth we adapt to using lists to storing constraints.

We consider a model of building phylogenetic data structures in [82] as well as models

with restrictions, such as the inclusion of resolved, forbidden and fan triplets. The order

of the constraints in T is initially unimportant in early experiments when considering

strict phylogenetic building rules. Our �nal algorithm terminates when a user speci�ed

k is given (where k is the number of desired clusters), but we also consider autonomous

termination when T = ∅ and thresholding mechanisms. We show the algorithm in its
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basic form along with with successive augmentations to improve robustness in a wider

array of graph types. Each iteration of the algorithm is analyzed on various graph

types against previous iterations of the Agglomerative Phylogenetic Clustering (APC)

algorithm to showcase the signi�cance of the design decisions. The �nal iteration of the

algorithm is analyzed on various graph types against similar algorithms in its domain,

speci�cally Girvan-Newman [71] and Label Propagation [106]. The algorithm is evaluated

and discussed in terms of suitable applications of such a mechanism, where it performs

strongly and cases in which it may encounter di�culty.

4.3 Test Data

The beginning sections of this chapter (Section 4.10, 4.13, 4.16 and 4.18) show progressive

iterations of our algorithm, we generate small examples to demonstrate the fundamental

concepts of the solution and also identify problem cases that initiate adaptations of

such. These small datasets are fundamentally small barbell graphs and will be de�ned

and discussed individually in each section of the relevant experiment.

To test the quality of clusters, we must apply the algorithm to a problem in which

a well de�ned solution is known, a graph where well connected communities are clear -

typically called partitions. All clustering procedures share similar notions of what consti-

tutes as a cluster, though each algorithm tackles the problem di�erently. Therefore, we

use a set of synthetic graphs or computer-generated benchmark graphs that have become

popular in the �eld over the last couple of years [63]. The class of graphs are generated

using the planted l-partition model, which partitions a graph with n = g · l vertices in
l groups with g vertices each. Vertices of the same group are linked with a probability

pin and conversely, vertices in a di�erent group with probability pout. Each subgroup

in these graphs are then random graphs, speci�cally mutually interconnected random

graphs as in Erdos-Renyi, where the connection probability is p = pin. These graphs

contain clusters of the exact same size by design, which is rarely seen in real systems.

A modi�ed model, Gaussian random partition generator accounts for the heterogeneity

of degrees and community sizes of the planted l-partition model, which will generate

clusters of di�erent sizes. We �nally consider Random Partition Model generators that

are �exible in allowing the ability to de�ne speci�c cluster sizes.

We use the library NetworkX [2] which implements these various network topologies,

including random graphs using planted l-partition models [5], Gaussian random parti-

tions [3] and Random Partition Graphs [6]. We use multiple synthetic graphs in this

form by manipulating the parameters used to create it, including a special case of the

planted l-partition model de�ned by Girvin and Newman and referenced in [63].

We adopted the scikit-learn machine learning library [7] for testing the algorithms.

The scikit-learn library contains datasets for various machine learning problems, includ-

ing clustering. The library also contains various evaluation metrics discussed in the

Section 4.4. These synthetic datasets are created by various functions plotting samples
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in two-dimensional space and are initially plotted without edges - therefore they are not

naturally suitable for our graph based method. All the experiments are using the same

random seed for these synthetic datasets to ensure consistency and continuity between

experiments and between methods. Further motivation for selecting graph generators

are speci�ed when used in later experiments.

4.4 Evaluation Metrics

It is necessary when an algorithm is designed, to test the performance, assess the qual-

ity and compare it with that of other methods. To determine the performance of our

algorithm we must �rst use a set of standard benchmark graphs and relevant criterions

to evaluate how similar the returned cluster labellings are with that of the desired clus-

ter labelling. Melia provides a comprehensive introduction to graph partition similarity

measures in [88], a paper which also de�nes the advantages and disadvantages of common

evaluation metrics. The metrics discussed are used to determine the quality of partitions

and the quality of the overall clustering and can be divided into three categories: pair

counting, cluster matching and information theory.

In this chapter we document experiments on various iterations of the APC algorithm,

using various benchmark graphs discussed in Section 4.3. The motivation for using such

graphs is that the desired partitions or solution, is already known and the truth labels

or ground truths have been derived a priori.

The set of evaluation metrics we consider are adjusted rand index, completeness score,

homogeneity score and V-measure score.

De�nition 4.1. Adjusted Rand Index [77]: a pair counting mechanism that determines

the similarity between two clusterings - the use of this metric in the context of classi�-

cation is discussed in [111]. Speci�cally and �rstly it is an augmentation to the Rand

Index [107] which is the ratio of the number of pairs correctly classi�ed in both partitions

by the total number of pairs - the correctly classi�ed pairs can either be in the same or

di�erent clusters. The resulting value is returned in the range [0, 1], although in practice

the range is more often [0.5, 1] and therefore the adjusted variant is preferably used [116].

It is adjusted to allow for the introduction of a null model, and compensating for the

shortcomings of RI by introducing a contingency table. ARI yields the value 1 when

partitions are identical and 0 when partitions are independent.

De�nition 4.2. Completeness score, a complementary concept to V-measure that cap-

tures desirable properties in clustering tasks [109]. Completeness is satis�ed if all data

points that are members of a given class are elements of the same cluster. An algorithm

which merges all partitions into one cluster can satisfy this property, but used alone does

not indicate good clustering.

De�nition 4.3. Homogeneity score, a complementary concept to V-measure that cap-

tures desirable properties in clustering tasks [109]. Homogeneity is satis�ed if all clusters
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contain only data points which are members of a single class. An adaptation to com-

pleteness, all partitions must be separate and must contain all their elements to achieve

the maximum value.

De�nition 4.4. V-measure score, an entropy-based measure which explicitly measures

how successfully the criteria of homogeneity and completeness have been satis�ed. [109].

This method is considered widely over other methods such as Purity and Entrophy pro-

posed in [118] as they only consider the concept of homogeneity and not completeness.

The computation of completeness, homogeneity and V-measure are completely indepen-

dent of the number of classes, the size of the data set and the clustering algorithm used.

A characteristic not shared by other existing evaluation metrics.

4.5 Our Proposed Method: Agglomerative Phylogenetic Clus-

tering and Parameters

In this section we explain our proposed algorithm in its basic form along with augmen-

tations and variants that resemble the �nal result. Each iteration of the algorithm is

grounded by a common concept in that they all consist of three unique steps, de�ned in

Algorithm 1.

Data: Graph G, Integer k

Result: Output k clusters

initialization;

Function calculate_similarities

Function generate_constraints()

Function build_clusters()
Algorithm 1: APC Algorithm Framework

The APC algorithm will compute all nested pairwise similarities between ∀v ∈ V

and neighbors of depth 1 from v. The similarity metric we consider is cosine similarity,

de�ned in Equation 4.1, which is commonly used in hierarchical clustering and other

connectivity based clustering methods.

cos(a, b) =
common_neighbours(a, b)√

deg(a)× deg(b)
(4.1)

Conversely hierarchical clustering computes all pairwise similarities between all ver-

tices in G. In our method, calculating the similarities considers each node in direct com-

parison with their neighbors, utilizing the set of common neighbors between them and

ultimately labelling each pairwise relationship 0 ≤ sim ≤ 1. Therefore our method only

considers local sampling in the graph as the generate_constraints() phase in Algorithm 1

will only generate constraints according to the functions de�ned in Section 4.6 and later
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in Section 4.15. These functions only require similarity values for relationships of at most

depth 2 from the root vertex. The similarities are used to generate ternary triplets or

constraints in the form ((ab), c). The constraints are used in the build_clusters() phase

in Algorithm 1 and is formatted such that it implies a and b are more similar than c - a

notion explained in more detail in Section 4.7.

Parameter Experiments Extended Experiments

Termination All Constraints, k Threshold
Distance Measure Cosine
Constraint Function PCG, TCG
Allow Forbidden True, False
Allow Fans True, False
Rank Constraints True, False

Table 4.1: APC Parameters
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Our proposed method can be instantiated in multiple settings using the complete

list of parameters in Table 4.1. The table shows which parameters are discussed in

the experiments present in this chapter and also features that are considered in extended

experiments and future work. We consider two termination criterions, all constraints and

k, where k is the number of desired clusters. We also consider two methods of generating

constraints based on local relationships, these are pairwise constraint generation (PCG)

and ternary constraint generation (TCG). The parameters are discussed and introduced

in detail when necessary to experiments. Firstly we introduce the parameters necessary

for the basic version of APC, requiring only a constraint generation function, PCG, and

termination criterion, all constraints.

4.6 Pairwise Constraint Generation

v1 v2

v3

v4

v5

e1

e2 e3

e4

e5

Figure 4.1: PCG Local Relationships

Our �rst constraint generation function is Pairwise Constraint Generation, PCG

henceforth. This is the concept of considering root vertices directly with their neighbors

and creating constraints accordingly. This was implemented by a dynamic programming

mechanism which enables the computation of constraints with the previously generated

similarities. The following example is in reference to Figure 4.1. We �rstly compute all

pairwise similarities in the local neighbourhood and set the edges labels to the corre-

sponding similarity between the source and target vertex. Firstly, we select v1 as the

root node and consider each relationship iteratively. The �rst relationship we consider

is (v1, v2) and as there is no other data to compare to, no constraint is generated. Al-

though, we store the pair (v1, v2) as the highest similarity pair in the neigbourhood of

v1. Secondly, we consider the pair (v1, v3) which can then be compared to the similar-

ity of the previously stored pair. If the similarity (v1, v3) > (v1, v2), then the constraint

((v1, v3), v2) is generated and added to the list of constraints T , else ((v1, v2), v3) is added

to T . The last vertex in the neighbourhood of v1 is then considered by comparing the

similarity (v1, v4) with all other considered pairs. If (v1, v4) > (v1, v3) then the constraint

((v1, v4), v3) is generated and added to the list of constraints T , else ((v1, v3), v4) is added.

Finally, if (v1, v4) > (v1, v2) then the constraint ((v1, v4), v2) is generated and added to

the list of constraints T , else ((v1, v2), v4) is added. This method only considers vertices

of depth 1 away from the root vertex, as annotated by the dashed edges. PCG allows for
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the generation of forbidden triplets in the list T , explained in more detail in Section 4.11

and includes a di�erent interpretation of fan triplets explained in Section 4.12.

4.7 Building the Phylogenetic Tree

Subsequent to generating a set of constraints, it is then possible to build clustering from

these constraints. The rules we apply are based on the building method de�ned in [10],

which determines if a phylogenetic tree can be built from the constraints - de�ned as the

tree discovery problem. The paper de�nes the problem as follows: in a rooted tree, the

lowest common ancestor of two vertices x and y, denoted by (x, y), is the vertex a that

is an ancestor of both x and y such that no proper descendant of a is also an ancestor of

both x and y. The constraints in [10] are de�ned in the form (i, j) < (k, l) where i 6= j

and k 6= l, which implies the lowest common ancestor of (i, j) is a proper descendant of

the lowest common ancestor of (k, l). Note that a u is a proper descendant of v if u is a

descendant and u 6= v.

There are two building rules that pertain to the generated constraints in this form

to generate a phylogenetic tree. These are as follows:

1. i and j must be in the same set.

2. Either k and l are in di�erent sets or i, j, k and l are in the same set.

The sets which are referred to here are groupings of vertices based on the topology

of the graph and the result of executing the constraints. If the constraints are satis�ed

and the sets are consistent, there exists a phylogenetic tree.

A paper built upon the work in [10] authored by Henzinger et al [75] regards the

subtree consistency problem, the form of the constraints and building rules were simpli�ed

- the form used in this chapter. The new form still �nds the lowest common ancestor

between two vertices and is now represented as a triple, ((a, b), c), indicating the lowest

common ancestor of a, b is below that of a, c.

Initially each vertex in the graph is assigned to a cluster, therefore C = n (reduced

to k). For each constraint in T , vertices are merged adhering to the above rules. For

example, given Ti = ((a, b), c), clusters containing a and b will be merged, if they do

not already exist in the same set. The process is repeated until C = k, which is a user

de�ned value.

This process will create a phylogenetic or evolutionary tree that is consistent, in which

leaves belonging together given the constraints are merged into a subset. This process

is similar to the merging process in hierarchical clustering, though pairs are considered

in this context, a dendogram is created through the merging of similar vertices. The

denodogram is a natural representation of agglomerative and divisive methods of building

sets. Along the x axis, each individual vertex is represented as a singular set. The y axis

represents the distance between clusters and can be empirically studied to determine

what could be considered as natural clusters. As the distance between clusters reduces
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as does the quality of the clustering. By analysing the structure of the dendogram, a

user de�ned k value can be empirically discovered.

4.8 Termination - All Constraints

The following experiments in this chapter will use this method, the �rst termination

parameter in Table 4.1. Subsequent to the list of constraints T being generated, the

APC algorithm will recursively construct clusters until T = ∅. Once a constraint t ∈ T
has been used, t is removed from T . This termination method is useful when there are

few constraints or when no di�cult constraints have been generated, discussed more in

succeeding sections. Some post processing may need to be performed then to achieve

k if desirable clusters have not been produced or to merge vertices which belong to no

clusters. This is also useful experimentally when aiming to prune problematic constraints

from T .

4.9 Our Proposed Method: Pseudocode

As the key concepts have been explained, we expand on the framework in Algorithm 1

and provide the pseudocode for the generate_constraints() and build_clustering() pro-

cedures. The pseudocode for these procedures is based on the termination criterion all

constraints and constraint generation function PCG documented in the table of parame-

ters 4.1 and previous sections. The pseudocode for this variant is de�ned in Algorithm 2.

Recall a triplet is synonymous with constraint in this context and stored in the form

((a, b), c). We also de�ne here an object of type triplet, a triplet contains elements a, b

and c, all of which are vertex label. Therefore we check set membership based on the

vertex label.
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Input: Graph G
Output: Set of labels for vertices in G
cosine_matrix← cosine_similarity(G)
generate_contraints()
generate_clusters()
Function generate_constraints()

T = empty
for root in G.vertices() do

neighbours← G.neighbours(root)
for neighbour in neighbours do

if root = neighbour then continue
root_neighbour_sim← cosine_matrix[root, neighbor]
for n in neighbours do

if root = neighbour then continue
if n = neighbour then continue
root_n_sim← cosine_matrix[root, n]
if root_n_sim > root_neighbour_sim then T .add(new
Triplet(max(root, n), min(root, n), neighbour))

else if root_neighbour_sim > root_n_sim then T .add(new
Triplet(max(root, neighbour), min(root, neighbour), n))

end

end

end
return T

Function generate_clusters(G, T )
clusters← ∅
for v in G.vertices() do

//each vertex begins in its own set.
clusters.add(v)

end
for triplet in T do

for c in clusters do
if triplet.a in c and triplet.b in c then break

if triplet.a in c then merge

if triplet.b in c then merge

end

end
Algorithm 2: APC(PCG)
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4.10 Experiment 1

In this section we evaluate the APC algorithm in its most basic setting, using only a small

subset of parameters from Table 4.1. The purpose of this experiment is to understand

the core process and determine the viability of such a mechanism independently of more

complex parameters. To illustrate this, the algorithm needs only a graph G as input

and APC is con�gured such that constraints are generated using PCG and the algorithm

terminates when T = ∅ (recall termination explanation in Section 4.8). The parameters

for this experiment are shown in Table 4.2.

Parameter Experiments

Termination All Constraints
Constraint Generation PCG
Similarity Measure Cosine

Table 4.2: Experiment 1: APC Parameters

Given the current con�guration, the APC algorithm functions as speci�ed in Algo-

rithm 2 perform two key stages, generating constraints and building clusters. Initially, all

vertices in G are considered to be in their own cluster. Then, ∀t ∈ T where t is a triplet

of the form t = ((a, b), c) and T is the constraint list, we merge clusters containing a and

b if they do not belong to the same cluster already. This is repeated for all elements in

T .

4.10.1 Data

To demonstrate the core concept we will run the algorithm on small networks with speci�c

topologies. The motivation for this is to ensure the number of constraints generated in T

is small enough to generate a manageable |T |. This will allow us to empirically analyse

the elements in T and highlight the bene�ts and drawbacks of this APC con�guration.

Dataset 1. The �rst small network we consider is a simple barbell graph consisting

of eight vertices, two groups connected by one edge - as shown in Figure 4.2.
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Figure 4.2: Barbell

Dataset 2. We also consider a variant on the simple barbell graph which connects

the two communities by an additional edge - as shown in Figure 4.3.
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Figure 4.3: Barbell with additional edge

4.10.2 Experiment 1a

The �rst experiment sets the parameter G as the input graph of Dataset 1.

Constraint Generation

Firstly, the algorithm computes the pairwise similarity values ∀v ∈ V with the neighbours

of depth 1 from v, where the similarity measure is cosine. We store the computed

similarity values in Table 4.3. Note that the similarities between pairs (2, 3) and (5, 6)

are 1 as they share identical neighbours. We do not consider these values when generating

constraints as they do not share an edge. Not all values are utilised in the computation

of the constraints, but they are shown for completeness.

vi 0 1 2 3 4 5 6 7

0 1 0.408 0.408 0.577 0.288 0 0 0

1 0.408 1 1 0.353 0.353 0 0 0

2 0.408 1 1 0.353 0.353 0 0 0

3 0.577 0.353 0.353 1 0 0.353 0.353 0.288

4 0.288 0.353 0.353 0 1 0.353 0.353 0.577

5 0 0 0 0.353 0.353 1 1 0.408

6 0 0 0 0.353 0.353 1 1 0.408

7 0 0 0 0.288 0.577 0.408 0.408 1

Table 4.3: Cosine similarity matrix

Given APC Algorithm 2 and the con�guration of this experiment, subsequent to cal-

culating the similarity values, we have the information necessary to generate constraints.

The constraint list T stores triplets using the PCG function, resulting in T containing

the elements shown in Table 4.4.
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i Ti Sim(Ti)

1 ((5, 7), 4) 0.408

2 ((0, 1), 3) 0.408

3 ((0, 3), 2) 0.577

4 ((0, 3), 4) 0.577

5 ((1, 3), 4) 0.353

6 ((2, 3), 4) 0.353

7 ((4, 5), 3) 0.353

8 ((4, 6), 3) 0.353

9 ((4, 7), 3) 0.577

10 ((4, 7), 5) 0.577

11 ((4, 7), 6) 0.577

12 ((6, 7), 4) 0.408

13 ((0, 3), 1) 0.577

14 ((0, 2), 3) 0.408

Table 4.4: Experiment 1a T

The constraints are generated using the similarity values in Table 4.3 and stored in

cosine_matrix in Algorithm 2.

APC parses all the vertices in the graph in an arbitrary order - therefore, the resulting

elements in T are ordered relative to the sequence in which the vertices were parsed

during the execution of the algorithm, as well as the underlying implementation of the

programming languages data structure.

The �rst triplet in Table 4.4 T0 = ((5, 7), 4) was generated by using the cosine_matrix

and Table 4.3 as sim(5, 7) > sim(5, 4) = 0.408 > 0.353. This table contains all elements

in T that can be generated using PCG on the input graph G.

Cluster Building

The clusters are built according to the rules of phylogenetics, discussed in Section 4.7.

The constraints were created and stored in T which can now be resolved to create clusters.

Consider the following example respective to Table 4.4. The elements of T are parsed

sequentially starting with T0.Therefore, adhering to this rule, the cluster containing v5 is

merged with the cluster containing v7. The complete example is demonstrated below in

trace Table 4.5. The APC algorithm merges all clusters containing elements of the pair

(a, b) ∈ ((a, b), c), sequentially, as annotated by the steps column. The APC algorithm

terminates when T = ∅, resulting in the �nal clustering being identi�ed at step 13,

although no further merges were made after step 7.
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Step T C

- - {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}

0 ((5, 7), 4) {0}, {1}, {2}, {3}, {4}, {5, 7}, {6}

1 ((0, 1), 3) {0, 1}, {2}, {3}, {4}, {5, 7}, {6}

2 ((0, 3), 2) {0, 1, 3}, {2}, {4}, {5, 7}, {6}

3 ((0, 3), 4) {0, 1, 3}, {2}, {4}, {5, 7}, {6}

4 ((1, 3), 4) {0, 1, 3}, {2}, {4}, {5, 7}, {6}

5 ((2, 3), 4) {0, 1, 2, 3}, {4}, {5, 7}, {6}

6 ((4, 5), 3) {0, 1, 2, 3}, {4, 5, 7}, {6}

7 ((4, 6), 3) {0, 1, 2, 3}, {4, 5, 6, 7}

8 ((4, 7), 3) {0, 1, 2, 3}, {4, 5, 6, 7}

9 ((4, 7), 5) {0, 1, 2, 3}, {4, 5, 6, 7}

10 ((4, 7), 6) {0, 1, 2, 3}, {4, 5, 6, 7}

11 ((6, 7), 4) {0, 1, 2, 3}, {4, 5, 6, 7}

12 ((0, 3), 1) {0, 1, 2, 3}, {4, 5, 6, 7}

13 ((0, 2), 3) {0, 1, 2, 3}, {4, 5, 6, 7}

Table 4.5: APC(PCG) Trace Table

4.10.3 Experiment 1b

This experiment sets the parameter G as the input graph of Dataset 2.

Constraint Generation

The input parameter G contains an additional edge between partitions, which creates

new cases to consider. The constraint list T stores triplets again using the PCG function,

resulting in T containing the elements shown in Table 4.7. Comparatively, the vertex with

the additional edge will now be present in more comparisons when generating triplets -

resulting in |T | increasing relative to the number of edges in E.

vi 0 1 2 3 4 5 6 7

0 1 0.408 0.408 0.516 0.288 0.333 0 0

1 0.408 1 1 0.316 0.353 0.408 0 0

2 0.408 1 1 0.316 0.353 0.408 0 0

3 0.516 0.316 0.316 1 0.223 0.258 0.316 0.516

4 0.288 0.353 0.353 0.223 1 0.577 0.353 0.577

5 0.333 0.408 0.408 0.258 0.577 1 0.816 0.333

6 0 0 0 0.316 0.353 0.816 1 0.408

7 0 0 0 0.516 0.577 0.333 0.408 1

Table 4.6: Cosine similarity matrix
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T Sim(Ti)

((6, 7), 4) 0.408

((4, 7), 5) 0.577

((0, 1), 3) 0.408

((0, 3), 2) 0.516

((0, 3), 4) 0.516

((0, 3), 5) 0.516

((1, 3), 5) 0.316

((2, 3), 5) 0.316

((3, 5), 4) 0.258

((4, 6), 3) 0.353

((4, 5), 3) 0.577

((4, 5), 6) 0.577

((4, 5), 7) 0.577

((1, 3), 4) 0.316

((6, 7), 5) 0.408

((4, 7), 6) 0.577

((4, 7), 3) 0.577

((2, 3), 4) 0.316

((0, 3), 1) 0.516

((5, 7), 3) 0.333

((0, 2), 3) 0.408

Table 4.7: APC(PCG) Constraints list

The constraints are generated using the similarity values between all vertices in the

graph, which are shown in Table 4.6 and stored in cosine_matrix in Algorithm 2. Not

all values are necessary in the computation of the constraints, but they are shown for

completeness. As a result of the additional edge, the similarity between v5 and the

vertices in its own cluster has been reduced, which can be problematic when generating

reliable constraints.

Moreover, the APC algorithm on this graph parses all the vertices in the graph in

an arbitrary order, de�ned by the order in which vertices were reached and the under-

lying implementation of the languages data structure. Consequently, the order in which

clusters are merged are subject to the ordering of T - which can result in di�erent and

therefore fuzzy, clustering.

The process for constraint generation remains the same with the �rst triplet in Ta-

ble 4.7, T0 = ((6, 7), 4), being generated using Table 4.6 as sim(6, 7) > sim(6, 4) =

0.408 > 0.353. This table contains all elements in T that can be generated using PCG

in G.S
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Cluster Building

The function in which builds the clustering, remains unchanged in that the clusters are

built according to the rules of phylogenetics. The constraints were created and stored

in T which can now be resolved to create the communities. Consider the following

example respective to Table 4.7. The elements of T are parsed sequentially starting with

T0 = ((6, 7), 4). T0 states that v6 and v7 should be clustered together before v6 and v4.

Therefore, clusters containing v6 should be merged with v7. The complete example is

demonstrated below in trace Table 4.8. The APC algorithm merges all clusters containing

elements of the pair (a, b) ∈ ((a, b), c), sequentially, as annotated by the steps column.

The APC algorithm terminates when T = ∅, resulting in the �nal clustering being

identi�ed at step 20, although no merges occurred after step 10.

Step T C

- - {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}

0 ((6, 7), 4) {0}, {1}, {2}, {3}, {4}, {5}, {6, 7}

1 ((4, 7), 5) {0}, {1}, {2}, {3}, {4, 6, 7}, {5}

2 ((0, 1), 3) {0, 1}, {2}, {3}, {4, 6, 7}, {5}

3 ((0, 3), 2) {0, 1, 3}, {2}, {4, 6, 7}, {5}

4 ((0, 3), 4) {0, 1, 3}, {2}, {4, 6, 7}, {5}

5 ((0, 3), 5) {0, 1, 3}, {2}, {4, 6, 7}, {5}

6 ((1, 3), 5) {0, 1, 3}, {2}, {4, 6, 7}, {5}

7 ((2, 3), 5) {0, 1, 2, 3}, {4, 6, 7}, {5}

8 ((3, 5), 4) {0, 1, 2, 3, 5}, {4, 6, 7}

9 ((4, 6), 3) {0, 1, 2, 3, 5}, {4, 6, 7}

10 ((4, 5), 3) {0, 1, 2, 3, 4, 5, 6, 7}

11 ((4, 5), 6) {0, 1, 2, 3, 4, 5, 6, 7}

12 ((4, 5), 7) {0, 1, 2, 3, 4, 5, 6, 7}

13 ((1, 3), 4) {0, 1, 2, 3, 4, 5, 6, 7}

14 ((6, 7), 5) {0, 1, 2, 3, 4, 5, 6, 7}

15 ((4, 7), 6) {0, 1, 2, 3, 4, 5, 6, 7}

16 ((4, 7), 3) {0, 1, 2, 3, 4, 5, 6, 7}

17 ((2, 3), 4) {0, 1, 2, 3, 4, 5, 6, 7}

18 ((0, 3), 1) {0, 1, 2, 3, 4, 5, 6, 7}

19 ((5, 7), 3) {0, 1, 2, 3, 4, 5, 6, 7}

20 ((0, 2), 3) {0, 1, 2, 3, 4, 5, 6, 7}

Table 4.8: APC(PCG) Trace Table

4.10.4 Discussion

The main strategy in this experiment was to identify whether the fundamental concepts of

phylogenetics could work at an abstract level using only the topology of a simple network.
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The results, when only one edge connected the small communities, the procedure is

su�cient in identifying the correct constraints. By adding a new edge to the network

in the case of Dataset 4.3, the number of constraints in |T | increases. This would be a

non-issue under the assumption all constraints are reliable in �nding good clustering -

this is not the case, at least naively, as shown in Section 4.10.3.

The constraints generated in experiment 1b, Table 4.7, includes 7 additional con-

straints than in Table 4.4. The result of APC when terminating under the condition

T = ∅ produces undesirable results - as shown in trace Table 4.8. Here there are two

issues; 1. APC determines all vertices belong in the same cluster in this setting and

2. there exist constraints in T that should not be used considering the topology of the

graph.

Firstly, empirically studying the contents of T in Table 4.7, there are no constraints

involving all vertices in the graph as we consider only local samples in G. Therefore,

we have no data which states vertices from opposite sides of the graph should belong

together in the same cluster. We can only make inferences given the information we have

derived, which can be useful, but also proven to be potentially volatile unless managed.

Secondly, by introducing more intra-edges connecting separate clusters it also be-

comes di�cult to di�erentiate between clusters and ultimately reduce the variance be-

tween intra-cluster similarity and inter-cluster similarity. This increases the likelihood of

di�cult triplets being generated as shown in step 8 in transition Table 4.8. The constraint

t7 = ((3, 5), 4) is the �rst occurrence of an erroneous triplet (a triplet which incorrectly

merges partitions and reduces the quality of the overall clustering), inferring the set con-

taining v3 should be merged with the set containing v5. The resulting constraints merge

other clusters with the set containing v5 correctly, but ultimately grouping all vertices

together into one undesirable cluster.

We considered potential solutions to solve this particular case, introducing concepts

grounded in phylogenetics that classify triplets. These concepts are forbidden triplets

and fan triplets.

4.11 Forbidden Triplets

During the process of calculating the initial similarities, it was noticed that the constraint

list T contained forbidden triplets. Generally when building phylogenetic trees, forbidden

triplets are disallowed and the building process is prematurely terminated.

v1 v2

v3

0.6

0.5 0.7

Figure 4.4: Forbidden Triplets
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For example, consider the graph in Figure 4.4, consisting of the vertices (v1, v2, v3).

The edge weights in this instance are the similarity values between the vertices they

connect. During the process of generating constraints using the PCG function and given

the similarly values, the constraint ((v1, v2), v3) will be added when v1 is considered

the root vertex as v1 and v2 are more similar than v1 and v3 in direct comparison,

sim(v1, v2) > sim(v1, v3) = 0.6 > 0.5. Although when we consider v2 as the root

vertex, the constraint ((v2, v3), v1) is added, as v2 and v3 are more similar than v2 and

v3 in direct comparison, sim(v2, v3) > sim(v2, v1) = 0.7 > 0.6. The information in the

constraints ((v1, v3), v2) and ((v2, v3), v1) is forbidden as they are a contradiction. They

are forbidden in the context of phylogenetics as if T contains a triple which is forbidden,

this means there exists no phylogenetic tree in G. In our method we still use forbidden

triplets as they can be helpful in determining partitions.

But also, by disallowing forbidden triplets, another avenue of experimentation is

opened and can reduce the likelihood of troublesome triplets being generated. The

exclusion of said triplets decreases the granularity of the constraints and therefore there

are less building rules in T . We resolve the case of forbidden triplets by keeping the

constraint that pertains to the relationship of highest similarity. Therefore, in the same

example above, only constraint ((v2, v3), v1) would be stored in T as ((v1, v2), v3) is

forbidden and 0.7 > 0.6.

There are a few challenges presented by reducing the granularity of T and disallowing

forbidden triplets. Most notably, in some topologies there may not be enough constraints

generated to �nd the user speci�ed k-clustering.

4.12 Fan Triplets

v1 v2

v3

0.8

0.8 0.8

Figure 4.5: Fan Triplets

Previously the basic process of generating constraints did not consider the case of

fan triplets. A fan triplet occurs when each sample in the comparison shares the same

similarity value in direct comparison. For example, consider the graph in Figure 4.5,

consisting of the vertices (v1, v2, v3). The edge weights represent the similarity values

between the vertices they connect. During the process of generating constraints, given

the logic of Algorithm 2 and the PCG function, no constraint for this local relationship

would be generated even though the vertices are highly similar. This information is

important in understanding the topology of the graph and building accurate partitions,

which until now has been omitted.
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When allowing for fan triplets to be considered, the constraint (v1, v2, v3) is added

to T and will occur during the PCG function when any of vertices are the root node.

When parsing such a constraint, the sets containing v1, v2 and v3 are merged together.

By allowing fan triplets, another avenue of experimentation is opened. Conversely to

forbidden triplets, the inclusion of fan triplets increases the granularity of the constraints

list T .

4.13 Experiment 2

In this section we evaluate the APC algorithm in its most basic format, building on

the scenario in experiment 1. We now include the additional parameters in that we

are disallowing forbidden triplets from being used in process of building clusters and

allowing fan triplets to be generated as shown in parameter Table 4.9. The purpose of

this experiment is to understand the e�ect of disallowing forbidden triplets and allowing

fan triplets in association with the core process and again to determine the viability of

such a mechanism independently of other parameters.

Parameter Experiments

Termination All Constraints
Constraint Generation PCG
Similarity Measure Cosine
Allow Forbidden False
Allow Fans True

Table 4.9: Experiment 2: APC Parameters

The APC Algorithm 2 remains fundamentally similar in that the PCG function is

used to generate constraints although with the additional caveat shown in Algorithm 3

of enabling fan triplets when similarities are equal. The termination criterion is enabled

when reaching the state T = ∅.
The other notable change in this setting is that post-processing is used to �lter and

resolve forbidden triplets in T . We achieve this by �rstly �nding all contradictory triplets

and secondly, keeping the triplet of highest similarity and discarding the remaining as

discussed in Section 4.11.
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Function generate_constraints()
T = empty
for root in G.vertices() do

neighbours← G.neighbours(root)
for neighbour in neighbours do

if root = neighbour then continue
root_neighbour_sim← cosine_matrix[root, neighbor]
for n in neighbours do

if root = neighbour then continue
if n = neighbour then continue
root_n_sim← cosine_matrix[root, n]
if root_n_sim > root_neighbour_sim then T .add(new
Triplet(max(root, n), min(root, n), neighbour))

else if root_neighbour_sim > root_n_sim then T .add(new
Triplet(max(root, neighbour), min(root, neighbour), n))

else if root_neighbour_sim == root_n_sim then T .add(new
Fan_Triplet(max(root, neighbour), min(root, neighbour), n))

end

end

end
return T

Algorithm 3: APC(PCG) Fan Amendment

4.13.1 Datasets

The datasets we used for this experiment are consistent with Experiment 1a, to promote

discussion between the previous con�guration and this experiments. We therefore use

Dataset 2 which resulted in undesirable partitioning.

Dataset 3. We also consider another small graph with an additional natural par-

titioning. More interconnections between clusters are present and there exists a triangle

between partitions. This graph is shown in Figure 4.6.

Dataset 4. The �nal dataset for this experiment is a similar addition to that of

Dataset 2 to Dataset 1. An additional edge is inserted to Dataset 3 to further connect

two partitions. This graph is shown in Figure 4.7.

4.13.2 Experiment 2a

This experiment sets the parameter G as the input graph of Dataset 2.

Replicating the settings of Experiment 1b, with the additional parameters con�gured,

the constraint list T stores triplets again using the PCG function, results in T containing

the elements shown in Table 4.10. We also omit the similarity matrix and include the
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Figure 4.6: 3-Community Barbell
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Figure 4.7: 3-Community Barbell with additional edge

similarity values in the constraint tables. By resolving forbidden triplets and disallowing

their use, |T | has decreased by 4 triplets. The set of purged triplets Tforb are also

listed in Table 4.10. Also by introducing fan triplets, T has increased by 3 fan triplets

(0, 1, 2), (4, 5, 7) and (4, 5, 7), consolidating forbidden triplets in the process.

The �rst forbidden element, tforb = ((6, 7), 4) is discarded because there exists a

resolved triplet that contradicts tforb which suggests v6 should be merged with v7 before

v4. The contradictory, resolved triplet tres = ((4, 7), 6) states v4 should be merged with

v7 before v6. We therefore check the similarity value that created each triplet and retain

the maximum and discard the minimum,max(sim(tforb), sim(tres) = max(0.408, 0.577).

In the case of ties, we keep the �rst triplet we encounter in the resolving process.

The contradictory triplet of the second forbidden triplet tforb = ((0, 1), 3) is tres =

((4, 7), 6), resulting in max(sim(tforb), sim(tres) = max(0.408, 0.577). The contra-

dictory triplet of the third forbidden triplet tforb = ((0, 1), 3) is tres = ((4, 5), 3),

resulting in max(sim(tforb), sim(tres) = max(0.258, 0.577). The �nal contradictory

triplet of the fourth forbidden triplet tforb = ((0, 2), 3) is tres = ((0, 3), 2), resulting

in max(sim(tforb), sim(tres) = max(0.408, 0.516).
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Tres Sim(Ti)

((0, 3), 1) 0.516
((0, 3), 2) 0.516
((0, 3), 4) 0.516
((0, 3), 5) 0.516
((1, 3), 5) 0.316
((2, 3), 5) 0.316
((4, 6), 3) 0.354
((4, 7), 3) 0.577
((4, 5), 6) 0.577
((4, 7), 6) 0.577
((6, 7), 5) 0.408
(0, 1, 2) 0.408
((5, 7), 3) 0.333
(4, 5, 7) 0.577
(1, 2, 3) 0.316
((4, 5), 3) 0.577
((1, 3), 4) 0.316
((2, 3), 4) 0.316

Tforb Sim(Ti)

((6, 7), 4) 0.408
((0, 1), 3) 0.408
((3, 5), 4) 0.258
((0, 2), 3) 0.408

Table 4.10: Experiment 2a Resolved and Forbidden Constraints

Cluster Building

The function which builds the clustering remains unchanged, but the function for gen-

erating constraints is more restricted and T now contains the reduced and consolidated

constraints. The trace table showing the execution of APC(PCG, FORB=F, FAN=T)

is demonstrated below in trace Table 4.11. The APC algorithm merges all clusters con-

taining elements of the pair (a, b) ∈ ((a, b), c) and all clusters containing elements of the

triplet (a, b, c) when it is a fan. This is performed sequentially, as annotated by the steps

column. The APC algorithm terminates when T = ∅, resulting in the �nal clustering

being identi�ed at step 18, although no additional merges were made after step 8.
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Step Tres C

- - {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}

0 ((0, 3), 1) {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}

1 ((0, 3), 2) {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}

2 ((0, 3), 4) {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}

3 ((0, 3), 5) {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}

4 ((1, 3), 5) {0, 1, 3}, {2}, {4}, {5}, {6}, {7}

5 ((2, 3), 5) {0, 1, 2, 3}, {4}, {5}, {6}, {7}

6 ((4, 6), 3) {0, 1, 2, 3}, {4, 6}, {5}, {7}

7 ((4, 7), 3) {0, 1, 2, 3}, {4, 6, 7}, {5}

8 ((4, 5), 6) {0, 1, 2, 3}, {4, 5, 6, 7}

... ... ...

17 ((2, 3), 4) {0, 1, 2, 3}, {4, 5, 6, 7}

Table 4.11: APC(PCG, FORB, FAN) Trace Table

Considering the purged set of forbidden constraints in Table 4.10. The constraint

((3, 5), 4) would merge the graph into undesirable partitions and has been successfully

removed. The �nal clustering is accurate and an improvement over the results of Exper-

iment 1b.

4.13.3 Experiment 2b

This experiment sets the parameter G as the input graph of Dataset 3. The new dataset

contains a triangle between three communities which creates a new case for consideration

and discussions. The constraint list T stores triplets again using the PCG function, purg-

ing forbidden triplets and including fan triples. The execution of APC(PCG, FORB=F,

FAN=T) and the resulting list T is shown in the trace Table C.2. The tables have been

merged, but contain the original triplets, the similarities used to create them and the

impact on the clusters in C.



Chapter 5. Agglomerative Phylogenetic Clustering in Structured Graphs 82

Step Tres Sim(T ) C

- - - {0}, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

1 ((0, 3), 1) 0.516 {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

3 ((1, 3), 4) 0.316 {0, 1, 3}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

4 ((2, 3), 4) 0.316 {0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

... ... ... ...

8 ((4, 7), 3) 0.516 {0, 1, 2, 3}, {4, 7}, {5}, {6}, {8}, {9}, {10}, {11}

9 (4, 5, 6) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}

... ... ... ...

13 ((8, 9), 3) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9}, {10}, {11}

14 ((4, 5), 8) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9}, {10}, {11}

15 ((8, 11), 3) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 11}, {10}

... ... ... ...

18 ((8, 10), 4) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

... ... ... ...

27 (3, 4, 8) 0.200 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

... ... ... ...

30 ((8, 9), 4) 0.316 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Table 4.12: Experiment 2b Trace Table

Table 4.13 contains the list of forbidden triplets and fan triplets generated for this

input graph G. There are no elements in Tforb that would cause the the incorrect clusters

to merge, but there exists an element in Tfans that does. Given the topology of G there

exists a local triangle connecting all three partitions through vertices (v3, v4, v8). As

there are no other interconnecting edges, these vertices have equal similarity and will

generate a fan triplet. The triplet that is ultimately used to merge all sets into the same

cluster. This erroneous triplet can simply be avoided by disallowing fan triplets in the

con�guration, which would result in the desirable clusters being form and |C| = 3. The

trace table for this con�gration is shown in Appendix C.1.

Tforb Sim(T )

((0, 1), 3) 0.408

((0, 2), 3) 0.408

((5, 7), 4) 0.408

((6, 7), 4) 0.408

((9, 11), 8) 0.408

((10, 11), 8) 0.408

Tfans Sim(Ti)

(4, 5, 6) 0.316

(0, 1, 2) 0.408

(1, 2, 3) 0.316

(3, 4, 8) 0.200

(5, 6, 7) 0.408

(8, 9, 10) 0.316

(9, 10, 11) 0.408

Table 4.13: Experiment 2b Forbidden and Fan Constraints
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4.13.4 Experiment 2c

In this �nal experiment of the section we set the parameter G as the input graph of

Dataset 4. Here we con�gure APC di�erently as a result of the �x for experiment 2b.

The con�guration is shown in Table 4.14. The only parameter that has changed is

the ability to allow fan triplets from being included in T . Therefore, this experiment

disables forbidden and fan triplets and only allows resolved triplets to be used in the

cluster building process.

Parameter Experiments

Termination All Constraints
Constraint Generation PCG
Similarity Measure Cosine
Allow Forbidden False
Allow Fans False

Table 4.14: Experiment 2: APC Parameters

Step Tres Sim(T ) C

- - - {0}, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

0 ((0, 1), 3) 0.667 {0, 1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}

1 ((0, 2), 3) 0.667 {0, 1, 2}{3}{4}{5}{6}{7}{8}{9}{10}{11}

2 ((1, 2), 3) 0.667 {0, 1, 2}{3}{4}{5}{6}{7}{8}{9}{10}{11}

3 ((0, 3), 4) 0.471 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

4 ((0, 3), 5) 0.471 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

... ... ... ...

10 ((4, 7), 3) 0.516 {0, 1, 2, 3}{4, 7}{5}{6}{8}{9}{10}{11}

11 ((3, 4), 8) 0.365 {0, 1, 2, 3, 4, 7}{5}{6}{8}{9}{10}{11}

12 ((4, 5), 7) 0.671 {0, 1, 2, 3, 4, 5, 7}{6}{8}{9}{10}{11}

13 ((4, 5), 8) 0.671 {0, 1, 2, 3, 4, 5, 7}{6}{8}{9}{10}{11}

14 ((4, 6), 8) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8}{9}{10}{11}

15 ((4, 7), 8) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8}{9}{10}{11}

16 ((8, 9), 3) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9}{10}{11}

17 ((8, 10), 3) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10}{11}

18 ((8, 11), 3) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10, 11}

... ... ... ...

34 ((8, 9), 4) 0.516 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10, 11}

Table 4.15: Experiment 2c Trace Table

Trace Table 4.15 shows the execution of APC given the speci�ed con�guration. The

additional edge has created more local triangles between the natural partitions in G -

a scenario in which the likelihood of erroneous triplets being generated is signi�cantly
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increased. The contents of T is parsed and the clusters in C are merged until T = ∅. At
the �nal step |C| = 2, and has reasonably clustered the graph, although incorrect merges

were made.

Tforb Sim(T )

((5, 7), 4) 0.577

((4, 8), 3) 0.200

((3, 4), 5) 0.365

((5, 6), 4) 0.577

Tfans Sim(Ti)

(0, 1, 2) 0.667

(0, 1, 3) 0.471

(0, 2, 3) 0.471

(1, 2, 3) 0.471

(4, 6, 7) 0.516

(5, 6, 7) 0.577

(8, 9, 10) 0.516

(8, 9, 11) 0.516

(8, 10, 11) 0.516

(9, 10, 11) 0.667

Table 4.16: Experiment 2c Forbidden and Fan Constraints

The number of forbidden and fan triplets in Table 4.16 is considerable. All elements

in Tfans would have a positive e�ect when building the �nal clustering, but have been

disabled for this experiment. Conversely, there exists constraints in Tforb, speci�cally

((4, 8), 3) and ((3, 4), 5) that would have a negative e�ect when building the �nal cluster-

ing and are also excluded. Ultimately, the con�guration of the allowable parameters in

this experiment is unhelpful in �nding the correct partitions as there exists constraints

in trace Table 4.15 that merge the vertices into incorrect clusters.

4.13.5 Discussion

The main motivation for this experiment was to identify whether the fundamental con-

cepts of phylogenetic trees, including now the addition of forbidden and fan triplets as

parameters could be used to cluster vertices in relatively simple networks with well de-

�ned partitions. The results from experiment 2a, Section 4.13.2, show that the removal

of forbidden triplets from T decrease the likelihood of triplets creating erroneous clusters,

which is a desirable improvement. In this scenario terminating when |T | = ∅ produced
the correct clusters.

The inclusion of the Dataset 3 in experiment 2b, Section 4.13.3, provided a new

scenario in which di�cult triplets would be generated that would ultimately merge all

vertices into the same cluster. A solution, was to impose further restrictions on T and

disallow the generation of fan triplets.

The �nal experiment, Section 4.13.4, introduced a more complex graph in Dataset 4

and modi�ed the con�guration to disallow the generation of fan triplets as a result

of the previous experiment. The results showed that regardless of tuning the current
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parameters, erroneous triplets would still be generated and parsed creating incorrect

clustering.

We propose two solutions to this problem, 1. a new triplet generation function

Ternary Constraint Generation and 2. a mandatory termination criterion parameter,

used in clustering mechanisms such as k-means and hierarchical clustering. A user spec-

i�ed k value where k represents the number of desired clusters.

4.14 Termination - User De�ned k

A user de�ned k value is often selected based on the distribution, density, shape and scale

of the data points. The method of selecting k is a separate problem from clustering and

beyond the scope of this chapter. This form of termination will be the primary method

henceforth in which we consider when stopping our clustering process. Similarly to

hierarchical clustering, the method uses k as a de�ned resolution of the clustering, before

all vertices are merged into increasingly less granular clusters. Hierarchical clustering

does this based on the similarity between clusters being the largest, whereas our method

merges based on the next constraint in T . The user can heuristically specify a k or an

estimator can be used in the context of machine learning. In our experiments, we know

k as it is also a parameter in the generation of the datasets.

Given k, each vertex in the graph will be initialised into their own cluster. Upon

parsing the constraint list T and merging these clusters, the algorithm will terminate

when |C| = k. Terminating the algorithm upon reaching k has proven to be more

bene�cial than terminating when T = ∅, primarily because, as shown in the experiments,

not all constraints are deemed useful to the clustering procedure - this is discussed in

more detail in a later section. Additionally, using this termination criterion saves time

parsing unnecessary constraints if |C| = k early in the execution. This can be seen in

the previous experiments, most notably in trace Table 4.11 of experiment 2a, where the

algorithm could of terminated at step 8 as opposed to step 17.

4.15 Ternary Constraint Generation
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e1

e2 e3
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Figure 4.8: TCG Local Relationships

Here we consider another mechanism for generating constraints, ternary constraint

generation, TCG henceforth. This is motivated by the intent of limiting the number
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of erroneous or troublesome triplets generated in T . TCG is a process in which we

consider stricter constraint generation by using local triangles in the graphs structure as

annotated by the black edges in Figure 4.8. Speci�cally, it is the notion of considering root

vertices directly with their neighbours and only creating constraints if there exists shared

common neighbours between them. By introducing this concept, we will be reducing the

granularity of T by only considering relationships in the graph where local triangle exist

between vertices. The mechanism does not remove the potential for forbidden triplets

as they can occur if there exists overlapping local triangles in the graph. Ultimately this

adheres to stricter phylogenetic tree building rules, but less constraints are generated

which can introduce a di�erent set of di�culties in the cluster building phase.

An example of ternary constraint generation is as follows. Firstly, we determine the

set of neighbours of Nr where r is the root vertex. Relative to the example above, r = v1,

therefore Nv1 will be generated. For each direct neighbour of v1, i.e. n ∈ Nv1 we perform

the following procedure. We obtain the set of neighbours Nn and determine the common

neighbours with set Nr. Relative to the example, Ncommon(v1,v2)
= Nv1 ∩Nv2 , which ex-

cludes v1 and v2. All the information necessary to create constraints based on the local

triangles in the graph has been generated. ∀c ∈ Ncommon(r,n)
we compute the similarities

between (r, n), (r, c) and (n, c) and ultimately only one constraint for each local triangle

is produced. In the example, only v3 ∈ Ncommon(v1,v2)
, therefore the similarities (v1, v2),

(v1, v3) and (v2, v3) denoted by e1, e2 and e3 respectively are considered. The vertices

with the highest similarity in the local triangle are added to the constraint list T , the

other two constraints are therefore omitted.

As aforementioned, this will remove the possibility of generated forbidden constraints

and still allow the possibility of fan triplets, which is mandatory to enable in this case

otherwise important topological information will be lost. By generating only one con-

straint per triangle, there is a potential for losing important information in the graph

as well as removing troublesome triplets. Therefore we propose an alternate version of

TCG in which we allow the top two constraints in the comparison to be added to T .

This ensures there are enough triplets to segment G but still also decrease the likelihood

of undesirable triplets being generated.

The pseudocode for this method is provided in Algorithm 4 is an alternative to the

generate constraints function of the previous algorithm.
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Function generate_constraints_ternary()
limit = {1, 2, 3}
T = ∅
ternary_triplets = ∅
for root in G.vertices() do // Iterate over all vertices

simAB, simAC, simBC = 0;
neighbours← G.neighbours(root)
for neighbour in neighbours do // Iterate over neighbours

if root = neighbour then continue

common_neighbours = G.common_neighbours(root, neighbour)
for cn in common_neighbours do

simAB ← cosine_matrix[root, neighbour]
simAC ← cosine_matrix[root, cn]
simBC ← cosine_matrix[neighbour, cn]
ternary_triplets.add(new Triplet(min(root, neighbour), max(root,
neighbour), cn), simAB)
ternary_triplets.add(new Triplet(min(root, cn), max(root, cn),
neighbour), simAC)
ternary_triplets.add(new Triplet(min(neighbour, cn),
max(neighbour, cn), root), simBC)
sort(ternary_triplets) // Sort by largest similarity

while i = 0 to limit do
T.add(ternary_triplets[i])

end

end

end

end
return T

Algorithm 4: Ternary constraint generation

4.16 Experiment 3

This experiment revisits all previous datasets and demonstrates the performance dif-

ferences of PCG compared with new executions using TCG. We have created a few

parameters for the APC algorithm to allow for various sets of constraints to be gen-

erated, TCG, PCG and by allowing or disallowing forbidden and fan triplets. In this

section we also introduce the evaluation metrics discussed in Section 4.4 to demonstrate

the quality of the resulting clusters generated by the triplets generated in T for each

triplet generation function.

We compute all constraint generation functions with forbidden triplets and fan triplets

allowed. This con�guration in Table 4.17 allows for the maximum number of constraints

to be generated to be used for comparison.
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Parameter Experiments

Termination All Constraints
Constraint Generation PCG, TCG(1), TCG(2)
Similarity Measure Cosine
Allow Forbidden True
Allow Fans True

Table 4.17: Experiment 3a: APC Parameters

Constraint Generation Function Discussion

The results in Table 4.18 lists the contents of T for each constraint generation procedure

PCG, TCG1 and TCG2 for Dataset 1. The triplets have been ordered by the similarity

values used to create them. We can see that PCG generates far more constraints than

any of the TCG methods, which is a consistent feature present in testing on all datasets.

The reason for this is that all relationships between the root and all its neighbours

are directly compared and used to generate constraints, whereas TCG only generates

constraints if there exists a local triangle between the root and its neighbour, i.e. when

the root and neighbour share a common neighbour. Therefore, when graphs are more

sparse and are not well connected, to obtain more information about the graph in the

form of triplets, PCG as a constraint generator would be more suited whereas on the

contrary for graphs that are more dense, TCG would be preferable. The functions PCG

and TCG2 create enough triplets for correct clustering to be performed on Dataset 1,

with PCG generating more than is necessary and TCG2 generate exactly the required

amount. As Dataset 1 is quite sparse and the clusters are not complete graphs and are

missing edges e1(v1, v2) and e2(v5, v6), there are not enough local triangles to generate

enough constraints to describe the relationship of vertices in the clusters. Therefore,

TCG1 does not �nd all elements of the clusters but no incorrect merges are made either.

We could expand on the solution through post-processing techniques if k clusters were

not achieved as a result of the constraints generated by this function. This is discussed

in a later section.
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i PCG(T ) TCG1(T ) TCG2(T ) Sim(Ti)

0 ((4, 7), 5) ((4, 7), 5) ((4, 7), 5) 0.577

1 ((0, 3), 1) ((0, 3), 1) ((0, 3), 1) 0.577

2 ((0, 3), 2) ((0, 3), 2) ((0, 3), 2) 0.577

3 ((4, 7), 6) ((4, 7), 6) ((4, 7), 6) 0.577

4 ((0, 3), 4) - - 0.577

5 ((4, 7), 3) - - 0.577

6 ((0, 1), 3) - ((0, 1), 3) 0.408

7 ((0, 2), 3) - ((0, 2), 3) 0.408

8 ((6, 7), 4) - ((6, 7), 4) 0.408

9 ((5, 7), 4) - ((5, 7), 4) 0.408

10 (5, 6, 7) - - 0.408

11 (0, 1, 2) - - 0.408

12 ((1, 3), 4) - - 0.354

13 ((2, 3), 4) - - 0.354

14 (1, 2, 3) - - 0.354

15 ((4, 5), 3) - - 0.354

16 ((4, 6), 3) - - 0.354

17 (4, 5, 6) - - 0.354

Table 4.18: Contents of T for all constraint functions on Dataset 1.

Constraint Generation Functions on All Datasets

The results of each constraint generation function is showed in Table 4.19. The columns

represent the method that was used and the dataset D in which the method was applied

to. The following columns describe the types of constraints found in T , annotated by |T |
showing the total elements in T , |Tforb| the number of which are forbidden and �nally,

|Tfan| the number of which are fan triplets. The remaining columns are the results

of the evaluation metrics given the �nal clustering labels, described in more detail in

Section 4.4. The metrics present are adjusted rand index, completeness, homogeneity

and v-measure respectively.

Firstly, we can see the total number of constraints that are generated by each func-

tion in the relative con�guration. The constraint generation function PCG operates as

expected in that it will create more constraints as E increases. TCG1 increases as more

local triangles are introduced into the dataset, most notably in D = B4 when each clus-

ter is a complete graph - highlighted by the sharp increase in |T | from B3 to B4. TCG2

was designed to compensate for the lack of local triangles in a sparse graph, which works

well, but as expected creates more forbidden triplets - each comparison will add two

constraints, which contradict each other in a standard phylogenetic tree building sense.

Secondly, PCG and TCG2 generate more forbidden triplets, which is an inherent trait

in their mechanism. TCG2 as mentioned, is more pronounced given that a forbidden
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triplet is created every comparison. PCG discounts local triangles and only compares

the edges incident to the root vertex in the comparison. The forbidden triplets occur

when a neighbour of the previous root contains edges of higher similarity than between

root and neighbour. TCG1 alleviates this issue by considering local triangles and adding

only constraints that are consistent - but this mechanism can still generate forbidden

triplets when local triangles overlap in the graph, as shown in datasets B2 and B4.

Thirdly, naturally PCG will generate more fan triplets than the TCG methods, again

as an inherent trait of the mechanism as two incident edges from a root node are more

likely to be equal � thus creating a fan � than three edges of a local triangle being equal.

If there exists a local triangle in the graph, then PCG will also generate at least one

unique fan triplet. This trend in relation to |Tfan| is noticeable across all datasets in

Table 4.19.

Finally, the results of the evaluation metrics provide consistent results with the com-

plexity of the dataset. For example, PCG and TCG2 create the correct clustering based

on the truth labels inB1, as shown by the highest score of 1 across all metrics. Conversely,

TCG2 does not generate enough constraints to generate the correct complete clustering,

although a partial clustering is achieved. R demonstrating a low cluster inter-similarity

due to the disparity between |Cactual| and |Cexpected|. Also, the resulting labelling of

vertices are partially split across di�erent clusters, therefore the assignment is partially

complete and is represented in completeness. However, as only partial clustering was

performed correctly, the non-perfect labellings further split classes into more clusters -

this can be perfectly homogeneous and therefore still obtains the highest homogeneity

score. V-measure, being the harmonic mean between homogeneity and completeness,

shows that the samples are homogeneous but contain unnecessary splits due to the lack

of constraints - this harms completeness and thus penalises the V-measure.

As the datasets become more complex, the evaluation metrics noticeably diminish.

This is as a result of PCG and TCG2 ultimately merging all vertices into the same

cluster. Conversely, TCG1 performs increasingly better in comparison as the graph

becomes more complex, more local triangles exist and ultimately more constraints are

generated. Although, TCG1 does not generate enough constraints to merge the vertices

into one cluster. As a result of this method only generating partial clustering, maintains

relatively good scores in the evaluation metrics.
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Method D |Tres| |Tforb| |Tfan| R Comp H V

PCG B1 18 4 4 1.000 1.000 1.000 1.000

TCG(1) B1 4 0 0 0.186 0.400 1.000 0.571

TCG(2) B1 8 4 0 1.000 1.000 1.000 1.000

PCG B2 24 6 3 0.000 1.000 0.000 0.000

TCG(1) B2 7 2 1 0.364 0.464 1.000 0.634

TCG(2) B2 11 6 1 0.000 1.000 0.000 0.000

PCG B3 37 6 7 0.522 1.000 0.579 0.734

TCG(1) B3 7 0 1 0.103 0.455 0.790 0.577

TCG(2) B3 13 6 1 0.522 1.000 0.579 0.734

PCG B4 49 12 10 0.000 1.000 0.000 0.000

TCG(1) B4 22 3 10 0.468 0.608 0.855 0.711

TCG(2) B4 34 15 10 0.000 1.000 0.000 0.000

Table 4.19: Constraint generation functions on all datasets.

4.16.1 Discussion

From a computation and complexity perspective, the number of constraints is important

- especially if the same information can be described using less triplets. But given

a topology complex enough or a graph containing vertices that could be classi�ed as

multiple clusters, then it is unavoidable in that triplets will be generated that would

compromise the tree building process in its current form - ultimately merging all vertices

into one cluster. Consequently, even by introducing various mechanisms to generate a

more restricted constraint list, the building process of using just the constraints to create

clusters is unreliable.

The triplets, regardless of the generation method used, are not all created equal,

even though they are treated as such in the preceding experiments. This can be seen by

considering the similarity value used to create the triplets. Consider the example from

Table 4.18, the triplet t3 = ((5, 7), 4) = 0.408 is parsed before t4 = ((0, 3), 4) = 0.577,

which even though in this instance do not interfere with one another, should not be

the case. More information from the triplets can be deduced and not just used in the

traditional sense for what they syntactically represent. By considering the triplets and

the relationship of the elements comprising them, we can create additional succinct

features and dimensions in order to enhance the cluster building process. Accordingly,

we further analyse the triplets in T and introduce the notion of ranking constraints.
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4.17 Ranking Constraints

4.17.1 Motivation

Building clustering from the constraint list T is not su�cient independently. Thus far,

the building process is dependent on the order in which constraints are added to the

list, therefore the clusters derived from T are partially fuzzy in nature - the resulting

clusters will be di�erent upon every execution of the algorithm as the method relies

on not only the internal data structures of the implemented language, but also the

order in which the vertices are accessed. Previous experiments are in�uenced purely

on phylogenetic building rules and constraint de�nitions - but the decision that samples

should be clustered because there exists a constraint that implies so, is not strong enough

to determine good clustering. In phylogenetics, the building process terminates if there

exists a forbidden triplet, as this implies there is no phylogenetic tree.

The aim is to achieve a hard algorithm that achieves consistent clusters irrespective

of the number of times executed, independent of implementation language and the order

in which vertices are accessed - the ordering of the generated constraints is necessary to

satisfy this objective and has been a crucial parameter which has been so far emitted.

Here we derive and propose new knowledge from triplets to introduce new features to

consistently order constraints to achieve good clustering. Fundamentally, the goal is to

order constraints such that well connected, highly similar, important vertices are ranked

highly and outliers or overlapping vertices are ranked su�ciently low that the algorithm

will terminate before they are used. This mechanism enables the constraint generation

methodologies that create more troublesome triplets increasingly useful as more topo-

logical information of G is known and can be used in the ranking procedure. Conversely,

limiting the number of constraints is still paramount as there are less constraints that

would compromise the quality of the resulting clusters.

4.17.2 Mechanism

Interpreting triplets based on what they semantically represent is not su�cient to derive

good clustering as this implies all constraints are created equally. In this context of

clustering, this should not be the case. There is more information about the topology

of the graph to be interpreted from the syntactical representation of the triplets, the

components of a triplet and their respective position.

As we have de�ned, a resolved triplet is of the form t = ((a, b), c), implying that

clusters containing a and b should be merged before either of those with c. Currently in

the cluster building process we use only the left hand side of the triplet de�nition, (a, b)

and ignore the right hand side c. We therefore de�ne the triplet components as LHS

and RHS respectively. The LHS is important considering clusters are merged based on

the interpretation of such and consider this component as positive impact. Conversely,

a sample in RHS of a triplet is considered negative impact as this states there exists a
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better pairing of vertices in the graph. E�ectively ordering triplets is paramount to our

clustering objective and is based on this relationship of all samples and the involvement

in each triplet in the contents of T .

We therefore create two registers of size n, recording the appearance of samples in

LHS and RHS. Therefore, ∀tres ∈ T LHSa+ = 1, LHSb+ = 1 and RHSc+ = 1 and

∀tfan ∈ T , LHSa+ = 1, LHSb+ = 1 and LHSc+ = 1. The contents of LHS and RHS

registers is vital as we understand that high scoring samples in LHS imply they are

prominent or in�uential in their local neighbourhood and high scoring samples in RHS

imply the inverse.

More information from the syntax is to be derived and that is the concept of co-

occurrence of elements in LHS. Therefore we create another n× n register CO to store

the co-occurrence of samples in LHS. Therefore, ∀t ∈ T we increment COa,b+ = 1. The

contents of CO is used to better understand the relationship between a and b in LHS

and not just the independent occurrence of each element in LHS or RHS. Elements

scoring highly in CO state that a and b are not just present in LHS frequently, but they

are frequently seen together, further reinforcing the decision that they should be merged

with high priority.

Using the derived information from syntactical representation of triplets in T , we

proposed the following formulas to determine a triplets rank R.

R(t) = RCO(a, b)× F (a) + F (b) + F (c)

3
(4.2)

R(t) =
RCO(a, b) +RCO(a, c) +RCO(b, c)

3
× F (a) + F (b) + F (c)

3
(4.3)

Equation 4.2 is calculated for resolved triplets and the largest value of R signi�es

a triplet of high priority. The LHS of the equation RCO is the percentage of common

occurrences out of total triplets involving the contributing elements. More speci�cally,

RCOab = ((COab/Totala)+(COab/Totalb))/2. This value will determine how frequently

elements a and b are together relative to the number of constraints they are involved in.

This calculation is used to avoid bias in vertices of high degree. The value calculated

is a modi�er applied to the overall �tness of a triplet, represented as F in the equa-

tion. The calculation to determine the �tness of a vertex is the di�erence between the

percentage of total constraints where the vertex is involved in LHS compared to the

percentage of total constraints where the vertex is involved in RHS. More speci�cally,

F (a) = ((LHSa/Totala)− (RHSa/Totala)). The �tness of each vertex involved in LHS

of a constraint is summed along with the �tness of the RHS vertex and the average is

taken to determine the �tness of the constraint.

The rationale for this equation is vertices which are �t, determined by the number

of positive relationships they are involved in, and vertices which are �t occur together

frequently will score highly. As opposed to constraints involving un�t vertices being

clustered together, such as outliers, which would contain similar or even negative F
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score. The constraints which involve a vertex of high F value paired with a vertex of low

F score should still score higher than the two outlier example.

Alternatively for the occurrence of fan triplets, equation 4.3 is applied which shares

the same notion as equation 4.2. Although in a fan triplet of the form (a, b, c), c is

considered LHS and positive element as opposed to RHS and negative. We therefore

need to consider the average of common occurrences between all pairs in (a, b, c) over

the total constraints they are involved in. The �tness of c is now also included in the

�nal part of the equation. The denominators has increased to represent the addition of

c being a positive in�uencer.

4.18 Experiment 4

The following experiment demonstrates the APC algorithm with a new parameter, a

boolean to enable or disable the ability to rank constraints using equations 4.2 and 4.3.

Here we test the performance of the ranking procedure in di�erent settings, combining

various aforementioned parameters, including all three of the constraint generation func-

tions and enabling and disabling forbidden and fan triplets. The algorithm with di�erent

combination of parameters are all executing on the datasets from previous experiments

discussed in Section 4.10.1. The used con�gurations for this experiment is shown in

Table 4.20.

Parameter Con�guration

Termination k
Constraint Generation PCG, TCG(1), TCG(2)
Similarity Measure Cosine
Rank Constraints True
Allow Forbidden True, False
Allow Fans True, False

Table 4.20: Experiment 4: APC Parameters

4.18.1 Ranking Constraints on All Datasets

The �rst set of results for this experiment are obtained by con�guring APC to enable

ranking, fan and forbidden triplets. We show all constraint generation functions on

datasets, the results from which are shown in Table 4.21. We show the total constraints

|T |, how many of which are forbidden |Tforb|, fans |Tfan| and how many are used to

reach k clustering |Tused|. The constraint generation functions remained unchanged

from previous experiments and therefore |T |, |Tforb| and Tfans are equivalent. The salient
result is |Tused| to achieve k clustering as a result of the ranking procedure scoring triplets
based on their �tness. The same issues arrive from previous experiments when assessing

di�erent constraint generation mechanisms. PCG generates many triplets as there are

more comparisons, whereas TCG creates triplets only when there are triangles present
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in the topology. Therefore, there some functions not generating enough constraints to

create k clusters in certain datasets and more importantly there are less constraints to

rank. The quantity of triplets determines the clarity of the information we understand

about the graph using the ranking mechanism we have de�ned. Therefore, the ranks for

triplets created using certain constraint generation functions will produce small variance

in ranks due to the fewer constraints. This is an artefact also present when forbidden

triplets and fan triplets are disabled.

Overall, under this con�guration the constraints were e�ectively ranked using the

PCG in all datasets. All clusters were correctly identi�ed using substantially less con-

straints than generated, which is even more pronounced in Dataset 3 and Dataset 4. The

ternary function TCG(2) performed comparatively well, identifying the correct clusters

using a similar number of constraints to PCG although considerably less constraints

were generated overall in all datasets a trade-o� worth considering on larger graphs.

The �nal function TCG(1) demonstrates similar performance to previous experiments

as the topologies in these small datasets do not contain enough local triangles to create

meaningful triplets, a problem further exacerbated in subsequent con�gurations with

forbidden and fan triplets disabled. TCG(1) shows notable improvement as the datasets

become more complex, still out performing previous experiments but not generating

enough constraints to retrieve the �nal clusterings exact ground truth.

Method D |T | |Tforb| |Tfan| |Tused| ARI Comp H V

PCG 1 18 4 4 5 1.000 1.000 1.000 1.000

TCG(1) 1 4 0 0 4 0.533 0.552 1.000 0.711

TCG(2) 1 8 4 0 8 1.000 1.000 1.000 1.000

PCG 2 24 6 3 11 1.000 1.000 1.000 1.000

TCG(1) 2 7 2 1 7 0.000 0.254 0.138 0.179

TCG(2) 2 11 6 1 7 0.000 0.254 0.138 0.179

PCG 3 37 6 7 7 1.000 1.000 1.000 1.000

TCG(1) 3 7 0 1 7 -0.048 0.328 0.250 0.284

TCG(2) 3 13 6 1 12 1.000 1.000 1.000 1.000

PCG 4 49 12 10 21 1.000 1.000 1.000 1.000

TCG(1) 4 22 3 10 21 0.737 0.826 0.810 0.818

TCG(2) 4 34 15 10 22 1.000 1.000 1.000 1.000

Table 4.21: APC(PCG, FORB=T, FAN=T, RANK=T).

Trace Table 4.22 below demonstrates the ranking values that were calculated using

APC(PCG,FORB = T, FAN = T ) on Dataset 4. Steps where no update to the

clusters occurred have been omitted but can be seen in Appendix C.1. The highest rank

given our mechanism for this con�guration was applied to constraint t0 = (9, 10, 11)

where R(t) = 0.429. Through empirical analysis of the topology of Dataset 4 we can

see there are three partitions de�ned by their truth labels consisting of clusters c1 =
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{0, 1, 2, 3}, c2 = {4, 5, 6, 7} and c3 = {8, 9, 10, 11}. There exists a triangle between the

three vertices {3, 4, 8} creating opportunities for erroneous triplets to be generated in

the context of clustering. There exists an additional edge between v3 in cluster c1 and

v5 in cluster c2. This additional edge further reduces the inter-cluster similarity between

elements in c2 more so than other clusters as there exists more vertices which have

external edges which further increases inter-cluster similarity. Therefore, c2 is the weakest

connected community, followed by c1 as v3 has two external edges, more than the one

external edge from v8 in c3. This a�ects the cosine similarity values of internal nodes in

the clusters c1 = {0, 1, 2}, c2 = {6, 7} and c3 = {9, 10, 11} with their outlier neighbours

c1 = {3}, c2 = {4, 5} and c3 = {8}.
As a result of this observation the ranking algorithm has e�ectively ordered triplets in

this experiment for the following reasons. Fan triplet t0 ranks slightly above fan triplet

t1 as although empirically similar, the �tness score of each individual vertex is taken

into consideration. The vertices in c1 are not considered as �t due to the relationship

with v3, as they are involved in more triplets overall, diluting the �tness value. The

last remaining set of internal nodes is then paired in t2, considered less �t due to the

relationship with v4 and v5.

Step T R(t) C

- - - {0}, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

0 (9, 10, 11) 0.429 {0}{1}{2}{3}{4}{5}{6}{7}{8}{9, 10, 11}

1 (0, 1, 2) 0.375 {0, 1, 2}{3}{4}{5}{6}{7}{8}{9, 10, 11}

2 ((6, 7), 5) 0.280 {0, 1, 2}{3}{4}{5}{6, 7}{8}{9, 10, 11}

3 ((9, 10), 8) 0.279 {0, 1, 2}{3}{4}{5}{6, 7}{8, 9, 10, 11}

... ... ... ...

15 ((6, 7), 4) 0.252 {0, 1, 2}{3}{4}{5}{6, 7}{8, 9, 10, 11}

16 (5, 6, 7) 0.205 {0, 1, 2}{3}{4}{5, 6, 7}{8, 9, 10, 11}

17 ((0, 3), 5) 0.195 {0, 1, 2, 3}{4}{5, 6, 7}{8, 9, 10, 11}

... ... ... ...

20 (4, 6, 7) 0.174 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

... ... ... ...

44 ((4, 5), 8) 0.033 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

45 ((3, 4), 5) 0.017 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10, 11}

46 ((3, 5), 8) 0.007 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10, 11}

47 ((3, 4), 8) 0.006 {0, 1, 2, 3, 4, 5, 6, 7}{8, 9, 10, 11}

48 ((4, 8), 3) 0.003 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Table 4.22: Experiment 4 Trace Table

Moreover, the last elements in Table 4.22 illustrate a similar point. There exists four

erroneous triplets in |T | when k = 3, all of which are ranked in the last four positions

of the ordered list. Element t45 is the �rst triplet which causes incorrect merges in C
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if not ranked su�ciently as c1 and c2 are the most similar as opposed to cluster c3.

Vertices v3 and v4 should be merged before v5 considering they share an additional

common neighbour in v8. These vertices are all ranked su�ciently low as they do not

co-occur frequently and they are un�t in that they appear on the LHS and RHS almost

indistinguishably or occur more so in the latter. Similarly, the di�erence between v47 and

v48 is noteworthy as the same concept is held as discussed for the higher ranking triplets,

v47 shares more common neighbours between elements in LHS than in v48 and the overall

�tness of the contributing vertices in these triplets is su�ciently low, combined with a

low co-occurrence score in LHS that e�ectively ranks them desirably last in T .

4.18.2 Additional Con�gurations

The following tables contain the results from the e�ects of enabling and disabling for-

bidden and fan triplets in the APC algorithm and illustrate how the resulting clustering

performs relative to �nding the natural partitions de�ned in the ground truth labels.

Firstly, Table 4.23 shows the results for the con�guration APC(PCG, FORB=F,

FAN=T, RANK=T) on all datasets. As designed |T | is decreased in all cases. PCG

generates forbidden triplets inherently in the design of the comparison mechanism and

is impacted substantially. TCG(1) is inherently designed to minimised the occurrence

of forbidden triplets but they can occur when triangles overlap and edges are involved

in multiple comparisons such as in Dataset 2 and 4. TCG(2) is inherently designed to

include forbidden triplets to generate more information to aid in clustering. Therefore,

when disabled, the performance of TCG(2) is identical to TCG(1).

Method D |T | |Tforb| |Tfan| |Tused| ARI Comp H V

PCG B1 14 4 4 8 1.000 1.000 1.000 1.000

TCG(1) B1 4 0 0 4 0.533 0.552 1.000 0.711

TCG(2) B1 4 4 0 4 0.533 0.552 1.000 0.711

PCG B2 18 6 3 11 1.000 1.000 1.000 1.000

TCG(1) B2 5 2 1 5 0.000 0.254 0.138 0.179

TCG(2) B2 5 6 1 5 0.000 0.254 0.138 0.179

PCG B3 31 6 7 15 1.000 1.000 1.000 1.000

TCG(1) B3 7 0 1 7 -0.048 0.328 0.250 0.284

TCG(2) B3 7 6 1 7 -0.048 0.328 0.250 0.284

PCG B4 37 12 10 25 1.000 1.000 1.000 1.000

TCG(1) B4 19 3 10 19 0.737 0.826 0.810 0.818

TCG(2) B4 19 15 10 19 0.737 0.826 0.810 0.818

Table 4.23: APC(PCG, FORB=F, FAN=T, RANK=T).

Secondly, Table 4.24 shows the results for the con�guration APC(PCG, FORB=T,

FAN=F, RANK=T) on all datasets. Again, |T | is decreased in all cases due to the
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topology of the test graphs including vertices of identical common neighbours and there-

fore similarity. PCG was modi�ed to create fan triplets inherently in an unconventional

way and |T | is impacted slightly. TCG(1) is inherently designed to discover the ternary

relationship between vertices and disabling fan triplets for this method diminishes one

of the key strengths of the mechanism. TCG(2) will discover the same number of fan

triplets as TCG(1), but with the inclusion of forbidden triplets produces di�erent results.

The inclusion of fan triplets in ternary comparisons are arguably more legitimate in this

mechanism based on the de�nition of fan triplet being true to phylogenetics.

Method D |T | |Tforb| |Tfan| |Tused| ARI Comp H V

PCG B1 14 4 0 10 1.000 1.000 1.000 1.000

TCG(1) B1 4 0 0 4 0.533 0.552 1.000 0.711

TCG(2) B1 8 4 0 8 1.000 1.000 1.000 1.000

PCG B2 21 5 0 10 1.000 1.000 1.000 1.000

TCG(1) B2 6 1 0 6 0.000 0.254 0.138 0.179

TCG(2) B2 10 5 0 7 1.000 1.000 1.000 1.000

PCG B3 30 6 0 17 1.000 1.000 1.000 1.000

TCG(1) B3 9 2 0 9 -0.048 0.328 0.250 0.284

TCG(2) B3 15 8 0 12 1.000 1.000 1.000 1.000

PCG B4 39 4 0 26 1.000 1.000 1.000 1.000

TCG(1) B4 18 4 0 15 0.737 0.826 0.810 0.818

TCG(2) B4 30 16 0 15 0.737 0.826 0.810 0.818

Table 4.24: APC(PCG, FORB=T, FAN=F, RANK=T).

Finally, Table 4.25 shows the results for the con�guration APC(PCG, FORB=F,

FAN=F, RANK=T) on all datasets. By allowing only resolved triplets, |T | is further
decreased to a more re�ned and restrictive set of constraints. PCG under this con�g-

uration generates enough constraints in all datasets to compute the correct clustering

relative to the ground truth partitions, even in sparse graphs such as Dataset 1. TCG(1)

and TCG(2) under this con�guration is again identical in performance and therefore the

results have been collapsed into one record. The ternary constraint generation functions

already produce minimal constraints and have been restricted even further. Although

not generating enough constraints in Dataset 1, 2 and 3, the algorithm terminates be-

fore all constraints have been generated in Dataset 4. The clustering returned is almost

consistent with the ground truth partitions, incorrectly merging v3 from c1 into c2 which

could arguably be correct.
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Method D |T | |Tforb| |Tfan| |Tused| ARI Comp H V

PCG B1 10 4 0 6 1.000 1.000 1.000 1.000

TCG(1,2) B1 4 0 0 4 0.533 0.552 1.000 0.711

PCG B2 16 5 0 9 1.000 1.000 1.000 1.000

TCG(1,2) B2 5 1 0 5 0.774 0.711 1.000 0.831

PCG B3 24 6 0 18 1.000 1.000 1.000 1.000

TCG(1,2) B3 7 2 0 7 0.312 0.572 0.685 0.623

PCG B4 35 4 0 26 1.000 1.000 1.000 1.000

TCG(1,2) B4 14 4 0 12 0.737 0.826 0.810 0.818

Table 4.25: APC(PCG, FORB=F, FAN=F, RANK=T).

4.18.3 Discussion

We have shown all combination of parameters for the APC algorithm that have been

de�ned thus far on small datasets with varying topologies. The various tuning of the

parameters can impact the ranking mechanisms we propose signi�cantly depending on

the topology of the graph. We introduced di�erent constraint generation functions with

the intention of creating mechanisms that work well in sparse and dense graphs. A

by-product of these procedures, combined with the ability to enable or disable fan or

forbidden triplets allows quite a di�erent set of constraints to be generated. Although,

regardless of the parameter combinations the objective of the algorithm and the con-

straints generated are inherently similar. The constraint generation functions create

constraints based on the notion of vertex similarity in the network and thus regardless

of the method, they will share a similar subset of constraints. The additional rules built

into the function constrain the interactions between vertices resulting in fewer constraints

being generated. As shown in the results from this experiment, for each dataset the size

of the constraint list |T | is reduced as parameters are disabled. Consider the constraint

generation function PCG on D4, |T | ranges from |T | = 49 when all parameters are

enabled to |T | = 37, 39 with either forbidden or fan triplets disabled respectively, to

ultimately |T | = 35 with all parameters disabled. Computational time is saved when

creating the constraints list with features disabled and there is less constraints to parse

during the building phase. Conversely, based on the results in the tables using the same

example, although |T | decreases the required number of constraints to parse resulting

in k clusters is slightly increased. This is an artefact of the topology of the graph as

this is a trend consistent with all constraint generation functions. Given all the datasets

we consider are based on the barbell graph or a small variation, many of vertices will

share identical similarity to other vertices in the graph. Therefore, it would be unwise

to disable fan triplets as much of the information about internal clusters is lost, but

in the case of Dataset 3 the information regarding the inter-cluster triangle is also re-

moved. The parameters regarding the enabling or disabling of fan triplets and forbidden
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triplets is to produce a method that is consistent with phylogenetics, but also to com-

promise between a trade-o� of increasing the number of constraints to understands more

information about the topology of the graph and reducing the number of constraints to

encounter less erroneous triplets. We are concerned not only with pairs of vertices that

are of high similarity but pairs of low similarity. Additionally, we are concerned with

vertices individually and the �tness of each element. The ranking mechanism we have

de�ned considers these attributes and an artefact of such bene�ts functions as PCG, as

well as TCG(2) with fan and forbidden triplets enabled, because we consider erroneous

information equally important as resolved information.

4.19 APC Experiments and Resultss

In this section we con�gure our clustering mechanism and parameters on various bench-

mark graphs discussed in Section 4.3 and evaluating the performance using clustering

speci�c metrics discussed in Section 4.4. This is a response to the call for standardisation

of evaluation metrics in [63]. We therefore show our mechanism on various benchmark

graphs, including caveman graphs, relaxed caveman graphs, l-planted partition graphs

and gaussian random partitions with di�erent settings. These graphs are discussed in

detail in the following subsections. We also compare the performance of our algorithm to

in�uential mechanisms, speci�cally Girvan-Newman (denoted as GN) proposed in [71]

and implemented in [4] as well as Label Propagation (denoted as LP ) proposed in [106]

and implemented in [1]. We analyse and discuss the overall performance and the resulting

clustering of our and comparator methods.

4.19.1 Caveman Graphs

The graphs discussed in this subsection are popularised in Small Words [117]. Caveman

graphs, CM , are a type of graph which became popular in social network theory, the

notion of a simple social network with unique properties. A social network in which

everyone has one completely connected group of acquaintances. A k-caveman graph is

essentially a graph of k independent cliques. We show only one example of the clustering

algorithm working on a k-caveman graph, which detects independent cliques as individual

clusters in all con�gurations and graph sizes.

We also tested the algorithm on the concept of connected caveman graphs, CCM ,

a minor extension of standard caveman graphs, a less extreme variant of a caveman

world in which each world contains well connected groups of people. In this setting, each

caveman group communicates through one person. Given the inherent properties of the

graph, our APC algorithm will always �nd these communities.

The �nal caveman topology we consider is a relaxed caveman graph, RCM , adapted

to more realistically explain the clustering properties of social networks. In this variant

edges are rewired with a speci�ed probability to link di�erent cliques. These graphs are

interesting to study since they represent ideal graphs with "perfect" communities.
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Method D n k p ARI Comp H V

APC CM 30 3 - 1.000 1.000 1.000 1.000

GN CM 30 3 - 1.000 1.000 1.000 1.000

LP CM 30 3 - 1.000 1.000 1.000 1.000

APC CCM 45 3 - 1.000 1.000 1.000 1000

GN CCM 45 3 - 1.000 1.000 1.000 1.000

LP CCM 45 3 - 1.000 1.000 1.000 1.000

Table 4.26: Caveman Graph Experiments

The results in Table 4.26 show the clustering quality returned from our APC method

on the caveman graphs created with the speci�ed parameters, as well as the performance

of HC. We use the standardised clustering metrics discussed in previous sections to

evaluate the clustering quality. As expected on the caveman topology and its variants,

our method and HC determine the correct partitions. The �rst two topologies, CM

and CCM , are identical in structure when the parameters to generate the graphs, n

and k are increased. Therefore, further experiments on these graphs are unnecessary.

The results for these topologies are shown in Figure 4.9. Conversely, the �nal topology

RCM is generated using extra parameters other than n and k - speci�cally we use p,

the parameter which de�nes the probability of rewiring each edge in G. The example in

Figure 4.9 is consistent with the parameters in Table 4.26

(a) Caveman Graph (b) Connected Caveman Graph

Figure 4.9: APC Results on Caveman Graphs

The variantRCM is a standard benchmark example used to simulate real-world social

networks. We have therefore provided further experiments using di�erent con�gurations

of RCM to determine performance on increasingly complex graphs created by this model.

We consider various increments of p, increasing the value until our method encounters

di�culty in identifying the correct clustering.

The resulting clustering from running our method on di�erent RCM graphs with

varying p values is visualised in Figure 4.10. The details of the experiment and cluster
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(a) p=0.1 (b) p=0.15

(c) p=0.2 (d) p=0.3

(e) p=0.35 (f) p=0.4

Figure 4.10: APC on Relaxed Caveman Graphs

quality are shown in Table 4.27. The value of p is incremented each experiment, in-

creasing the likelihood of an edge being rewired to connect an external cluster. This can

be seen visually as the graph becomes more complex and clusters become increasingly

di�cult to distinguish.
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Method D n k p ARI Comp H V

APC RCM 25 3 0.3 1.000 1.000 1.000 1000

GN RCM 25 3 0.3 1.000 1.000 1.000 1.000

LP RCM 25 3 0.3 1.000 1.000 1.000 1.000

APC RCM 25 3 0.35 1.000 1.000 1.000 1000

GN RCM 25 3 0.35 1.000 1.000 1.000 1.000

LP RCM 25 3 0.35 1.000 1.000 1.000 1.000

APC RCM 25 3 0.4 0.560 0.920 0.588 0.717

GN RCM 25 3 0.4 1.000 1.000 1.000 1.000

LP RCM 25 3 0.4 0.565 1.000 0.579 0.734

Table 4.27: APC on Relaxed Caveman Graphs

Our method detects the original partitions generated using RCM models well until

p = 0.4, encountering issues detecting the original partitions at a similar point to com-

parator algorithm LP, but before GN. The ARI is the measure of similarity between

two data clusterings, speci�cally in this setting between our returned clustering and the

original partitions or truth labels. For lower probabilities of p the ARI = 1, con�rming

our returned clustering exactly matches the truth labels of G. At higher probabilities

of edges being rewired, speci�cally when p = 0.4 in Table 4.27 the ARI value for our

method and LP decreases accordingly. Speci�cally for APC, ARI = 0.560 states the

sets of labels agree on the clustering over half the time, but the returned clustering is

not perfect. This is consistent with Sub�gure(f) in Figure 4.10, APC discovers two

of the partitions but two clusters are merged before an individual vertex in the graph

(highlighted as the red vertex) - an APC artefact inherent in our method at the point

of cluster degradation and is discussed later in detail.

The remaining three evaluation metrics are all related but highlight di�erent proper-

ties of clustering. The metric Completeness (Comp) is symmetrical to homogeneity. In

order to satisfy the completeness criteria, a clustering must assign all of those vertices

that are members of a single class to a single cluster [109]. Therefore, considering the

example executions of LP , Comp = 1 in all instances even when cluster quality degrades

and two clusters are collapsed due to a larger edge rewiring probability p. Comp is still

satis�ed, all vertices in a truth label belong to the same resulting cluster which is the

fact that is being measured. The reason APC achieves an imperfect Comp = 0.920 is

because of the same artefact in that one vertex is considered a cluster and the condition

all is not met. Homogeneity H is similar but with another restriction, all and only ver-

tices in a partition should be clustered together. Similarly, H = 1 for perfect clusterings

and APC returns a homogeneity score H = 0.588 when p = 0.4 as all and only vertices

in one partition satis�es this strict property.

The �nal metric we consider is the amalgamation of H and Comp in the form of

V -measure, an entropy-based measure which explicitly measures how successfully the

criteria of homogeneity and completeness have been satis�ed. Vmeasure is computed as
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the harmonic mean of distinct homogeneity and completeness scores, just as precision

and recall are commonly combined into F-measure [109, 115].

4.19.2 Planted l-Partition Graphs

This type of graph is a benchmark graph used to evaluate clustering mechanisms, de-

scribed in [63]. The implementation of the graphs discussed in this subsection were

proposed by Condon et al [47]. The implementation in [47] is a linear-time algorithm

to generate planted l-partition graphs (denoted as LPP ). The fundamental attributes

of such graphs is the partitioning of n vertices into l groups, each of size n/l with each

n connected to vertices in the same partition with some probability pin. Vertices are

also connected to elements of other partitions with some probability pout < pin. The

intra-cluster edge density should therefore exceed the inter-cluster edge density as this

ensures a community structure in the graph exists. Each partition is a random sub-graph,

generated using the Erd®s-Rényi model with probability pin. We show the performance

of our algorithm on this type of graphs with di�erent generation values for n, l, pin and

pout. The graphs generated by this model are more complex than RCM as each vertex

is considered in a pairwise fashion and a new edge is created relative to pout as opposed

to the probability of the edge being rewired.

The �rst con�guration of this graph type we consider is l = 3 and k = 17, this is as

not to overcomplicate visualisations. We start with l complete graphs as pin = 1 and

increase parameter pout until truth labels are not correctly found.

Method D k l pin pout ARI Comp H V

APC LPP 17 3 1 0.2 1.000 1.000 1.000 1000

GN LPP 17 3 1 0.2 1.000 1.000 1.000 1.000

LP LPP 17 3 1 0.2 1.000 1.000 1.000 1.000

APC LPP 17 3 1 0.25 0.533 0.895 0.579 0.703

GN LPP 17 3 1 0.25 1.000 1.000 1.000 1.000

LP LPP 17 3 1 0.25 0.561 1.000 0.579 0.734

APC LPP 17 3 1 0.35 0.002 0.232 0.041 0.069

GN LPP 17 3 1 0.35 0.002 0.232 0.041 0.069

LP LPP 17 3 1 0.35 0.000 1.000 0.000 0.000

Table 4.28: Planted l-Partition Graph Experiments

This model of graphs becomes complex and partitions less distinguishable quicker

than RCM graphs due to new edges being added. Therefore, the graphs above in

Figure 4.11 become increasingly well connected and more di�cult to separate using

force-directed graph drawing algorithms. As a result of this, as shown in Table 4.28, our

method and LP begin to produce di�erent clusterings than the de�ned truth labels when

pout = 0.25. Conversely, GN is still able to maintain accurate reproduction of clusters

until pout = 0.35 due to the bene�ts of recalculation of vertex betweenness. Our method
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(a) pout=0.1 (b) pout=0.15

(c) pout=0.2 (d) pout=0.25

Figure 4.11: APC on Planted l-Partition Graph pin = 1

and LP begin to encounter di�culty at pout = 0.25, although partial clusterings are

found as shown by ARI and V values. Comp values for APC is again less than perfect

due to the 1-vertex cluster artefact, whereas LP maintains Comp = 1. Conversely, H is

identical between the two methods.

GN maintains cluster quality until pout = 0.35, but the method did not �nd inter-

mediary clusters, showing perfect evaluation metrics until a sudden drop. At the level of

pout all cluster methods perform similarly in evaluation metrics as mostly all vertices are

in the same cluster. It is worth noting APC and GN have a similar 1-vertex artefact

which results in a lower H score, unlike LP in which all vertices belong to the same

cluster.

We now consider a di�erent con�guration of LPP where the l-partitions are not

complete but still contain l = 3 groups and k = 17 vertices. We begin these experiments

setting pin = 0.8 and increase pout incrementally.
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(a) pout=0.1 (b) pout=0.15

(c) pout=0.16 (d) pout=0.16

Figure 4.12: APC on Planted l-Partition Graph pin = 0.8

Method D k l pin pout ARI Comp H V

APC LPP 17 3 0.8 0.15 1.000 1.000 1.000 1.000

GN LPP 17 3 0.8 0.15 1.000 1.000 1.000 1.000

LP LPP 17 3 0.8 0.15 1.000 1.000 1.000 1.000

APC LPP 17 3 0.8 0.16 0.533 0.895 0.579 0.703

GN LPP 17 3 0.8 0.16 1.000 1.000 1.000 1.000

LP LPP 17 3 0.8 0.16 0.561 1.000 0.579 0.734

APC LPP 17 3 0.8 0.19 0.555 0.897 0.592 0.713

GN LPP 17 3 0.8 0.19 0.555 0.897 0.592 0.713

LP LPP 17 3 0.8 0.19 0.533 0.885 0.523 0.658

Table 4.29: Planted l-Partition Graph Experiments

As expected, shown in Figure 4.12 and Table 4.29 the accuracy of the resulting

clusters relative to the truth labels depreciate at lower pout values than the previous

graph con�guration due to the increased sparseness of interconnectivity. Our method

and LP are unable to �nd the exact clustering when pout = 0.16 with GN performing

e�ectively until pout = 0.19. An interesting observation at this point pout = 0.19, our

method returns the same clustering as GN , maintaining clustering consistency from
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pout = 0.16. The returned clusters for all three methods when pout = 0.19 is shown in

Figure 4.13.

(a) APC (b) GN

(c) LP

Figure 4.13: Planted l-Partition Graph pin = 0.8 and pout = 1.9

Our method maintains the same clustering from parameters in Sub�gure (d) in Fig-

ure 4.12 to Figure 4.13 where all methods encounter di�culty.

4.19.3 Gaussian Random Partition Graphs

The graphs created by the LPP model contain identical partitions by design, a feature

unnatural to graphs of real systems. In such systems degree distributions are often

skewed with vertices of varying degrees coexisting in the same partition. The graph

generator in this section is a benchmark graph used to evaluate clustering mechanisms

on graphs with similar features to real world systems. The implementation of the graphs

discussed in this subsection were proposed by Brandes et al [43]. The implementation

in [43] is an algorithm to generate gaussian random partition graphs (denoted as GRP )

in which k partitions are created with sizes drawn from a normal distribution - vertices

are similarly grouped to LPP using pin and pout parameters.

The �rst con�guration we consider generates groups of varying sizes, specifying the

number of vertices n = 80, the mean cluster size s = 30 and shape parameter v = 3,

where the variance of the cluster sizes is s/v. Given these parameters GRP generates a
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graph containing three partitions of sizes p1 = 34, p2 = 18 and p3 = 28. These partitions

are connected using using pin and pout parameters.

In the �rst graph, we create partitions using pin = 0.8 increment pout until the original

partitions are no longer clearly found.

(a) pout=0.05 (b) pout=0.075

(c) pout=0.1 (d) pout=0.125

(e) pout=0.13 (f) pout=0.14

Figure 4.14: APC on Gaussian Random Partition Graph pin = 0.8
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Method D n s/v pin pout ARI Comp H V

APC GRP 80 10 0.8 0.125 1.000 1.000 1.000 1.000

GN GRP 80 10 0.8 0.125 0.931 0.925 0.909 0.917

LP GRP 80 10 0.8 0.125 1.000 1.000 1.000 1.000

APC GRP 80 10 0.8 0.13 0.436 0.917 0.500 0.647

GN GRP 80 10 0.8 0.13 0.934 0.909 0.896 0.902

LP GRP 80 10 0.8 0.13 1.000 1.000 1.000 1.000

APC GRP 80 10 0.8 0.14 0.021 0.286 0.036 0.064

GN GRP 80 10 0.8 0.14 0.931 0.925 0.909 0.917

LP GRP 80 10 0.8 0.14 1.000 1.000 1.000 1.000

APC GRP 80 10 0.8 0.17 0.021 0.286 0.036 0.064

GN GRP 80 10 0.8 0.17 0.537 0.800 0.520 0.630

LP GRP 80 10 0.8 0.17 0.622 1.000 0.607 0.755

Table 4.30: APC on Gaussian Random Partition Graph pin = 0.8

As expected the cluster algorithms cease to �nd the original partitions at lower values

of pout than the previous graph generators. A reason for this and a trait inherent in

these topologies is that clusters are varying in sizes and the intra-cluster similarity is

lower due to inconsistent cluster sizes. Smaller clusters will appear more sparse as there

are comparatively more chances to create external edges than internal, creating di�cult

scenarios to discern partitions. The set of diagrams in Figure 4.14 show the performance

of our method on graphs with increasing pout and results in Table 4.30 contain the

evaluation statistics of comparator methods.

Our method and LP �nd the correct partitions up to pout = 0.125 as shown in the

evaluation metrics. Surprisingly, GN misclassi�ed one vertex into an incorrect clustering

which explains the close to perfect evaluation scores, which highlights the issues with

GRP generation. Our method encounters di�culty at pout = 0.13, merging two clusters

incorrectly - although as shown in Sub�gure (e) in Figure 4.14 the merged partitions

contain many overlapping edges. In this con�guration of GRP graphs, our method

classi�es all vertices into one partition at pout = 0.14 as shown in Sub�gure (f). The

partitions are very di�cult to discern and partitions have many inter-cluster edges - this

will produce similar vertex �tness values and increase the di�culty in separating clusters

as this graph model can create di�cult outliers, as shown by the inability of GN to

discern entirely the correct partitions. The comparator methods GN and LP encounter

issues at pout = 0.17.

We consider another con�guration to exacerbate the graph properties by reducing

pin. We specify the number of vertices n = 80, the mean cluster size s = 30 and shape

parameter v = 3, where the variance of the cluster sizes is s/v. We also set pin = 0.5

which generates a GRP graph containing three partitions of sizes p1 = 24, p2 = 39
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and p3 = 17. The resulting GRP is considerably more sparsely connected and again we

increment pout until we have a change in the resulting clustering.

(a) pout=0.01 (b) pout=0.02

(c) pout=0.03 (d) pout=0.035

Figure 4.15: APC on Gaussian Random Partition Graph pin = 0.5

Method D n s/v pin pout ARI Comp H V

APC GRP 80 10 0.5 0.03 1.000 1.000 1.000 1.000

GN GRP 80 10 0.5 0.03 1.000 1.000 1.000 1.000

LP GRP 80 10 0.5 0.03 1.000 1.000 1.000 1.000

APC GRP 80 10 0.5 0.035 0.715 0.923 0.666 0.773

GN GRP 80 10 0.5 0.035 1.000 1.000 1.000 1.000

LP GRP 80 10 0.5 0.035 1.000 1.000 1.000 1.000

APC GRP 80 10 0.5 0.057 0.003 0.213 0.027 0.049

GN GRP 80 10 0.5 0.057 0.027 0.298 0.038 0.068

LP GRP 80 10 0.5 0.057 0.022 0.293 0.045 0.078

Table 4.31: APC on Gaussian Random Partition Graph pin = 0.5

The cluster sizes produced by the GRP models are heterogeneous and the degree

distribution is also heterogeneous in that the expected degree of vertices depends on

the number of vertices in the same cluster. Therefore, it is expected that clustering

algorithms perform not so well on this di�cult class of benchmark graphs. Although, the
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trend between our algorithm and comparator methods are consistent on this exacerbated

con�guration as shown in Figure 4.15 and in Table 4.31.

Our method begin to show signs of clusters being incorrectly merged at pout = 0.035.

The degradation in evaluation metrics is not as pronounced due to the higher variance

in partition sizes as there are less vertices being incorrectly labelled.

4.19.4 Random Partition Graphs

In this section we consider Random Partition Graphs (denoted as RPG), a generalization

of the planted-l-partition described in [63]. This model allows for the creation of groups of

any size and therefore specify each partition exactly to generate more speci�c topologies.

Using this model, graphs similar to those generated by GRP will be produced although

with the caveat of exact control over the size of initial partitions. Using RPG we can

demonstrate the symptomatic heterogeneous clusters and degree distributions.

Therefore, we demonstrate the performance of our method and comparator algo-

rithms on RPG where k = 3 and the initial partitions p1 = 15, p2 = 15 and p3 = 20. We

also �x pin = 0.8 and increment pout until the original partitions are no longer returned.

(a) pout=0.1 (b) pout=0.14

(c) pout=0.15

Figure 4.16: APC on Random Partition Graph pin = 0.8
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Method D n |p1|,|p2|,|p3| pin pout ARI Comp H V

APC RPG 80 10, 15, 20 0.8 0.14 1.000 1.000 1.000 1.000

GN RPG 80 10, 15, 20 0.8 0.14 1.000 1.000 1.000 1.000

LP RPG 80 10, 15, 20 0.8 0.14 1.000 1.000 1.000 1.000

APC RPG 80 10, 15, 20 0.8 0.15 0.622 0.902 0.624 0.737

GN RPG 80 10, 15, 20 0.8 0.15 0.936 0.931 0.916 0.923

LP RPG 80 10, 15, 20 0.8 0.15 1.000 1.000 1.000 1.000

APC RPG 80 10, 15, 20 0.8 0.16 0.683 0.895 0.659 0.759

GN RPG 80 10, 15, 20 0.8 0.16 1.000 1.000 1.000 1.000

LP RPG 80 10, 15, 20 0.8 0.16 0.607 1.000 0.600 0.750

Table 4.32: APC on Random Partition Graph pin = 0.8

As the number of vertices is small, we have generated sparse graphs and show the

resulting clustering in Figure 4.16 and evaluation metrics in Table 4.32. In this RPG

graph, the variance in cluster sizes is increased by a small, constant value. Considering

the di�culty of these graphs to discern the prede�ned partitions, our method performs

well, identifying the smallest cluster with sparse intra-cluster edges and comparatively

large inter-cluster edges. This class of graphs also creates di�cult outlier vertices - this is

shown in the con�gration of pout = 0.15, our method incorrectly merges a sparse cluster

with another and GN incorrectly classi�es some vertices. GN proves to be less sensitive

to this scenario as opposed to our more strict cluster building mechanism. The cluster

quality of APC is maintained until pout = 1.6 and �nds similar clustering to LP .

We now demonstrate the performance of our method and comparator algorithms on

another RPG con�gration where k = 3 and the initial partitions p1 = 10, p2 = 20 and

p3 = 40. We also set pin = 0.8 and increment pout until the original partitions are no

longer returned.

(a) pout=0.1 (b) pout=0.11

Figure 4.17: APC on Random Partition Graph pin = 0.8
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Method D n |p1|,|p2|,|p3| pin pout ARI Comp H V

APC RPG 80 10, 20, 40 0.8 0.1 1.000 1.000 1.000 1.000

GN RPG 80 10, 20, 40 0.8 0.1 0.959 0.950 0.930 0.940

LP RPG 80 10, 20, 40 0.8 0.1 0.835 1.000 0.715 0.834

APC RPG 80 10, 20, 40 0.8 0.11 0.843 0.938 0.732 0.822

GN RPG 80 10, 20, 40 0.8 0.11 0.379 0.898 0.429 0.581

LP RPG 80 10, 20, 40 0.8 0.11 0.678 1.000 0.626 0.770

Table 4.33: APC on Random Partition Graph pin = 0.8

The con�guration of the RPG graph in Figure 4.17 and Table 4.33 with doubling

cluster sizes is to emphasize the point in that the cluster size does not impact the aver-

age out-degree. The di�culty inherent in these benchmark graphs is that at a certain

threshold, clusters could be heuristically be classi�ed as the same group. This is re-

inforced by the fact that the GN algorithm misclassi�es a single vertex into another

partition, contrary to the prede�ned truth labels.

Nevertheless, our algorithm and comparator algorithms perform well in identifying

even the smallest cluster in this di�cult, albeit unnatural graph. Based on the results in

Table 4.33 our method out performs both GN and LP , though GN is only misclassifying

a small number of vertices and the resulting clustering is still well de�ned and comparable

- this is also true for LP but to a lesser extent.

(a) GN (b) LP

Figure 4.18: GN and LP on Random Partition Graph pin = 0.8 and pout = 0.11

In the event pout = 0.11 all methods encounter di�culty in identifying the prede�ned

partitions. In this con�guration the smallest partition is indistinguishable due to the

poor intra-cluster constitution. Interestingly (shown in Sub�gure (b) in Figure 4.17 and

Figure 4.18) APC merges the smallest partition with the second smallest, LP merges

the smallest partition with the largest and GN merges the largest two clusters. The

resulting size of the incorrect merges directly impacts the evaluation metrics in Table 4.33,

i.e., APC maintains the highest scoring algorithm because the two smallest clusters are

merged resulting in less vertices incorrectly classi�ed.
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In recent years new graph generators have been created to remedy the heterogeneous

degree distribution and cluster sizes shown in the previous two experiments, known as

LFR benchmark graphs. The de�ning property of these graphs is that degrees and

communities are power laws with exponents τ1 and τ2, respectively [63]. Vertices then

share a fraction of its edges with other members of the community and share another

fraction of edges with vertices in other communities. The LFR benchmark graphs expand

on these models in [84] introducing features of real networks, i.e., the heterogeneity in

the distributions of node degree and community size.

4.20 Conclusion, Discussion and Future Work

In this chapter we have proposed a study of phylogenetic building rules to determine

the viability in the context of clustering. We have modularised the process into three

main components: constraint generation, constraint ranking and cluster building. The

content of this chapter covers the evolution of our method from its early form, highly

similar to standard phylogenetics to a highly �exible and augmented variant with multiple

constraint generation functions, ranking procedure and building mechanism. We show

our proposals, experiments, modi�cations and discussion of the methods successes and

di�culties. Throughout our research and experimentation, we focused on the concepts

of phylogenetics and relaxed these constraints as our method progressed, introducing

multiple constraint generation functions and using these constraints to understand more

about the graph structure as opposed to using them strictly syntactically. This process

can be inherently distributed and can be parallelised to increase performance, with each

vertex reporting its statistics and community �tness value, which can then be used in

the cluster building phase.

The only area of phylogenetics that we did not relax is the tree building mecha-

nism. The phylogenetic tree building process in its current form has proven to produce

good clustering on a variety of benchmark graphs, but also has the potential to be too

volatile to be used in the context of clustering. During the initial stages of the clustering

procedures vertices are merged steadily, building clusters granularly. As the strongest

constraints are used, the weaker triplets are considered which increases the likelihood of

an undesirable triplet occurring and merging clusters which should be separate. Post

evaluation we feel one triplet being interpreted in such a manner puts the onus of the

resulting clustering on a single constraint (which is decidedly weak but the best of the

remaining constraints in the set). Therefore, we propose various avenues of further re-

search, which are plentiful and can all address this problem in various ways.

Firstly, the method we have proposed draws inspiration from phylogenetics and hi-

erarchical clustering. The intention was to create an algorithm which did not need to

calculate all pairwise similarities in the graph and instead focus on local information of

each vertices neighbourhood. The unique feature of hierarchical clustering is that the

pairwise similarities are updated subject to every merge performed - a step which is
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not considered in our method. A possible area of experimentation would be to update

the �tness values of a vertex given changes in the topology of the local neighbourhood,

although this would be computationally expensive, understanding the resulting quality

of clusters is worth considering. Using this method the cluster building function remains

strict.

Secondly, we have compared our method against a near-linear time algorithm to

solve clustering which is useful in large scale systems. This method, known as label

propagation selects a vertex arbitrarily and begins propagating labels throughout the

graph. The method is synchronous, with each vertex checking the majority of labels in

the local neighbourhood - ties are broken randomly. This method is fast and produces

best results on dense graphs, but the resulting clusters are fuzzy in nature. We believe

a good route for further research is to focus on speed and cluster accuracy by creating

a hybrid method that uses constraints to build clusters but check local neighbours to

determine the majority before merging. In this processes the building process could

be relaxed in that clusters are not strictly merged and instead vertices involved in a

constraint can switch clusters.

Thirdly, we have considered the notion of thresholding for automatic termination

instead of specifying a k value - knowing this value beforehand is a commodity not of-

ten granted in real systems. The Python code of our method already has this feature

included, though it is beyond the scope of this chapter. The fundamental idea is to

avoid the volatility of the building mechanism when constraints consist of un�t vertices.

The intention would be to cluster vertices using the constraints up to a certain rank

(threshold). The remaining vertices remain un-clustered but the primary partition cen-

tres will have already been de�ned. The remaining vertices can then be included through

a k-nearest neighbour pass, or similarly label propagation.

Fourthly, subsequent to decreasing the volatility of the building mechanism earlier

stages of the cluster merging process can be modi�ed to approximate small cluster centers

through the use of overlaying k-means with a granular number of centroids. This is based

on the work in [39] in which the authors use this method to speed up the initial stages

of hierarchical clustering, reducing the time needed to update similarities by approxi-

mating the cluster centers using k-means. In this work experiments are performed with

di�erent levels of k and assessing the overall quality produced by this method compared

to standard hierarchical clustering.

Finally, the clustering algorithm is currently based in clustering graphs if the data

can be represented as such. In machine learning, data samples often consist of multiple

dimensions. Another area of adaptation would be to expand the algorithm to work on

data of multiple dimensions.





Chapter 5

Conclusion

5.1 Overview

This thesis has presented multiple solutions and experiments to problems in the area

of Distributed Computing and Clustering algorithms. The problems that we consider

are grounded in determining consensus, interactions and local communities in networks.

The models proposed throughout are in�uenced by other works in the �eld, using the

concepts based in the areas of Random Walks, Population Protocols, Phylogenetics and

Hierarchical Clustering.

The following results from Chapters 2 and 3 are from the published work carried

out by the author, their supervisors and several collaborators from di�erent institutions.

Chapter 4 is experimental work carried out by the author and academic supervisors. The

following sections are detailed conclusions obtained from the main results presented in

this thesis.

5.2 Majority Color Problem

The work in Chapter 2 introduces various solutions to the Majority Color Problem on

synchronous networks in restrictive models. The networks are unknown to the vertices

and protocol, in that each vertex is aware of its edges, but unaware of the target vertex.

The proposed protocols also operate in dynamic graphs where the adversary is benign.

The protocols do not terminate but they will converge in �nite time and we also show

these protocols can terminate w.h.p if the value of n is known by the vertices.

Chapter 2 introduces the �rst protocol which is also the foundation of the other

proposed solutions, to determine the consensus on the majority color in networks whose

vertices are initially one of two colors. The protocol guarantees that if a majority color

exists then each vertex will learn of the initial majority color. The initial algorithm

in the original paper left an arbitrary distribution of colors throughout the graph if no

majority existed. Based on further research the protocol was adapted such that if there

exists no majority then each vertex will learn that there is equality in the network. The
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protocol uses limited memory to solve this problem and disseminates the information to

all vertices in the network.

We adapt this protocol and propose a variation in which multiple tokens can operate.

The standard protocol is susceptible to deadlock, or concurrency issues in that if two

agents each hold the last remaining token of a color then there will be no remaining vertex

to complete a match, resulting in the vertices of the graph being in�nitely recolored and

never converging. The protocol is modi�ed in such a fashion this problem is removed,

with a small penalty to memory usage the process of solving MCP can be increased using

multiple tokens.

Another protocol we propose is to solve the k-surplus problem, which disseminates

the result across all vertices in the network if a majority of at least k is discovered. The

original protocol can be reduced to this problem when k = 2. For any state where the

token counter value c < k then equality or neutrality is disseminated throughout the

network, indicating there exists no k-surplus.

Finally we proposed a protocol for k-colors, an extension that uses the binomial

coe�cient
(
k
2

)
instances of our original protocol. This modi�cation is powerful in that

not only the MCP is solved, but also other order statistics and computational tasks.

As a supplement to the theoretical models proposed in this chapter a software simu-

lation of our protocols has been developed using Python that solves all problems de�ned

in this chapter including equality, relative and absolute majority for k colors when k ≥ 2.

This software simulation is explained in Appendix B accompanied by small examples on

various network topologies.

Interestingly, further research can be performed to study the MCP on non-trivial

special classes on graphs as complete graphs can be solved in O(n log n) expected time

and O(n2m) time on any connected undirected graphs.

As a result of the utilization of random walks to solve majority problems as well as

determine order statistics, similar to state transitions in population protocols, an avenue

of research would be to determine whether all predicates of presburger arithmetic can

be computed using the random walk model and determine the computational bene�ts of

such a method.

Finally, another avenue of research would be to consider other variants of random

walkers individually or working in synergy to solve the MCP problem in distributed,

unknown networks whilst maintaining small memory usage.

5.3 Majority Problems in Population Protocols

The work in Chapter 3 discusses space-e�cient deterministic population protocols for sev-

eral variants of the majority problem including plurality consensus. We focused on space

e�cient majority protocols in populations with an arbitrary number of colours C rep-

resented by k-bit labels, where k = dlogCe. In particular, we presented asymptotically

space-optimal (with respect to the adopted k-bit representation of colours) protocols for
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(1) the absolute majority problem, i.e., a protocol which decides whether a single colour

dominates all other colours considered together, and (2) the relative majority problem,

also known in the literature as plurality consensus, in which colours declare their volume

superiority versus other individual colours.

The new population protocols we proposed in this chapter rely on a dynamic formu-

lation of the majority problem in which the colours originally present in the population

can be changed by an external force during the communication process. The considered

dynamic formulation is based on the concepts studied in [20] and [91] about stabilizing

inputs and composition of population protocols. Also, the protocols presented in this

chapter use a composition of some known protocols for static and dynamic majority.

Further work in regards to the work in this chapter would be to adapt our equality

�nding protocol to use less overall states and discover a space-optimal solution in regards

to the number of states. Also in a wider context, in our solutions the emphasis was on

asymptotic space optimality. One open problem, however, is to determine more exact

bounds on the number of states required to compute the considered types of majorities for

a given number of colours C. Another interesting problem refers to the time complexity

and parallelism of considered majority problems in the presence of a random scheduler.

Finally, one can ask what other computations are possible through a composition of

several �partially self-stabilizing� (sub)protools.

5.4 Phylogenetic Clustering

The work in Chapter 4 introduces a clustering method that retains the hierarchical

formation of the resulting partitions, as opposed to �at clustering methods were this

information is lost. The method we proposed is a connectivity, edge based algorithm,

although it could be augmented to work in other models depending on the distance metric

used to determine vertex similarity. The method does not perform updates of the ranking

mechanism as we rely on information derived from local communities. Therefore, our

method shares similarities with hierarchical clustering, but also faster methods such as

label propagation. The method performs well in a variety of graph types, predominantly

in networks with well connected clusters as performance was shown to depreciate once a

certain level of external edges had been reached.

We discuss the introduction of phylogenetic concepts and our algorithms parameters

on a series of synthetic datasets. More detailed trace tables and clustering diagrams from

early experiments are shown in Appendix C.

We proposed multiple ways in which constraints can be generated, which are graph

dependent and result in di�erent clusterings. A method in which constraints are gen-

erated through all pairwise comparisons between vertices and the local neighborhood

and another which creates constraints based on the presence of local triangles in the

graph. The �rst being more versatile as performance is maintained in sparse graphs and

more information is created in dense graphs. The second performs comparatively well
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in well-connected graphs, with the intention of removing the liklihood of troublesome

triplets.

We propose a ranking algorithm to score and order the constraints accordingly based

on a vertex �tness function - a function that bene�ts from negative and positive informa-

tion equally. The method could further bene�t from increased clustering accuracy if the

ranking function is updated post merge, although a signi�cant increase in computational

e�ciency will be incurred.

Finally, we compare our method with similar algorithms in the domain on set of

real and synthetic data. We demonstrate the algorithms capabilities and evaluate using

clustering speci�c evaluation metrics and clustering speci�c benchmark graphs, adhering

to the call for standardisation in [63].

There are many avenues for potential research given the foundation laid in this chap-

ter. We show that phylogenetic concepts can be adapted to detect communities in generic

networks, and useful information can be derived from the generated constraints described

as the notion of �tness.

The constraint generation methods can be inherently parallelized to further save

computational time. The method can be further aligned with hierarchical clustering and

other clustering methods in regards to updating the ranks of the constraints. Conversely,

clustering accuracy can be increased utilising the proposed thresholding function to clus-

ter highly similar vertices and post processing can be used in a similar way to label

propagation, although clusters return may potentially be fuzzy.

The �tness function could potentially be adapted to aid in determining outliers in

the network which isn't too dissimilar to the initial objectives - scoring these vertices low

enough that the triplets containing two vertices positively is less likely to be used.

5.5 Final Remarks

The work in this thesis is presented in chronological order. Our �rst work was inspired

by population protocols, how agents with limited memory and computational power can

solve complex problems. We wanted to determine if these protocols can be adapted into a

structured environment and communicate via walking entities. The results we produced

with a random walking entity are promising as we show they are e�cient in time and

space to solve the MCP which is well studied in population protocols. We discovered

combining multiple instances of our procedure allow us to solve more complex problems,

such as relative and absolute majority for k colors. The results in this area ultimately

inspired us to translate these �ndings into the context of population protocols, to solve

the more complex problems by chaining processes as well as equality - which were our

salient results in this area. Finally, our work in clustering although seemingly separate

share similar motivations and concepts. Firstly, similarly to our random walk model

to solve distributed problems, we consider structured environments. We also consider

local relationships and interactions between vertices in the graphs, not global interactions
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akin to other clustering methods. The local relationships between vertices contribute to

forming clusters and local communities in our clustering method. Random walks are also

used in determining cluster quality as an evaluation metric, as a random walker will more

likely walk within a cluster as opposed to traversing external edges to another cluster.

Over the course of the research produced in this thesis we felt that we have con-

tributed a set of new protocols and models that tackle majority problems in distributed

systems utilising random walks and population protocols. We also hope that the work in

this thesis prompts interest in researching further into random walk models as we have

proven they are e�cient in time and space to solve this set of problems. The model

de�ned in the context of random walks should be researched further to discover if they

can solve equivalent problems in population protocols. In the context of population

protocols, much work has already been done and the models we propose allow for the

chaining of dependent processes to solve more complex problems in which space is sys-

tem constraint. Finally, we proposed a new clustering method in our work in this �eld.

The method performed well given the benchmark pipelines de�ned in recent literature

- more work needs to be done in this �eld to standardise evaluation processes of these

mechanisms. We believe by pursuing concepts outlined in future work sections that our

method will perform even stronger against comparable methods to �nd communities in

di�cult topologies.





Appendix A

Chapter Speci�c De�nitions

The following chapter speci�c de�nitions are a concise glossary of terms used through-

out the bodies of work. More technical de�nitions are found in the actual chapters

themselves.

A.1 Match-Maker Majority Protocols

The de�nitions and notions described below are used in the work of Chapter 2.

De�nition. Majority Color Problem: Consider an undirected, connected graph G =

(V,E) with |V | = n vertices and |E| = m edges. Each node is colored one of two colors

initially. With the restrictions of an unknown network and limited memory (a �xed

number of bits per node and per token message), all nodes must eventually learn and

agree on the initial majority color.

De�nition. k-Surplus Problem: an adaptation of MCP with the additional caveat that

there needs to be a majority color in the network that exceeds or is equal to k. Else,

there is no k-surplus and each node learns and agrees on this fact.

De�nition. Absolute Majority: The occurrence when an element has majority over all

other elements combined, traditionally more than 50%.

De�nition. Relative Majority: The occurrence when an element has the majority over

all other elements in direct pairwise comparison, but does not achieve an absolute ma-

jority on its own.

De�nition. Random Walk: The process of an entity simulating a walk based on random

choice. Given an initial starting position in the network and a vertex degree d, every time

interval the entity selects a random edge with equal probability c = 1..d and traverses

along it.

De�nition. Cover Time: The time expected for a random walk to visit all nodes in a

network at least once.
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De�nition. Token: A constant-sized message that maintains a state based on its inter-

actions with network nodes - which is the entity that performs a random walk in the

context of this work.

De�nition. Dynamic Network: A network in which the edges between nodes can change

during each time interval.

De�nition. Benign Adversary: An adversary that can change the network structure

within an allowable ruleset from round to round.

De�nition. Convergence: All entities will converge on some correct value after some

�nite time.

A.2 Population Protocols

The de�nitions and notions described below are used in the work of Chapter 3, some

de�nitions are also shared from the above de�nitions in Section A.1.

De�nition. Population Protocol: A model that describes a collection of tiny mobile

agents that interact with one another to carry out a computational task.

De�nition. Agents: In this context agents are identically programmed �nite state ma-

chines.

De�nition. Plurality Consensus: A synonym of relative majority, studied in work re-

garding population protocols. The occurrence when an element has the majority over

all other elements in direct comparison, but does not achieve an absolute majority on its

own.

De�nition. Finite State Machine: An abstract machine that can be in exactly one of a

�nite number of states at any given time.

De�nition. Transition Function: Interactions between pairs of agents cause the two

agents to update their states.

De�nition. Adversary: These interactions de�ned by the transition function are sched-

uled by an adversary, subject to a fairness constraint.

De�nition. Self-Stabilization: Input values are initially distributed to the agents, and

the agents must eventually converge and stabilize to the correct output value (but not

necessarily state).

A.3 Clustering

The de�nitions and notions described below are used in the work of Chapter 4.

De�nition. Population: the total set of data points, represented as X in machine learn-

ing algorithms.
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De�nition. Labels: each sample has an associated label, the "`truth"' value, generally

only provided in supervised learning algorithms and are used to compare algorithmic

performance. Unsupervised algorithms do not initially have labels associated with the

data and is the task of the algorithm to assign 'correct' labels to data points. Represented

as y in machine learning algorithms.

De�nition. Samples: a subset of the population.

De�nition. Features: each sample (represented as a vector) in a population can have n

dimensions, each one being a feature of the data.

De�nition. Truth Label: the original label of a samples class/partition membership.

De�nition. Partition: the original partitioning of data used as truth labels to determine

clustering accuracy in evaluation procedures.

De�nition. Clustering: the task of grouping data points or objects together that are

similar, by varying de�nitions of similarity. These groupings are called clusters, commu-

nities or segments.

De�nition. Similarity: the score which determines the similarity of two elements in a

dataset.

De�nition. Agglomerative: a bottom-up approach of grouping data points. Each data

point initially starts in its own group, merged iteratively together to form increasingly

larger groupings.

De�nition. Divisive: a top-down approach of grouping data points. Each data point

initially starts in one collective group, split iteratively into sub sets to form increasingly

granular groupings.

De�nition. K-Nearest Neighbor: a non-parametric algorithm used to determine the k

nearest neighbors to some point in space.

De�nition. Phylogenetics: an area of biology to study the evolutionary relationships

between biological species.

De�nition. Triplet: a ternary relationship between three data points in the form ((A,B), C)

which implies A and B are more similar than C.

De�nition. Forbidden Triplet: a ternary relationship between three data points in the

form ((A,B), C) which implies A and B are more similar than C that contradicts another

triplet, for example ((A,C), B).

De�nition. Fan Triplet: a ternary relationship between three data points in the form

(A,B,C) which implies A, B and C are equally similar.





Appendix B

Random Walk Majority

Experiments

This section demonstrates an example execution of the augmented variants of BASIC

on a variety of graph types. The simulation uses graph generators to create various

topologies, including complete, lollipop, barbell, star and line, though only examples

using complete and line are shown here. The simulation also allows for the color distri-

bution to be in left-right, sequential color lines (i.e. for k colors the �rst n/k elements

are colored k1, second n/k elements are colored k2 etc.) or randomly distributed. The

code for the simulation can be found at the URL in Reference [8].

The �gures in the following sections trace the execution from the initialization step

(step 0), when the token t is placed at an arbitrary vertex, to the state when all vertices

have been converted to the initial absolute majority or relative majority color. Each

�gure consists of the step number, the state of t in terms of the color that is being

disseminated and the state of all the vertices (uppercase representing high in�uence and

lowercase representing low in�uence).

B.1 Complete 6 Vertex: Graph: Equality

Here we consider a complete graph, where n = 6 and k = 2. There exists an equality

among vertices in the graph. The following �gures are displayed in order of the execution.

There is no IC controller in this con�guration as there is only one instance of BASIC

with equality.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8
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(i) Step 9
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B.2 Path 6 Vertex Graph: Equality

Here we consider a line graph or path with LR coloring mode, where n = 6 and k = 2.

There exists an equality among vertices in the graph. The following �gures are displayed

in order of the execution. There is no IC controller in this con�guration as there is only

one instance of BASIC with equality.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6
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(g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10

(k) Step 11 (l) Step 12

(m) Step 13 (n) Step 14
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(o) Step 15
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Appendix C

C.1 Experiment 2b - Full Trace Table

Step Tres Sim(T ) C

0 ((0, 3), 2) 0.516 {0, 3}{1}{2}{4}{5}{6}{7}{8}{9}{10}{11}

1 ((0, 3), 4) 0.516 {0, 3}{1}{2}{4}{5}{6}{7}{8}{9}{10}{11}

2 ((1, 3), 4) 0.316 {0, 1, 3}{2}{4}{5}{6}{7}{8}{9}{10}{11}

3 ((2, 3), 4) 0.316 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

4 ((0, 3), 8) 0.516 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

5 ((1, 3), 8) 0.316 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

6 ((2, 3), 8) 0.316 {0, 1, 2, 3}{4}{5}{6}{7}{8}{9}{10}{11}

7 ((4, 7), 3) 0.516 {0, 1, 2, 3}{4, 7}{5}{6}{8}{9}{10}{11}

8 ((4, 6), 3) 0.316 {0, 1, 2, 3}{4, 6, 7}{5}{8}{9}{10}{11}

9 ((4, 6), 8) 0.316 {0, 1, 2, 3}{4, 6, 7}{5}{8}{9}{10}{11}

10 ((4, 7), 8) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8}{9}{10}{11}

11 ((8, 9), 3) 0.316 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9}{10}{11}

12 ((4, 7), 6) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9}{10}{11}

13 ((8, 11), 3) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 11}{10}

14 ((8, 11), 4) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 11}{10}

15 ((0, 3), 1) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 11}{10}

16 ((8, 10), 4) 0.316 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 10, 11}

17 ((8, 11), 9) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 10, 11}

18 ((8, 11), 10) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 10, 11}

19 ((4, 7), 5) 0.516 {0, 1, 2, 3}{4, 6, 7}{5}{8, 9, 10, 11}

20 ((4, 5), 8) 0.316 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

21 ((4, 5), 3) 0.316 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

22 ((8, 10), 3) 0.316 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

23 ((8, 9), 4) 0.316 {0, 1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11}

Table C.1: Experiment 2b Trace Table No Fans
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Step Tres Sim(T ) C

- - - {0}, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

1 ((0, 3), 1) 0.516 {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

1 ((0, 3), 2) 0.516 {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

2 ((0, 3), 4) 0.516 {0, 3}, {1}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

3 ((1, 3), 4) 0.316 {0, 1, 3}, {2}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

4 ((2, 3), 4) 0.316 {0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

5 ((0, 3), 8) 0.516 {0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

6 ((1, 3), 8) 0.316 {0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

7 ((2, 3), 8) 0.316 {0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

8 ((4, 7), 3) 0.516 {0, 1, 2, 3}, {4, 7}, {5}, {6}, {8}, {9}, {10}, {11}

9 (4, 5, 6) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}

10 ((4, 7), 6) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}

11 ((4, 6), 8) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}

12 ((4, 7), 8) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}

13 ((8, 9), 3) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9}, {10}, {11}

14 ((4, 5), 8) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9}, {10}, {11}

15 ((8, 11), 3) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 11}, {10}

16 ((8, 11), 4) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 11}, {10}

17 (0, 1, 2) 0.408 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 11}, {10}

18 ((8, 10), 4) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

19 (8, 9, 10) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

20 ((8, 11), 10) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

21 ((8, 11), 9) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

22 (1, 2, 3) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

23 (9, 10), 11) 0.408 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

24 ((4, 5), 3) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

25 ((4, 6), 3) 0.316 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

26 ((4, 7), 5) 0.516 {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}

27 (3, 4, 8) 0.200 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

28 (5, 6, 7) 0.408 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

29 ((8, 10), 3) 0.316 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

30 ((8, 9), 4) 0.316 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Table C.2: APC(PCG, FORB, FAN) Trace Table
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