
 

 

 

 

 

 

     The Phenotype and Function of Hapten specific T-Cell isolated from 

Hypersensitive patients and healthy human donors 

 

 

Thesis submitted in accordance with the requirement of the University of Liverpool for the degree of 

Doctor in Philosophy by  

Eryi Wang 

August 2015 

    

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                         



 

1 

 

 

 

 

 

                                     Declaration 

 

I declare that the work presented in this thesis is my own work and has not been submitted 

previously. 

 

                                                                      

    ------------------------------------------------------------- 

                                  Eryi Wang (B.Sc.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 

 

 

 

 

 

Acknowledgement 

 

Firstly, I will thank my parents. I am so indebted to the love they have given me. Besides 

huge financial support, they have missed me every day for five years.  No language can express 

my gratitude to them.  

I would also like to thank my supervisors, Professor Kevin Park and Dr Dean Naisbitt. It is their 

guidance and patience that allowed me to complete this thesis.  Next I would like to thank my 

dear members in our group, who are Lee Faulkner, Mohammed Amali, Andrew Gibson, Andrew 

Sullivan, Monday Ogese and Arun Tailor and also my dear friend Eunice Zhang, for giving me 

valuable instructions and helping me improve English. I will remember that for life. I will also 

not forget my friends and colleagues accompanying me during my memorable stay at Liverpool.  

         

 

 

 

 

 

 

 

 

 



 

3 

 

Abbreviations 

 

APC   Allophycocyanin 

APC   Antigen presenting cells  

CCR   Chemokine receptor (C-C) motif  

CD   Cluster of differentiation  

cpm   Counts per minute  

CSA   Cyclosporin  

CTL   Cytotoxic T lymphocyte  

CYP   Cytochrome P450 enzyme  

DC   Dendritic cell  

DHR   Drug hypersensitivity reaction  

DILI   Drug- induced liver injury  

DMSO  Dimethyl sulfoxide  

DNA   Dioxyribonucleic acid  

DNCB  Dinitrochlorobenzene  

DRESS  Drug reaction with eosinophilia and systemic symptoms  

EBV   Epstein-Barr virus  

EDTA   Ethylenediaminetetraacetic acid  

ELISpot  Enzyme-linked immunospot  

FACS   Fluorescence activated cell sorting  

FBS   Foetal bovine serum  

FITC   Fluorescein isothiocyanate  

GM-CSF  Granulocyte-macrophage colony-stimulating factor  

GSH   Reduced glutathione  

HBSS   Hanks balanced salt solution  

HEPES  Hydroxyethyl piperazineethanesulfonic acid  

HLA   Human leukocyte antigen  

IFN-γ   Interferon-gamma 



 

4 

 

IgE   Immunoglobulin E  

IL   Interleukin  

ITAM   Immunoreceptor tyrosine-based activation motifs  

LAT   Transmembrane adapter protein linker for the activation of T-cells  

LPS   Lipopolysaccharide  

LTT   Lymphocyte transformation test  

MHC   Major Histocompatibility complex  

Mins   Minutes  

Mo-DC  Monocyte-derived dendritic cells  

NHS   National Health Service  

NK   Natural killer  

PAMP  Pathogen associated molecular pattern  

PBMC  Peripheral blood mononuclear cell  

PBS   Phosphate buffered saline  

PE   Phycoerythrin  

pH   Power of hydrogen  

pi   Pharmacological interaction  

RIPA   Radioimmunoprecipitation assay  

RPMI   Roswell Park Memorial Institute  

SFC   Spot forming cell  

SI   Stimulation index  

SJS   Stevens-Johnson syndrome  

SMX   Sulfamethoxazole  

SMX-NOH  Sulfamethoxazole hydroxylamine  

SMX-NO  Nitroso sulfamethoxazole  

STAT   Signal Transducer and Activator of Transcription  

TAP   Transporter associated with antigen processing  

TCR   T-cell receptor  

TEN   Toxic epidermal necrolysis  



 

5 

 

Th1   T helper type 1 cell 

Th2   T helper type 2 cell 

Th17   T helper type 17 cell 

Th22   T helper type 22 cell 

TNF-α  Tumor necrosis factor-α  

Tregs   Regulatory T-cells  

TT   Tetanus toxoid  

UK   United Kingdom  

w/v   weight/volume  

WHO   World Health Organization 

 

 

 

 

 

 

 

 

 

 

 

 

Publication 

 

1. Gibson, A., M. Ogese, A. Sullivan, E. Wang, K. Saide, P. Whitaker, D. Peckham, L. 

Faulkner, B. K. Park and D. J. Naisbitt (2014). "Negative regulation by PD-L1 during 

drug-specific priming of IL-22-secreting T cells and the influence of PD-1 on effector T 

cell function." J Immunol 192(6): 2611-2621. 

 

 

 



 

6 

 

 

Abstract 

Drug hypersensitivity reactions are an important problem for pharmaceutical industry, especially 

when reactions are observed in late phase clinical trials. Furthermore, management of patients 

with reactions leads to personal suffering and financial burden on the NHS. React ions are almost 

impossible to predict as there is no simple relationship between the dose of drug administered 

and the development of hypersensitivity. In recent years, pharmacogenetic studies identified 

strong associations between the expression of specific HLA alleles and susceptibility to different 

forms of hypersensitivity, which would explain why only a small number of drug-exposed 

patients develop hypersensitivity. Studies utilizing peripheral blood mononuclear cells have 

detected drug-specific T-cells in patients with hypersensitivity, but not drug-exposed tolerant 

controls, suggesting that the adaptive immune system plays an important role in the disease 

pathogenesis. Despite this, there remains a need to further understand mechanisms as more 

detailed knowledge will assist the development of diagnostic and predictive assays.  

Data described herein utilized hypersensitivity reactions to the β- lactam antibiotic piperacillin as 

a model to investigate the phenotype and function of drug-specific T-cells in blood and skin, 

focusing specifically on the profile of cytokines secreted. PBMC from hypersensitive patients 

were activated to proliferate in vitro with piperacillin. T-cell clones responsive to the drug were 

generated from blood of all patients studied. CD4+ clones were stimulated to proliferate with 

piperacillin in a concentration-dependent manner and the proliferative response was associated 

with secretion of Th1 and Th2 cytokines alongside IL-22. In contrast, IL-17 was not secreted 

from piperacillin-specific clones. Piperacillin-specific CD4+ clones were also isolated from 

inflamed skins of 2 piperacillin hypersensitive patients. Activation of these clones was associated 
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with secretion of Th1, Th2 cytokines and IL-22, in the absence of IL-17. Finally, CD4+ nitroso 

sulfamethoxazole (SMX-NO)-responsive clones were isolated from sulfamethoxazole 

hypersensitive patients and a similar cytokine secretion profile was observed, which suggests 

that IL-22 secretion might be a common feature of drug hypersensitivity.  

Evolution of T-cell culture methods means it is now possible to prime naïve T-cells from healthy 

donors to antigens, including drugs, which they have not previously been exposed to. Piperacillin 

and SMX-NO were found to prime naïve CD4+ and CD8+ T-cells from healthy donors, when the 

drug-derived antigens were presented in the context of autologous dendritic cells. Cloned drug-

specific T-cells secreted a similar panel of cytokines to that observed with patient cells. Of 

particular importance was the detection of IL-22 in the absence of IL-17.  

The final component of the project utilized cloned T-cells with specificity for SMX-NO, 

piperacillin and flucloxacillin to explore mechanisms of drug-specific T-cell activation and 

potential cross-reactivity. Clones responsive against all 3 drugs were activated via a hapten 

mechanism involving (1) formation of protein adducts, (2) antigen processing and (3) 

presentation of derived peptides in an MHC-restricted manner. No cross-reactivity was observed 

with the 3 drugs. 

Collectively, these data showed that drug-haptens activate T-cells from patients with clinically 

divergent forms of hypersensitivity. T-cells secrete a similar profile of cytokines including the 

tissue-specific cytokine IL-22 following stimulation through the T-cell receptor. Furthermore, it 

is possible to prime naïve T-cells with a similar function against drugs using peripheral blood 

mononuclear cells from healthy donors.   
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1.1 Adverse drug reactions 

Edwards and Aronson, (2000) define adverse drug reactions (ADRs) as: “An appreciably 

harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal 

product, which predicts hazard from future administration and warrants prevention or specific 

treatment, or alteration of the dosage regimen, or withdrawal of the product.’’  

Several studies have estimated the proportion of patients hospitalized due to the development of 

ADRs. A study by Lazarou et al (1998) in the USA used four electronic databases and showed 

that between 1966 and 1976 the total percentage of ADRs was 15.5%. The percentage of the 

patients with severe ADRs was 6.7% with 0.37% of reactions resulting in fatality.  According to 

a study by Pirmohamed et al (2004) which looked at 18,829 patients hospitalized in the two large 

hospitals in the UK, 1225 of these were classified as ADRs according to the Edwards and 

Aronson definition. The total percentage of ADRs was 6.25% with fatality rates of 0.15%. ADRs 

also extend the length of stay in hospital and enhancing the costs of hospitalization (Suh et al, 

2000). ADRs can be classified in terms of clinical and chemical characteristics (Park et al., 

1998).  

Type A (augmented): The vast majority (95%) of adverse drug reactions are classified as this 

type. They are dose-dependent and predictable from the knowledge of pharmacology of the drug, 

thus they can be prevented. When administration of the drug stops the reaction disappears. 

Examples of type A reactions include (1) gastrointestinal bleeding induced by the treatment of 

drug combinations of aspirin and warfarin; (2) gastrointestinal bleeding induced by NSAIDS; (3) 

diuretic- induced renal impairment; and (4) -blocker-induced heart block or hypertension 

(Pirmohamed et al., 2004).  

Type B (bizarre): These reactions cannot be predicted by knowledge of the drug’s 
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pharmacology. They display individual susceptibility and are non-dose-dependent, although this 

has been questioned (Uetrecht 2001). Such reactions are also referred to as idiosyncratic 

reactions as mechanisms have not been clearly defined. The reactions are believed to be related 

to drug metabolite and immunological components that maybe key to individual susceptibility. 

Because of this, reactions occur in a small percentage of patients. Despite this, type B reactions 

are extremely important because they are often severe and can lead to death (Pirmohamed et al., 

2004). Type B reactions can involve any organ, and may cause anaphylaxis, and severe skin 

inflammation such as hypersensitivity-syndromes or drug induced lupus. Exemplar drugs that 

can induce this type of reaction include antibiotics, such as amoxicillin and flucloxacillin; 

sulfonamides, such as sulfamethoxazole; non-steroidal anti- inflammatory drugs and 

anticonvulsants. 

 

Type C (chemical): These reactions can be explained by the chemical structure of the drug or 

drug metabolite. Paracetamol- induced hepatotoxicity is a well-defined example. The mechanism 

if tissue injury involves the conversion of the drug by metabolizing enzymes to a reactive 

qunioneimune intermediate, which (1) induces oxidative stress and (2) binds covalently to 

proteins. Eventually both of these processes lead to hepatotoxicity.  

 

Type D (delayed): These reactions include delayed effects such as carcinogenicity and 

teratogenicity after drug administration.  

 

Type E (end of treatment reactions): Onset of clinical symptoms of the reaction develops after 

removal of the drug, especially following a sudden removal. A well-known example is after 
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withdrawal of anxiolytics.  

1.2 Drug Hypersensitivity 

Type B ADRs are mostly dominated by antigen-specific immune responses induced following 

drug exposure. This form of reaction is often termed drug hypersensitivity.  

Drug hypersensitivity reactions involve the drug initiating an immune reaction that causes tissue 

damage in the patient. These reactions can be defined simply as “a serious adverse drug reaction 

with an immunological aetiology, to an otherwise safe and effective therapeutic agent”. 

Alternatively, drug hypersensitivity has been defined by the World Allergy Organization as "an 

immunologically mediated drug adverse reaction of which the mechanism is IgE or non-IgG 

mediated and with T-cell mediated reaction largely presented in the latter (Johansson et al., 

2004). 

 

1.2.1 Epidemiological investigation of drug hypersensitivity  

According to the definitions of drug hypersensitivity presented above, several studies tried to 

investigate the incidence of drug hypersensitivity. In France, a 6-month prospective study has 

been carried out, in which each individual inpatient was examined physically by a dermatologist 

and reviewed by a pharmacologist. The prevalence of cutaneous drug hypersensitive reactions 

was 3.6 per 1000 hospitalized patients (Fiszenson-albala et al., 2003). Among these patients, 

57% presented with maculopapular exanthema, 8% with erythroderma and 2% with severe 

conditions such as Stevens Johnson syndrome or toxic epidermal necrolysis. In Mexico in 2006, 

a 10-month prospective study showed 7 per 1000 hospitalized patients developed cutaneous 

hypersensitivity reactions (Hernandez-Salazar et al., 2006). Similar studies were carried in 
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Singapore (Thong et al., 2003) and in Korea (Park et al., 2008). In these studies, 4.2 and 20 per 

1000 hospitalized patients, respectively, developed hypersensitivity reactions.  

Risk factors of drug hypersensitivity include: gender; female: male ratio of drug hypersensitivity 

has been estimated to be approximately 2:1 (Impicciatore et al., 2001), age; the rate of drug 

hypersensitivity is more frequent in elderly people than in children. Concomitant disease may 

predispose individuals to drug hypersensitivity through altering metabolic pathways and the 

immune response to the suspect drug. For example, patients with HIV develop an increased 

number of drug hypersensitivity reactions when compared with control subjects exposed to the 

same treatment regime. In particular, reactions to the drug sulfomethoxazole are 10 times more 

common in patients with HIV infection. Environmental factors such as disease, alcohol 

consumption, smoking and diet may also be important in an individuals’ susceptibility to ADRs. 

Furthermore, environment factors may interact with genetic factors and either increase or 

decrease the risk of an ADR (Pirmohamed et al., 2001). Patients infected with virus such as 

human herpes virus (HHV) 6 have an increased likelihood of developing hypersensitivity 

reactions and it has been reported that the pathogenesis of certain drug hypersensitivity 

syndrome actually involve drug-specific reactivation of the latent virus infection (Ozcan et al., 

2010). Patients with cystic fibrosis have ten times higher rates of piperacillin hypersensitivity 

compared with normal people (Whitaker et al., 2012).  

The study of medical genetics has been focused on the associations between HLA genotypes and 

drug hypersensitivity. This part will be discussed in detail in the following section.  

1.2.2 The symptoms of drug hypersensitivity 

The term of drug hypersensitivity encompasses clinical conditions varying in severity from mild 

skin rashes to severe reactions such as drug reaction with eosinophilia and systemic symptoms 
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(DRESS), Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). 

Hypersensitivity reactions also develop in other organs, with the most common being drug-

induced liver injury (DILI) (Pavlos et al., 2012).  

Skin rashes are the most common manifest of drug hypersensitivity. This may be because skin 

injury is more visible than other manifestations such as liver injury. Thus, even mild skin 

conditions are often reported. Furthermore, the skin is a very immunologically active organ 

(Uetrecht and Naisbitt, 2013). Skin expresses specialized antigen presenting cells such as 

Langerhans cells and cutaneous dendritic cells that are constantly surveying skin for new and 

potentially dangerous antigenic determinants. Finally, skin is rich in resident T-cells, which 

following priming will respond rapidly to antigen encounter. The following skin details the most 

common cutaneous manifestations of drug hypersensitivity.  

Maculopapular exanthema (MPE). MPE are the most common type of skin rash that develops 

following drug exposure. The reactions account for more than 90% of drug- induced immune-

mediated skin rashes (Hunziker et al., 1997). The time to onset is typically 1-2 weeks after 

treatment (Valeyrie-Allanore et al., 2007). This manifestation alone is not severe and patients 

commonly recover fullyafter drug withdrawal. Furthermore, it is also relatively safe to 

rechallenge patients suspected of developing a drug-induced maculopapular drug eruption (P-

Codrea Tigaran et al., 2005). The phenotype of T-cells that dominate in MPE are CD4+ T-cells 

that display cytolytic activity (Pichlar 2003). In comparison with the most severe drug induced 

skin reaction, toxic epidermal necrolysis, which dominated by CD8+ cytotoxic T-cells, MPE is 

mild as most cells in the inflammed site  do not express MHC-II molecules that present the drug-

derived antigen to CD4+ T-cells. In contrast, cell ubiquitously express MHC-I that presents 

antigens to CD8+ T-cells. Finally, although CD4+ and CD8+ T-cells secrete the same cytolytic 
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molecules, CD8+ T-cells display significantly higher levels of cytotoxicity when activated by the 

same antigen. 

Uriticaria is the second most common manifestation of drug- induced skin rash (Hunziker et al., 

1997). It is an IgE-mediated reactions. Penicillins are the most common inducers of urticarial 

reactions. Urticaria is characterized by relatively large, raised, pruritic skin lesions, which will 

last for several days. As with other types of drug- induced skin reactions, uriticaria reaction 

appear very quickly after inadvertent rechallenge. Clinical signs of a reaction often appear 

minutes to hours after drug exposure.  

A fixed drug eruption is a type of drug- induced skin reaction with lesions that always develop at 

the same site every time when a drug is administered. When the drug is removed, the lesion 

usually recovers with a fade hyperpigmentation, which make it easy to define the affected area. 

This reaction is thought to be mediated by cutaneous CD8+ T-cells that are limited to the site of 

inflammation (Shiohara, 2009). Fixed drug eruptions are commonly mild, but it can be more 

serious when combined with other systemic manifestations such as fever and arthralgia.  

Drug reaction with eosinophilia and systemic symptoms (DRESS) and drug- induced 

hypersensitivity syndrome (DIHS). Although these two nomenclature are not in totally 

agreement, they are used to describe drug- induced symptoms with characteristics including an 

acute onset of rash, fever, and involvement of at least one of the following: lymphadenopathy, 

hepatitis, nephritis, pneumonitis, carditis, thyroiditis, and hematologic abnormalities 

(eosinophilia, atypical lymphocytes, thrombocytopenia, or leukopenia) (Peyriere et al., 2006; Um 

et al., 2010; Walsh and Creamer, 2011). The most common drugs that lead to DRESS/DIHS are 

carbamazepine and other aromatic anticonvulsants, allopurinol and several anti-HIV drugs such 
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as abacavir and nevirapine. The onset of symptoms is commonly associated with herpes virus 

reactivation (Descamps et al., 1997). The reason for the virus association is not known but 

DRESS is associated with some specific HLA genotypes which will be discussed in detail later.  

Acute generalized exanthematous pustulosis (AGEP). AGEP is a type of drug- induced skin 

reaction with characteristics including an acute onset of a non- infectious pustular skin reaction, 

commonly affecting the face, neck, groin and axillae and manifestations of fever and 

neutrophilia (Roujeau et al., 1991; Choi et al., 2010). The main drugs that initiate AGEP are 

antibotics. AGEP is thought to be mediated by Th17 cells that have been found in the PBMCs 

and inflamed skin (Fili et al., 2014). 

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). TEN is the most severe 

type of skin rash with a fatality rate of 30% (Pereira et al., 2007; Downey et al., 2012). SJS is a 

severe skin rash that is milder than TEN with a fatality rate of 10%. Overlap of SJS/TEN has the 

fatality rate between 10% and 30%. SJS and TEN are characterized by large scale of skin 

detachment between epidermal layer and dermal layer. On histological examination, widespread 

apoptosis of keratinocytes between dermis and epidermis and mononuclear infiltration can be 

seen. The time to onset is usually 1-2 weeks, but the time is decreased if the patient is re-exposed 

to the drug (Roujeau, 2005). SJS-TEN are clearly immune mediated reactions as drug-specific T-

cells have been detected in skin in the acute phase of reactions (Nassif et al., 2002). Furthermore, 

HLA allele associations have been described for certain drugs. However, the lymphocyte 

transformation test, a simple assay for diagnosis based on the drug-specific proliferation of 

patient lymphocytes, is typically negative for SJS/TEN (Tang et al., 2012). It has been reported 

that the skin rash is mediated by cytotoxic CD8+ T-cells, (Nassif et al., 2004; Wei et al., 2012）



 

17 

 

and keratinocytes apoptosis is mediated by the release of Fas ligand (Downey et al., 2012) and 

tumor necrosis factor related apoptosis- inducing ligand (TRAIL) (de Araujo et al., 2011). Recent 

studies have identified granulysin as another important cytolytic mediator in patients with TEN 

(Chung et al., 2008).  

Drug induced liver injury 

Liver injury is of another major manifestation of drug hypersensitivity and is the major cause of 

drug withdrawal or black box warnings. Drug induced liver injury (DILI) can be divided into two 

types, hepatocellular and cholestatic. Specifically, if the ratio of alanine transaminase/alkaline 

phosphatase is less than two, it is considered cholestatic liver injury; if the ratio is greater than 5, 

it is considered hepatocellular liver injury; if the ratio is between 2 to 5, it is considered an 

overlap of the two types of liver injury (Danan G, Benichou C, 1993).  

Hepatocellular liver injury is characterized by death of hepatocytes. Histologically, infiltratio n of 

mononuclear cells and eosinophils can be seen (Zimmerman, 1999). Cholestatic liver injury is 

characterized by a great increase of alkaline phosphatase and bilirubin relative to alanine 

transaminase. Although hepatocellular liver injury more commonly leads to liver failure 

(Chalasani et al., 2008), cholestatic liver injury requires more time to recover, usually more than 

a month (Hussaini and Farrington, 2007).  

The time to onset of DILI is usually 1-3 months; however sometimes the time between drug 

administration and appearance of DILI can be up to a year (Bjornsson, 2010). In certain 

instances, DILI appears very rapidly after the culprit drug is rechallenged, potentially indicating 

an immonological mechanism (Maddrey and Boitnott, 1973).  
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The association between HLA genotype and susceptibility of DILI has been reported for several 

drugs, e.g., flucloxacillin [B*57:01](Daly et al., 2009), ximelagatran [DRB1*07:01 and HLA-

DQA1*02] (Kindmark et al., 2008), lapatinib [HLA-DRB1*0701-

DQA1*0202/DQB1*0203](Spraggs et al., 2011), lumiracoxib [DRB1*15:01] (Kindmark et al., 

2008), anti-tuberculosis drugs [HLA-DQB1*0502] (Chen et al., 2015), and isoniazid [HLA-

DRB1*03], rifampin [HLA-DQA1*0102], and ethambutol [HLA-DQB1*0201] (Sharma et al., 

2002). 

 

1.3 The types of hypersensitivity 

The adaptive immune response is an important component of host defense against infection. 

However, sometimes the adaptive immune system over-reacts to innocuous agents such as 

pollen, food and drugs. This type of reaction is named hypersensitivity and is harmful and may 

cause serious tissue damage. Hypersensitivity reactions have been classified into 4 broad types 

by Gell and Coombs as shown in Table 1.1   (Gell and Coombs., 1963).  

I. Type I hypersensitivity: is also called immediate hypersensitivity. It is mediated by IgE and 

occurs within minutes after challenge or re-exposure to the innocuous antigen. IgE is produced 

by plasma cells, rather than other types of Ig accumulating in the serum or tissue. IgE tightly 

binds to the surface of mast cells and basophils via the high the affinity IgE receptor, FceRI. 

Antigen binds to IgE and cross- links the receptors, leading to the release of pharmacological 

active agents such as histamine, prostaglandins, and leukotrienes, which increase vascular 

permeability and contraction of smooth muscle, inducing clinical manifestations, including 

rhinitis, asthma, and, in severe cases, anaphylaxis.  
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Figure 1.1A The mechanism of Type I hypersensitivity.  Activated B cells secreted large amount of IgG antibody, 

which binds to the FcR expressed on the surface of mast cells. When an allergen binds it cross -links two IgE on the 

cell surface, the mast cell degranulates and releases histamine and leukotrienes, thereby inducing inflammation.  

 

II. Type II hypersensitivity  is induced by the binding of IgM or IgG antibodies to antigen on 

the surface of cells and thereafter activating the complement cascade, which causes the massive 

death of the cells. For example, IgG or IgM antibody- induced destruction of red blood cells or 

platelets can be induced by some drugs, such as penicillin and cephalosporin. Drugs bind to cell 

surfaces and become a target of anti-drug IgG antibodies, which in turn activate the complement 

cascade and lead to cell damage.  

III. Type III hypersensitivity : reactions are caused by soluble antigens. The reaction occurs 

when the complex of IgM or IgG and antigen accumulate in the circulation or in the tissue and 

activates complement system. The large immune complexes can be removed by monocyte-

phagocyte system, whereas small complexes can escape and deposit in blood vessel walls, where 

they can ligate Fc receptors on leukocytes, generating local inflammatory response and increase 

vascular permeability. Fluid and cells then enter the site of inflammation from local blood 

vessels. IgG forms immune complexes by binding FcgRIII, triggering the complement cascade 

by activating complement fragment C5a and in turn causing tissue damage.  
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Figure 1.1B The mechanism of type II and type III hypersensitivity. Type II and type III hypersensitivity are 

induced by IgG and IgM antibodies. In type II, Ig antibodies bind to the surface of innocent cells. Then the 

complement system act ivates and induces cytotoxicity.  Type III hypersensitivity is due to the accumulation of 

antigen-complex in blood vessels or tissue. The complexes activate the complement system which then causes 

massive tissue damage. 

 

  

IV. Type IV hypersensitivity is mediated by antigen-specific effector T-cells. The response can 

take many weeks to develop but symptoms appear rapidly, after the re-challenge with the 

antigen. This type of hypersensitivity is also called delayed-type hypersensitivity. When 

activated, T-cells secrete cytokines which induce infiltration of inflammatory cells and the 

release of cytokines which in turn causes local tissue damage. Type IV hypersensitivity as further 

classified into four subsets depending on the different cytokines secreted by T-cells. 
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Figure 1.1C The mechanism of type IV hypersensitivity.  Antigen penetrates the skin and is confronted with 

dendritic cells (DCs). DCs uptake the antigen, travel to lymph nodes where they mature and efficiently prime 

naïve T-cells. The naïve T-cells then proliferate and turn into memory T-cells which then travel into the blood 

and back to inflammatory site. There they secrete cytokines, promoting the recruitment of other inflammatory 

cells, thereby amplifying skin inflammation.  

 

 

 

Type IVa hypersensitivity is induced by Th1-type T-cell responses. Th1-type T-cells secrete IFN-

γ and TNF-α. These cytokines stimulate the expression of adhesion molecules on endothelial 

cells and increase the vessel permeability which allows plasma and inflammatory cells to the 

inflammatory site. Moreover, IFN-γ promotes macrophages to secrete TNF-α and IL-12, which 

stimulates NK cells. As macrophages contain TNF-α receptors on self-surface, they can be auto-

activated by TNF-α and then generate more TNF- and IL-12, forming a positive feedback chain 

and thereby amplifying the inflammatory response. An example of type IVa hypersensitivity is 

tuberculin skin test (Sinigaglia et al., 1985).  Type IVb correlates to Th2 type immune responses. 

Th2 secreting T-cells secrete IL-4, IL-5 and IL-13 cytokines, which stimulate B-cells to secrete 
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antibodies such as IgE and IgG4. IgE in turn activate mast cells and IgG4 is associated with 

allergy, which suggest a link with type I hypersensitivity. IL-5 secretion leads to an eosinophilic 

inflammation, which is the characteristic of many drug hypersensitivity reactions (Pichler et al., 

2003, Yawalkar et al., 2000).   

Type IVc reactions involve cytotoxic T-cell migration into the tissue and direct cytotoxicity to 

tissue cells by release of cytolytic molecules such as perforin/ granzyme B. Alternatively, T-cells 

may secrete FasL and induce apoptosis through triggering the Fas receptor. Cytotoxic T-cells 

play a role in the drug hypersensitivity reactions such as maculopapular or bullous skin diseases, 

neutrophilic inflammation and in contact dermatitis. Type IVc reactions appear to be 

predominant in severe drug hypersensitivity reactions especially SJS/TEN syndrome, in which 

keratinocytes are killed by CD8 cytotoxic T-cells (Yawalkar et al., 2000, Schnyder et al., 1998). 

In general, CD8 T cell-mediated cytotoxic skin reactions are more severe than CD4 T-cell 

mediated cytotoxicity, as MHC I is ubiquitously expressed in keratinocytes as well as other skin 

cells, leading them being potential targets of CD8+ cytotoxic T-cells. In contrast, CD4 cytotoxic 

T-cells only recognize fewer cells expressing MHC II molecules, mainly antigen presenting cells. 

Hence, the massive presence of CD8 cytotoxic T-cells found in the blister fluid of SJS/TEN is a 

characteristic of the symptom. 

Type IVd reactions involve the recruitment of neutrophils through the release of IL-8 and 

CXCL8 from T-cells. The neutrophils play an active role in the induction of pustular 

inflammation. Symptoms include pustular exanthema and acute-generalized exanthematous 

pustulosisatous (AGEP) (Pichler 2003). Kabashima et al., (2011) found a significantly higher 

percentage of Th17 cells in the patients suffering from AGEP. As IL-17 and IL-22 cooperatively 

stimulate keratinocytes to secrete IL-8, Th17 cells are considered an important T-cell subset in 
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the recruitment of neutrophils. Cytokines play a fundamental role in pathogenesis of drug 

hypersensitivity and their function is summarized in table 1.2.  

   

Table 1.1 Extended Coombs and Gell Classification Adapted from (Pichler 2003) 

 

 

Classification Type of Immune 

responses 

Pathologic 

characteristics 

Clinical systems  Cell types 

Type I IgE Mast-cell 

degranulation 

Urticaria 

anaphylaxis 

B cells/Ig 

Type II IgG and IgM FcR-dependent 

cell destruction 

Blood cell 

dyscrasia 

B cells/Ig 

Type III IgG, IgM and 

complement 

Immune complex 

deposition 

Vasculit is B cells/Ig 

Type Iva Th1 (IFN-, TNF-

) 

Monocyte 

activation 

Eczema Th1 cells 

Type IVb  Th2 

(IL-5 and IL-4) 

Eosinophilic 

inflammat ion 

Maculopapular 

exanthema, 

bullous 

exanthema 

Th2 cells 

Type IVc CTL (perforin and 

granzyme B and 

fasl) 

CD4-or CD8-

mediated killing 

of cells 

Maculopapular 

exanthema, 

eczema, bullous, 

exanthema, 

pustular 

exanthema 

Cytotoxic T-cells  

Type IVd  T-cells (IL-8) Neutrophil 

recruitment and 

activation 

Pustular 

exanthema 

T-cells 
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Table 1.2 Brief summary of cytokines and their functions (Adopted from Janeway 2012 Immunobiology) 

 

 

Family Cytokine Function Producer cells 

Interleukins IL-1 Fever, T-cell activation, macrophage 

activation  

Macrophages, epithelial 

cells 

 IL-1 Th17 differentiation, Fever, T-cell activation, 

macrophage activation  

Macrophages, epithelial 

cells 

 IL-2 T-cell proliferation  Th1 

 IL-3 Synergistic action in early haematopoiesis Th1, Th2 

 IL-4 B cell act ivation, IgE switch, induce 

differentiat ion into Th2 cells  

T-cells, mast cells 

 IL-5 Eosinophil growth, differentiation  T-cells, mast cells 

 IL-6 T- and B-cell growth and  differentiation, 

Th17 d ifferentiation, fever 

T-cells, macrophages 

 IL-8 Chemo attractant for neutrophils and T-cells Macrophages 

 IL-10 Potent suppressant of macrophage functions Monocytes 

 IL-12 Activates NK cells, induces CD4 T-cell 

differentiat ion into Th1 cells  

Macrophages, dendritic 

cells 

 IL-13 B-cell growth and differentiation, inhibits 

Th1 cells 

T-cells 

 IL-17A Induces cytokine production by epithelia, 

endothelia, and fibroblasts, proinflammatory 

Th17 cells  

 

 

IL-17F Induces cytokine production by epithelia, 

endothelia, and fibroblasts, proinflammatory 

Th17 cells, monocytes 

 IL-21 Induces proliferation of B, T and NK cells, 

promotes Th17 d ifferentiation 

Th2 

 IL-22 Epithelial barrier, pro-inflammatory agents NK cells, Th17 cells, 

Th22 cells 

 IL-23 Induces proliferation of Th17 Dendritic  cells 

 IFN- Macrophage activation, increased expression 

of MHC molecules and antigen processing 

components, Ig class switching, suppresses 

Th2 

T-cells, NK cells  

Colony-

stimulat ing 

factors 

G-CSF Stimulates neutrophil development and 

differentiat ion 

Fibroblasts and 

monocytes 

 GM-CSF Stimulates growth and differentiation of 

dendritic cells 

Macrophages, T-cells 

TNF family TNF- Promotes inflammat ion, promotes 

differentiat ion into Th22 cells  

Macrophages, NK cells, 

T-cells 

 Fas Ligand Apoptosis T-cells 

Transforming 

growth factor 

beta (TGF-β) 

superfamily  

TGF-1 Anti-inflammat ion, induces Th17 and Tregs 

differentiat ion 

T-cells, monocytes 

 TGF-3 Promotes Th17 d ifferentiation, promotes 

inflammat ion 

T-cells, monocytes 
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1.4 Immune response 

The immune system is designed to help the body to remove harmful microorganisms or viruses 

that enter it. Antigen presenting cells (APCs) can interact with other cells of the immune system, 

to achieve this.  

Dendritic cells (DCs) are the most powerful antigen presenting cell as they are the only type of 

APCs that can stimulate naïve T-cells. When they are activated, they present peptide antigens on 

the cell surface using MHC class I and MHC Class II molecules (See Figure 1.2.1). They travel 

out of the inflammatory site to the local lymph nodes where they meet naïve T-cells and prime 

them through an interaction of the MHC-peptide complex with the T-cell receptor (TCR) and by 

interactions between the costimulatory molecules. Thereafter, primed T-cells become antigen-

specific effecter T-cells that circulate the body and can return to inflammatory sites to help 

resolve the infection via cytokine secretion and recruitment of pro-inflammatory cells.  

 

1.4.1  The mechanisms of antigen presentation.  

When antigens penetrate the skin and enter the body, they may encounter APCs, such as DCs or 

macrophages. The antigen may be taken up by the APCs via phagocytosis and chopped up into 

small pieces by the proteasome, or cleaved within the endosome. The resulting peptides are 

presented on the cell surface on MHC class I and MHC class II molecules. The peptides 

displayed by MHC class I molecules are usually 8-10 amino acid residues in length and can 

activate CD8 T-cells, whereas the peptides displayed by MHC II molecules are usually 12-20 

amino acid residues in length and can activate CD4 T-cells (Janeway et al, 2012 ).  
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Figure 1.2.1 Class I MHC molecules display peptides to CD8 T-cells. Endogenous protein is cut into small 

peptides by the proteasome. These peptides are then carried by TAP (The transporter associated with antigen 

processing) and transported into endoplasmic reticulum (ER), where they will meet up with MHC I molecules. 

MHCI molecules then bind with the peptides, forming MHC I-peptide complexes. The complexes are then 

transported to surface of the cell and displayed to CD8 T-cells. 
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Figure 1.2.2 Class II MHC molecules display peptides derived from non-self-proteins, especially bacterial 

proteins. When pathogen is swallowed by the antigen presenting cells, they are trapped into the phagosome. 

They meet chemicals and enzymes from lysosomes and in turn are digested into small peptides. This process is 

termed phagocytosis. MHC II molecules do not load peptides in the ER. Rather, in the ER their binding 

grooves are occupied by invariant chain peptides, protected from the binding of endogenous proteins. MHC II - 

invariant chain complexes are transported from ER and enter endosomes, where the chain peptides  are 

replaced with pathogen peptides digested through phagocytosis. The MHC II-peptide complexes are then 

transported to the cell surface and displayed to CD4 T-cells.  
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Figure 1.3 After contacting of TCR with antigenic-peptide-MHC complex that displayed on the surface of 

dendritic cells, naïve T-cells are activated and expanded.  During priming, micro-milieu cytokines determine 

the fate of the antigen specific T-cells and consequently the role they play in the immune response.  

 

1.4.2 T-cell subsets  

During priming, naive T-cells, which have been exposed to an antigen, are activated. They 

differentiate into antigen specific effector cells over the course of 1-2 weeks. During this 

activation period, three signals are required, 1) appropriate contact with antigenic peptide 

presented by MHC molecules that are displayed on the surface of antigen presenting cells; 2) 

costimulatory molecule binding, such as the binding of B7.1 and B7.2 on the surface of T-cells 

and CD40 of APCs; 3) cytokines that are in the milieu at the time of naive T-cell priming. These 
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signals determine the nature of the T-cells that are activated and their subsequent phenotype.  

T-cells are subdivided into CD4 and CD8 T-cells according to the expression of the co-receptors 

CD4 and CD8, respectively. These co-receptors interact and stabilize MHC-peptide-T cell 

receptor complex when T-cell receptors recognize antigen. After drug priming, of the cytokine 

micro-environment determines the nature of the T-cell response. CD4+ T helper cells can 

differentiate into various subsets such as Th1, Th2, Th17, Th22, Th9 secreting cells. Each subset 

is dominant in a specific type of inflammation. In the context of drug hypersensitivity, Th1 and 

Th2 secreting T-cells are known to be involved in different forms of tissue injury. However, the 

newer subsets have not been investigated.  

1.4.2.1 CD8+ T-cell  

CD8+ T-cells have been found in SJS/TEN skin lesions and these cells are also the dominant in 

T-cell population in blister fluid (Nassif et al., 2004). Moreover, CD8+ T-cells have been shown 

induce to drug antigen-specific cytotoxicity both in vivo and in vitro (Wu et al., 2006; Rozieres 

et al., 2010). In carbamazepine- induced drug hypersensitivity, drug specific CD8+ T-cells have 

been cloned and these clones show a strong toxicity against target cells in vitro. CD8+ T-cells 

isolated from patients with abacavir- induced hypersensitivity reactions also kill target cells by 

recognizing drug-peptide-MHC I complexes displayed on surface of antigen presenting cells 

(Chessman et al., 2008).  

1.4.2.2 CD4+ T-cell and phenotypes 

As described above, CD4+ T-cells play an important role in delayed type drug hypersensitivity 

and reactions have been classified into 4 sub-types based on the effects of different CD4+ T-cell 

subsets (cytokine secretion and subsequently inflammatory cell recruitment).  

CD4+ helper T-cells play important roles for host defense and immune-mediated disease by their 
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ability to differentiate into specialized subsets. These effector T-cells are defined by the 

expression of a restricted panel of cytokines and the expression of specific master regulator 

transcription factors (Szabo et al., 2003). Initially, the understanding of distinctive populations of 

differentiated CD4+ T-cells came from analysis of T-cell clones isolated from mice (Mosmann, 

Coffman 1989). Subsequently, (Bottomly et al., 1989) identified the key cytokines of each T-cell 

subset and the T-cell populations were named Th1 and Th2 secreting cells, in which T helper 1 

(Th1) cells express T-bet and selectively produce interferon (IFN)-, while Th2 cells express 

Gata3 and produce cytokines such as IL-4 and IL-13 (Nakayamada et al., 2012). To understand 

the mechanisms of drug hypersensitivity, it is important to define the T-cell subsets involved.  

The picture is complicated by the fact that in certain circumstances, IFN- secreting T-cells also 

secrete Th2 cytokines. However, T-cell subset classification holds its value in certain 

circumstances: first, stable Th1 and Th2 lineage with typical cytokine expression can be obtained 

by cytokine polarization during naïve T-cells expansion.  Second, in terms of host defense, each 

T-cell subset plays a particular role in pathogen eradication, e.g. intracellular bacteria for Th1 

cells and helminths for Th2 cells. Third, these subsets express stable key regulators, T-bet for 

Th1 and GATA3 for Th2. Finally, the classification of T helper cell subsets renders a great 

therapeutic value in allergic and autoimmune diseases, generally Th2 cells induce allergic 

diseases, whereas Th1 and Th17 (discussed in detail below) cells induce autoimmune diseases.  

 

Th1 cells 

Th1 cells secrete IFN-, IL-2 and TNF-, inducing cell-mediated immunity and phagocytic 

inflammation. Th1 cells eradicate intracellular pathogens such as bacteria, virus and protozoa. 

IL-12 and IFN- suppresses formation of Th2 cells, increase MHC class I and MHC Class II 
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expression and promote antigen presenting cell function. IL-2 functions as a growth factor 

promoting T-cell proliferation. Th1 cells may also mediate local inflammation at sites of 

infection. Th1 cells express the CCR5 homing receptor as a character of this T-cell subset. T-bet 

is a major transcription factor involved in the inducing the release of IFN- and Th1 cell 

differentiation (Szabo et al., 2000). IFN- responses to Leishmania major are significantly 

decreased in T-bet knockout mouse (Szabo et al., 2002).  

 

Th2 cells 

Previously, it was thought that a main function of Th2 secreting T-cells was helping B cell 

antibody generation. However, recent research found that follicular B helper T-cells (Tfh) are the 

main subsets that mediate this process and Th2 cell just play a regulatory role in the antibody 

generation. Th2 cells produce IL-4, IL-5, and IL-13 which are important in the elimination of 

parasites, such as helminthes. IL-4 induces Th2 differentiation and inhibits Th1 differentiation 

together with IL-13. Th2 cells may affect eosinophils, mast cells, and basophils by cytokine 

release i.e. IL-4, IL-5, and IL-13. Th2 cells express the CCR3 homing receptor. Th2 polarization 

requires the addition of IL-4 (Le Gros et al., 1990). GATA3 is the master regulator of Th2 

(Zheng et al., 1997). GATA3 is also critical for the development of CD4+ T-cell responses (Ho et 

al., 2009). GATA3 expression is up-regulated or down-regulated during Th2 and Th1 

polarization, respectively (Zhang et al., 1997). Moreover, Th2 differentiation is completely 

blocked in vivo and in vitro in the absence of GATA3 (Zhu et al., 2004).  

 

Th17 cells 
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Dysregulation of Th1 responses has been associated with an autoimmune response. For example, 

IFN-expression in the target tissue is associated with clinical signs of experimental 

autoimmune encephalomyelitis (EAE). Furthermore, based on the evidence of blocking one of 

the heterodimers of IL-12p40, EAE got alleviated. However, blockage of the other chain of IL-

12 did not protect from EAE, but made the condition more severe (Krakowski et al., 1996; Tran 

et al., 2000; Gran et al., 2002; Zhang et al., 2003; Gutcher et al., 2006). This confusion did not 

get resolved until the discovery of IL-23, an important inducer of Th17 secreting cells. These 

cells share a p40 chain with IL-12 and have a unique heterodimer chain of p19 (Oppmann et al., 

2000). This data implies blocking p40 blocks both Th1 and Th17 signaling and thus, the previous 

conclusion that EAE is solely Th1 induced autoimmune disorders has to be questioned.  

Depletion of p19 of IL-23 but not p35 of IL-12 was shown to block EAE, which confirms that 

EAE is dominated by Th17 but not Th1 cells (Cua et al., 2003; Langrish et al., 2005).  

 

Th17 cells were named after one of the specific cytokines they secrete (i.e., IL-17). Th17 cells do 

not express GATA3 or T-bet (Park et al., 2005, Harrington et al., 2005), instead, they express 

high level of RORt (Ivanov et al., 2006). RORt has been shown to be critical for the release of 

IL-17, as RORt deficient mice show an impaired Th17 differentiation (Lee et al., 2009). Th17 

cells were established as an independent T-cell subset due to its unique differentiation factors. IL-

23, IL-6 and TGF-  are all required to induce Th17 differentiation (Veldhoen et al., 2006; Betteli 

et al., 2006; Mangan et al., 2006). RORt is the master transcription factor of Th17 cells, 

maintaining Th17 character for a long duration of time (Ivanov et al., 2006; He et al., 1998). 

RORt is regulated by its upper signaling molecule, STAT3. STAT3 is activated by Th17 inducer 

cytokine IL-23 and IL-6, forming a positive feedback loop in Th17 differentiation (Zhou et al., 
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2007; Yang et al., 2007).   

 

Th17 cells are critical in host defense. They also play important roles in immune disorders such 

as psoriasis (Krueger et al., 2007), rheumatoid arthritis (Kirkham et al., 2006), multiple sclerosis 

(Matusevicius et al., 1999), inflammatory bowel disease (Sarra et al., 2006), asthma (Molet et al., 

2001; Barczyk et al., 2003) and EAE (as discussed above).  

 

In host defense, Th17 cells can be induced by pathogen-associated molecular patterns (PAMP) 

which are external stimuli derived from extracellu lar pathogens such as bacteria (Chtanova et al., 

2004) and fungi. 

In psoriasis, Th17 cells are the major subset of T-cells isolated from skin lesions (Pane et al., 

2008) and with CCL20/CCR signaling being important for infiltration of inflammatory cell to the 

skin. Moreover, the blockage of p40 has been shown to reduce the psoriatic skin area (Krueger et 

al., 2007). 

In patients with rheumatoid arthritis, IL-17, IL-1 and TNF have been shown to play a direct role 

in joint destruction (Kirkham et al., 2006). Furthermore, the molecule of RANKL expressed on 

the surface of Th17 induces cartilage and bone destruction directly (Kotake et al., 1999; 

Miranda-Carus et al., 2006; Sato et al., 2006). 

Evidence of involvement of Th17 cells drug hypersensitivity is lacking. Most importantly, of the 

role of Th17 cells in drug- induced mild skin reactions such as MPE has not been studied. 

However, it has been suggested that Th17 cells may play a role in neutrophilic infiltrated drug 

hypersensitivity reactions such as AGEP and SJS-TEN. These studies are discussed in more 

detail below. 
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Th22 cells 

The phenomenon that some T helper cells secrete more than one signature cytokine is called 

plasticity. A T-cell population was found as they did not secrete signature cytokines such as IFN-

, IL-4 and IL-17, but IL-22 solely (Eyerich et al., 2009). Therefore, this population is named 

after the cytokine IL-22, Th22. The specific microenvironment for differentiating Th22 cells is 

composed of TNF- and IL-6. Skin DCs have also been shown to play a critical role in Th22 

differentiation (Duhen et al., 2009). Once differentiated, the Th22 phenotype remains stable and 

does not convert to other cell types (Eyerich et al., 2009). The aryl-hydrocarbon-receptor (AHR) 

is thought to be the master transcriptional regulator for Th22 cells (Trifari et al., 2009). Th22 

express characteristic chemokine receptors such as CCR4 and CCR10 (Duhen et al., 2009), 

which suggest that they reside in normal skin and inflammatory skin, migrating following 

exposure to CCL27, a ligand of CCR10. The IL-22 receptor is expressed exclusively on tissue 

cells, mostly in epithelial cells. In contrast to many cytokine receptors, the receptor for IL-22 is 

not expressed on immune cells (Wolk et al., 2004). Therefore, tissue cells are the major target of 

IL-22. Accordingly, IL-22 secreting lymphocytes are strongly enriched in peripheral tissue 

(Eyerich et al., 2009; Anmmziato et al., 2007). In terms of host defense, both Th17 cells and 

Th22 cells are involved in protection from bacterial infection. Th17 cells play a role in bacteria 

eradication (Lin et al., 2009), whereas Th22 have a protective effect on epithelial cells, especially 

in epithelial cell regeneration, proliferation and enhancement of migration (Nograles et al., 2008; 

Wolk et al., 2006).  

 

The protective characteristic of IL-22 cells induces epithelial cell expansion. However, in 

psoriasis is IL-22 is directly involved in the disease pathogenesis. Psoriasis is a chronic 

inflammatory disease with characteristic of keratinocytes over-proliferation and impaired 
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differentiation that leads to considerable thickening and scaling of the epidermis (Nestle et al., 

2009; Perera et al., 2012). Together with IL-17 and TNF-, IL-22 induces hyper-proliferation of 

keratinocytes, leading to the maintenance of acanthosis which is a hallmark of psoriasis (Wolk et 

al., 2009; Boniface et al., 2005; Delle et al., 2007). 

 

Th22 cells also play a pathological role in inflammatory bowel disease and rheumatoid arthritis 

(Zenewicz et al., 2008; Kim et al., 2012). Moreover, serum IL-22 was reported to be elevated in 

patients with Crohn’s disease.  IL-22 elevation was thought to be induced by the activation of IL-

23/Th17 signaling (Schmechel et al., 2008).  

 

The involvement of Th17 and Th22 cells in drug hypersensitivity. 

Similar to Th17 cells, there is very limited evidence to support a role for Th22 cells in drug 

hypersensitivity. Th17 cells might play a role in AGEP and SJS/TEN, whereas IL-22 secretion 

has only been detected in patients with AGEP. 

In carbamazepine induced AGEP, drug specific IL-17 secreting T- cell clones have been shown 

to co-secrete either IL-4, IL-5 or IFN-. The Th1/ Th17 or Th2/Th17 populations may explain the 

characteristic eosinophil infiltration that induced by IL-4, keratinocyte apoptosis mediated by 

IFN-, and neutrophilic infiltration by IL-17. It is known that IL-17 and IL-22 secreting cells 

play pathological roles in psoriasis. It has been considered AGEP have a similar neutrophilic 

inflammatory processes to psoriasis since neutrophil-recruiting CXCL8/ IL-8 producing drug-

specific T-cells are found in the circulation. Furthermore, a remarkable increase in IL-17 and IL-

22 secreting cells has been described. IL-17 and IL-22 have been shown to promote 

keratinocytes to release IL-8, which is a well-known neutrophil recruitment mediator (Nakamizo 

et al., 2010). 



 

36 

 

In SJS/TEN, it has also been shown that the proportion of circulating Th17 cells is elevated 

among the CD4+ T-cell population in blisters and this proportion is decreased following 

improvement of the disease. In contrast, this phenomenon is not observed with Th1 or Th2 cells 

(Watanabe et al., 2011). It is not hard to understand the involvement of Th17 cells since Caproni 

et al (2006) has reported that neutrophils play a pathologic role in SJS/TEN by releasing reactive 

oxygen species and lysosomal enzymes and Th17 cells promote neutrophils recruitment. 

 

1.4.3 TCR signaling and V  receptor  

The TCR is a multiprotein transmembrane complex comprising TCR  (or TCR ), CD3, 

and CD3 dimers (Alarcon et al. 2003; Kuhns and Davis 2012). 

TCR are similar to immunoglobulin, in terms of both structure and genes. As for 

immunoglobulins, the TCR  dimers comprise both variable (V) and constant (C) regions which 

form domains that interact with antigen presented by MHC molecules on the surface of APCs. 

This interaction forms 3 complementary determining regions (CDR1, 2, and 3) on V regions. 

CD3 molecules are tightly associated with TCR  on T-cell surface. However, CD3 molecules 

do not bind to antigen. When antigen binds to ab chain of TCR, cell signaling will be transmitted 

into the cell by phosphorylation of immune-receptor tyrosine-based activation motif (ITAM) that 

is located on the cytoplasmic tail of CD3. Phosphorylation is the critical event in initiating 

downstream signaling cascades, during which, phosphorylation of phospholipase C (PLC) and 

consequently induce calcium influx into cytosol, resulting in the activation of T-cells. 

CDR3 majorly determines antigen recognition by TCR. Hyper-variability of this region enables 

the TCR to recognize a large number of antigens. The nature of this variability is the somatic 

recombination of non-contiguous V and J segments of a-chain and variable (V) and diversity 
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(D), and joining (J) segments of the b-chain (Hughes et al., 2003), among which, V  has 25 

genes, D , J , V, and J have gene numbers of 2, 12, 70, 50, respectively. One particular gene 

from each group enables the generation of 1015-20 variable TCRs that allow for recognition of 

almost all the antigens in the universe (Davis, Bjorkman 1988). TCR diversity is often associated 

with potency of antigen and is often tested by V  receptor distributions (Kimber et al., 2012a, b). 

The activated TCR repertoire can be determined by dependent on the pathway of T-cell 

activation (Currier et al., 1996). PBMCs stimulated by mitogen (PHA), super-antigen (TSST-1), 

or normal antigen (tetanus toxoid) show diverse TCR repertoires, in which both fresh blood and 

PHA stimulated PBMCs showed a normal spread distribution, whereas tetanus toxoid stimulated 

PBMCs showed a restricted profile. Finally, super-antigen stimulation resulted in a unique 

pattern of diversity (Currier et al., 1996). To explain the relationship between TCR diversity and 

potency of antigen, Moon and colleagues suggest that high TCR repertoire diversity could be 

induced by strong antigen with multiple antigen determinants and verse vice (Moon et al., 2007).  

 

In drug hypersensitivity, V  receptors have been found to be expressed in a restricted panel. For 

example, some V  receptors are expressed in a wide distribution panel. In the study by Ko et al., 

(2011), patient with genotype of HLA-B*15:02 and with carbamazepine induced SJS/TEN were 

recruited to analyze the drug-specific T-cell receptor repertoire. 16 out of 19 patients with 

carbamazepine induced SJS/TEN expressed a single clonotype of VB-11-1SGSY and this 

clonotype was not expressed in all drug-tolerant patients.  Carbamazepine specific CD8+ T-cells 

with this clonotype showed a strong cytotoxicity and this cytotoxicity was inhibited by the 

addition of anti VB-11-1SGSY antibodies. 

When testing the T-cell repertoire of abacavir specificity which is also mediated by CD8+ T-cell 
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responses and is restricted by a single HLA allele association (HL1-B*57:01), drug-specific T-

cells displayed a random distribution of V  receptors (Illing et al., 2012). These findings are in 

stark contrast to the work of Ko et al exploring carbamazepine- induced SJS. 

In my thesis, piperacillin specific T-cells displayed a random distribution of V  receptor 

repertoire. In our lab, nitroso-sulfamethoxazole (SMX-NO) T-cell clones isolated from patients 

with sulfamethoxazole hypersensitivity also displayed a random TCR V  repertoire (unpublished 

data). It is known that SMX-NO is a strong hapten that is capable of binding to both intracellular 

protein and the proteins in the serum, and wide V  receptor distribution suggests that SMX-NO 

protein binding generates a large number of peptide epitopes, which subsequently interact with 

multiple TCRs. 

 

1.4.4    Tissue homing  

Cellular tissue homing was dominanted by the interaction between chemokines and their receptor 

(Campbell & Butcher 2000). As reviewed by Charo & Ransohoff (2006), chemokines are 

divided into two groups, CC chemokines and CXC chemokines. CC chemokines have two 

adjacent cysteine residues near the amino terminus whereas in CXC chemokines, two cysteine 

residues are separated by a single amino acid. CC chemokines tend to induce the migration of 

monocytes and CXC cytokines tend to induce the migration of neutrophils. For example, CCL2 

is a chemokine that stimulates monocytes to migrate from the bloodstream to the tissue. Another 

example, CXCL8, however, attracts neutrophils out of the blood and migrates into the peripheral 

tissue.  

Chemokines have two main roles. Firstly, they act on the lymphocytes rolling along the 

endothelial cells at sites of inflammation and convert this rolling status into steady binding to the 
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endothelial cells, via changing the conformation of adhesion molecules on lymphocytes and 

thereafter binding to their ligands on endothelial cells. Next the lymphocytes squeeze between 

the endothelial cells, going out of the vessel to the tissue. Second ly, chemokines direct the 

migration of lymphocytes along a gradient of chemokine molecules bound to the extracellular 

matrix and the surface of endothelial cells. This gradient increases in concentration toward the 

site of infection. 

T-cell priming occurs in lymphoid tissue but effector cells are needed in peripheral tissue at the 

original site of infection. T-cells express specific chemokine receptors i.e., CCR4, so that release 

of CCL17 (or TARC) and it’s binding to the receptor causes T-cells to migrate; following a 

chemokine diffusion gradient and accumulation in the inflamed site.  

In immunological conditions targeting skin, antigens are transported to the draining lymph node 

by dendritic cells. Antigen specific T-cells must then be transported from the lymph node back to 

skin. When T-cells encounter antigen in the skin, they become activated and may release effector 

molecules i.e., cytolytic molecules. These cause damage to skin cells, including keratinocytes. 

Migrating immune cells reach the inflamed skin initially through a series of selectin and integrin 

contacts, including cutaneous lymphocyte antigen (CLA). CLAs function as an integrin, which 

binds to the ligand E-selectin expressed in the endothelium thereby, inducing T-cells to move 

through the endothelium into the tissue (Rossiter et al., 1994).  

Skin- infiltrating lymphocytes in patients suffering from psoriasis and allergic contact dermatitis 

express CCR10 and on the other hand, the ligand of CCR10, CCL27, is expressed by 

keratinocytes which orchestrate the migration of CCR10+ T-cells to the skin (Homey et al., 

2002). In vivo, the neutralization of CCL27-CCR10 interactions dampens lymphocyte 

recruitment to the skin leading to the suppression of skin inflammation. The results suggest an 
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important role for CCR10 in the skin inflammation. CCR4 was also demonstrated to be 

important in skin inflammation. CCR4+ T-cells were only observed in memory skin homing T-

cells and not in naïve T-cells and intestine homing T-cells. In chronic cutaneous disease, 

CLA+CCR4+ T-cells migrate following exposure to the ligands of CCR4, TARC and MDC 

(Campbell et al., 1999).  

Several studies have investigated the role of chemokines and chemokine receptors in drug 

hypersensitivity. CLA expression on T-cells, isolated from skin and blood of hypersensitive 

patients, correlated with disease severity (Leyva et al., 2000). Increased expression of CCR4, 

CCR8, and CCR10 has been implicated in allergic reactions in the skin, such as contact 

dermatitis, atopic dermatitis and psoriasis (Hudak et al., 2002, Moed et al., 2004, Vestergaard et 

al., 1999).  In patients with dermatitis, CCR4 and CCR10 are important in T-cell migration to the 

inflamed skin whereas CCR8 was important in homing of memory T-cells to healthy skin 

(Vestergaard et al., 2003, Schaerli et al., 2004).  

In patients with delayed-type drug hypersensitivity, drug-specific CCR6+ T-cells initiate reactions 

by secreting TNF- and IFN-. This leads to an acute phase response and induction of 

inflammatory chemokines such as CXCL8 or CCL20, the ligands of CCR6 in keratinocytes 

(Schaerli et al., 2004).  

Most T-cells in the skin are CCR6 T-cells; they enter the skin and secrete more pro- inflammatory 

cytokines, thereby amplifying the immunological reaction.  
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1.5 HLA associations with drug hypersensitivity 

Over the recent years, there has been a significant increase in the volume of publications 

associating various HLA alleles with different forms of drug hypersensitivity reaction. Genetic 

association studies of both drug metabolizing genes and immune-related genes have helped to 

expand our knowledge and improve our understanding of drug hypersensitivity. HLA alleles with 

high levels of polymorphism are critical in immune surveillance because every variant molecule 

interacts with different peptides. Only a small proportion of them will stimulate T-cells. Some of 

the HLA proteins protect from disease, whereas others function as predisposing factors for 

disease  (Temajo et al., 2009; Han et al., 2012), including T cell-mediated drug hypersensitivity. 

For example, individuals expressing the HLA-B*57:01 allele are susceptible to abacavir 

hypersensitivity (Mallal et al., 2002) and flucloxacillin- induced hepatitis (Daly et al., 2009). In 

Han Chinese, carbamazepine- induced SJS and TEN are associated with expression of HLA-

B*15:02 (Chung et al., 2004). However, in Caucasians, carbamazepine- induced hypersensitivity 

reactions have recently been associated with HLA-A*31:01 (McCormack et al., 2011). 

Allopurinol induces severe cutaneous allergic reactions (SCAR) in Han Chinese patients with 

HLA-B*58:01 (Hung et al., 2005). Pre-description screening of related HLA alleles has 

significantly decreased the occurrence of hypersensitivity to abacavir and carbamazepine (Chen  

et al., 2011; Mallal et al., 2008). The strong association with HLA indicates that the drug derived 

antigens interact with high level of restriction to HLA molecules to stimulate T-cells. The nature 

of this interaction has been defined for a limited number of drugs. For example, abacavir 

interacts with the F-pocket in the peptide-binding groove of the HLA-B*57:01 molecule 

(Chessman et al., 2008). A similar mechanism was observed in the binding of carbamazepine 

with HLA-B*1502 (Illing et al., 2012). The observation that HLA-DQ A*02:01 is associated 



 

42 

 

with lapatinib-induced liver injury indicates MHC I and II molecules can be involved in different 

forms of hypersensitivity (Spraggs et al., 2011).  

 

 

1.6 Mechanisms of drug hypersensitivity  

There are three main theories as to how pharmaceutical drugs  can act as antigens and generate an 

immune response (See Figure 1.2).  

 

1.6.1 Hapten and Prohapten theory  

The basis of hapten theory was built up by the early research from Landsteiner and Jacobs 

(1935). They sensitized guinea pigs to the low molecular weight, chemically reactive compound, 

dinitrochlorobenezene (DNCB). The authors showed that the immune reaction resulted from the 

formation of a covalent protein adduct in skin through modification of specific nucleophilic 

residues. This leads to the hypothesis that chemicals and drugs are too small to function as 

antigens and activate an immune response directly. The hypothesis states that they bind to 

proteins forming an intact antigen to trigger an adaptive immune response; β- lactams are 

common causes of both type I and type IV hypersensitivity.  

Many more studies support a role for the binding of haptenic substances to protein in the effector 

phase of immune responses to drugs and chemicals.  Certain haptens bind spontaneously to 

protein via formation of a covalent bond with specific amino acid residues. For example, 

penicillins may induce hypersensitivity by binding directly to lysine residues on protein (see 

below). Antigen specific IgE isolated from patients with penicillin- induced anaphylaxis patients 

were found not against penicillin but against penicillin-haptenic structures formed by drug-
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protein conjugation. Furthermore, certain penicillin-specific T-cells are activated specifically 

with drug-protein adducts. Penicillins contain a 6-aminopenicillanic acid nucleus which includes 

a -lactam ring and a five numbered ring. When drug-protein conjugates form, the -lactam ring 

opens up spontaneously and acylates with lysine residue of the binding protein. A similar profile 

of binding happens with a range of antibiotics, including piperacillin and flucloxacillin, which 

are discussed in detail in the sections below. In contrast to the penicillins, other compounds only 

bind to protein after drug metabolism and the liberation of reactive species. For example, 

urushiol, an allergen contained in ivy and poison oak induces a severe contact dermatitis in both 

human and mouse models. Urushiols are oxidased into reactive quinone species and the reactive 

species binds covalently to amino acid residues on protein (Kalergis et al., 1997).  Some of drugs 

might also be metabolized into reactive intermediates prior binding to proteins. This indirect 

process is known as the pro-hapten hypothesis. A classical example is the drug halothane, which 

induces immunological hepatotoxicity in a small percentage of the population. Halothane is 

metabolized by P4502E1 (Kharasch et al., 1996) into a reactive trifluoroacetyl chloride 

intermediate, which binds covalently to lysine residues in proteins forming an antigen (Kenna et 

al., 1988). Tienilic acid an urisuric diuretic used in the treatment of hypertension was withdrawn 

from the market in 1980 due to its hepatotoxic potential. Tienilic acid is metabolized by human 

P4502C9 enzymes to yield a reactive metabolite S-oxide which binds covalently with 

nucleophilic groups on the enzyme forming an antigen. Anti-P450 antibodies have been detected 

in the serum of patients with hepatotoxicity. The most well characterized pro-hapten drug is 

sulfamethoxazole which will be discussed in the following secretion.   

1.6.2 Pharmacological inte raction of drugs with immune receptors: p.i. concept.  

 

This theory suggests that parent drugs can trigger an immune response by direct interaction with 
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MHC molecules and TCRs. The theory is based on evidence that drugs can stimulate drug 

specific T-cells in an MHC processing independent way when APCs were fixed with 

glutaraldehyde (Pichler et al., 2002).  

When a drug stimulates T-cells immediately, as shown by intracellular calcium release, then this 

response is too fast to require antigen processing (Pichler et al., 2002). Pulsing experiments show 

that T-cell responses can be inhibited by washing the antigen presenting cells, which removes the 

non-covalently bound drug. This shows that the drug is binding directly to immune receptors and 

activating T-cells by a pharmacological mechanism. Drugs that activate T-cells via a p.i. 

mechanism include carbamazepine, lidocaine, lamotrigine, and sulfamethoxazole (Farrell et al., 

2003, Zanni et al., 1998, Schnyder et al., 1998).  

 

1.6.3 Altered self-peptide repertoire model 

Certain drug hypersensitivity syndromes are highly associated with particular human leukocyte 

alleles (Mallal et al., 2002, Yun et al., 2013, Chessman et al. 2008, Mallal et al. 2008, Bharadwaj 

et al. 2012). Abacavir hypersensitivity syndrome is associated with HLA-B*57:01 and 

investigations into this syndrome have resulted in the evolution of the altered self-peptide 

hypothesis to explain how this drug interacts with the HLA molecule to activate T-cells (Mallal 

et al., 2002, Martin et al. 2005, Mallal et al. 2008). The in vitro study of abacavir- induced T-cell 

activation showed that the ability of abacavir-treated cells to stimulate T-cells could be 

completely abrogated by a single amino acid residue change at position 116 (Ser116), which 

lines an anchor pocket in the peptide-binding groove of the HLA-B*57:01 molecule. 

Collectively, the authors propose that the drug occupies specific area in the cleft of the MHC 

class I molecule, which in turn alters the configuration of the peptide that sits in the groove. This 
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altered self-peptide-MHC complex only displayed on the surface of APC in the presence of the 

drug activates CD8+ T-cells which cause tissue damage (Figure 1.4).  

Figure 1.4 Different pathways of T-cell activation in drug hypersensitivity.  

Three mechanism of drug hypersensitivity have been proposed, which are hapten/prohapten 

theory, p.i. concept and peptide alteration theory.  

 

Figure 1.4 A illustrates the hapten/prohapten hypothesis; in which  drug or drug metabolites bind covalently to 

protein to activate an immune response. Drug-protein conjugates are then taken up and processed by APC, cutting 

the protein into peptides which are then displayed on the cell surface by MHC molecule.  
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Figure 1.4 B illustrates p.i. concept. Here a drug may activate TCRs though a directly  non-covalent binding against 

TCR and MHC molecu les. Protein processing is not required. 
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Figure 1.4 C shows peptide alteration theory. When certain peptides are displayed to T-cells, they do not generate 

immune response. However, when peptides load into the groove of MHC molecules in the presence of drugs, such 

as abacavir, they may induce immune reactions, due to the drug altering the configuration of the MHC peptide -

binding groove, rendering the peptides immunogenic. 
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1.6.4 Drug metabolism and the activation of T-cells 

SMX has been used as a model to study the role of metabolism in drug hypersensitivity for 

several reasons. Firstly its metabolism is well-defined. Secondly, stable and readily metabolites 

have been synthesized and are available for functional studies. Thirdly, patient samples are 

readily available for functional studies. Most of SMX is detoxificated in the liver. The drug is 

metabolized by hepatic N-acetyltransferase enzymes to an acetylated derivative which is easily 

eliminated from the body. However, a small amount of SMX is converted to a hydroxylamine 

intermediate. A reaction is catalyzed by CYP2C9 (Cribb et al., 1995). SMX hydroxylamine is 

stable and eliminated in urine (Gill et al., 1999). This suggests that most tissues are exposed to 

the hydroxylamine after SMX administration. The hydroxylamine either undergoes reduction 

back to SMX, a reaction by catalyzing by NADH cytochrome b5 reductase and CYP3A4 or is 

spontaneously oxidized to nitroso SMX (SMX-NO). SMX-NO has been shown to bind and 

modify selective cysteine residues expressed on both cellular and protein serum (Naisbitt et al., 

1999, Naisbitt et al., 2001). Modification of cell surface proteins occurs quickly and then these 

protein conjugates are internalized through caveolae-dependent endocytosis (Elsheikh et al., 

2010). Therefore, it is possible for the transport of intermediates (i.e. the hydroxylamine) out of 

the liver, which is rich in detoxification, to remote areas (i.e. the skin) where it is converted to 

SMX-NO, which generates protein adducts and ultimately hypersensitivity. The high number of 

SMX hypersensitivity reactions in patients with HIV and cystic fibrosis might be related to the 

fact that the redox balance is tipped in favor of a pro-oxidative environment by the disease 

process (van der Ven et al., 1997, Walmsley et al., 1997).  

SMX-NO activates dendritic cells (DCs), enhancing expression of the co-stimulatory molecule 

CD40 (Sanderson et al., 2007) and generates potential antigens by bind ing to cysteine residues in 
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proteins. In rodent models, SMX-NO primed naïve CD4 and CD8 T-cells and the T-cell 

activation was antigen processing dependent (Farrell et al., 2003, Naisbitt et al., 2001, Naisbitt et 

al., 2002, Castrejon et al., 2010). On the contrary, administration of SMX does not activate 

immune cells. In vitro studies using PBMCs from drug naïve volunteers showed that SMX-NO 

generates T-cell responses in almost 100% of the volunteers (Engler et al., 2004). Application of 

a DC T-cell priming assay (Faulkner et al., 2012), using naïve T-cells from healthy volunteers 

who have never exposed to SMX, demonstrated that SMX-NO readily activates naïve T-cells. 

The newly generated memory T-cells were drug antigen specific. SMX-NO treatment resulted in 

proliferative responses and cytokine release. Several studies have shown that T-cells from blood 

and skin of all SMX hypersensitive patients are activated by SMX-NO, which suggests that 

SMX metabolites and the SMX-NO modified proteins are involved in the development of 

clinical symptoms in hypersensitive patients (Elsheikh et al., 2010, Schnyder et al., 2000, 

Burkhart et al., 2001, Nassif et al., 2004). Moreover, it has been shown that SMX-NO stimulates 

the majority of the drug responsive T-cell clones generated from patients with SMX 

hypersensitivity (Castrejon et al., 2010).  

Skin cells are known to express different CYP enzymes from the CYPs in the liver. To clarify the 

possibility that SMX (or SMX NHOH) can travel to the skin and generate SMX-NO and in turn 

induce skin inflammation, several studies (Reilly et al., 2000; Vyas et al., 2006) have shown that 

sulfonamides are metabolized by flavin-containing monooxygenase 3 and peroxidases expressed 

in human epidermal keratinocytes/cutaneous dendritic cells into SMX-NO that binds covalently 

to cellular protein. Exposure of keratinocytes to SMX promoted the secretion of pro-

inflammatory cytokines and increased expression of heat shock protein 70 (Khan et al., 2007). 

SMX-NO covalently binds to cellular proteins, which therefore may act as a source of the 
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antigen (Naisbitt et al., 2001). A study of SMX hypersensitive patients shows that SMX-NO 

selectively binds to a single amino acid residue of human albumin (HSA), cysteine 34. It has also 

been shown that (1) SMX-NO and SMX-NO modification of protein can induce cell death when 

the levels of binding exceeds a threshold; and 2) SMX-NO metabolite modified necrotic cells 

provide a strong maturation signal to DCs (Naisbitt et al., 2002, El-Ghaiesh et al., 2012). Based 

on this discussion, it is clear that, SMX metabolites are generated in the skin and may provide 

activation signals to DCs. 

 

1.6.5 SMX and SMX-NO specific T-cell clones 

In addition to the above discussion, SMX specific T-cell clones have been isolated from blood of 

patients with different types of skin eruptions (Schnyder et al., 1998, Brander et al., 1995). T-

cells express CD4 or CD8 or both and upon stimulation by drugs, they secrete high levels of IL-5 

and perforin which induces the killing of keratinocytes (Schnyder et al., 1998). Furthermore, 

drug-specific CD8 T-cells have been isolated from patients with TEN, the most severe form of 

cutaneous hypersensitivity, and fully characterized (Yawalkar et al., 2000, Nassif et al., 2004). 

Stimulation of T-cells with SMX follows the p.i. concept. T-cells from hypersensitive patients 

stimulated by SMX bound directly to MHC and T-cell receptor in a non-covalent fashion 

(Schnyder et al., 1998, Schnyder et al., 2000, Burkhart et al., 2001, Nassif et al., 2004). The 

threshold period of drug incubation for a T-cell clone response varies from 0.1 to 4 h (Zanni et 

al., 1998) which is incompatible with the time that is required for antigen presentation. The 

response is MHC restricted, although not all of the response is restr icted to a specific HLA allele 

(Sanderson et al., 2007).  

1.7  Drugs and drug antigens 
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In this thesis I have investigated drug hypersensitivity reactions to the pro-hapten to 

sulfamethoxazole (SMX) and its metabolites nitroso-sulfamethoxazole (SMX-NO) and the β-

lactam antibiotics: piperacillin and flucloxacillin.  

1.7.1  Sulfonamides 

In 1940, Woods showed that sulfonamides prevented bacteria from growing. Sulfonamides 

prevent bacteria using para-aminobenzoic acid for folate biosynthesis, which is crucial fo r the 

synthesis of thymidine, purines and bacterial DNA (Woods, 1940). In 1960, the combination of 

sulfonamides and trimethoprim was developed based on the recognition that they both targeted 

the same pathway and double inhibition of this pathway is more e ffective than using a single 

drug (Masters, 2003). 

 Trimethoprim-SMX is available in oral and intravenous preparations. Clinically, it is used as one 

part trimethoprim to five parts SMX. SMX is primarily metabolized in the liver, with 

approximately 30% being excreted unchanged in urine. SMX is metabolized by CYP2C9 in 

human liver to a pro-reactive hydroxylamine metabolite SMX hydroxylamine then automatically 

oxidizes into nitroso sulfamethoxazole which may either bind covalently to cellular proteins, 

forming drug antigen, or may be reduced by non-protein thiols (i.e., glutathione) back to the 

hydroxylamine form (Cribb et al., 1995, Gill et al., 1999, Naisbitt et al., 2002) (See Figure 1.3).  

Skin reactions occur in 3-4% of the general population treated with SMX. Numerous skin 

reactions have been described, including maculopapular rash, urticaria, diffuse erythema, 

morbilliform lesions, erythema multiform and purpura, and photosensitivity. Severe skin 

reactions related to SMX include SJS and TEN (Kocak et al., 2006). Disorders of the blood and 

internal organs (e.g., liver) are occasionally reported.  
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Figure 1.5 Metabolis m of SMX and protein conjugate format ion (Su llivan et al, 2015)  

 

 

1.7.2  β-lactam antibiotics 

Piperacillin was developed at the end of the 1970s. It is a wide-spectrum antibacterial agent 

developed for microbes resistant to other β- lactams, such as Klebsiella pneumonia and 

Pseudomonas aeruginosa (Jones et al., 1977). Combined with tazobactam, a B- lactamase, the 

anti-bacterial effect of piperacillin has been improved especially against B- lactamase producing 

bacteria (e.g. staphylococci, Escherichia coli, Haemophilus influenza) (Speich et al., 1998). 

Piperacillin is administered via intramuscular or intravenous injection as a sodium salt because it 

is poorly absorbed by the intestine.  

Piperacillin is commonly prescribed for patients with cystic fibrosis (CF). Cystic fibrosis is the 

most common lethal autosomal recessive condition in Caucasians. Recurrent infections lead to 

airway destruction, bronchiectasis, and respiratory failure. Therefore, antibiotics, including 

piperacillin are required to maintain patients’ health. Although antibiotic therapy is necessary to 

reduce the deterioration of lung function, it results in high incidence of adverse drug reactions.  

The incidence of ADRs in patients with cystic fibrosis is 26%-50% compared with 1-10% in the 
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general population (Brock &Roach, 1984; Moss et al., 1984).  

For the formation of protein conjugates, the lactam ring is broken by nucleophilic lysine 

residues, leading to binding of the penicilloyl group (Batchelor et al., 1965). The penicillyol 

antigen can also be formed by binding of the reactive degradation product penicillenic acid 

(Levine et al., 1960). Recent advances in mass spectrometry has allowed researchers to use 

piperacillin as a model to precisely characterize the nature of the piperacillin binding interaction 

with protein (Figure 1.4.1). As for all β- lactam antibiotics, piperacillin selectively interacts with 

specific lysine residues on serum proteins such as human serum albumin (Figure 1.4.2). The 

binding interactions are dependent on the dose and incubation time (Meng et al., 2011, Whitaker 

et al., 2011). Moreover, as T-cells from hypersensitive patients are activated with piperacillin 

HSA adducts, it was possible to investigate the minimum level of modification of the drug that 

can stimulate drug-specific T-cells. At low drug concentration, only Lys541 modification was 

observed, whereas at higher concentration, up to 13 lysine modifications were detected, four of 

which (Lys 190, 195, 432, and 541) were detected in patients’ plasma (El-Ghaiesh et al., 2012, 

Whitaker et al., 2011). A synthetic β- lactam-protein conjugate mimicking the drug antigen found 

in the patients was found to stimulate PBMCs and 100% β- lactam specific T-cell clones. 

Whereas T-cell response to drug conjugates is dampened when antigen processing is inhibited, 

which suggests that the antigenic peptides are derived from drug-protein conjugates.  

 

Flucloxacillin is a narrow-spectrum β- lactam antibiotic. It is used to treat infections caused by 

susceptible Gram-positive bacteria. Unlike other penicillins, flucloxacillin is effective against 

beta-lactamase-producing organisms such as Staphylococcus aureus as it is β- lactamase stable.  

Flucloxacillin is a common cause of drug- induced liver injury in Europe, affecting about 8.5 in 

http://en.wikipedia.org/wiki/Broad-spectrum_antibiotic
http://en.wikipedia.org/wiki/Beta-lactam_antibiotic
http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Beta-lactamase
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every 100,000 first time users of the drug. (Andrews et al., 2008). The liver injury is 

predominantly cholestatic in nature. It has now been discovered that flucloxacillin- induced liver 

injury is associated with the expression of HLA-B*57:01 (Daly AK., et al 2009) and CD8 T-cells 

play a role in liver injury (Monshi M et al., 2013). The risk of flucloxacillin induced liver injury 

is increased in females, with a high daily dosage and with increasing age (Elise Andrews et al., 

2008).                                                                                                                                                                                                                                                                                 
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Figure 1.6.1 Formation of piperacillin-protein conjugated antigen (adapt from Whitaker, Meng et al., 2011). 

Piperacillin can be metabolized into desethylpiperacillin by P450 or be reduced into dioxopiperazine.  Piperacillin 

conjugated antigen can be formed either with piperacillin, via its -lactam ring opening and binding covalently to 

albumin protein  forming an intact antigen; or with its desethyl metabolite also via -lactam ring opening process; 

but not with dioxopiperacillin v ia 2,3-dioxopiperazine ring opening; nor cross -linking adduct. 
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Figure 1.6.2 Binding site of piperacillin to HSA protein, which are the modifications on lysine residues 

identified by mass spectrometry. Adapted from Whitaker, Meng et al., (2011) 

Model of albumin showing piperacillin b inding sites at positions Lys190, Lys195, Lys199, Lys212, Lys351, 

Lys432, Lys525 and Lys541. 

 

 

 

1.8 Aim of the thesis 

The primary aim of this study is to characterize the phenotype and function of piperacillin 

specific T-cells isolated from hypersensitive patients’ PBMC (chapter 3) and skin (chapter 4). 

The involvement of Th17 and Th22 cells in piperacillin hypersensitivity was also studied using a 

recently established in vitro DC T-cell priming assay (chapter 5). Finally, the priming assay was 

applied to study the mechanism(s) of drug antigen presentation and T-cell cross reactivity using 

three haptenic drugs, SMX-NO, piperacillin and flucloxacillin.  

The characterization of drug specific T-cells isolated from hypersensitive patient PBMC has been 

conducted previously; however, the involvement of new T-cell subsets, Th17 and Th22 in drug 

hypersensitivity reactions has not been investigated. Furthermore, a comparison of drug-specific 

T-cells isolated from PBMC and inflamed tissue has not been performed. These studies are 
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important because Th17 and Th22-secreting T-cells are known to play a critical role in several 

resilient and chronic immune-mediated diseases, such as psoriasis, Crohn’s disease, asthma, 

multiple sclerosis, and inflammatory bowel disease.  

The data presented in this thesis aims to answer the following questions: 

1. Are Th17 and Th22 involved in the drug hypersensitivity? And if so, which drug-specific 

cytokines do they secrete? 

2. Are there phenotypic and/or functional differences between drug-specific T-cells isolated from 

skin and PBMC? 

3. Is it possible to generate drug specific Th17 cells or Th22 cells under Th17 and Th22 under 

polarization conditions in vitro? 

4. Do APCs activate drug primed naïve T-cells via a hapten/pro-hapten pathway or a p.i. 

mechanism?                                                                                           
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Chapter 2 

Materials and Methods  

2.1  Medium for cell culture.  

2.1.1  Preparation of the medium for T-cell cloning and culturing peripheral blood 
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2.1.2  Preparation of Epstein-Bar virus (EBV)-transformed B-cells culturing medium  
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2.4 Lymphocyte transformation test (LTT) 
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Chapter 2: 

Materials and Methods 

2.1  Medium for cell culture.  

2.1.1  Preparation of the medium for T-cell cloning and culturing peripheral blood 

mononuclear cells (PBMCs) (R9 medium) 

 

R9 was used as the basic cell culture medium for all cell culture assays and for the culture of 

PBMCs and T-cells. Medium consisted of RPMI 1640 supplemented with 10% pooled heat-

inactivated human AB serum (v/v), HEPES buffer (25 mM), L-glutamine (2 mM), transferrin (25 

µg /ml), streptomycin (100 µg/ml), and penicillin (100 U/ml).  

 

2.1.2 Preparation of Epstein-Bar virus (EBV)-transformed B-lymphoblastoid cell lines (B-

LCL) culturing medium (F1 medium) 

 

F1 medium was used to culture B-LCL cell lines, but was not used in cell culture assays. consists 

of RPMI 1640 supplemented with 10% pooled heat-inactivated foetal bovine serum (FBS), 

HEPES buffer (25 mM), L-glutamine (2 mM), streptomycin (100 g/ml), and penicillin (100 

U/ml).  

Human AB serum was purchased from Innovative Research (Michigan, USA). FBS was bought 

from Invitrogen, Paisley, UK. HEPES buffer, L-glutamine, transferrin, streptomycin, and 

penicillin were purchased from Sigma-Aldrich (Dorset, UK). 

Freeze medium: 20% DMSO (v/v) with 80% of FBS (v/v).  

2.2  Preparation and the use of drugs  

The drug metabolite nitroso-sulfamethoxazole (SMX-NO) was freshly prepared at a stock 

concentration of 50mM in dimethyl sulfoxide (DMSO), and then diluted into antibiotic- free R9 
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medium at a final concentration of 50µM. Piperacillin and flucloxacillin were diluted directly 

into antibiotic- free R9 medium at a range of concentrations between 0.5-2 mM. 

SMX-NO was purchased from Dalton chemical laboratories Inc. (Toronto, Canada).  

Both piperacillin and flucloxacillin were purchased from Sigma Chemical Co. (Poole, Dorset, 

UK). DMSO was purchased from Sigma-Aldrich (Dorset, UK). Drug chemical structures are 

shown below: 

 

SMX-NO 

Piperacillin 

         Flucloxacillin 

 

Figure 2.1 Chemical structures of the focus drugs in the thesis. Although these three drugs are thought to activate T-

http://www.trc-canada.com/Structures/N546700.png
http://en.wikipedia.org/wiki/File:Piperacillin.svg
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cells via covalent protein binding, variat ion of their chemical structures seems to determine variat ions in drug 

hypersensitivity (Figures adapted from Wikipedia).  

2.3 Isolation of PBMCs 

Blood was taken from patients and healthy volunteers under informed consent. All protocols 

were approved by the Local Research Ethics Committee. PBMCs were isolated from fresh blood 

collected in 9 ml heparinised Vaccuette tubes (Greiner Bio-One Ltd, Stonehouse, UK) using 

Lymphoprep density gradient separation media (Axis Shield, Dundee, UK). Blood was layered 

onto an equal volume of Lymphoprep and tubes were spun at 2000 rpm for 25 mins with low 

acceleration and no brake. The cloudy layer containing PBMCs was carefully aspirated using a 

sterile Pasteur pipette. The PBMCs were washed in HBSS buffer at 1800 rpm for 15 min at room 

temperature to remove the excess Lymphoprep. After discarding the supernatant, cells were re-

suspended in 50 mL Hanks buffer and centrifuged at 1500 rpm for 10 minutes. The cells were 

then re-suspended in culture medium and counted using a Neubauer haemo-cytometer (Sigma) 

under a Wilovert Microscope (Will Wertzlar, Germany).  Cells were diluted with 10 µl 2% trypan 

blue stain and 10 µl of the cell solution was placed on the haemo-cytometer and counted. The 

cell viability was calculated using the following equation: %viability= viable cells/total number 

of cells*100%. Normally the viability was found to be higher than 95%.  

 

2.4 Lymphocyte transformation test (LTT) 

100 µl/well of isolated PBMCs at 1.5x106 cells/ml was aliquoted in 96-well U-bottomed tissue 

culture plates. 100 µl/well of medium, 10 µg /ml of Tetanus Toxoid or drug (piperacillin 0.5 mM, 

1 mM, and 2 mM) were added and incubated for 6 days at atmosphere of 37°C 5% CO2. 

Proliferation was measured by adding 0.5 µCi/well [3H]-thymidine (5 Ci/mmol, Morovek 

Biochemicals Ltd, Brea, CA, USA) for 16 hours. Plates were harvested onto glass- fibre filter 
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mats using a TomTec Harvester 96 (Receptor Technologies, Leamington Spa, UK). After drying, 

the filter mats were fused with wax scintillant MeltiLex A and counted in a MicroBeta TriLux 

1450 LSC -counter (Perkin Elmer, Cambridge, UK).  T-cell proliferation was given as cpm 

(counting per minute). The results were analyzed using Stimulation Index (SI, mean counting per 

minute (cpm) with drug/mean cpm without drug). An SI>2 was considered positive.  

 

2.5  Generation of T-cell lines and T-cell clones 

106 PBMCs from the hypersensitive patients were incubated in 48-well tissue culture plates with 

culprit drug (37°C, 5% CO2). l of fresh medium supplemented with 500U/ml IL-2 was 

added on Day 6 and Day 9 to maintain T-cell proliferation. On Day 14, the cultured cells were 

washed with medium and counted by trypan blue dye exclusion and thereafter were seeded in 

triplicate in 96-well U-bottomed plates at different cell concentrations (0.3, 1 and 3 cells/well; in 

a total volume 100 µl). Irradiated PBMCs (45 Gy) were used as feeder cells (provide stimulatory 

molecules, mainly CD28 molecules, which are required signal for T-cell activation) for 104cells 

/well and added to each well in culture medium supplemented with 200 U/ml IL-2 (maintaining 

T-cell survival) and g/ml PHA (stimulate TCR via CD3 molecule, thereby promoting T-cell 

activation). On Day 5, T-cells were fed with medium supplemented with 60 U/ml IL-2 and 

afterwards the IL-2 supplemented culture medium was fed every 48h.  

T-cell cloning cultures were re-stimulated using 45 Gy irradiated allogenic lymphocytes as 5x104 

cells/ well as feeder cells. 500 U/ml IL-2 and g/ml PHA were added to maintain the T-cell 

expansion. Wells which showed large pellets were expanded into 4 wells and fed every 2 days. 

The clones were then tested for drug specific T-cell proliferation. About 5x104 T-cell clones were 

cultured in duplicate, in the presence or absence of drug, in the addition of 60 Gy irradiated 
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autologous B-LCLs (104/well, 0.2ml) as antigen presenting cells (APCs). The cultures were 

incubated for 3 days at a temperature of 37°C and an atmosphere of 5% CO2. [3H] thymidine was 

added at 0.5 Ci/well for the final 16h of the incubation. T-cell proliferation was measured using 

a -counter and SI>2 were considered positive.  Drug specific clones were further re-stimulated 

using the medium containing 45Gy irradiated allogenic 106 PBMCs, 500U/ml IL-2 and 10 g/ml 

PHA in the total volume of 0.66 ml. Cultures were maintained at 37°C, 5% CO2 and were fed 

with culture medium containing 60 U/ml IL-2 every two days after the second day.  

  

2.6  Generation of EBV transformed B-cell lines 

EBV-transformed B-cell lines (B-LCL) are an immortalized B-cell line used as a source of 

autologous antigen presenting cells. B-LCLs were generated by incubating isolated PBMCs from 

the donors with supernatant from the Epstein-Barr virus producing cell line B9-58 (Beatty et al., 

1998). Donor PBMCs were isolated and co-cultured with 0.2 m filtered B9-58 supernatant 

supplemented with 1 µg/ml cyclosporine A (CSA) and incubated overnight at 37°C in an 

atmosphere of 5% CO2. The next day, the supernatant was discarded and PBMCs were cultured 

in F1 medium supplemented with 1 µg/ml CSA every 3 days in 24 well plates for 3 weeks. Cells 

were then grown in F1 medium alone.  

 

2.7  Analysis the phenotype of T-cell clones by flow cytometry 

5x105 T-cell clones were incubated with anti-human CD4-FITC, CD8-PE, CXCR3-APC, CCR1-

FITC, CCR6-APC, CCR4-PE, CLA-FITC, CCR10-PE, CCR5-FITC, CCR2-PE, CCR3-FITC, 

CCR8-PE, CCR9-APC, CXCR1-APC, CXCR6-PE, and E-cad-PE antibodies (purchased from 

BD Biosciences, Oxford, UK) for 20 min on ice in the dark. Afterwards, the cells were washed 
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with 1 ml of FACS buffer (phosphate buffered saline [PBS] + 10% (v/v) FCS + 0.02% (v/v) 

[sodium azide]) by centrifuging at 1500 rpm for 5 min. The cells were re-suspended in 150 µl 

FACS buffer and analyzed by flow cytometry on a FACS Canto II (BD Biosciences).  

 

2.8  Testing drug specific T-cell proliferation 

5x104 T-cell clones were plated in duplicate, 104 autologous B-LCLs per well were added as well 

as medium in the presence or absence of the drug to a final volume of 200 µl/well. The drug was 

added at the following concentrations (piperacillin 0.5 mM, 1 mM, 2 mM, flucloxacillin 0.5 mM, 

1 mM and 2 mM, SMX-NO 12.5 µg /ml, 25 µg/ml, 50 µg /ml and PHA 5 µg/ml). The 

proliferation was measured by [3H]-thymidine incorporation as described in 2.5.  

 

2.9  Testing T-cell clones for HLA restriction 

5 µg/ml MHC class I or 5 µg/ml MHC class II blocking antibodies (from BD Bioscience Oxford, 

UK) were incubated with 104 cells/well of autologous B-LCLs for 30 min at 37°C and 

atmosphere of 5% CO2. 5x104 T-cell clones/well and medium or drug solution (piperacillin 2 

mM, flucloxacillin 2 mM, SMX-NO 50 µM) was then placed in each well, making up to 200 

µl/well. Proliferation was measured by [3H]-thymidine incorporation as described in 2.5.  

 

2.10  Testing T-cell-clones for antigen processing 

APCs were incubated with piperacillin (2mM), flucloxacillin (2 mM) and SMX-NO (50 M) for 

1h, 4h, 16h and then extensively washed (3 times) to discard the free drug, also known as pulsing 

the cells. 5x104 T-cell clones/well were cultured with drug pulsed B-LCLs (1x104 cells/well) and 

drugs in duplicate in 96 well plates for 3 days at 37°C in an atmosphere of 5% CO2. Proliferation 
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was measured by [3H]-thymidine incorporation as described in 2.5.  

2.11  EBV transformed B-cells cell lysate preparation. 

To test the formation of drug antigen in the medium, EBV transformed B-cell lines were 

incubated with either SMX-NO or piperacillin or flucloxacillin in a 12 well culture plate at 37°C 

in an atmosphere of 5% CO2 for 16 hours. The cells were washed 3 times with Hanks buffer (in 

the centrifugation of 1500rpm for 5 minutes) to remove free drugs. Cell pellets were suspended 

in 200 l RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 2.5 mM EDTA, 10% (w/v) Glycerol, 

1% (w/v) Triton X-100, 1 mM Na3VO4, 10 μg/ml aprotinin,  g/ml  leupeptin, 1mM  PMSF, 

0.1% (w/v) SDS, and 0.5% (w/v) Na deoxycholate) and placed on ice for 30 minutes to lyse. 

Cells were given three bursts of sonication for 20 seconds each whilst on ice. The cell 

suspensions were then centrifuged at 14000 g for 10 minutes at 4°C. Supernatants were then 

collected and protein concentration was determined by Bradford assay (Bradford 1976).  

 

2.12  Bradford assay. 

A standard calibration curve was prepared using BSA (0-2000 µg/ml). Briefly, 10 µl of BSA 

standard solution/ sample solution was plated into a 96-well flat-bottom microplate. 200 µl 

Bradford reagent (from BIO-RAD Hempstead, UK) was added to each well prior to being read at 

570 nm using a microplate reader (Dynex, Technologies, Billinghurst, West Sussex). The protein 

concentration of each sample was obtained using the standard curve generated from BSA. 

Protein lysates were then standardized to 250 µg/ml.  

 

2.13  Western blotting 

The following buffers were used - TST buffer: 150 mM NaCl, 50 mM Tris-HCL, 0.05% Tween-
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20, pH 7.6 and Laemmli buffer: 63 mM Tris HCl, 10% Glycerol, 2% SDS, 0.0025% 

bromophenol blue pH 6.8. Protein lysates were added at 10 µl/lane on a 10% SDS-

polyacrylamide gel and were ran at 300 V, 60 mA for 1 hour. Separated proteins were then 

transferred from the gel onto a nitrocellulose membrane which was pre-wetted by 20% methanol, 

at 300 V, 250 mA for 1 hour. The membrane was then blocked by using TST containing 2.5% 

(w/v) non-fat dry milk and subsequently incubated with blocking buffer containing 1:1000 (v/v) 

dilution of rabbit anti-SMX-NO (Panigen, Blanchard Ville, USA) overnight at 4°C. (For anti-

piperacillin western blotting, mouse primary anti-penicillin antibody [ABCAM, UK] was diluted 

in blocking buffer in 1: 20,000 [v/v]; and for anti- flucloxacillin western-blotting, rabbit primary 

antibody, [personal gift from Frank Von Pelt, National University of Ireland] was diluted in 

blocking buffer in 1:5000 [v/v]).   

The next day, the membrane was washed five times for 5 min with TST to remove any free 

antibody. The membrane was then incubated with a 1:10,000 (v/v) dilution of secondary 

antibody: mouse anti-rabbit alkaline phosphatase-conjugated antibody (Sigma-Aldrich, 

Gillingham, UK) at room temperature for 2 hours.  [For piperacillin, goat anti-mouse HRP 

[P0447, DAKO, Ontario, Canada] was diluted in blocking buffer in 1:10,000 (v/v). For 

flucloxacillin, goat 

anti-rabbit IgG [P0448, DAKO, Ontario, Canada] were used as the secondary antibody, diluted 

in blocking buffer in 1: 2,000 [v/v]).  

 

 Afterwards, the membrane was washed five times with TST. The signal was then developed 

using enhanced chemical luminescence (Western Lightning; PerkinElmer Life and Analytical 

Sciences, Waltham, MA) by developing autoradiography film in a dark room and GS800 

calibrated scanning densitometer (Bio-Rad Laboratories, Hemel Hempstead, UK).   
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2.14  ELISpot assay 

Polyvinylidene fluoride (PVDF) membrane ELISpot plates were pre-wetted with 35% ethanol 

for 30 seconds prior to washing with 250 µl sterile ELGA distilled water 5 times. ELISpot plates 

were then coated with 100 µl/well of IFN- capture antibody (15 µg/ml) and incubated overnight 

at 4°C. The following day, wells were washed 5 times with sterile phosphate-buffered saline 

(PBS) to remove the free antibody and were then blocked with 200 µl/well of R9 medium for 30 

minutes at room temperature. Drug specific T-cell clones (5×104 cells, 50µl) were put into the 

wells alongside with autologous 60 Gy irradiated EBV-transformed B cells (1×104 cells, 50µl), 

with the addition of 100 µl of R9 medium, SMX-NO (50 µM), piperacillin (2 mM) and 

flucloxacillin (2 mM). The cells were cultured at 37°C for 48 hours.  

After 48 hours, the cells were discarded and then the wells were washed for 5 times with 250 

µl/well PBS. Biotin conjugated detection antibody (1 µg/ml) was diluted in 0.5% FBS/ PBS and 

100 µl was added to each well. Plates were incubated at room temperature for 2 hours, then wells 

were then washed 5 times with PBS. 100 µl/ well streptavidin-ALP (1:1000) in 0.5% FBS/PBS 

was added to the wells and incubated at room temperature for 1 hour. Pla tes were then washed 

with PBS for 5 times and 100 µl 0.45 µm filtered BCIP/NBT substrate was added to each well. 

Plates were incubated for 10-15 minutes in the dark at room temperature before the substrate was 

washed off with tap water. Plates were left to dry overnight prior to counting by an AID ELISpot 

reader (Cadama Medical, Stourbridge, UK).  

 

2.15  T-cell priming assay 

PBMCs were isolated from 100 ml of blood as described in 2.3. Cell populations required for the 

dendritic cell priming of naïve t-cells were isolated from PBMCs using magnetic beads, 
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according to the manufacturers’ instructions (Miltenyi Biotec Ltd, Bisley, UK). Firstly, CD14 

cells were isolated by positive selection. Secondly, T-cells were isolated from the CD14 negative 

population by negative selection and finally Tregs and memory T-cells were removed by positive 

selection leaving the naïve T-cell population.  

2.15.1  Isolation of CD14+ cells by positive selection.  

PBMCs were counted and 800 µl Macs buffer and 200 µl CD14 microbeads were added per 108 

cells. The beads were vortexed before use. The cells were incubated in the fridge for 15 minutes 

at 4°C. 15 ml of Macs buffer was added and the cells were spun at 1500 rpm for 10 minutes at 

4°C. After pipetting off the supernatant completely, cells were resuspended in 500 µl Macs 

buffer per 108 cells. An LS column was put on magnet and the column was washed with 3 ml of 

MACs buffer. The cells were then added to the column and washed 3 times with 3 ml Macs 

buffer. Non-CD14 cells were collected as the flow through and positively collected cells were 

removed from the column by adding 5ml Macs buffer to the column and immediately applying 

the plunger firmly to the column washing the cells off. The cells were counted. CD14 were used 

to culture dendritic cells or were frozen at 6-8 x 106 cells/vial in freezing medium. The non-

CD14 cells were spun down and used for T-cell selection.  

2.15.2  Naïve T-cell selections. 

T-cells were selected using the Pan-T isolation kit as follows. The non-CD14 cells were 

resuspended in 400 µl Macs buffer and 100 µl biotin-antibody cocktail added per 108 cells and 

incubated for 10 minutes in the fridge at 4°C. Then 300 µl Macs buffer and 200 µl anti-biotin 

microbeads was added per 107 cells and incubated for 15 minutes in the fridge. Then 15 ml Macs 

buffer was added and the cells spun at 1500 rpm for 10 minutes at 4°C. The cells were 

resuspended in 500 µl Macs buffer and put through an LS column as previously described. The 
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flow through from the column contained the T-cells and non-T-cells were recovered from the 

column. Tregs and memory T-cells were then removed using CD25 and CD45RO microbeads as 

described for the CD14 cells, leaving the naïve T-cells as flow through from the column. CD14-

CD3- cells (for generation of B-LCL), CD14-CD3+CD45RO-CD25- cells (naïve T-cells), and 

CD14-CD3+CD45RO+CD25- (memory T-cells) were frozen down at 107 per vial in freezing 

medium. 

2.15.3  DC culture from CD14 cells.  

6-8 x 106 CD14 cells were diluted in 6 ml of R9 medium supplemented with 800 U/ml GM-CSF 

and IL-4 and aliquoted 3 ml/well in a 6 well plate. The cells were fed every 2 days with 3 

ml/well R9 medium containing 800 U/ml GM-CSF, IL4. On day 6, the cells were matured with 1 

μg/ml LPS and 25 ng/ml TNF-α. On day 7, the mature DCs were scraped from the bottom of 

wells. After being spun at 1500 rpm, DCs were resuspended in 2 ml medium and counted.  

2.15.4  Co-culture of DCs and naïve T-cells.  

DCs were prepared at 1. 6 x 105 cells/ml in R9 medium and 0.5 ml/well added to 24-well plates. 

Naïve T-cells were thawed and washed. The cells were counted and made up 2.5 x 106 cells/ml 

in R9 medium, and 1ml/well added to 24 well plates. The drugs were added at 500 µl/well to a 

final concentration of 2 mM piperacillin, 2 mM flucloxacillin, and 50 µM SMX-NO. The co-

culture cells were incubated in the incubator in 5%CO2 at 37°C for 7 days. During this time, new 

DCs were cultured from CD14 cells as described previously.  

2.15.5 Testing the drug antigen specificity of the primed cells. 

On Day 14, the co-cultured cells and DCs were harvested. The drug primed T-cells were tested 

by ELISpot and proliferation assay using primed T-cells at 105 cells/well and autologous DCs at 

4x103 cells/well with various drug concentrations as described previously.  
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2.16  Human memory T-cell Th subsets differentiation, including Th1, Th2, Th17 and 

Th22.  

10 µg/ml of CD3 antibody was diluted in HBSS solution and pre-coated 300 µl/well in 48 sterile 

well plates over night at 4°C. On the next day, excess CD3 antibody was washed with HBSS for 

3 times. 5x105 memory T-cells were then added onto the CD3 coated wells with 500 µl of R9 

medium supplemented with 5µg/ml of anti-CD28 antibody, with or without Th17 differentiation 

cytokines including TGF-β (1 ng/ml), IL-1β (10 ng/ml), IL-6 (10 ng/ml), IL-23 (10 ng/ml). Th22 

differentiation cytokines were 50 ng/ml TNF-α, 20 ng/ml IL-6, 5 µg/ml anti IL-4 and 5 µg/ml 

anti IL-12. When differentiated into Th1 cells, the secreted cytokines were anti-IL-4 (5 µg/ml) 

and 25 ng/ml IL-12; when differentiated into Th2 cells, the secreted cytokines were 25 ng/ml IL-

4, 5 µg/ml anti-IL-12, and 5µg/ml anti-IFN-γ. The cells were incubated at atmosphere of 

37°C/5%CO2 for 5 days. On Day 6, polarized memory T-cells cytokine secretion was tested by 

ELISpot in the stimulation of PHA (5 µg/ml).  

 

2.17  T-cell isolation from skin biopsies. 

Skin biopsies were transported to the laboratory in R9 medium + 100 U/ml IL2 and on arrival 

were then removed from the R9 medium using a Pasteur pipette and spun at 1500 rpm for 10 

minutes to pellet any cells that may have migrated from the sample during transportation. A 

scalpel was used to mince the sample as finely as possible in a petri dish. The cell pellet was then 

re-suspended in 2 ml of R9-IL2 and plated in 7 ml of R9-IL2 for a combined volume of 9 ml. 3 

ml of the solution was transferred into each of the three wells on a 12 well cell culture plate and 

placed into a 37oC, 5% CO2 incubator. Skin biopsies were prone to the formation of a fat layer at 

the surface of the well. If necessary, a Pasteur pipette was used to remove the fat and the volume 
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removed was replaced with a similar amount of R9-IL2 before mixing. After 3-5 days the wells 

were aspirated and the contents passed through a 50 micron cell strainer into a 50 ml tube to 

remove any debris. The strainer was flushed with several washes of sterile PBS/Hanks and then 

spun at 1500 rpm to obtain a cell pellet. The pellet was re-suspended in 1 ml of R9 and 330 l 

was placed into each of 3 wells on a 48 well plate. l of stimulation cocktail which consisted 

of 5U of IL2, 10 g of PHA and 0.5x106 irradiated PBMC was added to each of the wells. Cells 

were fed by removing l of medium from each well on Days 5 and 9 and replaced with an 

equal volume of R9 + 100 /ml IL2. On the day 14, the wells were mixed and the contents 

aspirated into a tube and spun at 1500 RPM for 10 minutes to obtain a pellet.  

The cell pellet was re-suspended in 1 ml of freezing medium and immediately transferred to a 

cryovial, which was placed in a -80 oC freezer. After 24 hours the cryovial was removed and 

stored in either a -150 oC freezer. 

 

2.18 Glutaraldehyde APC fixation. 

Autologous B-LCLs were washed twice and re-suspended in 1 ml HBSS. Glutaraldehyde (25%, 

1 ml) was purchased from Sigma. It was then added and the cells were gently mixed for 30 s. 

Cells were then washed 3 times to remove glutaraldehyde and were re-suspended in T-cell 

culture medium. 5 x 104 T-cell clones were cultured with 104 glutaraldehyde fixed B-LCLs in 

presence or absence of drugs (50 µM SMX-NO, or piperacillin 2mM, or flucloxacillin 2 mM) in 

duplicate in 96 well plates for 3 days at 37°C in an atmosphere of 5% CO2. Proliferation was 

measured by [3H]-thymidine incorporation as described in 2.5. 
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2.19 Glutathione and NAL blocking assay 

N-Acetyl- lysine  (Sigma) was diluted in final concentration 1 mM and cultured with 1 x 104 

autologous B-LCLs and 5 x 104 T-cell clones with or without l of drug solution (piperacillin 

or flucloxacillin or SMX-NO) in a total volume of l in  well plates. Proliferation was 

measured by [3H]-thymidine incorporation as described in 2.5.  

Glutathione (Sigma) was prepared and tested in the same way as N-Acetyl- lysine. 

 

2.20 T-cell receptor Vβ expression  

TCR Vβ expression of individual clones can be typed using the IOTest kit. At least 5x104 T-cell 

clones were added into 9 FACs tubes in suspensions of 50 μl of T-cell culture medium. Tube 1 

did not contain antibodies, and the tube was used to gate the T- lymphocyte population using flow 

cytometry. TCR Vβ antibodies (5 μl) labelled A-H were then added into another 8 tubes (from 2 

to 9). Each TCR Vβ antibody cocktail was used to investigate three TCRs, twenty- four in total. 

Tubes were incubated at room temperature for 20 minutes. Unbound antibodies were washed 

with FACS buffer (1 ml), 1500 rpm for 5 minutes at room temperature. Finally, T-cell clones 

were resuspended in FACS buffer (200 μl) and samples were analyzed by flow cytometry.  

 

2.21 Statistics analysis 

Candidate screening for drug-specific clones was performed by expanding clones which had a 

stimulation index greater than 2.  A number of statistical tests were used to further this analysis 

depending on the experiment. T-cell clones were tested in triplicate with multiple doses or 

treatments. For multiple comparisons between treatments within a single clone population the 

parametric, one-way ANOVA test was applied. This method was also used to analyze chemokine 
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receptor data. Even within the same donor, there was a great variability in stimulation between 

drug-specific T-cell clones and thus the data did not follow a normal distribution. Therefore, for 

comparisons between T-cell clones, the non-parametric, Mann-Whitney test was employed. 

P<0.05 was considered statistically significant.  
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Chapter 3 

 

Characterization of peripheral T-cells in piperacillin hypersensitivity.  

 

3.1.  Introduction 

3.2 Methods 

3.3 Results 

         3.3.1    Lymphocyte transformation test (LTT) of patients with piperacillin hypersensitivity  

         3.3.2    Generation of piperacillin specific T-cell clones from patients’ PBMCs.  

         3.3.3    Piperacillin specific T-cell responses of the patients.  

         3.3.4   The cytokines and cytolytic molecule profile of the piperacillin-specific T-cell 

clones.   

         3.3.5    The surface markers of the T-cell clones.  
 

         3.3.6    V  expression of piperacillin specific T-cell clones.  

3.4 Discussion 
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3.1. Introduction 

Piperacillin hypersensitivity usually involves skin inflammation such as maculopapular 

exanthema (MPE), or delayed onset urticaria. It has been established that T-cells play an 

important role in piperacillin- induced skin inflammation (Schnyder et al., 1998; Pichler, 2002; 

Naisbitt et al., 2007; Martin et al., 2010). Cystic fibrosis (CF) patients were chosen for this study 

because of the high frequency of hypersensitivity reactions. CF patients live with a life-long 

recurrent bacterial infection and piperacillin is commonly prescribed. Unfortunately, piperacillin 

induced 10 times higher rates of drug hypersensitivity in CF patients compared with normal 

population, 26%-50% compared with 1-10% (Moss et al., 1984). Thus the CF patients’ treatment 

with antibiotics has been restricted by drug hypersensitivity.  

Hypersensitivity reactions such as MPE involve drug-specific cytotoxic CD4+T cells. In contrast, 

the presence of drug-specific CD8+T cells, which mediate severe drug hypersensitivity reactions 

such as SJS-TEN, are much more restricted. However, the role of CD8+T cells in MPE cannot be 

ruled out. Drug-specific T-cell clones have been used routinely in mechanistic studies to define 

the cellular pathophysiology of drug hypersensitivity reactions. The characterization includes T-

cell cytokine secretion, cytotoxicity, cell surface molecules such as CD4/CD8 and chemokine 

receptors, and drug specific TCR diversity.  

 

It is known that, piperacillin specific T-cell clones can be isolated from hypersensitive patients’ 

blood. Drug stimulation of the PBMC results in the secretion of IFN-, IL-5, IL-13 but not IL-10, 

which indicates a mixed panel of Th1 and Th2 cells, but not regulatory T-cells. However the 

involvement of the newly discovered CD4+ T-cell subsets Th17 and Th22 has not been 

investigated. Th17 and Th22 play important role in skin reactions and they are named after the 
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particular cytokines they secrete; IL-17 and IL-22, respectively (Infante-Duarte, et al 2000; 

Eyerich et al., 2009). Th17 cells are critical in autoimmune diseases, such as psoriasis (Kagami et 

al., 2010), Crohn’s disease (Holtta et al., 2008), and rheumatoid arthritis (Hirota et al. 2007). In 

psoriasis, IL-17 promotes chemokine secretion by keratinocytes and amplifies inflammation by 

recruiting more inflammatory cells (Harper et al., 2009). In an in vitro skin injury model, IL-22 

promoted the proliferation of keratinocytes and enhanced wound healing (Eyerich et al., 2009), 

whereas in auto- immune disease such as the very late phase of psoriasis, Th22 promotes the 

inflammatory response (Kagami et al., 2010; Michalak-Stoma et al., 2013). Thus, it is important 

to analyze the cytokine profile that T-cells secrete in drug hypersensitivity.  

 

Chemokine receptor expression directs T-cell migration and dictates the final destination of T-

cells. Cutaneous lymphocyte antigen (CLA) expressed on the T-cell surface is a hallmark of skin 

migration. CLA is an integrin that slows down T-cells rolling along the vesicular endothelium 

near the inflamed site. Subsequently, chemokines released by inflamed skin bind to chemokine 

receptors on T-cell surfaces such as CCR4, CCR8 and CCR10. T-cells then migrate following a 

chemokine diffusion gradient and accumulate at the site of inflammation. To study tissue-homing 

of drug specific T-cells, the profile of chemokine receptors has been tested including skin- and 

gut-oriented CXCR3.  

 

The aim of this chapter was to analyze the phenotypic and functional abilities of peripheral blood 

T-cells isolated from hypersensitive patients with cystic fibrosis. The data generated are used in 

chapter 4 to compare the drug-specific T-cell response induced in blood and inflamed skin of the 

same hypersensitive patients. 
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3.2 Methods  

Three patients with CF and piperacillin hypersensitivity were recruited in 2011 for this study and 

the clinical details are shown in Table 3.1. Three normal volunteers were also recruited as 

controls. Although these numbers are low and not representative of the general hypersensitive 

population, cloning is very labor intensive procedure. Cloning T-cells from three patients and 

detailed characterization of the clones takes approximately 12 months. Thus, analysis of 

additional patients was not possible.  

 

Patient Age / 

Gender 

Drug Reaction 

 

Reaction 

Time+ 

Time* Skin 

Prick Test 

Intradermal 

skin test 

P1 20/M piperacillin  MPE/fever 2 0.5 - - 

         
P2 29/F piperacillin  Fever/arthralgia  9 6 - - 

         

P3 29/M piperacillin  MPE 5 2 - + at 48 hours 

Table 3.1 The clinical history of hypersensitive patients with cystic fibrosis.  (Age in years, Reaction 

Time+: time from treatment to reaction in days, Time*: time since reaction in years, M: male, F: female, MPE: 

maculopapular exanthema, P: patient) 

 

PBMCs from patients and healthy volunteers were used to perform a lymphocyte transformation 

test (LTT) using piperacillin at 0.5 mM to 4 mM.  PBMCs were then used to set up bulk cultures 

with piperacillin which were used for isolation of drug-specific T-cell clones. Irradiated, 

autologous EBV transformed B cells were used as antigen presenting cells (APCs) in assays with 

the T-cell clones. Clones displaying a stimulation index (cpm in drug-treated cultures/cpm in 

medium control cultures) of 2 or above were used in all experiments. When available multiple 

clones from different donors were used in all mechanistic studies. However, clones have a very 

short life-span. They very rapidly become anergic to drug stimulation. Thus, several experiments 
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were limited to 3 clones. Although this number was low, it allowed us to conduct statistical 

analysis of the data. 

The phenotype and functional abilities of the T-cell clones was then assessed: proliferation was 

measured by thymidine incorporation, release of cytokines and cytolytic molecules was 

measured by ELISpot, and the surface phenotype was assessed by flow cytometry looking at 

CD4, CD8, TCR V  and chemokine receptor expression.   

 

3.3 Results 

 

Three piperacillin hypersensitive patients were recruited. They had a similar reactions to 

piperacillin, which is maculopapular exanthema (MPE). Patient 1 and 2 also showed fever and 

patient 2 showed arthralgia as side effects (Table 3.1).  The time of onset of hypersensitivity 

reaction to the drug administration was a minimum 2 days.  Skin prick tests were taken and all 

the patients were negative. Intradermal test result showed patient 1 and 2 were negat ive. Patient 

3 had a reaction to the intradermal test in 2 hours. The tests above suggest piperacillin reaction is 

delayed-type hypersensitivity. Characterization of the function of piperacillin- reactive T-cells 

was conducted in subsequent sections using peripheral blood from the hypersensitive patients.  

 

 

3.3.1 Lymphocyte transformation test (LTT) of patients with piperacillin hypersensitivity  

LTT results presented in figure 3.2 are measured by SI. All 3 patients with CF showed a positive 

LTT when PBMCs were incubated in vitro with piperacillin. The response was dose dependent 

with a maximal response at 1-2mM. PBMCs from healthy volunteers (n=3) proliferated in 

response to tetanus toxoid (5g/ml) but not to piperacillin.  
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    Piperacillin (mM)   

  cpm in control 0.5 1 2 4 TT (5g/ml) 

P1 905 1.8 2.6 4.8 2.2 16 

P2 2333 25.4 32.8 30 19.4 3.6 

P3 137 3.7 3.9 23.5 4.7 52.8 

V1 1121 1 0.8 1.3 1.3 84.1 

V2 3683 0.6 0.5 0.5 0.6 26.7 

V3 1352 0.7 0.5 0.5 0.7 7.2 

 

 

Table 3.2 Piperacillin-specific lymphocyte transformation test (LTT). LTT of the piperacillin 

hypersensitive patients and normal volunteers was performed using PBMCs at 1.5 x 10
5 
cells/well. Cells were 

incubated with piperacillin or tetanus toxoid (TT) as a control for 6 days and proliferation was measured by 
3
H-thymidine incorporation. Drug specificity of PBMCs were shown by SI (stimulation index).  

 

 

3.3.3 Piperacillin specific T-cell responses of the patients.  

After serial dilution and drug specificity test, 45 T-cell clones of patient 1, 18 clones of patient 2, 

and 15 clones of patient 3 were picked out for more detailed analysis (Table 3.3A, B and C).  The 

proliferation of clones against piperacillin was dose-dependent between 0.5-2mM piperacillin. 

  
 

 

 

Table 3.3A Piperacillin-specific proliferation (SI) of T-cell clones from patient 1 (45 clones) 

    Drug (mM) 

Clones  cpm in control 0.5 1 2 

12* 4088 3.0 3.0 2.8 

15 3889 3.5 5.2 3.5 

19 4338 11.7 6.5 5.3 

21 4804 2.4 2.3 2.4 

22 5323 4.0 4.9 4.9 

24 2911 6.5 7.0 7.8 

41 5101 8.4 8.0 8.1 

56 3583 10.7 13.0 10.9 

67 3714 3.3 5.9 4.7 

76 3794 2.8 6.4 5.3 

79 3836 7.8 10.3 10.5 

82 4778 3.2 4.8 4.1 

114 4270 6.9 6.5 8.9 

 



 

80 

 

120 5186 4.8 4.6 5.1 

122 4379 5.1 3.9 10.0 

125 9799 4.3 3.7 4.6 

126 4526 10.0 8.1 9.9 

128 5059 4.2 3.3 4.3 

142 3645 4.1 5.6 5.3 

143 4370 2.6 3.3 3.4 

145 3302 4.7 8.8 7.8 

148 8642 9.7 9.3 9.4 

149 5869 6.1 6.7 6.4 

150 4037 8.3 8.2 7.3 

154 3838 2.9 4.9 5.8 

157 4105 5.2 8.3 7.8 

158 8442 3.4 3.9 4.3 

165 6171 4.1 5.2 5.3 

176 7293 23.3 27.8 31.2 

180 8702 4.7 7.3 6.6 

183 15548 5.4 4.8 5.2 

187 4511 5.3 6.3 5.2 

188 8247 5.0 5.0 6.9 

190 9131 5.7 8.4 7.3 

195 6405 16.7 27.4 27.4 

196 11283 4.9 6.8 6.2 

198 3596 2.4 4.9 3.8 

199 2848 8.3 12.3 12.0 

202 3455 23.7 28.4 25.8 

211 3680 10.4 17.3 14.8 

215 2887 67.1 71.2 81.0 

219 3798 19.7 21.2 23.5 

258 4594 2.5 2.5 2.4 

259 5571 8.7 13.2 9.6 

269 5160 8.2 6.8 6.3 

 

*Number assigned to T-cell clones throughout chapter 1 (including ELISpot test, chemokine receptor, and V 

receptor).  
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Table 3.3B Piperacillin-specific proliferation of T-cell clones from patient 2 (18 clones) 

    Drug (mM) 

Clone 
number   cpm in control 0.5 1 2 

9* 2467 29.0 44.6 45.7 

23 2547 33.7 44.3 40.9 

29 3256 4.6 5.0 5.2 

39 4012 3.6 3.9 4.6 

55 3290 8.1 13.9 11.1 

73 3181 20.6 19.1 13.4 

77 4908 11.3 11.7 11.3 

88 2757 11.4 10.4 9.7 

106 45242 2.0 2.3 2.2 

109 6117 3.1 2.9 3.3 

119 4503 2.9 5.4 4.3 

150 3077 6.0 5.9 5.8 

153 3958 10.2 10.5 10.6 

154 9422 2.5 3.3 2.7 

168 10211 2.5 2.1 2.3 

235 3441 14.9 12.1 11.9 

237 4256 10.1 8.6 10.4 

266 3948 8.6 9.0 6.7 
 

*Number assigned to T-cell clones throughout chapter 1 (including ELISpot test, chemokine receptor, and V 

receptor).  

Table 3.3C Piperacillin-specific proliferation of T-cell clones from patient 3 (15 clones) 

    Drug (mM) 

Clone 
number  cpm in control 0.5 1 2 

14* 4180 17.9 17.3 19.5 

27 3764 7.4 8.9 9.4 

146 3668 16.4 25.7 20.5 

160 3271 6.4 8.9 9.5 

171 6888 5.7 9.6 8.8 

174 5541 6.7 9.0 4.5 

182 6693 4.3 8.7 7.6 

220 3655 2.9 2.7 0.8 

222 3471 4.1 3.3 1.3 

231 7991 3.3 3.3 2.0 

239 2555 41.0 62.0 71.6 

246 2169 10.8 17.5 20.1 
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247 2257 10.7 14.1 16.0 

250 2417 25.8 32.4 36.3 

251 2791 2.9 5.2 5.4 
 

*Number assigned to T-cell clones throughout chapter 1 (including ELISpot test, chemokine receptor, and V 

receptor).  

Table 3.3 T-cell clones from 3 patients are reactive to piperacillin in a dose dependent manner. 5 x 10
4
 T-cell  

clones were placed duplicate wells. 1x10
4 

Epstein-Barr virus (EBV) transformed B-cell  were added in the presence of 

either medium or piperacil lin to a final volume of 200 µl/well. The drug was added at the concentrations indicated. 

78 clones from 3 patients were tested. Proliferation was measured by 
3
H-thymidine incorporation for the final 16 

hours. Data is presented as SI. 

3.3.4 The cytokines and cytolytic molecules secreted by piperacillin-specific T-cell clones.   

Twenty four well-growing piperacillin-specific T-cell clones were randomly selected with SI from 3 to 40 

for the assessment of cytokine secretion. 3 million cells of a T-cell clone were required for a full scale 

experiment. Thus, it was not possible to conduct cytokine profiling experiments on all clones.  

ELISpot image results presented in Table 3.4A and Figure 3.1A-G and the result summary (Table 

3.4 B-D) show that of the 24 clones, 14 clones secreted IFN-γ, 20 clones secreted IL-5 and 18 

clones secreted IL-13 (Figure 3.1 A, B, C). Furthermore, 21 clones secreted IL-22, but no IL-17A 

secretion observed with any of these clones (Figure 3.1 D, E). 20 clones secreted the cytolytic 

molecule, granzyme B and 14 clones secreted FasL (Figure 3.1 F, G). This data suggests IL-22 

may be an important feature in hypersensitivity to piperacillin, whereas, IL-17 does not seem to 

be involved. Th1 secreting T-cells secreted mainly IFN-γ whereas Th2 T-cells secreted cytokines 

such as IL-5 and IL-13. The cytokine profiles showed that both Th1 and Th2 T-cell clones 

activated with piperacillin were generated from patients with CF. However, Th1 and Th2 

cytokine secretion in T-cell clones is not always clearly defined in that some T-cells secreted a 

mixture of Th1 and Th2 cytokines. For example, clones 176, 215, 14, and 39 express IFN-γ 

which is a Th1 cytokine, as well as IL-5 and IL-13, which are Th2 cytokines. In addition T-cell 

clones also secreted a range of cytolytic molecules such as granzyme B and Fas- ligand.  
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To characterize whether drug-specific proliferation and cytokine release after drug stimulation 

were synergistic, an attempt has been made to find a correlation between the drug specific 

secretions of Th2 cytokines, IL-13 and IL-5, by 24 clones (Figure 3.1 H).  However, no 

significant correlation (r2 =0.056, and r2>0.5) was observed. Similarly, the correlation between 

IL-22 and IFN- and the proliferative response of these clones was studied, but still, no 

correlation was observed (Appendix data).  

 

 

 Piperacillin exposure 

 0 0.5mM 0 0.5mM 0 0.5mM 

Layout of 

T-cell clones 
 
(Black = Patient 1) 
(Red = Patient 2) 
(Blue=Patient 3) 

56 56 250 250 39 39 

126 126 266 266 55 55 

176 176 235 235 73 73 

199 199 77 77 119 119 

202 202 182 182 146 146 

211 211 231 231 160 160 

215 215 14 14 171 171 

239 239 27 27 174 174 

 

Table 3.4 A. The layout of T-cell clones on ELISpot plates. 
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     Figure 3.1 A                                       Figure 3.1 B                                               Figure 3.1 C 

 

                  

                                 

 

 

 

 

 

 

 

 

               Figure 3.1 D                                                            Figure 3.1 E 
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  Figure 3.1 F                                    Figure 3.1 G                                      Figure 3.1 H 

  

 
 

 

 

 

                                                                                                                              

Figure 3.1 Cytokine and cytolytic molecule profile of the piperacillin-specific T-cell clones generated from 

hypersensitive patients. (A) IFN- ELISpot image. (B) IL-5 ELISpot image (C) IL-13 ELISpot image. (D) IL-22 

ELISpot image and (E) IL-17A ELISpot image. (F) granzyme B ELISpot image. (G) FasL ELISpot image. T-cell 

clones from 3 patients were plated at 5 x 10
4 

cells/well with 1 x 10
4 

cells/well irradiated autologous B cell APCs in 

the presence of  0.5 mM of p iperacillin for 2 days prior to the plate developing according to manufacturer’s 

instruction. The layout of the T-cell clones in  the ELISpot image is shown in Table 3.3A. (H) The correla tion 

between piperacillin specific IL-5 and IL-13SI.  
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 Table 3.3B 

           
 Table 3.3 C                

 
Table 3.3 D 

 
Table 3.4 B-D. A summary of the ELIS pot results of Figure 3.3. Cytokine and cytolytic molecule profile of the 

piperacillin-specific T-cell clones generated from the 3  patients. (B) the summary result for 10 T-cell clones from 

patient 1. (B) the summary  result for 6 T-cell clones from patient 2. (C) the summary  result for 8 T-cell clones from 

patient 3. The ELISpot results were semi quantified  as follow: the numbers of spots in the non-stimulated control as 

-.   +: 40 spots more than the control.   ++:  80 spots more than the control. +++: 120 sports more than the control.  
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3.3.5 Surface markers expressed on piperacillin-specific T-cell clones 
  

The expression of CD markers on the T-cell clones was determined by flow cytometry (Figure 

3.2 and Table 3.5). Among the 78 clones isolated from the 3 patients, 77 clones were CD4+ and 

the remaining clone was CD4+CD8+ (Table 3.5). Further analysis of 12 piperacillin-specific T-

cell clones showed that all clones expressed the chemokine receptor CXCR3, 8 clones expressed 

CCR4, 3 clones expressed CCR10 and one clones expressed CCR8 (Table 3.5 and Figure 3.2). 

However, CLA was only expressed at low levels.  
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Figure 3.2 T-cell surface molecule identification on piperacillin-specific T-cell clones. The cell surface 

molecule expression on specific T-cell clones was measured by flow cytometry. The figure shows 

representative clones. Red shaded area represents isotype control. Black line shows antibody-stained cells. 

 

 

Table 3.5 Expression of T-cell surface molecules. 5 x 10
5
 T-cell clones were incubated with anti-human CD4-

FITC, CD8-PE, CXCR3-APC, CCR4-PE, CLA-FITC, CCR10-PE, CCR5-FITC, CCR2-PE, CCR3-FITC, CCR8-PE 

antibodies (for 20 min  on ice in the dark). The cells were then washed and re-suspended in 150 µl FACS buffer and 

analyzed by flow cytometry on a FACS Canto II. Data is given as mean fluorescence index (mean fluorescence of 

test antibody/mean fluorescence of isotype control antibody). An index of <2.0 was regarded as no expression.  
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3.3.6 TCR V  expression of piperacillin specific T-cell clones. 
 

Sixteen clones were assessed for TCR V  expression by flow cytometry. These analyses were 

conducted on the best growing clones randomly selected from the three patients.  The panel of 24 

antibodies represents most of the common V  types and covers 85% of all Vs. Two T-cell 

clones (clone 27 and 199) were negative for all the TCR V  tested. The remaining 14 clones 

expressed 9 different TCR Vs, with V Vand V9 being the most common (Figure 

3.3 and 3.4). T-cell clone 174 was in fact a mixture of 2 different clones with 2 different TCR 

V , namely Vand V17 and should therefore be referred to as a drug-responsive cell line 

(Figure 3.4).  

 

 
 

 
 

 

Figure 3.3 TCR VExpression on piperacillin-specific T-cell clones from hypersensitive patients with CF.  

16 p iperacillin-specific T-cell clones were tested. Minimum of 5 x 10
4 

cells were stained with l V detecting 

antibody for 20 minutes. These cells were washed and the stained and analyzed using a FA CS Canto II. 
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Figure 3.4. Flow cytometry assessment of TCR V expression on T-cell clones. These graphs show an example 

of V receptor expression on the tested clones.  Flow cytometry profiles of 4 T-cell clones expressing single 

Vreceptors, and the profile of one clone, clone 174, which was a mixed cell population expressing V9 and 

V17. 

 

 

3.4 Discussion 

T-cell responses to piperacillin were examined in 3 patients with CF. Lymphocytes from all 3 

hypersensitive patients were stimulated to proliferate in the presence of piperacillin in a dose-
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dependent manner. In contrast, lymphocytes from healthy controls were not stimulated to 

proliferate. Collectively, these data indicate the presence of piperacillin-responsive T-cells in the 

peripheral circulation of the hypersensitive patients (Pichler et al., 2004).  

To analyze the phenotype and function of these drug-specific responses in detail, drug-

responsive T-cell lines were generated and individual T-cells were cloned. The T-cell response to 

piperacillin was dominated by CD4+ T-cells because 77 out of 78 clones expressed the TCR co-

receptor CD4. CD4+ T-cells dominate in mild skin rashes such as maculopapular exanthema, 

whereas CD8+ T-cells tended to dominate in severe drug hypersensitivity reactions such as 

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) (Correia et al., 1993).  

Following piperacillin treatment, the majority of clones (21 out of 24 clones) secreted IL-22 but 

not IL-17. These data suggest that Th22, but not Th17, cells play a role in piperacillin 

hypersensitivity. Th22 secreting cells promote the proliferation of keratinocytes and play a role 

in healing wounds in a skin injury model, which suggests Th22 cells may be protective in skin 

injury (Eyerich et al., 2009). In contrast, Th22 cells have also been shown to promote 

inflammation. For example, in the very late phase of psoriasis, Th22 cells play an important role 

in mediating the inflammatory condition (Kagami et al., 2009; Michalak-Stoma et al., 2013). The 

role of IL-22 in the pathogenesis of piperacillin hypersensitivity is not known. Thus, in next 

chapter patient T-cells derived from inflamed skin will be isolated to further characterize the role 

of Th17 and Th22 cells in drug hypersensitivity.  

Both Th1 and Th2 cells contribute to the pathology of drug hypersensitivity. The T-cell clones 

identified in this study were a mixture of Th1 and Th2 cytokine secreting cells as shown by their 

cytokine profiles. Correlation between drug specific secretion of Th2 cytokines, IFN-, or IL-22 

and drug-specific proliferation was studied. However, significant correlation was not observed, 
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highlighting the significant variability of individual clones. These data are consistent with a 

previous study of maculopapular reactions caused by a variety of drugs in that the majority of 

clones expressed low/moderate levels of IFN-γ and high levels of IL-5 and IL-13 (Lochmatter et 

al., 2009). Lochmatter et al (2009) showed that IFN-γ and IL-13 are more sensitive marker for 

drug sensitization than IL-5. IL-5 is able to stimulate eosinophils and thereby amplify 

inflammatory conditions. IL-13 promotes B-cell IgE antibody and polarizes the alternatively 

activated macrophages, which are important in tissue remodeling and allergy. IFN-γ plays a role 

in inducing inflammatory cytokine production and inflammation. It also promotes keratinocyte 

killing by up-regulating MHC expression of the tissue cells. Some of the piperacillin-reactive 

clones may also be capable of cytotoxic activity as shown by secretion of FasL and granzyme B. 

Therefore, upon drug stimulation the piperacillin-specific T-cell clones can act as pro-

inflammatory cells. If these T-cells were present in the skin of patients with CF they could cause 

tissue damage, including the keratinocytes apoptosis (Schnyder et al., 2000).  

The homing of human T-cells in piperacillin hypersensitivity has not been previously studied. 

Chemokine receptors can regulate T-cell migration from the lymph nodes to the inflamed site. 

Once there, the T-cells may increase inflammation by secreting cytokines and cytolytic 

molecules. In this study I have analyzed the chemokine receptors expressed on 12 piperacillin-

specific T-cell clones. The T-cell clones expressed high levels of CXCR3 and CCR4, and low 

levels of CCR8 and CCR10. In patients with dermatitis, CCR4 and CCR10 were classified as 

important mediators of T-cell migration to the inflamed tissue (Reiss et al., 2001), whereas CCR8 

was important in homing of memory T-cells to healthy skin (Schaerl et al., 2004). CXCR3 is 

expressed primarily on activated T- lymphocytes and plays a role in the recruitment of 

inflammatory cells. The T-cell clones did not express CLA which is known to be important in 

http://en.wikipedia.org/wiki/T_lymphocytes
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patients with drug hypersensitivity associated with exposure to carbamazepine (CBZ) (Wu et al., 

2007). Besides CLA, CBZ-reactive T-cell clones also expressed chemokine receptors such as 

CXCR4, CCR4, CCR5, and CCR8 (Wu Y et al., 2007), which suggested mechanistic differences 

between the two types of hypersensitivity.  

Piperacillin reactive T-cells express a mixed pattern of TCR Vβ receptors. If T-cell clones 

express the same Vβ receptor, it is believed that the cells may be generated from a single cell ie a 

pure clone. Furthermore, since multiple receptors were expressed, the data suggests that the 

piperacillin haptenic antigen is a strong antigen as it activates T-cells expressing multiple TCRs. 

This is likely due to the drug hapten binding to multiple sites on proteins such as HSA. For 

carbamazepine (CBZ) hypersensitivity, the CBZ specific T-cell TCRs were dominated with Vβ-

11-ISGSY, and the CD8+ T-cells isolated from the inflamed site secreted granulysin, inducing 

the killing of keratinocytes (Ko TM et al., 2007). For abacavir (ABC) hypersensitivity, the 

majority of ABC specific T-cell clones were CD8+ and they expressed broad spectrum of TCR 

V  receptors (Chessman D et al., 2008). Fourteen T-cell clones from piperacillin hypersensitive 

patients show a mixed pattern of TCR V  expression usage which is more similar to the situation 

with abacavir reactive clones. However, the importance of this similarity is limited since the 

mechanisms of T-cell activation by the two drugs differ. For example, abacavir hypersensitivity 

is associated with a specific HLA risk allele and CD8+ T-cells whereas piperacillin 

hypersensitivity is not associated with a HLA risk allele and involves CD4+ cells.  

Drug hypersensitivity can also be induced by other penicillins, such as amoxicillin and 

flucloxacillin. Susceptibility to these drugs is associated with specific HLA alleles. These 

differences suggest that different mechanisms may be involved in the hypersensitivity reaction of 

piperacillin compared to amoxicillin and flucloxacillin. Clinically, piperacillin induces milder 



 

94 

 

reactions compared with flucloxacillin and amoxicillin. Piperacillin-specific T-cells induce CD4-

dependent drug hypersensitivity, whereas CD8+ T-cells play a crucial role in the reaction to 

amoxicillin and flucloxacillin (Monshi et al 2013, Kim et al., 2015). Flucloxacillin-specific CD8+ 

T-cells isolated from hypersensitive patients with liver injury are activated via a hapten pathway, 

in need of protein processing and presentation by antigen presenting cells, which is restricted to 

HLA-B*57:01 (Monshi et al., 2013).  Amoxicillin specific T-cells isolated from patients with 

liver injury are also predominantly CD8 positive and the activation is again dependent on antigen 

processing (Kim et al., 2015). The hypersensitivity reaction with a greater clinical similarity to 

piperacillin is sulfamethoxazole (SMX), which is not β- lactam antibiotic. Both SMX and 

piperacillin generate similar clinical symptoms of skin rash, and the SMX inflammatory T-cells 

are mainly a CD4+ phenotype (Schnyder et al., 2000).  

The main limitation of this study is the small number of patients studied (n=3). It can be difficult 

to obtain the patient samples. Experiments were also lost due to microbial contamination. Finally 

experiments failed due to poor growth of the cells. A larger study size might show greater patient 

variation. However, the validity of my study is supported by 1) the data being consistent with 

published work showing a mixed Th1 and Th2 cytokine profile of individual clones, and 2) the 

limited variation in T-cell clones isolated from individual patients.  

In conclusion, piperacillin specific T-cells isolated from patients with cystic fibrosis were found 

to be mainly CD4+ T-cells; secreting a mixed cytokine profile of Th1, Th2 and Th22 cytokines, 

but IL-17. Expression of chemokine receptors of CXCR3, CCR4, CCR8 or CCR10 was detected 

on the clones indicating that they may migrate from blood to inflamed skin. The varied TCR V 

receptor profile suggested that piperacillin activates a variety of clones expressing different 

receptors. 



 

95 

 

 

Chapter 4 

 

The role of IL-17 and IL-22 producing cells in the skin from 

piperacillin hypersensitive patients with Cystic fibrosis  

 

4.1  Introduction 

4.2  Methods 

4.3  Results 

          4.3.1  Characteristics of two piperacillin hypersensitive patients with CF. 
 

          4.3.2  Lymphocyte transformation test (LTT) of peripheral blood lymphocyte cells from 
piperacillin hypersensitive patients.  
 

          4.3.3  IFN-γ, IL-13, IL-17A, and IL-22 secretory profile of the peripheral T-cells.  

          4.3.4  Characteristics of T-cell clones generated from skin biopsy of hypersensitive 

patients. 

          4.3.5  IFN-γ, IL-13, IL-17A, and IL-22 secretory profile of skin T-cell clones.  

          4.3.6  Chemokine receptor profile in piperacillin specific T-cell clones.  
 

4.4 Discussion. 
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4.1  Introduction 

MPE is the mildest but the most common symptom among the immune mediated skin reactions, 

comprising more than 90% of reactions (Hunziker et al., 1997). MPE usually occurs in 1-2 

weeks after drug administration (Valeyire-Allanore et al., 2007). Piperacillin is one of the drugs 

that commonly induce MPE in patients with cystic fibrosis.  

T-cells are thought to play a critical role in inducing these skin reactions.  Immuno-histochemical 

staining of the skin and functional studies with patient blood lymphocytes reveal the presence of 

drug-specific T-cells that induce cytotoxicity and inflammation in targeted tissues when 

activated. Yawalkar N et al., (2000a) demonstrated that MPE skin is infiltrated with both CD4+ 

T-cell and CD8+ T-cells and CD4+ T-cells dominant in the inflamed tissue. Both types of T-cells 

secrete cytolytic molecules such as perforin and granzyme B and thus have the capacity to cause 

cytotoxicity.  

Secretion of IL-12 and IFN-γ suggest that cytotoxic Th1 cells play an important role in these 

reactions.  Yawalkar N et al., (2000b) also found IL-5 and exotoxin secreting in T-cells in MPE 

skin biopsies, which were capable of attracting and promoting eosinophil-mediated 

inflammation, suggesting that MPE is mediated by drug-specific T-cells that secrete Th1 and Th2 

cytokines. 

In the previous chapter, drug specific T-cells isolated from PBMCs were characterized as 

cytotoxic CD4+ T-cells that secrete Th1, Th2 and Th22 cytokine signatures. Furthermore, some 

of the clones had a tendency to migratory towards skin since they expressed skin-homing 

chemokine receptors CCR4 and CCR10. 

In this chapter, T-cells isolated from piperacillin- induced skin lesions have been studied with the 

aim of giving a complete characterization of piperacillin-specific T-cells that participate in the 
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drug hypersensitivity reaction.  

Skin biopsies were obtained following piperacillin skin testing to isolate T-cells and generate 

clones.  

Chemokines play a central role in the immune system by orchestrating the migration of immune 

cells. As introduced in previous chapter, CLA and the chemokine receptors CCR4, CCR8 and 

CCR10 are key mediators in skin homing. Gut homing receptors such as CCR9, C XCR3 and 

CXCR6 were also been tested in our study to explore whether the drug-specific T-cells 

preferentially express receptors involved in migration towards skin. Finally, CD69 a marker of 

activated T-cells (Moretta et al., 1991) and E-cadherin, which mediates the connection between 

epithelial cells and T-cells were measured (Cepek et al., 1994).  

The roles of Th17 and Th22 secreting T-cells that reside in the MPE skin biopsy of drug 

hypersensitive patients have not been studied. In this study, we characterized the T-cells in 

inflamed skin biopsies and compared the finding to the results presented in chapter 3 

characterizing drug-specific T-cells isolated from blood of piperacillin hypersensitive patients 

with CF. Importantly the two patients studied were also included in the analysis in chapter 3.  

IL-17 is the founding member of the IL-17 family of cytokines. Six IL-17 family members has 

been identified, which includes IL-17A (also called IL-17), IL-17B, IL-17C, IL-17D, IL-17E and 

IL-17F (Korn et al., 2009). IL-17A has the closest sequence homology (58% at the protein level) 

with IL-17F and they have a similar biological effect (Hurst et al., 2002). To test IL-17A 

secretion in the assay because IL-17A are secreted by T-cells (Korn et al., 2009) whereas IL-17F 

can be secreted by both Th17 and monocytes (Mcallister et al., 2005).  Therefore, in this study 

IL-17A secretion was chosen as a signature of drug specific Th17 cells.  
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4.2  Methods  

To characterize drug specific T-cells in inflamed skin and peripheral blood from the same 

patients with CF, T-cells were isolated from patients’ blood and skin biopsies (described in 

section 2.17), and cloned (described in 2.5). The T-cells were stimulated with Epstein-Barr virus 

(EBV) transformed B cells (described in 2.4) as antigen presenting cells (APCs). T-cell cytokine 

secretion was measured by ELISpot (described in 2.14). T-cell cellular surface molecule 

expression, such as CD4, CD8 and chemokine receptors, was determined by flow cytometry 

(described in 2.7). The methods for PBMC isolation and T-cell cloning are described in section 

2.3 and 2.5, respectively). Drug specificity of the T-cell response was measured using a 

proliferation assay (described in 2.8).  

Statistics 

Unless stated otherwise, the ANOVA test was applied to multiple comparisons. A p value < 0.05 

was considered statistically significant.  
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4.3  Results 

 

 

4.3.1  Characteristics of two piperacillin hypersensitive patients with CF.  

 
Patient Age / 

Gender 
Drug Reaction 

 
Reaction 

Time+ 
Time* Skin 

Prick Test 
Intradermal 

skin test 

 

P1 

 

23/M 

 

piperacillin 

 

MPE/fever 

 

2 

 

0.5 

 

- 

 

+ at 48 hours 

         

P2 32/M piperacillin MPE 5 2 - + at 48 hours 

 
 

Table 4.1 Clinical history of patients with cystic fibrosis. The table shows the age, gender and clin ical information 

of the hypersensitive patients. (Age in years, Reaction Time
+ 

= t ime from treatment to react ion in  days, Time*  = 

time since reaction in years, M: male, F: female, MPE: maculopapular exanthema, P: patient) . 
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4.3.2  Lymphocyte transformation test (LTT) of peripheral blood lymphocyte cells from 

piperacillin hypersensitive patients. 

 
In order to determine whether piperacillin-specific T-cells circulate in blood and to explore 

differences between the T-cells in the circulation and inflamed skin tissue, I firstly performed a 

LTT using PBMC from the patients. Lymphocytes from both piperacillin hypersensitive patients 

with CF proliferated when PBMCs were incubated in vitro with the drug. The response was 

dose-dependent in both patients with a maximal response observed at 2mM (Table 4.2). The LTT 

results are similar to the results we conducted on the same patients three years earlier (Table 3.2).  

 

    Piperacillin (g/ml)   

  cpm in control 0.25 0.5 1 2 4 TT (5g/ml) 

P1 370 5.3 8.4 16.8 28.0 14.6 60.8 

P2 1436 15.5 21.3 26.4 30.2 28.0 18.3 
 

 
Table 4.2    Piperacillin-specific lymphocyte transformation test (LTT). The LTT was performed using PBMCs 

at 1.5 x 10
5 

cells/well. PBMC were exposed to piperacillin 0.125-4 mM for 6 days with TT as control.  Cellular 

proliferation was measured by 
3
H-thymidine incorporation for the final 16 hours . Drug specificity is shown by SI. 

 

 

4.3.3  Characteristics of T-cell clones generated from blood of hypersensitive patients. 

Piperacillin-responsive lymphocytes were investigated for drug specific cytokine secretion 

profiles using ELISpot analysis. Piperacillin stimulation markedly enhanced IFN-γ, IL-13 and 

IL-22 secretion in both samples compared with control cultures without piperacillin (Figure 4.2). 

In contrast, piperacillin-treatment did not result in the secretion of IL-17A. In the PBMCs 

samples without piperacillin challenge, only low levels of IFN-γ were detected.  

In all cases, phytohaemagglutinin (PHA; positive control) activation of PBMCs resulted in 

cytokine secretion of cytokines including IL-17A (Lindahl-Kiessling & Book, 1964).  
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Figure 4.1. Piperacillin-s pecific cytokine secretion from PBMC of hypersensitive patients detected by 

ELIS pot. Piperacillin hypersensitive patients’ PBMCs 1.5 x 10
6 

cells/ml were cultured in 96-well U-bottomed tissue 

culture plates with or without 5mg/ml of PHA or piperacillin (2mM) for 6 days at 37°C, 5% CO2. Antigen-specific 

cytokine production was measured by IFN-γ, IL-13, IL-17A and IL-22 ELISpot.  

 

4.3.4  Characteristics of T-cell clones generated from skin biopsies of hypersensitive 

patients. 

To phenotypically characterize the T-cells in skin of the two drug hypersensitive patients, 

piperacillin-specific T-cell clones were generated. The skin biopsy samples were obtained 

through 3mm puncturing, after a positive dermal prick test. T-cells residing in the skin were 

isolated according to the protocol described in chapter 2 (section 2.17).  Flow cytometric analysis 

was carried out on T-cell clones obtained from hypersensitive patient skin. In total, 690 CD4+ or 

CD8+ T-cell clones were isolated from inflamed skin of the 2 piperacillin hypersensitive patients 

with CF. Nighty six of the clones tested were piperacillin responsive (Table 4.3). 89% of the 

piperacillin responsive clones from patient 1 and 82% from patient 2 were CD4 positive T-cells. 
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All other clones were CD8+ T-cells.  

 

 

Patient ID 

 

Tested 

 

 

Piperacillin 

specific 

 

% CD4
+
 

 

% CD8
+
 

 

Patient 1 

 

 

354 

 

48 

 

89 

 

11 

 

Patient 2 

 

 

336 

 

48 

 

82 

 

18 

 
Table 4.3. Phenotypic characteristics of T-cell clones obtained from skin of hypersensitive patient 1 and 2. T-cells 

were isolated from skin  biopsies as described in the Material and Methods (2.17) and piperacillin-specific T-cells 

were cloned. The phenotype of the - cells (CD4
+
 or CD8

+
) was further characterized by flow cytometry.    

 

 

4.3.5  IFN-γ, IL-13, IL-17A, and IL-22 secretory profile of skin-derived T-cell clones.  

In total, 96 piperacillin specific clones were generated from a total of 690 T-cell clones tested 

with the majority expressing the CD4+ receptor. Drug-specific CD8+ T-cell clones were observed 

at lower numbers. Piperacillin specific cytokine and cytotoxic molecule secretion in 3 T-cell 

clones from patient 1 and 6 clones from the patient 2 was measured by ELISpot. As shown in the 

figure 4.3a-b and Table 4.3 A-B, a similar pattern of drug-specific cytokine and cytotoxic protein 

secretion was observed with all the clones from the two patients. High levels of IFN-γ and IL-22 

secretion was detected after the clones were cultured with antigen presenting cells and 

piperacillin. IL-13 was detected to a lesser extent when drug-treated and control wells were 

compared.  Production of cytolytic molecules such as Fas ligand, granzyme B and perforin was 

also observed with clones from patient 2, while only granzyme B was detected with the clones 

derived from patient 1. IL-17 was not secreted from the piperacillin-specific clones.  
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Figure 4.2a Cytokine and cytolytic protein secretion from piperacillin specific T-cell clones (clones 59, 295 and 

300) generated from inflamed skin of drug hypersensitive patient 1.  5 x 10
4 

T-cell clones were placed  duplicate 

wells. 1x10
4 

autologous APCs per well were added as well as medium or 2 mM piperacillin. The cultures were 

incubated for 6 days in an atmosphere of 37°C 5% CO2. The production of IFN-, IL-13, IL-17A, IL-22, perforin, 

granzyme B, and fas-ligand were determined by ELISpot.  

 

 

 

 

 
 

 

Table 4.4 A. Cytokine and cytolytic protein secretion from piperacillin s pecific T-cell clones . 
The ELISpot results were quantified as follow: the numbers of spots in the non -stimulated control as -. +: 40 spots 

more than the control. ++:  80 spots more than the control. +++: 120 sports more than the control. 
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Figure 4.2b Cytokine and cytolytic protein secretion from piperacillin specific skin T-cell clones (clones 122, 

295, 311, 109, 157 and 223) isolated from inflamed skin of drug hypersensitive patient 2  with CF. As described 

in Figure 4.2a, 5 x 10
4
 T-cell clones were p laced duplicate each well in 2 wells, 10

4
 autologous B cell APCs per well 

were added as well as medium -/+ 2mM piperacillin to a final volume of 200 µl/well. The cultures were incubated 

for 6 days at an atmosphere of 37°C 5% CO2. ELISpot was applied to measure the productions of IFN-, IL-13, IL-

17A, IL-22, perforin, granzyme B, and Fas-ligand. 
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Table 4.4 B. Cytokine and cytolytic protein secretion from piperacillin s pecific T-cell clones . 
The ELISpot results were semi quantified as follow: the numbers of spots in the non -stimulated control as -. +: 40 

spots more than the control.   ++:  80 spots more than the control. +++: 120 sports more than the control.  

 

 

 

4.3.6  Chemokine receptors expressed on piperacillin-specific T-cell clones.  

 

To further characterize the drug specific T-cells isolated from skin of hypersensitive patients, 

chemokine receptor expression was measured using flow cytometry. Comparisons were made 

between blood- and skin-derived clones responsive towards piperacillin, along with piperacillin 

non-specific skin-derived clones (Figure 4.4). Significant differences in the expression of 

receptors were observed for multiple chemokines. Blood derived T-cell clones were shown to 

express high level of CCR1, CCR9, CCR10, CXCR6, CD69 and CLA when compared with 

piperacillin non-specific skin-derived T-cell clones, and with significant expression of CCR9, 

CCR10 and CD69 when compared with piperacillin-specific skin-derived clones. Piperacillin-

specific skin clones showed significant expression of CCR1, CXCR6 and CLA when compared 

to non-specific skin-derived clones, whereas in comparison to T-cell clones isolated from 

PBMCs, piperacillin-specific clones expressed significantly higher levels of CCR2, CCR3, 

CCR4, CXCR1, CLA and E-cadherin. 
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Figure 4.3  Comparison of the chemokine receptors expressed on piperacillin-specific blood- and skin-derived 

T-cell clones. T-cell clones were also compared with skin-derived clones that were not-responsive to piperacillin. 5 

x 10
5
 T-cell clones were incubated with anti-human CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR8, CD9, CCR 

10, CXCR1, CXCR3, CXCR6, CLA, CD69 and E-cadherin antibodies labelled with  either APC, FITC or PE for 20 

min  on ice in the dark. The cells were washed and re-suspended in 150l FACS buffer and analyzed  by flow 

cytometry on a FACS Canto II. The expression of surface molecules is presented as mean fluorescence index, 

calculated as mean fluorescence of test antibody/ mean fluorescence of isotype control antibody. The average MFI 

was used to compare the expression of chemokine receptors for each population of T-cell clones. ANOVA tests were 

used to compare variab les between groups. *p<0.05, **p<0.01, ***p<0.001.  

 

 

4.4 Discussion 

 

In order to study whether piperacillin-specific T-cell responses are detectable several years after 

an adverse event, two of the piperacillin hypersensitive patients recruited in 2010 (Chapter 3) 

were re-recruited in 2013 in this study. For patient 1 was intradermal skin test negative at the 

earlier time-point, but positive three years later. The LTT and ELISpot results suggest that there 

is no marked difference in terms of the T-cell proliferation, key cytokine profile and cytotoxic 

molecules produced when PBMC were cultured with the drug. This suggests that memory T-cells 
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with drug specificity circulated in the blood of hypersensitive patients for several years.  

In order to compare the drug-specific T-cells in inflamed skin biopsies and in the peripheral 

blood of the same piperacillin hypersensitive patients, T-cell clones were generated and analyzed 

in terms of cellular phenotype, function and the involvement of Th17 and Th22 cytokines and 

cytolytic molecules. Skin samples were taken from patients following a positive dermal test, 

mimicking the pathogenesis of drug induced MPE which is the most commonly observed 

symptom induced by piperacillin. T-cell clones generated from patient PBMCs as well as non-

drug specific skin-derived clones were studied for comparisons.  

The drug-specific T-cell clones isolated from skin were generally CD4+ T-cells. This observation 

is consistent with the immuno-chemical staining of MPE biopsies, showing that the majority of 

MPE infiltrated T-cells are CD4+. However, CD8+ T-cell clones displaying piperacillin 

specificity were also isolated from inflamed skin; hence, their role in the disease pathogenesis 

cannot be excluded. The profile of piperacillin-specific cytokine secretion from T-cell clones 

isolated from skin was generally consistent with the blood-derived drug-specific clones 

described earlier in chapter 3.  

 

The clones secreted a mixed profile of Th1 and Th2 cytokines, with high levels of IFN-γ and IL-

13 detected when activated with piperacillin. However, the newly discovered T-cell subsets 

(Th17 and Th22) render this classification incomplete. Utilizing ELISpot, drug-specific IL-22 

secretion was detected from patient PBMCs and skin-derived T-cell clones. The nature and 

function of the IL-22 secreting T-cells in piperacillin hyperactive is less understood and warrants 

further investigation.  In contrast, IL-17 secretion was not observed, suggesting that Th17 cells 

are less important in piperacillin hypersensitivity. A similar cytokine profile between piperacillin-
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specific T-cells isolated from PBMCs and inflamed skin are consistent with recent research 

which suggests that every memory T-cell clone generated in the skin bears an identical TCR that 

was presented in the lymph node and they are considered to be derived from a common naïve T-

cell after immunization (Gaide et al., 2015).  

 

Chemokine receptors are critically involved in the drug hypersensitivity reactions. To understand 

how chemokine receptor expression effects the migration of piperacillin-specific T-cells into the 

inflamed skin, cell surface chemokine receptor expression was measured by flow cytometry. 

Three populations of clones were selected: drug specific and non-drug specific T-cell clones 

from inflamed skin of piperacillin hypersensitive patients along with drug-specific T-cell clones 

isolated from patient PBMCs.  

Naïve T-cells take 12-24 hours for DC priming in the lymph nodes (von Andrian & Mempel, 

2003). Those cells that recognize the specific antigen become activated and expand. One naïve T-

cell grows up to tens of thousands of progeny (Tubo et al., 2013, von Andrian et al., 2000). 

Although these T-cells that derived from a single naïve T-cell have the same TCR, the expanded 

cells are different in terms of their chemokine receptor expression (Liu et al., 2006). Thus, in 

consideration of variations of these cells, the expression of chemokine receptors in each T-cell 

clone was compared. Piperacillin specific T-cell clones from skin expressed significant levels of 

CLA, CCR2, CCR4, CXCR1 and E-cadherin when compared to the other two types of clone. In 

contrast, piperacillin specific T-cell clones isolated from PBMCs expressed higher level of 

CCR1, CCR9, CCR10 and CXCR6. Finally non-drug reactive skin-derived T-cell clones 

expressed higher levels of CCR3 than the other two groups.  

Cutaneous lymphocyte antigen (CLA), binds selectively to the vascular lectin endothelial cell-
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leukocyte adhesion molecule 1 (ELAM-1), acting as a skin homing receptor (Berg et al., 1991). 

In this study, only piperacillin specific T-cell clones isolated from inflamed skin expressed high 

level of CLA but neither circulating clones nor non-drug specific clones expressed CLA, which 

suggests that CLA is required for the migration of drug-specific T-cells from peripheral blood to 

inflamed skin, which may play a critical role in piperacillin- induced MPE. CCR4 also mediates 

migration of T-cells to skin (Campbell et al., 1999); CXCR1 mediates T-cell homing to inflamed 

tissue (Hess et al., 2004). Thus each of these chemokine receptors may be involved in drug 

specific T-cell homing to the site of MPE.  

When naïve T-cells get primed against antigen, they become effector T-cells or memory T-cells 

and go into the blood, traveling to the inflamed site (e.g. skin) or remain in the circulation. After 

the inflammation resolves, the majority of effector cells die and the survivors are memory T-cells 

that can live for decades. Furthermore, when skin located memory T-cells have not been exposed 

to this antigen for a long time, the number decreases, and migrate into the blood (Watanabe et al., 

2015, Rosa et al., 2015). 

 

Memory T-cells provide rapid and highly effective immunity when an individual is re-exposed to 

an antigen. They are classified into three subsets, effector memory T-cells, central memory T-

cells and resident memory T-cells (Chang & Kupper, 2015). Central memory T-cells express 

lymph node homing chemokine receptor CCR7 that enable them to enter lymph nodes from 

blood. Effector memory T-cells express low level of CCR7 but highly express CLA, which 

allows them access to the skin. Resident memory T-cells can be activated rapidly by antigens at 

inflamed sites independent of recruitment of T-cells from the blood (Jiang et al., 2012, Clark et 

al., 2015). 
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In a recent study, four populations of CD4 resident antigen specific memory T-cells have been 

identified, CCR7+ with or without CD62L expression that are transient skin homing T-cells; 

CD69+ with or without CD103 expression are true resident memory T-cells (Watanabe et al., 

2015). Significant expression of CD69 expression was detected on piperacillin-specific T-cells 

isolated from skin suggesting they are long term skin resident cells that play a critical role in 

drug hypersensitivity. 

When effector T-cells infiltrate into the skin, they do not only accumulate at the inflamed site, 

they spread throughout the skin (Jiang et al., 2012, Gaide et al., 2015). Non- inflamed skin 

contains post-capillary venues that express low levels of E-selectin, chemokines and intracellular 

adhesion molecules that allow skin-homing T-cells escape from blood vessels and locate to non-

inflamed skin (Chong et al., 2004). 

 

Drug specific T-cell clones isolated from circulating PBMCs expressed CCR9 and CCR10. 

CCR9 mediates migration of T-cells to lamina propria of the intestine, while CCR10 promotes T-

cell skin migration (Agace 2006). This suggests these circulating T-cells may migrate to various 

sites in the body. 

To conclude, skin resident drug specific T-cells are considered primary mediators of the drug 

hypersensitivity reaction. Drug specific T-cells from both peripheral blood and MPE inflamed 

skin were found to secrete IFN-γ, IL-22 and IL-13, but IL-17 secretion was not detected. T-cell 

cloning suggests that drug-specific T-cells induce inflammation either though cell killing by 

granzyme B/perforin or through inducing Fas- ligand dependent cell apoptosis directly. 
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Chapter 5 

 

Priming and characterization of drug-specific T-cells from naive CD4+ T-cells  

 

5.1  Introduction 

5.2  Methods. 

            5.2.1 Isolation and priming of naïve T-cells from healthy donor PBMCs. 

            5.2.2 Memory T-cell polarization 

            5.2.3 Drug-specific T-cell priming and Th17, Th22 differentiation from naïve T-cells. 

            5.2.4 Characterization of drug-specific T-cell clone from SMX-NO and piperacillin 

specific T-cells from patients or normal volunteers. 

5.3  Results: 

            5.3.1 The polarization of Human memory T-cells. 
 

            5.3.2 Priming of drug specific T-cells from naïve T-cells  

            5.3.3 SMX-NO selectively polarizes drug specific IL-22 but not IL-17 producing cells 

from naïve T-cells  

            5.3.4    Characterization of SMX-NO-specific T-cell clones isolated from SMX 

hypersensitive patients and SMX-NO primed naïve T-cell of normal donors 
 

5.3.5  Cytokine profile of the SMX-NO specific T-cell clones isolated from patients or 

drug primed T-cell populations  

5.4 Discussion 
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5.1 Introduction 

Drug hypersensitivity is a major clinical problem. Reactions are unpredictable in nature and 

when they develop they tend to be severe. In the last decade, genome-wide association studies 

have identified the expression of particular HLA alleles as risk factors for certain reactions 

(Phillips et al., 2011; Daly et al., 2012). Since drug-antigen specific T-cells have been detected in 

blood/tissue of patients with mild and severe skin reactions (Nassif et al., 2002) and liver injury 

(Monshi et al., 2013), they are believed to play an important role in the disease pathogenesis. 

Even though certain HLA alleles are associated with drug hypersensitivity, only a limited number 

of individuals with the allele develop hypersensitivity. Thus, additional approaches are required 

to compensate HLA screening to predict why certain individuals develop hypersensitivity to a 

particular drug. Naïve T-cell priming assays using blood from HLA typed donors have been used 

as a highly valuable resource to enhance drug hypersensitivity investigations. (Faulkner et al., 

2012, 2016).  

In this study, we investigated the possible immune mechanism by which drugs like piperacillin 

and nitroso-sulfamethoxazole (SMX-NO) induce hypersensitivity in vitro. SMX-NO is a 

metabolite of sulfamethoxazole that binds to the cellular proteins at the cysteine residues 

(Naisbitt et al., 2001). Piperacillin is associated with a high incidence of skin rash (El-Ghaiesh et 

al., 2012). As discussed in chapter 3, piperacillin bind to the lysine residues on serum proteins to 

form an antigen that activates T-cells. Both compounds activate T-cells via a hapten mechanism 

involving adduct formation and processing of the derived adduct by APCs.  

How drugs induce hypersensitivity is not fully understood. Furthermore, how to modulate and 

control the drug-mediated pathogenic response is an important clinical issue. Current evidence 

suggests that T-cells play a pivotal role in allergy, including drug allergy. Originally, Th1 and 
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Th2 cells are critically involved in the pathogenesis and modulation of allergic diseases. 

Recently, Th17 cells have been implicated in the pathogenesis of asthma and other inflammatory 

diseases, such as psoriasis (Nestle FO et al., 2009), Crohn’s disease (Kobayashi et al., 2008; 

Andoh et al., 2005).  

Th22 cells are a CD4+ T-cell population found in humans and secrete IL-22 but not IL-17. IL-22 

is a cytokine that mediates tissue response by stimulation of epithelial barrier t issues such as gut, 

lungs and skin, promoting the antimicrobial defense and epithelial barrier integrity. Also, IL-22 

secreting cells have been found in patients with allergic contact dermatitis (Dyringanderson et 

al., 2013).  

Th17 cells can produce both IL-17 and IL-22 which have been implicated in tissue inflammation 

(Kolls et al., 2004, Xie et al., 2000). However, there exist functional differences between 

cytokines. IL-17 is more pro-inflammatory and destructive, whereas IL-22 alone often functions 

in a protective way that promotes the proliferation of fibroblasts in tissue repair (Eyerich et al., 

2010). When IL-22 acts synergistically with IL-17, TNF-α and IFN-γ, it might be pro-

inflammatory (Michalak-Stoma et al., 2013). Since the microenvironment determines T-cell 

differentiation which in turn induces different types of inflammation, the possibility that drugs 

induce T-cell differentiation to Th1, Th2, Th17 and Th22 secreting cells was tested, especially 

Th17 and Th22 polarization, to ascertain their involvement of in drug hypersensitivity.  

 

The aim of this chapter was to further elucidate the underlying mechanism by which Th17 and 

Th22 subsets are involved in the cutaneous reactions following drug exposure. We focused on 

how drug initiates a drug-specific T-cell response and the involvement of T-cell subsets and 

related cytokines, in particular the Th17 and Th22 cytokines, in drug hypersensitivity using an 
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established in vitro T-cell priming assay. 

5.2 Methods. 

5.2.1 Isolation and priming of naïve T-cells from normal donor PBMCs. 

PBMCs isolation and the purification of naïve T-cells (CD14-CD3+CD45RO-CD25-) was 

performed according to the protocols described in chapter 2.  PBMCs were isolated from 

peripheral blood of healthy volunteers. Different populations of cell were selected by magnetic 

bead separation. These populations include naïve T-cells (CD3+CD45RO-CD14-), monocytes 

(CD14+), and memory T-cells (CD3+CD45RO+CD14-). Naïve T-cells were then cultured with 

both drug antigens, in the presence of mature monocyte-derived DCs as APCs. After 7 days 

culture under an atmosphere of 37°C 5% CO2, a number of the naïve T-cells turn into drug 

specific memory effector T-cells and can be tested for antigen specificity when re-exposed to the 

drug. This assay has been applied to prime naïve T-cells against a number of drug haptens, 

including nitroso sulfamethoxazole and β- lactam antibiotics. 

 

5.2.2 Memory T-cell polarization 

T-cell activation requires three signals which are TCR activation, costimulatory molecule 

signalling and the cytokine micro-environment. Therefore, we used an anti-CD3 antibody to 

activate TCR, and an anti-CD28 antibody to stimulate costimulatory signalling. Finally we 

explored whether culturing the naïve and memory T-cells with desired cytokine cocktails induced 

differentiation of T-cells into different cytokine producing populations. If these cytokine 

combinations were found to induce T-cell differentiation, the aim was to apply them to study the 

effect of the cytokine microenvironment on the priming of naïve T-cells to drugs. 

Memory T-cells (CD14-CD3+CD45RO+CD25-) were isolated as described in 2.15. 10 µg/ml of 
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anti-CD3 antibody was diluted in HBSS solution and pre-coated (300 µl/well) in sterile ELISpot 

plates over night at 4°C. The next day, excessive anti-CD3 antibody was washed by HBSS for 3 

times. Then 1.5 x 105 memory T-cells were added into anti-CD3 coated wells with 200 µl of R9 

medium which was supplemented with 5 µg/ml of anti-CD28 antibody and different cytokine 

cocktail for Th cell polarizations. Th17 differentiation cytokines were TGF-β (1 ng/ml), IL-1β 

(10 ng/ml), IL-6 (10 ng/ml), IL-23 (10 ng/ml). Th22 differentiation cytokines were 50 ng/ml 

TNF-α, 20 ng/ml IL-6, 5 µg/ml anti-IL-4 and 5 µg/ml anti-IL-12. When differentiated into Th1 

cells, the cytokines were anti- IL-4 (5 µg/ml) and 25 ng/ml IL-12; when differentiated into Th2 

cells, the cytokines are 25 ng/ml IL-4, 5 µg/ml anti- IL-12, and 5 µg/ml anti-IFN-γ. The cells 

were incubated at atmosphere of 37°C/5%CO2 for 5 days. On day 6, polarized memory T-cells 

cytokine secretion was tested by ELISpot.  

 

5.2.3 Naïve T-cell priming and Th17/Th22 differentiation from naïve T-cells. 

The T-cell priming assay is described in detail in 2.15. Naïve T-cells (2 x 106) and mature DCs 

(8000) were cultured with Th17 polarizing cytokines (IL-1 β, IL-6, TGF-β), 10 ng/ml alongside 

SMX-NO (50 µM). Additional cytokines were added on days 4 and 9. Polarization of naïve T-

cells was then determined by ELISpot.  

 

5.2.4 Characterization of SMX-NO-specific T-cells from hypersensitive patients and normal 

volunteers. 

PBMCs from drug hypersensitive patients were isolated and T-cell clones were generated as 

described in chapter 2.5. The patients’ clinical information is presented in Table 5.1.  
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Patient Age / 

Gender 

Drug Reaction 

 

Reaction 

Time+ 

Time* 

P1 30/F SMX-NO MPE 2 7 

       

P2 25/F SMX-NO MPE 4 5 

       

P3 34/F SMX-NO MPE 6 8 

 

  P4                

 

    23/M 

 

      SMX-NO 

 

              MPE                           

 

         10          

 

       20 

Table 5.1 The clinical h istory of patients with sulfamethoxazole hypersensitive patients with cystic fibrosis. (Age in 

years, Reaction Time
+ 

= time from treatment to reaction in days, Time* = time since reaction in years, M: male, F: 

female, MPE: maculopapular exanthema, P: patient) 

 

5.2.5 Statistics analysis 

Experiments were performed in duplicate or triplicate, based on the availability of cells. Mean 

values and SDs were calculated and statistical analysis was performed by paired t test or ANOVA 

when appropriate. 
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5.3 Results: 

5.3.1 The polarization of human memory T-cells. 

 

The results in Chapter 3 and 4 shows that T-cells isolated from piperacillin hypersensitivity 

patients can respond to the drug antigen when re-challenge in vitro, suggesting the presence of 

piperacillin-memory T-cells in the patients. It will be therapeutically important to know how to 

modulate the drug-specific T-cells. To address the aim of this chapter, we investigated if memory 

T-cells can be further polarized into different Th cell subsets.   

Memory T-cells secreted IFN- and IL-13 and a low level of IL-22 under Th1 polarization 

conditions. The same cells secreted IFN- and IL-13 under Th2 polarization. Upon culturing 

memory T-cells with Th17 polarizing cytokines, they secreted IL-17A, IFN-, and IL-22. Under 

Th22 polarization, memory T-cells secreted IFN-, IL-13 and IL-22 (figure 5.1). The controls 

wells without the addition of antibodies or cytokines did not secrete cytokines. These data 

suggests that memory T-cells can be further polarized into different Th subsets depending on 

cytokine environment. 
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Figure 5.1 Memory T-cell polarization. Memory T-cells were isolated from normal individuals and then 5 x 10
5
 

memory T-cells were stimulated with anti-CD3, anti-CD28 antibody and different cytokine cocktail for Th cell 

polarization. The cells were incubated for 6 days at an atmosphere of 37°C 5% CO2. On day seven, upon the 

stimulat ion of PHA, the production of IFN-γ, IL-13, IL-17A and IL-22 were determined by ELISpot. Red shaded 

squares indicate cytokine polarizat ion. Spots counting was shown. 

 

5.3.2 Priming of drug-specific T-cells from naïve precursors  

In chapter 4, piperacillin-specific T-cell clones isolated from the blood and skin of hypersensitive 

patients were found to secrete mainly IFN-, IL-13 and IL-22, but not IL-17A. Thus, to 

investigate the mechanism of drug specific IL-22 secretion and further determine the potential of 

drug-specific secretion of IL-17A, priming assays were applied to test the origin of drug-specific 

T-cells. SMX-NO and piperacillin were used as a model drug haptens in the T-cell priming assay. 

In initial experiments, naive CD3+ T-cells were cultured with dendritic cells and SMX-NO or 

piperacillin in the absence of polarizing cytokines. These cells were then harvested, re-stimulated 
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with the drugs and assayed for IFN-γ, IL-13, IL-17 and IL-22 secretion. As showed in Figure 

5.2A, SMX-NO-specific T-cells were polarized, and secreted IFN-γ, IL-13 and IL-22. However, 

IL-17 release was not detected (Figure 5.2A). Piperacillin (Figure 5.2B) primed naïve T-cell 

population showed a similar pattern, secreting IFN-, IL-13 and IL-22 but not IL-17A.  

               A                                                 B 

 

Figure 5.2 Drug-s pecific cytokine secretion from S MX-NO- or piperacillin-primed naïve T-cells from normal 

donors. CD3
+
 naïve T-cells from normal volunteers were co-cu ltured with dendritic  cells in the presence of different 

drug concentrations, (A) SMX-NO (12.5 µM to 50 µM) and (B) piperacillin (0.5mM to 2mM) ,in an atmosphere of  

37 °C/5% CO2 for 7 days. Drug-specific cytokine secretion was measured by ELISpot. 
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5.3.3 SMX-NO selectively polarizes drug specific IL-22 producing, but not IL-17 

producing, T-cells from naïve precursors  

To investigate the polarization of naïve T cells further, we cultured naïve T-cells with SMX-NO 

under Th22 and Th17 polarization conditions. When the priming assay was performed under 

Th22 polarizing conditions, a drug specific IL-22 secretion was observed (Figure 5.3 B). In 

contrast, SMX-NO-specific IL-17 secretion was not detected (Figure 5.3 A). When the naïve T-

cells were primed with SMX-NO under Th17 polarizing conditions drug-specific IL-17 or IL-22 

secretion was not detected. (Figure 5.3 A, B).  

 

 

               A                                                 B 

Figure 5.3 Cytokine secretion by T-cells primed to SMX-NO under Th17 and Th22 polarizing 
conditions. Naïve CD3

+
 T-cells were co-cultured with SMX-NO and dendritic cells at a ratio of 25:1 in 

the presence or absence of Th17 or Th22 polarizing cytokines for 8 days. The cultures were then plated 
and re-stimulated with fresh dendritic cells and SMX-NO. Antigen-specific T-cell responses were 

measured by IFN-, IL-13, IL-17 and IL-22 ELISpot. Cells were incubated for 48h and spots developed 
by ELISpot according to manufacturer’s instruction.  

 



 

123 

 

5.3.4 Characterization of SMX-NO specific T-cell clones isolated from SMX hypersensitive 

patients PBMC and normal donors following T-cell priming.  

 
SMX-NO-specific TCCs were generated from 4 SMX hypersensitive patients and 1 drug-naïve 

donor. We next characterized and compared the drug specific T-cell clones generated from 

hypersensitive patients to those generated from normal donors using the thymidine proliferation 

assay. All the clones tested showed a significant proliferation when exposed to SMX-NO (Figure 

5.4 a). The number of clones generated from hypersensitive patients, their CD phenotype and the 

SMX-NO-specific proliferative response are summarized in Table 5.2. All the clones generated 

expressed the CD4 cell surface marker. Two hundred and eighty three T-cell clones were 

generated from drug-naïve donors following SMX-NO priming. SMX-NO responsive clones 

secreted high levels of IFN-γ, and to lesser extent, IL-5 and IL-13 following activation (Figure 

5.4 b). There was no major difference in the drug-specific cytokine secretion profile when clones 

isolated from patients and volunteers were compared. The drug-specific proliferation of 68 T-cell 

clones from 4 patients and of 10 clones from naïve volunteers is shown in Figure 5.4.  
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Figure 5.4 Activation of SMX-NO-responsive CD4+ clones generated from drug naïve 

donors (n = 1) after in vitro priming and from hypersensitive patients (n-4). The Antigen-

specific responses were measured by [3H]-thymidine proliferation (a) and IFN-, IL-13, IL-17 
and IL-22 ELISpot (b). The data shows mean and the standard deviation of triplicate cultures and 

paired t test has been used to perform comparisons. *p<0.05 was considered positive.  
 

(a) 

(b) 
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Patient 

ID 

Clone 

tested  

(n) 

SMX-

NO 

specific 

clones 

Phenotype 

(%)  

CD4+ 

Phenotype 

(%)  

CD8+ 

Proliferation (cpm) 

Control SMX-NO 

 

1 

 

336 

 

21 

 

100 

 

- 

 

6840 ±7406 

 

14837 ±13224 

2 394 29 100 - 3899 ±5522 23970 ±18651 

3 216 6 100 - 1058 ±203 2740 ±469 

4 240 2 100 - 1584 ±493   7613±5294 

       

Table 5.2.   The origin, phenotype and specificity of T-cell clones generated from PBMCs of 

the 4 SMX hypersensitive patients.  

 

 

5.3.5  Cytokine profile of SMX-NO specific T-cell clones isolated from patients or drug 

primed T-cell populations  

 
Since hypersensitive patient clones and clones isolated from in vitro priming secreted similar 

Th1 and Th2 cytokines a panel of 17 clones (from multiple donors) with a strong growth pattern 

were selected to study their cytokine secretion profile. While approximately all the clo nes 

produced IFN-, IL-5 and IL-13, about 50% of clones were found to secrete IL-22 following 

exposure to SMX-NO. In contrast, IL-17 secretion was only detected with 1 clone (Figure 5.5 

A). IL-22 secreting low and high clones were isolated from PBMC of hypersensitive patients and 

following in vitro priming (Figure 5.5 B). Importantly, the isolation of SMX-NO responsive, IL-

22 secreting clones from the priming assay was not dependent on the presence of Th22 

polarizing cytokines and clones were not maintained under Th22 polar izing conditions.  Most of 

the clones also produced granzyme B and FasL but not the perforin (Figure 5.5).  
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Figure 5.5  A Cytokine secretion by S MX-NO responsive CD4
+
T cell clones. Analysis of SMX-NO–specific 

cytokine and cytolytic molecule secretion fro m 17 clones using the ELISpot 

 

 

 

Figure 5.5 B Representative T-cell clones with IL-22 high or low secretion, generated from S MX-NO primed 

naïve T-cell population and drug hypersensitive patients. Cytokine profile of representative SMX-NO–

responsive IL-22
high

– and IL-22
low

–secreting clones generated from drug-naive donors after in vitro priming and 

hypersensitive patients. 
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5.4 Discussion 

 

Previous immuno-histological studies have characterized the phenotype of T-cells infiltrating 

inflamed skin of patients with maculopapular rashes, and have reported a larger numbers of 

CD4+ T-cells and lower numbers of CD8+ T-cells (Pichler 2003; Pichler et al., 2002). Studies 

focusing on SMX-specific T-cell response indicate that CD4+ and CD8+ T-cells secrete cytolytic 

molecules in response to culprit drug and keratinocytes can be specifically killed by CD4+ T-cells 

(Schnyder et al., 1998). Consistent with the these findings, several studies have demonstrated 

that most SMX-NO-specific T-cells isolated from hypersensitive patients are CD4+, and secrete  

mixed panel of Th1/Th2 cytokines including IFN-γ, IL-5 and IL-13 (Schnyder et al., 1998; 

Elsheikh et al., 2011; Schyder et al., 2000). However, the discovery of new T-cell populations, 

such as Th17, Th22 renders this classification obsolete, and the importance of these new Th cell 

subsets in drug hypersensitivity is still unknown. For this reason, we characterized SMX-NO 

specific CD4+ T-cells in terms of cytokine profiling from hypersensitive patients and healthy 

donors following priming. Following antigen re-challenge, the SMX-NO primed T-cells from 

healthy donors and drug hypersensitive patients were found to secrete IFN-γ, IL-13 and IL-22, 

but IL-17 secretion was not detected. CD4+ clones isolated from the priming assay also secreted 

drug-specific IFN-γ, IL-13 and IL-2, but not IL-17.  

IL-22 secretion was detected from approximately 50% of the clones from patients (Figure 5.5A).  

A similar pattern of cytokine secretion was seen with drug-specific T-cell clones (IFN-γhigh IL-

5high IL-13high IL-22low and IFN-γhigh IL-5high IL-13high IL-22high) isolated from SMX 

hypersensitive patients (Figure 5.5B). IL-22 is a cytokine that modulates tissue epithelia 

responses as expression of the IL-22 receptor is restricted to the non-haematopoietic cells. In 

skin, the IL-22 receptor is expressed at high levels on keratinocytes and IL-22 has been found to 
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enhance keratinocyte proliferation and inhibit terminal differentiation (Boniface et al., 2005). 

Furthermore, IL-22 has been shown to mediate inflammatory responses in patients with psoriasis 

and IL-22 secreting cells have been identified in patients with allergic contact dermatitis (Cavani 

et al., 2012; Eyerich et al., 2010). Thus, IL-22 is a pleotropic cytokine and its functions are likely 

context-dependent. Our data is, however, the first to demonstrate the production of IL-22 

alongside IFN-γ by antigen-specific T-cells from drug hypersensitive patients. More works are 

required to reveal the physiological and pathological function of IL-22 in drug hypersensitivity. 

In particular, it will be interesting to know if the detection of IL-22 is dependent on the different 

cytokine-specific transcription factors or signaling pathways.  

However, there was only one IL-17 secreting clone being detected out of 17 clones. Therefore 

these result of my project indicate that IL-17 may not play an important in drug induced MPE. 

Typically, IL-17 play important roles in chronic or/and autoimmune disease with a recruitment of 

neutrophils by stimulating keratinocytes to produce neutrophilia chemokines such as IL-

8/CXCR8 and CXCR1 (Schroder et al., 1992, Nograles et al., 2008). It has been shown that IL-

17 secreting cells are involved in severe drug hypersensitivity such as carbamazepine induced 

AGEP (Kabashima et al., 2011) and SJS/TEN (Kang et al., 2011).  Our results are consistent with 

the signature of MPE, in which there is a mild skin rash with less infiltration of neutrophils and a 

quick recovery after drug withdrawal. Polarization condition has been known to determine the 

fate of T-cells from naïve T-cells. In my study, although strong signal of Th17 polarization were 

exerted, drug specific IL-17 secretion was not detected, which indicates this drug-antigen-MHC-

complex displayed by DCs may not tend to stimulate a Th17 response.  

The low ratio of IL-17 secretion was also consistent with Lochmatter study in 2009 in which 

they showed IFN- and IL-13 are sensitive markers of drug hypersensitivity but not IL-17. They 
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cultured PBMCs of 6 patient with MPE with culprit drug for 72 hours, all the patients showed 

high fold (dozens to hundreds) of drug specific cytokine secretion of IL-13 and IFN- but only 3 

patients showed drug specific IL-17 secretion, with low fold of 6 to 8 (Lochmatter et al., 2009).   

 

To summarize, drugs such as SMX-NO and piperacillin can polarize drug-specific T-cells in vitro 

and in vivo in the presence of antigen-presenting cells. These T-cells express drug specific 

cytokines, in particular IL-22, which suggests that IL-22 may play a critical role in drug 

hypersensitivity.  
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Chapter 6 

 

Priming naïve T-cells to drug haptens and the characterization of drug-specific antigen 

presentation 

 

6.1  Introduction 

6.2  Methods 

6.3  Results 

6.3.1   Priming of Naïve T-cells with SMX-NO, piperacillin and flucloxacillin  

6.3.2   Mechanism of activation of drug-specific T-cell clones  

6.4 Discussion 
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6.1 Introduction 

Delayed-type drug hypersensitivity is mediated by T-cells, has an onset time of more than one 

hour after drug administration (Bousquet et al., 2007), and is considered pharmacologically 

unpredictable and unrelated to the concentration of the drug administered. These adverse 

reactions can target a wide range of organs and therefore pose a serious threat to patient health as 

they can induce potentially fatal responses including drug- induced liver injury (DILI) and severe 

cutaneous reactions such as toxic epidermal necrolysis. A range of drugs are known to induce 

this type of reaction including the penicillin antibiotics such as piperacillin and flucloxacillin, 

and sulfonamides such as sulfamethoxazole (SMX). The mechanism of drug antigen presentation 

of the exemplar drugs, SMX (Schnyder et al., 2000, Naisbitt et al., 1999), piperacillin (Whitaker 

et al., 2011) and flucloxacillin (Monshi et al., 2013), are thought to be similar and follow the 

pathway outlined by hapten hypothesis. However, it has also been reported that drug specific 

memory T-cells isolated from patients can respond to certain drug antigens in the absence of 

antigen presentation, indicating the potential for drugs to stimulate T-cells via the p.i concept; 

directly and without the need for processing (Schnyder et al., 2000, Wuillemin et al., 2013, El-

Ghaiesh et al., 2010). These before mentioned studies have focused on responses using allergic 

patient T-cells, allowing for the determination of the memory T-cell response to drug antigens. 

However, the use of patient T-cells provides little insight into the priming of naïve T-cells at the 

moment a susceptible individual is sensitized. Thus, to determine the mechanism of naïve T-cells 

activation by SMX-NO, piperacillin or flucloxacillin we utilized an established in vitro priming 

assay, whereby drugs are cultured with naïve T-cells and autologous mature dendritic cells 

isolated from healthy donors before secondary stimulation of the primed T-cells to perform a 

battery of readouts assays to determine antigen responsiveness. Furthermore, previous patient 
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studies have also reported that T-cell responses to piperacillin are highly specific in that 

piperacillin-specific T-cells do not cross-react with other antibiotics with similar chemical 

structures (El-Ghaiesh et al., 2010). Other studies report similar findings for SMX-NO specific 

T-cells, detailing a lack of cross-reactivity with alternative antibiotics (Schnyder et al., 2000). In 

contrast, flucloxacillin specific T-cells have previously been shown to cross react with several 

antibiotics including amoxicillin and piperacillin (Monshi et al., 2013). Therefore, using the 

naïve T-cell priming assay, we also investigate drug antigen cross-reactivity to determine 

whether highly structurally specific T-cells are readily primed in vitro.  

 

Several methods are available to investigate the mechanisms by which drugs activate T-cells (i.e., 

hapten mechanism or direct binding to MHC molecules). First, antigen presenting cell (APC) 

pulsing assays can be performed whereby cells are cultured with drugs for different durations. 

The drug-treated APCs are then washed repeatedly to remove free drug, reconstituted in drug-

free medium and added to T-cells as a source of antigen. If T-cells respond, they must be 

activated by a drug protein adduct. Secondly, APCs can be fixed with glutaraldehyde, which 

blocks protein processing, before pulsing with antigen. If T-cells are subsequently stimulated 

with the drug, the response is likely through a direct interaction of the drug with surface MHC 

molecules. Thirdly, T-cell assays can be performed with MHC class I and/or class II blocking 

antibodies to confirm that the drug-derived antigen is presented in the context of MHC. Finally, 

Glutathione (GSH) can be utilized to block SMX-NO protein binding to cysteine, and N-acetyl-

lysine (NAL) can be used to reduce the likelihood of piperacillin and flucloxacillin binding 

protein at lysine residues, thereby reducing the formation of drug-protein adducts. Thus 

glutathione or N-acetyl lysine can be added to T-cell assays to potentially block T-cell responses 
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to drug haptens. We have utilized each of these techniques to investigate the mechanism of 

SMX-NO, piperacillin and flucloxacillin-specific naive T-cell priming using cells from healthy 

donors. 

 

6.2 Methods  

To determine the propensity of drug antigen to prime naïve T-cells, we used different 

concentrations of SMX-NO, piperacillin and flucloxacillin. Western blotting was used to study 

whether SMX-NO could alter piperacillin or flucloxacillin protein binding when these three drug 

antigens are cultured with dendritic cells and naïve T-cells in one environment. T-cell clones 

were then generated from the initial priming cultures to assess whether priming to one drug 

antigen allows for cross reactivity to alternate drug antigens. To investigate the mechanisms of 

antigen presentation using the priming assay, several experiments were performed: APC fixation 

and pulsing assays were performed with T-cell clones to investigate whether the activation of the  

T-cells requires adduct formation and antigen processing. MHC blocking assays were used to 

determine whether T-cell activation was HLA restricted.   

6.2.1 T-cell priming assay. The priming assay model is described in 2.15.  

6.2.2 ELISpot. To test the specificity of drug primed T-cell clones ELISpot was applied 

following the protocol described in 2.14. 

6.2.3 T-cell cloning. To study the drug specificity and drug antigen presentation, drug specific T-

cells were generated using the protocol described in 2.5.  

6.2.4 T-cell proliferation assay. The concentration-dependent T-cell response was determined 

using [3H]-thymidine to measure proliferation as described in section 2.8.  

6.2.5 Western blotting. To test the drug protein binding in the serum and/or cells, western 
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blotting was applied following the protocol described in 2.13.  

6.2.6 APC fixation was applied following the protocol introduced in 2.18.  

6.2.7 SMX-NO, piperacillin, and flucloxacillin cross reactivity. SMX-NO, piperacillin and 

flucloxacillin specific activation of T-cell clones was tested following the protocol described in 

section 2.8. 

6.2.8 APC pulsing for proliferation assay was to study the mechanism of drug antigen 

presentation. The protocol is described in 2.10.  

6.2.9 MHC blockage experiment using blocking antibody was used to study the MHC restriction 

in drug specific T-cell response. The procedure is described in 2.9.  

6.2.10 Glutathione and N-acetyl lysine blocking assay was used to ascertain the drug-protein 

binding site in priming assay. 

6.2.11 Varied responses by T-cell clones are common due to a multitude of factors such as varied 

growth conditions, differing drug-antigen specificity or TCR affinity. Subsequently, Mann-

Whitney tests were performed to show the significance of data in comparison with control. 

P<0.05 was considered statistically significant.  

 

6.3 Results.  

6.3.1 Healthy donor naïve T-cell priming to SMX-NO, piperacillin, and flucloxacillin  

Healthy donor naïve (CD3+, CD45RO-) T-cells were cultured with autologous mature DCs and 

SMX-NO (50µM), piperacillin (2mM), or flucloxacillin (2mM) for 8 days before restimulation 

of T-cells using fresh mature autologous DCs and drug antigen. T-cell antigen-specificity and 

cross-reactivity was determined by analyzing T-cell proliferation and IFN-γ secretion in response 

to all three drug antigens irrespective of the drug-antigen present during initial priming culture.  
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As flucloxacillin- induced liver injury is strongly associated with the HLA-B*57:01 genotype 

(Daly, Donaldson et al., 2009), donors who were HLA-B*57:01+ were recruited in this study to 

assess comparative responses to those who were HLA-B*57:01-. Analysis of IFN-γ secretion 

using ELISpot showed that naïve T-cells from all four donors were successfully primed to SMX-

NO and piperacillin. These SMX-NO or piperacillin-primed T-cells showed no cross-reactivity in 

response to culture with piperacillin or SMX-NO, respectively, or the third alternate drug antigen 

flucloxacillin. Flucloxacillin failed to prime naïve T-cells from healthy donors, irrespective of the 

presence of HLA-B*57:01, as determined by cytokine secretion (Figure 6.1 and Table 6.1). Due 

to higher cell recovery from certain donors after priming, proliferative responses were able to be 

additionally measured in response to drug antigen by thymidine incorporation. Similar to 

ELISpot, proliferative studies revealed the successful priming of naïve T-cells from all drug-

naïve healthy donors to SMX-NO, and for 6/7 donors to piperacillin. In contrast to measuring 

cytokine secretion, naïve T-cells from 2/6 donors were successfully, albeit weakly, primed to 

flucloxacillin. As before, none of the drug-antigen primed T-cells proliferated upon re-challenge 

with SMX-NO, piperacillin or flucloxacillin (Figure 6.2).  In total 16 priming assays were 

conducted. The rate of positive priming tested by proliferation assay and ELISpot is summarized 

in Table 6.1 and Table 6.2. Figure 6.1 and 6.2 show representative data from donors who 

displayed positive responses to the different drug antigens.  
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Figure 6.1  S pecificity of drug  primed naïve T-cells from HLA-B*57:01 positive or negative donor tested by 

ELIS pot. Naïve CD3 T-cells were co-cu ltured with DCs at a ratio o f 25:1 in the presence of either SMX -NO (50 

μM), piperacillin (2 mM), or flucloxacillin (2 mM) for 8 days in a 24-well p late. 1×10
5
 T-cells were then 

restimulated with 4×10
3
 fresh DCs and SMX-NO (50 μM) or p iperacillin (2 mM), or flucloxacillin (250 mg/ml) in 

an ELISpot plate pre-coated with IFN-γ capture antibody. Cells were cultured at 37°C under an atmosphere of 5% 

CO2 for 2 days and then developed according to manufacturer’s instructions and spots visualized under an AID 

ELISpot reader.  

 

 
Table 6.1 The summary table for the ELIS pot results in the Figure 6.1. 

The ELISpot results were semi quantified as follow: the numbers of spots in the non -stimulated control as -. +: 40 

spots more than the control.   ++:  80 spots more than the control. +++: 120 sports more than the control.  

 

 

Overall, SMX-NO and piperacillin were much more effective at priming naïve T-cells than 

flucloxacillin (table 6.2). These data highlight that measurement of proliferative response is a 

more sensitive technique to ascertain antigen-specific T-cell priming than IFN-γ secretion.  
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Figure 6.2 Drug s pecific induction of T-cell proliferation by S MX-NO and piperacillin but not flucloxacillin. 

The drug primed T-cells were challenged with particu lar drug. Donor 1 and donor 2 primed  naive T-cells were used 

for the pro liferation assay.  Drug primed naïve T cells (5×10
4
) were co-cu ltured with DCs (4×10

3
) with either SMX-

NO (50 μM), piperacillin (2mM) or flucloxacillin (2mM) in a similar manner as described in the ELISpot assay 

above in an U-bottomed 96-well plate. The p late was cultured for 2 days and [3H]-thymidine (0.5Ci/well) was added 

to each well in the final 16 hours of cu lture. T-cell p roliferat ion was measured by scintillation counting. The data 

shows mean and the standard deviation of triplicates. The SI>2 can be observed , indicating a drug specific response. 

 

 

Number of priming 

assay (numbers) 

SMX-NO piperacillin Flucloxacillin 

IFN-γ ELISpot 

Positive/Total 

7/16 6/16 0/16 

Proliferation 

Positive/Total 

7/7 6/7 2/6 

Table 6.2. Summary table showing the rate of positive priming  assays. Drug  reaction of primed T-cells was 

tested by proliferation assay and IFN-γ ELIS pot. The positive rate of priming assays is shown as: the number of 

positive assays / total assays. 
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Further analysis of drug-responsive T-cell phenotype and function warranted the generation of T-

cell clones. As previously stated, due to the association of HLA-B*57:01 with flucloxacillin-

induced hepatitis, two HLA-B*57:01 positive donors were recruited for priming and the 

subsequent generation of drug-specific T-cell clones. These two donors produced only weakly 

positive responses to flucloxacillin after priming, with proliferative SI of 1.8 and 1.2. In contrast, 

a third donor selected for T-cell cloning was HLA-B*57:01 negative. From the original priming 

cultures, a serial dilution was performed and after mitogen-driven expansion, T-cell clones were 

generated. Well growing T-cell clones were selected for further investigation of drug-antigen 

specificity and to assess the mechanisms of drug antigen presentation.  

Table 6.3 shows 1) the number of the SMX-NO, piperacillin and flucloxacillin-specific clones 

generated from 3 priming assays; 2) the phenotype of these drug specific T-cell clones; 3) the 

drug reaction of these clones. SMX-NO-, piperacillin- and flucloxacillin-specific T-cell clones 

were generated from all three donors irrespective of the HLA type. As has been previous ly 

described, the major phenotype of SMX-NO-specific T-cell clones were CD4+ T-cells, whereas 

for piperacillin-specific clones, the majority were CD8+. Flucloxacillin-responsive CD4+ and 

CD8+ T-cell clones were generated from all three donors.  
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Donor genotype & T-cell 

clone s pecificity 

Total 

clones (n) 

Reactive 

clones (n) 

CD4 

(% ) 

CD8 

(% ) 

Mixture of 

CD4 and 

CD8 T-cell 

Proliferation assay 

 (cpm) 

Donor ID 

and 

genotype  

Drug 

specificity 

Control Drug  

 

 

 

 

Donor 1 

HLA-

B*57:01+ 

SMX-NO 480 68 48% 40% 12% 6519 

±7063 

13797 

 ±9703 

PIP 426 49 15% 80% 5% 5682 

±3792 

23419 

±16374 

FLU 322 8 37% 63% 0 2351 

±504 

9372 

 ±1635 

 

 

 

 

Donor 2 

HLA-

B*57:01+ 

 

SMX-NO 546 57 55% 36% 9% 4638 

±6917 

16279 

 ±9028 

PIP 280 25 17% 79% 4% 5627 

 ± 4826 

19063 

±17352 

FLU 246 3 33% 67% N/A 3621 

±418 

8904 

 ±1395 

Donor 3  

HLA-B*57:01- 

 

SMX-NO 208 26 64% 28% 8% 3947 

±763 

16872 

±11372 

PIP 162 18 12% 84% 4% 3592 

±473 

8496 

±4281 

FLU 156 2 50% 50% N/A 2950 

±316 

5742 

±407 

Table 6.3. Generation of drug-s pecific T-cell clones and phenotypic characterization. The number of the total 

and the SMX-NO, piperacillin and flucloxacillin-specific clones generated from 3 priming assays were further 
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characterized. PIP: piperacillin, FLU: flucloxacillin.  

 

 

 

 

                           

Figure 6.3. Analysis of the time- and concentration- dependent binding  of S MX-NO, piperacillin and 

flucloxacillin to intracellular and extracellular proteins by western blotting . Various concentrations of 

piperacillin and flucloxacillin, from 0.5 mM to 2 mM and SMX-NO, from 10 M to 50 M were co-cultured with 

antigen presenting cells in serum containing medium for 1 hour or 16 hours under an atmosphere of 37
o
C/5% CO2. 

The proteins were separated by SDS-polyacry lamide gel and t ransferred onto nitrocellulose membrane and 

incubated with anti-SMX, anti-piperacillin or anti-flucloxacillin antibodies. Western blotting performed in triplicate 

after a 16-hour culture of flucloxacillin was not published due to overwhelming non -specific binding, including in 

the control. The protocol of flucloxacillin western blotting was described in section 2.13. However, our previous 

result detailing that flucloxacillin only binds to supernatant protein rather than to cell lysate protein was repeatable 

in the lab. Therefore, together with the 1h culture results, the result described above was reliable.   
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To determine whether any drug-protein complex is located in the serum and/or cells, western 

blotting was performed using cell culture supernatant or cell lysates, respectively. The drug-

protein complex was identified by the enhanced molecular weight (MW) of the drugs in the 

Western blotting assay. The MW of SMX-NO, piperacillin and flucloxacillin is 267.26 Da, 

517.55 Da, and 453.87 Da, respectively. Our data show that for all three drugs, the drug-protein 

MW is approximately 50K Da to 75K Da. We also show that while piperacillin and flucloxacillin 

bind selectively to protein in the serum, SMX-NO binds to both serum and cellular proteins 

(Figure 6.3). The binding of drug antigens to extracellular protein was found to be both time and 

concentration dependent. In contrast, while the binding of SMX-NO to B-cell APC lysate is also 

concentration dependent, it was not time dependent (Figure 6.3). In detail, our data highlights 

comparable signals between a culture length of 1 hour and 16 hours, but a marked difference 

between 10M and 50M SMX-NO when using cell lysates.  

To further study the mechanisms of drug-specific T-cell activation antigen specificity was 

assessed using thymidine incorporation assays to measure antigen-specific proliferation.  T-cell 

clones were found to proliferate significantly in the presence of the drug antigen to which they 

were originally primed, but displayed a complete lack of cross-reactivity to the two alternate 

drug antigens (Figure 6.4). These results mirror those obtained direct from the priming cultures.  
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 Figure 6.4 T-cell clones that are reactive to S MX-NO, piperacillin or flucloxacillin do not show cross 

reactivity against the other two drugs. 5 x 10
4 

T-cell clones were co-cultured with autologous B-cell APCs (1 x 

10
4
) in the presence of SMX-NO (from 12.5 mM to 50 mM) or piperacillin (from 0.5 mM to 2 mM) or flucloxacillin 

(from 0.5 to 2 mM) under an atmosphere of 5% CO2 at 37 
o
C for 3 days and [3H] thymid ine was added in the final 

16 hours. Pro liferat ion was measured by scintillation counting.  The data shows mean of triplicate or duplicate wells 

depend on cells availab ility. Mann-Whitney test was applied. *p<0.05 compared with control. 
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6.3.2 Mechanism of activation of drug-specific T-cell clones  

There are three main theories describing how drug-antigens can stimulate a TCR, namely the 

hapten theory, p.i. concept, and the more recently described altered peptide hypothesis. To 

determine the relevant mechanism of TCR activation for individual drug antigens we performed 

a series of assays. First, we assessed the requirement for antigen processing to stimulate antigen-

specific responses by comparing T-cell stimulation when using standard APCs in comparison to 

those pre-cultured in the fixative glutaraldehyde. While fixation renders the cell intrinsic antigen-

processing machinery non-functional, cell surface molecules including MHC remain intact and 

thus the cells maintain the ability to facilitate direct TCR-MHC interactions. SMX-NO, 

piperacillin and flucloxacillin-specific T-cell clones generated from drug-naïve donors were 

cultured with normal or glutaraldehyde-fixed APCs. T-cell proliferation in response to all three 

drug-antigens was abolished when using the fixed APCs compared with the irradiated APCs used 

as control (Figure 6.5). These data indicate that the activation of T-cells in response to SMX-NO, 

piperacillin and flucloxacillin-derived antigens requires the processing and subsequent 

presentation of antigen by functional APCs.  

Second, HLA restriction was performed. EBV-transformed B-cells which we utilize as 

immortalized APCs to assess antigen-specificity of T-cell clones express both MHC class I and II 

molecules at the cell surface which, if they respond to antigen, stimulate CD8+ and CD4+ T-cells, 

respectively. To explore the functional relevance of the MHC we cultured EBV-transformed B-

cells with MHC I or MHC II blocking antibodies for 30 minutes, so preventing their binding to 

antigen, before subsequent culture with antigen-responsive T-cell clones and assessment of 

proliferation in response to drug. As expected CD4+ T-cell clone responses were all inhibited by 

the presence of anti-MHC II antibodies, shown in Figure 6.6 and 6.7 where 2 representative 
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SMX-NO-specific T cell clones, 2 piperacillin-specific T-cell clones and 2 flucloxacillin-specific 

T-cell clones are shown. Two CD8+ flucloxacillin-specific T-cell clones were also studied which 

both showed MHC class I molecule restricted activation (Figure 6.7).  

Third, to further study the mechanisms of antigen presentation, drug antigen pulsing assays were 

performed. Pulsing in this context refers to the exposure of APCs to drug antigen for a defined 

time period, allowing any potential antigen uptake to occur, before performing multiple washing 

steps to remove free antigen prior to culture with T-cell clones. Any subsequent antigen-specific 

T-cell response, due to the lack of any additional free antigen added during the culture with T-cell 

clones, must be induced by antigen that has been taken up and processed by the APCs. 

Furthermore, to determine the length of culture period required for sufficient antigen uptake and 

processing, separate batches of APCs were co-cultured with drug antigen for 1 hour, 4 hours and 

16 hours. After an extensive washing procedure with HBSS, the now antigen pulsed APCs were 

cultured with T-cell clones for 3 days and proliferation measured using thymidine incorporation.  

Our data, displayed in figure 6.8, shows that all T-cell clones responsive to SMX-NO, 

piperacillin, or flucloxacillin proliferated in the presence of drug-antigen pulsed APCs without 

the presence of soluble antigen. For SMX-NO-specific clones, a highly proliferative response 

was seen when APCs had been cultured with SMX-NO for as little as 1 hour, suggesting that 

protein binding occurs rapidly (Figure 6.8). The response to flucloxacillin-specific T-cell clones 

was more varied. While some clones produced a weak response upon stimulation with pulsed 

APCs, other clones reached the maximum response when APCs were pulsed with flucloxacillin 

for 1 hour again indicating the potential for rapid protein binding and neoantigen formation 

(Figure 6.8). On the other hand, although piperacillin-specific T-cell clones produced responses 

when cultured with APCs that had been pulsed with antigen for 1 hour, longer pulses led to 
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increased proliferative responses with a pulse of up to 16 hours to reach the maximum response 

(Figure 6.9). 

Lastly, to form a drug antigen SMX-NO is known to bind to the cysteine residues of protein, 

whereas piperacillin and flucloxacillin bind to the lysine residues. To further characterize and 

confirm the propensity for SMX-NO, piperacillin and flucloxacillin to form protein conjugates 

before stimulating a drug antigen-specific response, we used glutathione and Nα-acetyl-L- lysine 

to block protein binding before culture with T-cell clones. Specifically, glutathione (GSH) which 

contains a reactive cysteine residue was utilized to block SMX-NO protein binding. Separately,  

Nα-Acetyl-L- lysine (NAL) was used to competitively bind to the β- lactam antibiotics thereby 

blocking protein binding. Our data shows that SMX-NO-mediated T-cell responses were totally 

inhibited by GSH but not NAL confirming a requirement for the binding o f SMX-NO to cysteine 

residues in proteins before T-cell stimulation (Figure 6.10). In stark contrast, piperacillin 

responses were down regulated by NAL but not GSH indicating a requirement for piperacillin-

protein conjugates to form at lysine residues (Figure 6.11). For flucloxacillin-specific clones, the 

antigen–induced T-cell response was decreased by NAL (Figure 6.12).  
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Figure 6.5 S MX-NO, piperacillin and flucloxacillin primed naïve T-cells do not proliferate when exposed to 

drug antigen in the presence of glutaraldehyde fixed APCs . Autologous EBV‐transformed B‐cells (2 x 10
6
) were 

washed twice in HBSS and resuspended in 1ml HBSS. Glutaraldehyde (12.5μl, 2%) was then added and the cells 

agitated for 30 seconds. Glycine (1ml, 1M) was quickly added and cells were agitated for a fu rther 45 seconds. Th e 

cells were resuspended in 10ml T ‐cell medium after extensive washing (3 times, T‐cell medium). 

Glutaraldehyde‐fixed B‐cell APCs (1 x 10
4
, 50μl) were then added to T‐cell clones (5 x 10

4
) in the presence or 

absence SMX-NO (50mM), piperacillin (2mM) or flucloxacillin (2mM). Control APCs were the irradiated EBV-

transformed B-cells. Cells were cultured for 3 days at 37˚C with [
3
H] thymidine added for the final 16h. 

Proliferation was determined by scintillation counting. The data shows mean of trip licate or du plicate wells depend 

on cells availab ility. Mann-Whitney test was applied. *p<0.05 compared with control.  
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Figure 6.6 Activation of piperacillin and S MX-NO s pecific T-cell clones were HLA class II restricted.  MHC 

class I/II blocking antibodies (5µg/ml)  were incubated with 10
4 

cells/well of autologous APCs for 30 min at 37°C in 

an atmosphere of 5% CO2. 5 x 10
4
 T-cell clones/well and medium or drug solution (piperacillin 2 mM, SMX-NO 50 

M) was then placed in  each well. The cultures were incubated under atmosphere of 5% CO2 at 37
o
C for 3 days and 

[
3
H] thymid ine was added in the final 16 hours. Proliferation results were measured by scintillation counting. The 

data shows mean of triplicate or duplicate wells depend on cells availability.  
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Figure 6.7 CD4

+
 and CD8

+ 
flucloxacillin specific T-cell clones are MHC class II and I restricted, respectively.  

MHC class I/II b locking antibodies (5g/ml) were incubated with 10
4 

cells/well of autologous APCs for 30 min at 

37°C with atmosphere of 5% CO2. 5 x 10
4
 T-cell clones/well and medium or drug solution flucloxacillin (2mM) was 

then placed each well. The cu ltures were incubated under atmosphere of 5% CO2 at 37
o
C for 3 days and [

3
H] 

thymid ine was added in the final 16 hours. Proliferation results were measured by scintillat ion counting. The data 

shows mean of t rip licate or duplicate wells depend on cells availability.  
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Figure 6.8 APCs pulsed with SMX-NO or flucloxacillin are able to generate strong proliferative responses in a 

time-dependent manner. APCs were incubated with flucloxacillin (2mM) and SMX-NO (50µM) for 1h, 4h, 16h and 
then extensively washed (3 times) to remove free drug. This is called pulsing the APCs. 5 x 10

4
 T-cell  clones/well 

were cultured with drug pulsed APCs (1 x 10
4 

cells/well) and drugs in duplicate in 96 well plates for 3 days at 37°C in 
an atmosphere of 5% CO2. Proliferation was measured by [

3
H]-thymidine incorporation. The data shows mean of 

triplicate or duplicate wells depend on cells availability. Mann-Whitney test was applied. *p<0.05 compared with 
control. 
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Figure 6.9 APCs pulsed with piperacillin for 16 hours are able to trigger antigen s pecific T-cell responses that 

are almost comparable with soluble drug. APCs were incubated with piperacillin (2mM) for 1h, 4h, 16h  and then 

extensively washed (3 times) to remove the free drug. 5 x 10
4
 T-cell clones/well were cultured with drug pulsed 

APCs (1 x 10
4
cells/well) and drugs in duplicate in 96 well p lates for 3 days at 37°C in an atmosphere of 5% CO2. 

Proliferation was measured by [
3
H]-thymidine incorporation. The data shows mean of triplicate or duplicate wells 

depend on cells availab ility. Mann-Whitney test was applied. *p<0.05 compared with control. 

 

 

 
Figure 6.10 SMX-NO specific T-cell activation was blocked by GS H but not by NAL. T-cell clones (5 × 10

4
 

cells, 50 μl) isolated from priming assay were cultured  with EBV-transformed B-cell APCs (1 x 10
4
 cells, 50 μl)  in 

the presence of GSH and NAL under the atmosphere of 5% CO2 for 3 days and [
3
H]-thymid ine (0.5Ci/well) was 

added to each well in the final 16 hours of culture. T-cell p roliferat ion was measured by scintillation counting. The 

data shows mean of triplicate or duplicate wells depend on cells availability. Mann -Whitney test was applied. 

*p<0.05 compared with control.  
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Figure 6.11 Piperacillin specific T-cell activation was blocked by NAL but not by GS H. T-cell clones (5 × 10
4
 

cells, 50 μl) isolated from priming assay were cultured  with EBV-transformed B-cell APCs (1 x 10
4
 cells, 50 μl)  in 

the presence of GSH and NAL under the atmosphere of 5% CO2 for 3 days and [
3
H]-thymid ine (0.5Ci/well) was 

added to each well in the final 16 hours of culture. T-cell p roliferat ion was measured by scintillation counting. The 

data shows mean of triplicate or duplicate wells depend on cells availability. Mann -Whitney test was applied. 

*p<0.05 compared with control.  
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Figure 6.12 Flucloxacillin s pecific T-cell activation was blocked by NAL but not by GS H. Flucloxacillin specific  

T-cell clones (5 × 10
4
 cells, 50 μl) isolated from priming assay were cu ltured with EBV-transformed B-cell APCs (1 

x 10
4
 cells, 50 μl) in  the presence of GSH and NAL under the atmosphere of 5% CO2 for 3 days and [

3
H]-thymid ine 

(0.5 Ci/well) was added to each well in the final 16 hours of culture. T-cell pro liferat ion was measured by 

scintillat ion counting. The data shows mean of triplicate or duplicate wells depend on cells availability. Mann -

Whitney test was applied and *p<0.05 compared with control.  

 

 

6.4 Discussion 

Currently, it is almost impossible to predict whether a novel chemical entity will cause 

hypersensitivity during the drug development process. This is because validated in vitro methods 

using lymphocytes from human donors to characterize the drug immunogenicity do not exist. 

Furthermore, animals do not develop hypersensitivity reactions that mimic the human condition. 

Thus, in vivo experiments provide very little information regarding a compounds sensitization 

potential. We have recently developed an in vitro T-cell priming assay using PBMC from healthy 

human donors, and SMX-NO as a model drug metabolite immunogen, to investigate naïve T-cell 
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responses to drug antigens (Faulkner, Martinsson et al. 2012, Monshi, Faulkner et al. 2013, 

Gibson, Ogese et al. 2014). The assay relies on the presentation of the drug antigen by 

autologous dendritic cells as these are the only professional APCs thought able to prime naïve T-

cells. These dendritic cells are generated through a week- long culture of CD14+ monocytes 

isolated from peripheral blood with GM-CSF and IL4-supplmented R9 medium. 24 hours prior 

to harvesting, the dendritic cells are additionally cultured with lipopolysaccharide from E.Coli 

and TNF in order to promote the establishment of a mature phenotype leading to an inc reased 

ability to engulf antigen and the upregulation of cell surface co-stimulatory molecules to promote 

T-cell stimulation. Therefore, this enforced maturation stage allows this in vitro assay to bypass 

the role played by danger signaling in vivo. Once primed, the T-cells can then be restimulated in 

vitro and T-cell responses measured using readouts for proliferation and cytokine release. 

Furthermore, individual T-cells can be expanded and tested for drug antigen specificity. This 

assay allows us to investigate mechanisms of drug antigen presentation using T-cells from 

healthy drug-naïve donors and determine how these naïve T-cell responses induced in vitro relate 

to responses seen in hypersensitive patients. In this study we focused on three drug-antigens, 

SMX-NO, piperacillin, and flucloxacillin, which are strongly linked with hypersensitivity 

reactions to explore mechanisms of T-cell activation and TCR cross-reactivity.  

Drug hapten-specific T-cell activation is presumed to occur via a classical hapten mechanism 

where the drug must first form a protein adduct. The drug antigen-protein conjugate is then 

presumed to be taken up by APCs and processed into peptide fragments. To activate T-cells, the 

peptides fragments must bind to endogenous MHC molecules before they are transported to the 

cell surface where they can be presented to passing T-cells. T-cells from patients with several 

forms of chemical sensitization and drug hypersensitivity have been shown to be activated via a 



 

154 

 

hapten mechanism (Brander, Mauri-Hellweg et al. 1995, Pickard, Smith et al. 2007, Castrejon, 

Berry et al. 2010, Jenkinson, Jenkins et al. 2010, El-Ghaiesh, Monshi et al. 2012). However, T-

cells may also be activated by drugs and chemicals through a direct interaction with surface 

MHC molecules via the pharmacological interaction (PI) pathway that does not require antigen 

processing (Schnyder, Mauri-Hellweg et al. 1997, Schnyder, Burkhart et al. 2000, Wu, Sanderson 

et al. 2006, Ko, Chung et al. 2011, Adam, Eriksson et al. 2012). This is the proposed mechanism 

of T-cell activation by sulfamethoxazole as it is able to do so in the presence of fixed APCs, 

which are incapable of processing antigen (Elsheikh et al., 2011). In recent years, some have 

argued that haptenic drugs might preferentially activate T-cells via this mechanism (Sieben, 

Kawakubo et al. 2002, Wuillemin, Adam et al. 2013, Wuillemin, Terracciano et al. 2014, Yaseen, 

Saide et al. 2015) but also that the PI pathway is likely more associated with the activation of 

memory rather than naïve T-cells as this mechanism suits responses dependent upon lower 

activation thresholds, i.e. those cells that have been previously stimulated (Adam et al 2011, 

Pichler et al 2011). Therefore the mechanism of TCR activation reported by the studies 

mentioned above, which refer to those in patients and thus memory T-cell responses, may be 

different to those during naïve T-cell priming. Thus, to investigate the mechanisms involved in 

naïve T-cell activation, T-cell priming assays were conducted using SMX-NO, piperacillin, and 

fluxcloxacillin, each of which has been shown to covalently modify proteins (Callan, Jenkins et 

al. 2009, Jenkins, Meng et al. 2009, Whitaker, Meng et al. 2011, Ogese, Jenkins et al. 2015) and 

induce T-cell responses in hypersensitive patients (Castrejon, Berry et al. 2010, Elsheikh, 

Castrejon et al. 2011, El-Ghaiesh, Monshi et al. 2012, Monshi, Faulkner et al. 2013) and so are 

ideal candidate antigens to investigate SMX-NO and piperacillin effectively primed naïve T-cells 

from heathy drug-naïve donors in 7/7 and 6/7 donors, respectively, as determined by measuring 
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proliferation after antigen-specific restimulation of T-cells. While the secretion of IFN-γ was also 

assessed using a higher number of donors, a much lower proportion of donors showed antigen-

specific cytokine secretion after naïve T-cell priming indicating a known lack of sensitivity of the 

ELISpot compared to thymidine incorporation (Porebski et al 2011). Unlike piperacillin 

hypersensitivity, flucloxacillin- induced liver injury is associated with the expression of HLA-

B*57:01 (Daly, Donaldson et al. 2009) and a recent study from our lab has shown the ability to 

prime naïve T-cells from healthy donors expressing this alelle (Monshi, Faulkner et al., 2013). 

Despite this association, HLA-B*57:01 is clearly not the only predisposing factor as only 1 in 

500-1000 individuals who express this risk allele go on to develop flucloxacillin- induced 

hypersensitivity after drug administration (Daly et al., 2009). Nonetheless, T-cell priming with 

flucloxacillin was attempted using cells from both HLA-B*57:01 positive and negative donors. 

While no IFN-γ secretion was detected, similarly weak proliferative responses were detected in 

two donors after naïve T-cell priming. Interestingly, these responses occurred irrespective of the 

presence of HLA-B*57:01. Importantly, the lack of a flucloxacillin-specific T-cell response was 

not related to inadequate protein adduct formation as flucloxacillin-modified proteins were 

detected in our binding study. In order to characterize the phenotype and function of antigen-

responsive T-cells we subsequently generated T-cell clones from the priming cultures of two 

HLA-B*57:01 positive and one negative donor, allowing us to extract and utilize just the 

antigen-responsive cells. Both CD4+ and CD8+ T-cell clones were generated that responded to 

SMX-NO, piperacillin, or flucloxacillin from all three donors. However, those clones that were 

beta-lactam specific formed a predominantly CD8+ population, reflecting the major ity 

phenotype of T-cell isolated from the blood of beta lactam allergic patients (Hertl et al, 1993).  A 

plethora of published articles are available that detail the cross-reactivity, or lack of, between 
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drugs that bind directly to the MHC molecules (Pichler 2003, Pichler 2005, Schnyder and Pichler 

2009, Adam et al 2011). In the case of β-lactam antibiotics, Mauri-Hellweg and colleagues found 

that while some T-cell clones from allergic patients were cross reactive with other beta- lactams, a 

second subset were highly specific (Mauri-hellweg et al, 1996). More recently, Monshi et al 

detailed similar variability regarding cross reactivity in patient clones where some flucloxacillin-

specific T-cell clones proliferated strongly in response to piperacillin exposure (Monshi et al, 

2013). In our study using cells from healthy donor naïve T-cell priming, all clones were found to 

be highly specific with a distinct lack of cross reactivity between panels of SMX-NO, 

piperacillin, and flucloxacillin-responsive clones. 

 

In order to determine the mechanism of naïve TCR activation fo r each drug antigen, we first had 

to establish the propensity for each drug antigen in question to form a hapten by binding to either 

extracellular or intracellular protein. We found that SMX-NO was able to form haptens by 

binding to protein from either the cell lysates of the supernatant, while hapten formation 

regarding flucloxacillin or piperacillin was restricted to serum proteins. The formation of hapten 

intermediates by beta lactam antibiotics in vitro mirrors the scene depicted in vivo by early 

experiments in the 1960s detailing that the serum of allergic patients contained antibodies 

responsive to benzylpenicilloyl-modified protein structures (Levine and Price, 1964; Siegel and 

Levine, 1964). Attempts to identify these drug-protein conjugates as the culprit antigens that 

trigger the immune response were made. If the conjugates induced a T-cell response, mass 

spectrometry could then be employed to characterize the exact identity of the processed antigens 

that are formed during the priming assay, thus providing direct evidence of hapten- induced T-cell 

activation in vitro. However, when using established piperacillin-albumin conjugate synthesized 
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in our lab to stimulate piperacillin-specific T-cells, we were unable to maintain the T-cell clones 

due to either a time-dependent loss of antigenicity or poor growth.  We found that primed 

piperacillin-specific T-cell clones may lose their antigen-specificity in just one and a half months. 

Further work will be required to utilize this strategy.  

 

A battery of established assays were then utilized to determine the nature of the drug-specific T-

cell response including; the use of glutaraldehyde-fixed APCs to assess the requirement for 

antigen processing, HLA restriction using MHC class I and II blocking antibodies, antigen-

pulsing to determine the ability of free drug antigen to activate T-cells but also the length of 

exposure time required for sufficient processing of antigen by APCs, and the use of GSH and 

NAL to identify the specific binding of drug antigen to either protein cysteine or lysine residues, 

respectively. We found that all three drug antigen required uptake and processing by APCs in 

order to stimulate T-cells as no response could be detected in the presence of fixed APCs, and 

stimulation of CD4+ and CD8+ T-cells was MHC class II and I restricted, respectively. 

Interestingly, the SMX-NO responsive clones were activated with APCs pulsed with the drug for 

as little as 1 hour, which coincides with the previously reported almost instantaneous binding of 

the drug metabolite to protein (Naisbitt, Hough et al. 1999, Naisbitt, Farrell et al. 2002, Callan, 

Jenkins et al. 2009). In contrast, β- lactam antibiotics bind to protein in a time-dependent manner 

(Whitaker, Meng et al. 2011, El-Ghaiesh, Monshi et al. 2012) and in general, a longer (4-16 

hour) APC pulse was required to activate T-cells. Collectively these mechanistic studies indicate 

that T-cells responsive to all three drug antigens were activated by a hapten mechanism and that 

hapten formation was able to readily activate naïve T-cells in vitro. Hence, hapten formation in 

patients should be considered an important risk factor. However, this leads to the intriguing 
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puzzle as to why exposure to drugs such as paracetamol is not associated with a high incidence 

of hypersensitivity reactions. Paracetamol is metabolized in the liver to a reactive quinoneimine 

intermediate, which binds irreversibly to hepatic proteins and in overdose causes acute liver 

failure. However, these haptenated proteins are not “recognized” by the adaptive immune system 

and hypersensitivity reactions are reported infrequently.  

 

In summary, we show that highly structurally-specific T-cells are readily primed in vitro when 

autologous functionally mature dendritic cells present antigenic determinants, derived from 

haptenic structures bound covalently to protein, to naïve T-cells. The T-cell priming assays 

allows us to effectively determine the functional mechanisms by which distinct drug antigens 

activate the immune system by utilizing T-cells from healthy donors. This bypasses the difficulty 

of obtaining access to patient samples, and importantly allows for the investigation of the naïve 

T-cell response rather than the memory T-cell responses we detect in pre-sensitized responsive 

individuals. Furthermore, the availability of such an in vitro assay, once developed further to 

incorporate several donors on a single test plate, might represent an effective strategy for 

pharmaceutical companies to screen the immunogenicity of novel chemical entities thus 

enhancing the safety profile of future compounds.     
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Chapter 7 

 

7.1 Final discussion. 

 

Drug hypersensitivity represents an impediment to the drug development process and a burden 

on national health services. Although many reactions are mild and self- limiting, i.e., symptoms 

resolve after drug withdrawal, a limited number of patients develop serious and sometimes life-

threatening conditions. Drug hypersensitivity is described as an idiosyncratic or type B 

hypersensitivity reaction as mechanisms generally remain unresolved. In most cases, no simple 

relationship is apparent between the dose of drug administered and the development of clinical 

symptoms, due to the curve of therapeutic drug doses and the curve of drug doses induce 

hypersensitivity are not in the same range. Despite this, it should be noted that most drugs 

associated with a high incidence of hypersensitivity are administered at high mass doses.  

Immuno-histological studies of inflamed tissue of hypersensitive patients show an infiltra tion of 

T-cells. The T-cells have been isolated from the tissue, expanded in vitro, and shown to display 

reactivity against the drug the patient was exposed to at the time of the reaction. (Schnyder, 

Frutig et al. 1998, Yawalkar, Hari et al. 2000, Yawalkar, Shrikhande et al. 2000, Britschgi, 

Steiner et al. 2001, Nassif, Bensussan et al. 2002, Nassif, Bensussan et al. 2004, Ko, Chung et al. 

2011) In mild conditions, CD4+ T-cells are believed to be the primary mediators of tissue injury, 

potentially inducing cell death indirectly through the release of cytokines that recruit phagocytes, 

or directly through the production of apoptosis- inducing cytolytic molecules. In more severe 

conditions, i.e., Stevens-Johnson syndrome and toxic epidermal necrolysis, granulysin-secreting 

cytotoxic CD8+ T-cells predominate. Phenotypic and functional characterization of drug-specific 

T-cells from hypersensitive patients led to the development of an expanded Coombs and Gell 

classification of hypersensitivity (Pichler, Yawalkar et al. 2002, Pichler 2003, Pichler 2003). 
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Therefore, it was possible to describe different clinical conditions according to the CD phenotype 

of the drug-specific T-cells and the cytokines/effector molecules they secreted. Importantly, this 

classification is somewhat obsolete as it does not encompass the new populations of T-cell that 

have been discovered over the last decade.  

Identification of HLA alleles as important susceptibility factors for many forms of 

hypersensitivity has led to a renewed interest in understanding the nature of the drug interaction 

with immune receptors, in particular MHC molecules and specific T-cell receptors. The most 

progress has been made exploring whether HLA class I associations with particular forms of 

hypersensitivity relate to a specific fit of the drug-derived antigen within MHC class I molecules. 

For example, we now know that antigens derived from abacavir (HLA-B*57:01),  (Mallal, Nolan 

et al. 2002) allopurinol (HLA-B*58:01),  (Hung, Chung et al. 2005) carbamazepine (HLA-

B*15:02 & HLA-A*31:01) (Chung, Hung et al. 2004, McCormack, Alfirevic et al. 2011) and 

flucloxacillin (HLA-B*57:01) (Daly, Donaldson et al. 2009) interact with a degree of selectivity 

with the HLA risk allele to activate T-cells from hypersensitive patients. (Chessman, Kostenko et 

al. 2008, Ko, Chung et al. 2011, Monshi, Faulkner et al. 2013, Yun, Mattsson et al. 2013, 

Lichtenfels, Farrell et al. 2014) Furthermore, for each of the drugs highlighted above, it is 

possible to activate T-cells from healthy drug-naïve donors with the drug if they carry to risk 

allele. (Chessman, Kostenko et al. 2008, Farrell, Lichtenfels et al. 2013, Monshi, Faulkner et al. 

2013, Yun, Marcaida et al. 2014) Although genetic studies have identified several HLA class II 

associations with drug hypersensitivity e.g., amoxicillin-clavulanate,  (Donaldson, Daly et al. 

2010) lapatinib, (Spraggs, Budde et al. 2011, Spraggs, Parham et al. 2012) ximelagatran 

(Kindmark, Jawaid et al. 2008), as yet functional studies have not as yet been able to relate the 

activation of T-cells to restriction of the fit of the drug-derived antigen within the MHC molecule 
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encoded by the HLA risk allele.  

Does the association between specific hypersensitivity reactions and MHC proteins provide 

mechanistic information on how T-cells are likely to be triggered? The simple answer is no. 

Traditionally, drugs are thought to activate T-cells via 2 pathways. Pathway 1 (i.e., hapten 

hypothesis) involves the formation of drug-protein adducts as the initiation step. This is followed 

by protein processing and release of drug-modified peptides that are believed to bind directly to 

MHC molecules prior to triggering T-cells (Brander, Mauri-Hellweg et al. 1995, Padovan, Bauer 

et al. 1997). Pathway 2 (i.e., PI concept) involves direct binding of drugs to the peptide- loaded 

MHC molecules expressed on the surface of antigen presenting cells. The drug-MHC binding 

interaction is reversible, but sufficiently stable to trigger T-cell responses (Zanni, von Greyerz et 

al. 1998, Schnyder, Burkhart et al. 2000). From this brief discussion one can see that the species 

interacting with T-cell receptors is similar for both pathways (i.e., a MHC peptide drug complex). 

The main differences are (1) the nature of the drug peptide binding interaction and (2) the way in 

which the drug is transported to the MHC peptide binding groove.  

Studies using cells from healthy donors and hypersensitive patients who carry specific HLA risk 

alleles has enhanced our understanding of drug MHC binding interactions and go ne some way to 

address the suppositions associated with the hapten hypothesis and PI concept. Carbamazepine 

and allopurinol (or more precisely the metabolite oxypurinol) bind directly to surface MHC 

molecules and activate T-cells via a PI mechanism (Lichtenfels, Farrell et al. 2014, Yun, 

Marcaida et al. 2014).  Flucloxacillin, a β- lactam antibiotic that forms adducts with lysine 

residues on protein directly, activates T-cells from patients with liver injury via a classical hapten 

mechanism (Monshi, Faulkner et al. 2013). However, it should be noted that T-cells from healthy 

donors expressing HLA-B*57:01 are activated in vitro under conditions of excess antigen by 
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both hapten and PI pathways (Wuillemin, Adam et al. 2013, Yaseen, Saide et al. 2015). Finally, 

ground-breaking studies from 3 independent research groups exploring abacavir HLA binding 

devised a new pathway of drug-dependent T-cell activation. (Illing, Vivian et al. 2012, Norcross, 

Luo et al. 2012, Ostrov, Grant et al. 2012) The authors demonstrated that abacavir binds directly 

to endogenous HLA-B*57:01 (within antigen presenting cells) and alters the structure of the 

peptide binding groove. As such, with time, an altered repertoire of HLA binding self-peptides is 

displayed on the surface of the antigen presenting cell. It is assumed that a portion of these 

peptides cross-react with pathogen-derived peptides and activate pre-existing memory T-cells in 

susceptible patients and ultimately the clinical condition of abacavir hypersensitivity. Initially, it  

was assumed that many drugs might activate T-cells via this pathway; however, despite intensive 

studies as yet a second example has not been forthcoming. This is not so surprising as for most 

forms of drug hypersensitivity, even those with an HLA allele association, patients expressing 

multiple HLA alleles go on to develop hypersensitivity indicating that the presence of the risk 

allele increases the likelihood of developing hypersensitivity, but is not the sole predisposing 

factor.       

Notwithstanding the above discussion several forms of drug hypersensitivity are not linked to 

expression of a particular HLA allele. Most forms of β- lactam and sulphonamide hypersensitivity 

reactions can be included in this list. The sulphonamides have been studied most extensively and 

to date HLA risk alleles have not been identified.  (Alfirevic, Vilar et al. 2009) One explanation 

for this might be the high incidence of reactions seen in patients exposed to these classes of drug. 

For example, sulfonamide reactions are seen in 30-50% of patient with HIV infection,  

(Pirmohamed and Park 2001) whereas β-lactam reactions are observed in up to 30% of patients 

with cystic fibrosis (Whitaker, Naisbitt et al. 2012). In both instances patients are exposed to 
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high doses of drug, often for a prolonged duration.    

In this thesis I focused on three drugs associated with a high incidence of hypersensitivity 

reaction: the sulfonamide sulfamethoxazole and the β- lactam antibiotics piperacillin and 

flucloxacillin. Sulfamethoxazole is a pro-hapten that requires metabolism to generate a hapten. It 

is metabolized preferentially by CYP2A9 to a hydroxylamine intermediate.(Gill, Tjia et al. 1999) 

This metabolite circulates unchanged in the periphery. However, under pro-oxidative conditions 

it is spontaneously oxidized to nitroso sulfamethoxazole (SMX-NO), (Naisbitt, ONeill et al. 

1996, Naisbitt, Hough et al. 1999) which binds covalently to cysteine residues on 

protein.(Callan, Jenkins et al. 2009, Ogese, Jenkins et al. 2015) Fortunately, SMX-NO can be 

synthesized (Naisbitt, ONeill et al. 1996) and when added to aqueous buffers has a half- life of 5-

10mins. (Naisbitt, Hough et al. 1999, Naisbitt, Gordon et al. 2001, Castrejon, Lavergne et al. 

2010) This timeframe is sufficient to generate drug protein adducts that activate dendritic 

cells,(Sanderson, Naisbitt et al. 2007, Elsheikh, Lavergne et al. 2010) and T-cells from (1) 

hypersensitive patients, (Schnyder, Burkhart et al. 2000, Castrejon, Berry et al. 2010) (2) drug 

naïve donors (following priming) (Engler, Strasser et al. 2004, Faulkner, Martinsson et al. 2012) 

and (3) in animal models of immunogenicity. (Naisbitt, Gordon et al. 2001, Naisbitt, Farrell et al. 

2002, Farrell, Naisbitt et al. 2003) The β- lactam antibiotics piperacillin and flucloxacillin both 

form adducts through a direct interaction with lysine residues on protein; however, they differ in 

terms of (1) the nature of the hypersensitivity reaction: flucloxacillin, liver injury; piperacillin, 

skin injury, (2) the dominant phenotype of drug-specific T-cell: flucloxacillin, CD8+;(Monshi, 

Faulkner et al. 2013) piperacillin, CD4+ (Whitaker, Meng et al. 2011, El-Ghaiesh, Monshi et al. 

2012) and (3) whether reactions are associated with an HLA risk allele: flucloxacillin, HLA-

B*57:01;(Daly, Donaldson et al. 2009) piperacillin, no known associations (unpublished data). T-
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cell clones responsive to the drugs were generated from blood and skin of hypersensitive patients 

to study the functionality of T-cells, focussing specifically on the cytokines IL-17 and IL-22. 

PBMC from healthy donors were subjected to drug-specific dendritic cell T-cell priming to 

assess whether T-cells with a similar phenotype can be generated in vitro. Finally, clones 

responsive to the 3 drugs were used to assess T-cell cross reactivity and mechanisms of drug-

specific T-cell activation. 

In initial studies, piperacillin-responsive T-cells were cloned from peripheral blood of 

hypersensitive patients. In agreement with published data, the vast majority of piperacillin-

responsive clones were CD4+. Clones proliferated in concentration-dependent manner following 

drug stimulation, with concentrations above 4 mM inhibiting the response due to cytotoxicity 

(results not shown). ELISpot was used to visualize the cytokines released by piperacillin-specific 

clones. T-cell activation resulted in secretion of a mixed panel of Th1 and Th2 cytokines with 

IFN-γ, IL-5 and IL-13 secreted by individual clones. Importantly, the availability of antibodies 

for IL-17 and IL-22 allowed us to investigate for the first time whether these cytokines are 

secreted by drug-specific T-cells. Many piperacillin-specific clones were found to secrete IL-22 

alongside Th1 and Th2 cytokines. However, IL-17 was not detected. 

One question that is frequently asked by researchers in the field of drug hypersensitivity is  

whether clones isolated from blood accurately reflect what occurs is skin at the time of the 

hypersensitivity reaction. To address this issue, through a close collaboration with the clinical 

team at the Leeds cystic fibrosis unit, skin biopsies were obtained from two patients following a 

positive piperacillin skin prick challenge. The hypothesis we were testing is that T-cells that 

migrate into the inflamed skin are the primary mediators of the hypersensitivity reaction. These 

biopsies were transferred to Liverpool to isolate and characterize the infiltrating T-cells. Skin was 
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digested and T-cells were allowed to migrate from the tissue to culture supernatant containing IL-

2. The T-cells were stimulated non-specifically with the mitogen PHA and cloned directly 

without any requirement for a round of drug-specific expansion. Piperacillin-specific CD4+ 

clones were successfully isolated from both biopsy specimens and subjected to the same analysis 

as the blood-derived clones. Importantly, the cyotkine profile of the skin-derived and blood-

derived piperacillin-specific clones was similar, with Th1 and Th2 cytokines detected alongside 

IL-22. These data are in agreement with the elegant studies of (Gaide, Emerson et al. 2015) who 

found that for every abundant skin resident memory T-cell generated from a naïve precursor, an 

abundant central memory T-cell bearing the same T-cell receptor can be found. They suggested 

that the tissue resident cells respond rapidly following antigen exposure, whereas the central 

memory cells produce a delayed response that extend the duration of the allergic reaction. The 

discovery of IL-22 as an important mediator of piperacillin hypersensitivity might explain why 

patients exposed to piperacillin rarely develop severe forms of hypersensit ivity reaction as IL-22 

has been shown to promote keratinocyte proliferation and wound repair in several forms of skin 

disease.(Eyerich, Eyerich et al. 2010, Cavani, Pennino et al. 2012, Avitabile, Odorisio et al. 

2015) 

Based on these findings, in the next component of the thesis I choose to explore whether it was 

possible to prime naïve T-cells from healthy donors to piperacillin and if so explore the nature of 

the induced response. To fulfil this objective, a recently developed dendritic cell T-cell priming 

assay was utilized. The assay relies on culture of highly purified naïve T-cells with autologous 

monocyte-derived dendritic cells and piperacillin for 8 days to prime the T-cells. Drug-antigen 

responses are then measured through assessment of proliferation and/or cytokine secretion by 

restimulating the now primed T-cells with a second batch of autologous dendritic cells and 
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piperacillin. Piperacillin effectively activated naïve T-cells from the healthy donors. Through the 

cloning of T-cells from the priming assay it was possible to show that piperacillin-specific T-cell 

activation was associated with secretion of Th1 and Th2 cytokines alongside IL-22, which 

mirrored the responses observed in hypersensitive patient skin. The one intriguing difference 

between healthy donor and patient T-cells was that many healthy donor T-cells expressed the 

CD8 co-receptor. This may relate to differences in the provision of piperacillin antigens in vitro 

and in patient skin; however, further investigation in this area was beyond the scope of this 

thesis.  

All of the experiments investigating piperacillin-specific T-cell priming utilized SMX-NO as a 

positive control. Hence, the cytokines secreted from SMX-NO-responsive T-cells was also 

profiled and related to T-cells from sulfamethoxazole hypersensitive patients. Similar to 

piperacillin, SMX-NO-responsive clones secreted Th1 and Th2 cytokines and IL-22, but IL-17 

was not detected. These data lead to the possibility that IL-22 secretion from drug-specific T-

cells is a common feature of drug hypersensitivity reactions in patients. Obviously further 

experiments using T-cells from patients with mild and severe forms of hypersensitivity are 

needed to confirm this possibility.   

The ability of CD4+ T-cells to initiate hypersensitivity is often questioned. The clones generated 

from piperacillin and sulfamethoxazole hypersensitive patients secreted IFN-γ following drug 

stimulation and as such will have the capacity to recruit and activate phagocytes; thus, providing 

an indirect pathway to tissue injury. Furthermore, several clones secreted cytolytic molecules 

including perforin, granzyme B and FasL. Hence, the T-cells might also damage keratinocytes 

directly through induction of the apoptotic cascade.                            

The final objective of my project was to explore mechanisms of drug-hapten-specific T-cell 
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activation and cross-reactivity between 3 different drug antigens: piperacillin, flucloxacillin and 

SMX-NO. Clones responsive to all 3 drugs were activated via a hapten mechanism. Several 

pieces of evidence support this conclusion. First, drug-pulsed antigen presenting cells activated 

all of the clones. In these experiments, the antigen presenting cells are cultured with drug for 

different durations. This is followed by repeated washing with drug-free medium. Finally, the 

antigen presenting cells are added to the T-cell assay in the absence of soluble drug. Second, 

fixation of antigen presenting cells with glutaraldehyde blocked the activation of the T-cell 

clones. Glutaraldehyde inhibits antigen processing but not the presentation of drug bound 

directly to MHC expressed on the surface of antigen presenting cells. Third, addition of 

exogenous glutathione (SMX-NO) and N-acetyl lysine (piperacillin and flucloxacillin) to culture 

medium reduced the strength of the drug-specific T-cell response. These mediators reduce drug 

hapten protein binding but will not alter the ability of the drug to bind directly to surface MHC. 

(Schnyder, Burkhart et al. 2000, Burkhart, von Greyerz et al. 2001, Jenkins, Meng et al. 2009, 

Meng, Jenkins et al. 2011) Finally, MHC blocking antibodies inhibited the drug specific T-cell 

response. Collectively, these data indicate that clones responsive against all 3 drugs are activated 

via a pathway involving formation of drug protein adducts, uptake of the adducted proteins by 

antigen presenting cells, protein processing and binding of the derived peptides to MHC.  

The availability of hapten-responsive clones with specificity for 3 drugs provided the unique 

opportunity to study T-cell cross reactivity. To date, several studies have addressed T-cell cross 

reactivity with parent drugs that bind directly to MHC, but knowledge of the drug-hapten-

specific response was limited. Clones responsive against SMX-NO, piperacillin and 

flucloxacillin haptens were not activated with the alternative compounds, which suggests that the 

hapten structure is important for the T-cell receptor binding interaction and triggering of the T-
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cell response.  

In summary, this thesis describes a series of investigations that explore the way in which T-cells 

are activated by drug haptens and the nature of the induced response. Two areas of interest 

deriving from these studies: specifically, (1) the role of IL-22 in drug hypersensitivity reactions 

and (2) the preferential generation of piperacillin-responsive CD4+ and CD8+ T-cells in patients 

skin and in vitro, respectively, warrant further investigation.     

 

Appendix 

 

 

Appendix Figures showed the piperacillin specific cytokine correlat ions in chapter3, which includes (A) Drug 

specific IL-22 secretion (showed by stimulatory index) and drug specific IFN-, (B) Drug specific T-cell 

proliferation and IL-13, (C) Drug specific T-cell proliferation and IFN-, and (D) Drug specific IFN-and IL-13.  
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