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interior–proximal primal–dual methods
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Abstract We study preconditioned proximal point methods for a class of saddle point

problems,where the preconditioner decouples the overall proximal pointmethod into an al-

ternating primal–dual method. This is akin to the Chambolle–Pockmethod or the ADMM.

In ourwork,we replace the squared distance in the dual step by a barrier function on a sym-

metric cone, while using a standard (Euclidean) proximal step for the primal variable. We

show that under non-degeneracy and simple linear constraints, such a hybrid primal–dual

algorithm can achieve linear convergence on originally strongly convex problems involv-

ing the second-order cone in their saddle point form. On general symmetric cones, we are

only able to show anO(1/N ) rate. These results are based on estimates of strong convexity

of the barrier function, extended with a penalty to the boundary of the symmetric cone.

Due to arXiv’s inability to handle biblatex properly, and refusal to accept PDFs,

references are broken in this �le. Please get the correctly typeset version from

h�p://tuomov.iki.fi/publications/.

1 introduction

Interior point methods exhibit fast convergence on several non-smooth non-strongly-convex

problems, including linear problems with symmetric cone constraints [1, 2, 3, 4]. The meth-

ods have had less success on large-scale problems with more complex structure. In particular,

problems in image processing, inverse problems, and data science, can often be written in the

form

(P) min
x
G(x) + F (Kx)

for convex, proper, lower semicontinuousG and F , and a bounded linear operatorK . Often,with

G and F involving norms and linear operators, (P) can be converted into linear optimisation on

symmetric cones. This is even automated by the disciplined convex programming approach

of CVX [5, 6]. Nonetheless, the need to solve a very large scale and di�cult Newton system

on each step of the interior point method makes this approach seldom practical for real-world

problems. Therefore, �rst-order splitting methods such as forward–backward splitting, ADMM

(alternating directions method of multipliers) and their variants [7, 8, 9, 10] dominate these

application areas. In our present work, we are curious whether these two approaches—interior

point and splitting methods—can be combined into an e�ective algorithm?
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The saddle point form of (P) is

(S) min
x

max
y

G(x) + 〈Kx ,y〉 − F ∗(y).

A popular algorithm for solving this problem is the primal–dual method of Chambolle and

Pock [10]. As discovered in [11], the method can most concisely be written as a preconditioned

proximal point method, solving on each iteration forui+1 = (x i+1,y i+1) the variational inclusion

(PP0) 0 ∈ H (ui+1) +Mi+1(ui+1 − ui ),

where the monotone operator

H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)

encodes the optimality condition 0 ∈ H (û) for (S). For the standard proximal point method [12],

one would take Mi+1 = I the identity. With this choice, the system (PP0) is generally di�cult

to solve. In the Chambolle–Pock method the preconditioning or step length operator is given

for suitably chosen step length parameters τi ,σi+1,θi > 0 by

Mi+1 :=

(
τ−1i I −K∗

−θiK σ−1
i+1I

)
.

This choice ofMi+1 decouples the primal x and dual y updates, making the solution of (PP0) fea-

sible in a wide range of problems. IfG is strongly convex, the step length parameters τi ,σi+1,θi
can be chosen to yield O(1/N 2) convergence rates of an ergodic duality gap and the squared

distance ‖x i − x̂ ‖2. If bothG and F ∗ are strongly convex, then the method converges linearly.

In our earlier work [13, 14, 15], we have modi�edMi+1 as well as the condition (PP0) to still

allow a level of mixed-rate acceleration whenG is strongly convex only on sub-spaces or sub-

blocks of the variable x = (x1, . . . ,xm), and derived a corresponding doubly-stochastic block-

coordinate descent method. As an extension of that work, our speci�c question now is:

If F ∗ encodes the constraint Ay = b and y ∈ K

for a symmetric coneK , can we replaceMi+1 in (PP0) by a non-linear interior point preconditioner

that yields tractable sub-problems and a fast, convergent algorithm?

Generalised proximal point methods motivated by interior point methods have been consid-

ered before in [16, 17, 18, 19]. Here the approach has essentially been to replace the squared

distance in the proximal point method x i+1 := argminx ∈K G(x)+ 1
2τ ‖x −x i ‖2 forminx ∈K G(x)

by a suitable Bregman distance supported on intK× intK , typicallyD(x,x ′) := tr(x ◦ lnx −x ◦
lnx ′ + x ′ − x). To the best of our knowledge, no convergence rates have been obtained using

this approach. In Section 4 of the present work, we will instead replace the squared distance

in the proximal point step for the dual variable y by a more conventional barrier-based pre-

conditioner −∇ log det(y). With this, we are able to obtain convergence rates: in the general

case onlyO(1/N ), but linear convergence in the second-order cone under non-degeneracy and

A = 〈a, · 〉 for a ∈ intK . We demonstrate these theoretical results by numerical experiments

in Section 5.
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The overall idea, how the theory works, is that the barrier-based preconditioner is strongly

monotone on bounded subsets of intK , and “compatible” with ∂F ∗ on ∂K in such a way that

these strong monotonicity estimates can,with some penalty term, be extended up to the bound-

ary. This introduces some of the strong monotonicity that ∂F ∗ itself is missing.

An interesting question for future research is, whether the results for general cones can be

improved, or whether the second-order cone is special? Nevertheless, our present theoretical

results make progress towards closing the gap between direct methods for (P), and primal–dual

methods for (S): among others, forward–backward splitting for (P) is known to obtain linear

convergence with strong convexity assumptions on G alone [20], but primal–dual methods

generally still require the strong convexity of F ∗ as well. For ADMM additional local estimates

exist under quadratic [21, 22] or polyhedrality assumptions [23]. On the other hand, it has been

recently established that forward–backward splitting converges at least locally linearly even

under less restrictive assumptions than the strong convexity ofG [24, 25].

Our theoretical results depend on the convergence theory for non-linearly preconditioned

proximal pointmethods from [14]. We quote the relevant aspects in Section 3. To use this theory,

we need to compute estimates on the strong convexity of the barrier, with a penalty up to the

boundary. This is the content of the latter half of Section 2, after introduction of the basic Jordan-

algebraic machinery for interior point methods on symmetric cones.

2 notation, concepts, and results on symmetric cones

We write L(X ;Y ) for space of bounded linear operators between Hilbert spaces X and Y . For

any A ∈ L(X ;Y ) we write N(A) for the null-space, and R(A) for the range. Also for possibly

non-self-adjoint T ∈ L(X ;X ), we introduce the inner product and norm-like notations

(2.1) 〈x, z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x,x〉T , (x, z ∈ X ).

With R := [−∞,∞], we write C(X ) for the space of convex, proper, lower semicontinuous

functions from X toR. With K ∈ L(X ;Y ),G ∈ C(X ) and F ∗ ∈ C(Y ) on Hilbert spaces X and Y ,

we then wish to solve the minimax problem (S) assuming the existence of a solution û = (x̂, ŷ)
satisfying the optimality conditions 0 ∈ H (ŷ), in other words

(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).

For a function G, as above, ∂G stands the convex subdi�erential [26]. For a set C, ∂C is the

boundary. We denote by NC (x) = ∂δC(x) the normal cone to any convex setC at x ∈ C, where
δC is the indicator function of the set C in the sense of convex analysis.

In Section 4, we concentrate on F ∗ of the general form (2.2) in the next example.

Example 2.1 (From ball constraints to second-order cones). Very often in (P),we have F (z) =∑n
i=1 αi ‖zi ‖2, where the norm is the Euclidean norm on R

m and z = (z1, . . . , zn) ∈ R
mn .

Then F ∗(sy) = δB(0,αi )(syi ) for sy = (sy1, . . . , syn) ∈ R
mn . We may lift each syi into R

1+m as
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yi = (yi,0, syi ), and replace F ∗ by

(2.2) F̂ ∗(y) :=
n∑

i=1

δCi (yi ), where Ci := {yi ∈ K | Ay = b},

where, the linear constraint is de�ned by Ay := (y1,0, . . . ,yn,0) and b := (α1, . . . ,αn). The
cone constraint is given by K = Kn

soc for the second-order cone

Ksoc := {y = (y0, sy) ∈ R
1+m | y0 ≥ ‖sy ‖}.

In the following, we look at the Jordan-algebraic approach to analysis on the second-order

cone and other symmetric cones.

2.1 euclidean jordan algebras

We now introduce the minimum amount of the theory of Jordan algebras necessary for our

work. For further details, we refer to [27, 28].

Technically, a real Jordan algebra J is a real (additive) vector space together with a bilinear

and commutative multiplication operator ◦ : J × J → J that satis�es the associativity

condition x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y). Here we de�ne x2 := x ◦ x . The Jordan algebra J is

Euclidean (or formally real) if x2 +y2 = 0 implies x = y = 0. We always assume that our Jordan

algebras are Euclidean.

We will not directly need the last two technical de�nitions, but do rely on the very important

consequence that J has a multiplicative unit element e: x ◦ e = x for all x ∈ J . An element x

of J is then called invertible, if there exists an element x−1, such that x ◦ x−1 = x−1 ◦ x = e.

Example 2.2 (The Jordan algebra of symmetric matrices). To understand these and the fol-

lowing properties, it is helpful to think of the set of symmetricm ×m matrices. They form

a Jordan algebra endowed with the product A ◦ B := 1
2 (AB + BA). The inverse is the usual

matrix inverse, as is the multiplicative identity. So are the properties discussed next.

An element c in a Jordan algebra J is an idempotent if c ◦ c = c. It is primitive, if it is not the

sum of other idempotents. A Jordan frame is a set of primitive idempotents {ei }ri=1 such that

ei ◦ ej = 0 for i , j , and
∑r

j=1 ej = e. The number r is the rank of J . For each x ∈ J , there

indeed exist unique real numbers {λi }ri=1 , and a Jordan frame {ei }ri=1 , satisfying x =
∑r

j=1 λiei .

The numbers λi (x) = λi are called the eigenvalues of x . If all the eigenvalues are positive, we

write x > 0 and call x positive de�nite. Likewise we write x ≥ 0 if the eigenvalues are non-

negative, and call x positive semi-de�nite. With the eigenvalues, we can de�ne

(i) Powers xα :=
∑r

j=1 λ
α
i ei when meaningful,

(ii) The determinant detx :=
∏

j λj , and

(iii) The trace trx :=
∑r

j=1 λj .

(iv) The inner product 〈x,y〉 := tr(x ◦ y), and the

(v) Frobenius norm ‖x ‖ := ‖x ‖F :=
√∑r

j=1 λ
2
j =

√
〈x,x〉.
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The inner product is positive-de�nite and associative, satisfying 〈x ◦y , z〉 = 〈y ,x ◦ z〉. We also

frequently write

λmax(x) := max
i=1, . . .,r

λi (x) and λmin(x) := min
i=1, . . .,r

λi (x).

For conciseness, we de�ne for x ∈ J the operator L(x) by L(x)y := x ◦ y . The quadratic

presentation of x—this is one of the most crucial concepts for us, as we will soon see when

covering symmetric cones—is then de�ned as Qx := 2L(x)2 − L(x2). The invertibility of x is

equivalent to the invertibility of Qx . Other important properties include [27, 1]

(vi) Qα
x = Qxα for α ∈ R,

(vii) QQx y = QxQyQx (the fundamental formula of quadratic presentations),

(viii) Qxx
−1
= x ,

(ix) Qxe = x
2, and

(x) det(Qxy) = det(x2)y = det(x)2y .
Moreover,Qx is self-adjointwith respect to the inner product de�ned above, and the eigenvalues

are products λi (x)λj (x) [28, 27], so that

(2.3) λ2min(x)‖y ‖2 ≤ 〈Qxy ,y〉 ≤ λmax(x)2‖y ‖2 for all y when x ≥ 0.

Example 2.3 (The Euclidean Jordan algebra of quadratic forms). Let E1+m denote the space

of vectors x = (x0, sx) ∈ R
1+m with x0 scalar. Setting

x ◦ y = (xTy ,x0sy + y0sx),

we make (E1+m , ◦) into a Euclidean Jordan algebra. The identity element is e = (1, 0), rank
r = 2, and the inner product is

(2.4) 〈x,y〉 = 2xTy .

De�ning the diagonalmirroring operatorR :=
(
1 0
0 −I

)
,we �nd that detx = xTRx = x20−‖sx ‖2,

and x−1 = Rx/detx when detx , 0.

2.2 symmetric cones

The cone of squares of a Euclidean Jordan algebra J is de�ned as

K := {x2 | x ∈ J}.

The cones generated this way are precisely the so-called symmetric cones [27] K∗
= −K , or

the self-scaled cones of [4]. Their important properties include [27, 28]:

(i) intK = {x ∈ J | x is positive-de�nite} = {x ∈ J | L(x) pos. def.}.
(ii) 〈x,y〉 ≥ 0 for all y ∈ K i� x ∈ K , and

(iii) 〈x,y〉 > 0 for all y ∈ K \ {0} i� x ∈ intK .

(iv) Qx for x ∈ intK mapsK onto itself.

(v) For x,y ∈ intK , there exists unique a ∈ intK , such that x = Qay .
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(vi) For any x,y ∈ K , 〈x,y〉 = 0 i� x ◦ y = 0 [29].

For application to interior point methods, and in particular for our work, the following proper-

ties are particularly important:

(vii) The barrier function B(x) := − log(detx) tends to in�nity as x goes to bdK .

(viii) ∇B(x) = −x−1 and ∇2B(x) = Q−1
x (di�erentiated wrt. the norm in J ).

(ix) The normal cone NK (x) = −{y ∈ K | 〈y ,x〉 = 0} for x ∈ K [30, Lemma 3.1].

Example 2.4 (The cone of symmetric positive definite matrices). In the Jordan algebra of

symmetricmatrices from Example 2.2, the cone of squares is the set of positive semi-de�nite

symmetric matrices.

Example 2.5 (The second order cone). The cone of squares of the Jordan algebra E1+m of

quadratic forms is the second order cone that we have already seen in Example 2.1,

K = Ksoc := {x ∈ E1+m | x0 ≥ ‖sx ‖}.

If 0 , x ∈ bdK , we have x2 = 2x0x . Rescaled, we get a primitive idempotent c = x/
√
2x0.

The only primitive idempotent orthogonal to c is c ′ = Rx/
√
2x0. Therefore, the normal cone

NK (x) = {−αRx | α ≥ 0}.
One has to be careful with the fact that the expressions for the barrier gradient and Hes-

sian in (viii) are based on the inner product (2.4) in E1+m . This is scaled by the factor r = 2

with respect to the standard inner product on R
1+m .

2.3 linear optimisation on symmetric cones

Let A ∈ L(J ;Rk ) for an arbitrary Euclidean Jordan algebra J with the corresponding cone

of squaresK . We will frequently make use of solutions (yµ ,dµ , zµ) ∈ intK × intK ×R
k to the

system

(SCLPµ ) Ay = b, A∗z + c = d, y ◦ d = µe, y ,d ∈ intK .

These are meant to approximate solutions (ŷ, d̂, ẑ) ∈ K × K ×R
k to the system

(SCLP) Ay = b, A∗z + c = d, y ◦ d = 0, y ,d ∈ K .

The system (SCLP) arises from primal–dual optimality conditions for linear optimisation on

symmetric cones, speci�cally the problem

min
y ∈K, Ay=b

〈c,y〉.

The system (SCLPµ ) arises from the introduction of the barrier in the problem

(2.5) min
y ∈K, Ay=b

〈c,y〉 − µ log det(y).
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The set of solutions to (SCLPµ ) for varying µ > 0 is called the central path. From [2, Theorem

2.2] we know that if there exists a primal–dual interior feasible point, i.e., some (y∗,d∗, z∗) ∈
intK × intK ×R

k such thatAy∗ = b andA∗z∗ + c = d∗, then there exists a solution (yµ ,dµ , zµ )
to (SCLPµ ) for every µ > 0. In particular, if there exists a solution for some µ > 0, there exist a

solution for all µ > 0. In fact, we have the following:

Lemma 2.1. Suppose there exists a primal interior feasible point y∗ ∈ intK ∩ {y ∈ K | Ay = b}.
Then there exists a solution (yµ ,dµ , zµ ) ∈ intK × intK ×R

k to (SCLPµ ) for all µ > 0.

Proof. The article [2] considers a more general class of linearmonotone complementarity prob-

lems (LMCPs) than our our SCLPs (symmetric cone linear programs). For the special case of

SCLPs, our assumption on the existence of y∗ implies that the feasible set in (2.5) non-empty

and closed. Since the objective function level-bounded, proper, and lower semicontinuous, the

problem (2.5) has a solution y . This y has to satisfy (SCLPµ ) for some d and z. Now [2, Theorem

2.2] applies. �

Practical methods [4, 1] for solving (SCLP) by closely following the central path are based on

scaling the iterates (y i ,di ) byQp for a suitable p ∈ intK . We will need this scaling for di�erent

purposes, and therefore recall the following basic properties.

Lemma 2.2. Let p ∈ intK , and y ,d ∈ K . De�ne ỹ := Q
1/2
p y , and d

˜
:= Q

−1/2
p d . Then

(i) y ◦ d = 0 if and only if ỹ ◦ d
˜
= 0.

(ii) If y ,d ∈ intK and µ > 0, then y ◦ d = µe if and only if ỹ ◦ d
˜
= µe.

(iii) (SCLP) (resp. (SCLPµ )) is satis�ed for y and d if and only if it is satis�ed for ỹ and d
˜
with

A and c replaced by Ã := AQ
−1/2
p and c

˜
:= Q

−1/2
p c.

Proof. The claim (i) is a consequence of the properties Section 2.2(iv) and (vi). The claim (iii) is

the content of [1, Lemma 28]. Finally, to establish (iii), the remaining linear equations in (SCLP)

and (SCLPµ ) are obvious. �

As a last preparatory step, before starting to derive new results,we say that solutionsy ,d ∈ K
to (SCLP) are strictly complementary if y ◦ d = 0 and y + d ∈ intK . We say that y is primal

non-degenerate if

(2.6) v = A∗z and y ◦ v = 0 =⇒ v = 0.

Likewise d is dual non-degenerate if

(2.7) Av = 0 and d ◦v = 0 =⇒ v = 0.

2.4 convergence rate of the central path

We now study convergence rates for the central path, which we will need to develop approxi-

mate strong monotonicity estimates. Some existing work can be found in [31], but overall the

results in the literature are limited; more work can be found on the properties and mere exis-

tence of limits of the central path [32, 33, 34, 35, 36]. After all, in typical interior point methods,

one is not interested in solving (SCLPµ ) exactly; rather, one is interested in staying close to the

central path while decreasing µ fast. So here we provide the result necessary for our work.
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Lemma 2.3. Let ŷ, d̂ ∈ K and ẑ ∈ R
k solve (SCLP). Also let yµ ,dµ ∈ intK and zµ ∈ R

k solve

(SCLPµ ) for some µ > 0. If ŷ and d̂ are strictly complementary, and both primal and dual non-

degenerate, then

(2.8) ‖yµ − ŷ ‖ ≤ 2µ
√
r

λmin(Mŷ,d̂
) ,

where λmin(My,d ) > 0 is the minimal eigenvalue of the the linear operator My,d ∈ L(J ;J)
de�ned at y ,d ∈ J for η ∈ N(A) and ξ ∈ R(A∗) by

My,d (ξ + η) := L(y)ξ + L(d)η.

Proof. Observe that (yµ ,dµ , zµ ) solves (SCLPµ ) if and only if yµ = ŷ +∆y and dµ = d̂ +∆d with

∆y ∈ N(A), ∆d ∈ R(A∗), and M
ŷ,d̂

(∆y + ∆d) = µe − ∆y ◦ ∆d .

Here we have used the fact that ŷ ◦ d̂ = 0. We may rearrange the �nal condition as

1

2
M

ŷ,d̂
(∆y + ∆d) = µe − 1

2
(ŷ + ∆y) ◦ ∆d − 1

2
∆y ◦ (d̂ + ∆d).

This simply says that
1

2

(
M

ŷ,d̂
+Myµ,dµ

)
(∆y + ∆d) = µe.

From [2, Corollary 4.9] we know that the operatorM
ŷ,d̂

is invertible when the solution (ŷ , d̂)
is strictly complementary and both primal and dual non-degenerate. Moreover, for (yµ ,dµ )
satisfying (SCLPµ ), we know from [2, Corollary 4.6] that Myµ,dµ is invertible. In fact, both

Myµ,dµ and M
ŷ,d̂

are positive de�nite: in both cases, (y ,d) = (ŷ , d̂), and (y ,d) = (yµ ,dµ ),
the map m(ζ ) := 〈ζ ,My,dζ 〉 is continuous on J , while m(η) > 0 and m(ξ ) > 0 for all

η ∈ N(A) and ξ ∈ R(A∗). For (y ,d) = (ŷ, d̂) the positivity follows from the assumed pri-

mal and dual non-degeneracy, as the operators L(ŷ) and L(d̂) are positive semi-de�nite. For

(y ,d) = (yµ ,dµ ) ∈ intK × intK , the operators L(yµ ) and L(dµ ) are positive de�nite; see

Section 2.2(i). By an interpolation argument, a contradiction to invertibility would therefore

be reached if My,d were not positive semi-de�nite on the whole space [?, cf.]proof of Lemma

32]as-2003.

As a sum of invertible positive de�nite operators, it now follows that M
ŷ,d̂
+ Myµ,dµ is in-

vertible. Consequently we estimate

‖∆y ‖ ≤ ‖∆y + ∆d ‖ = 2µ ‖e‖‖(M
ŷ,d̂
+Myµ,dµ )−1‖

≤ 2µ
√
r

λmin(Mŷ,d̂
+Myµ,dµ )

≤ 2µ
√
r

λmin(Mŷ ,d̂
) ,

where the �rst inequality holds by the orthogonality of ∆y and ∆d . The claim follows. �
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2.5 strong monotonicity of the barrier

If the barrier B(y) = − log(dety) is as in Section 2.2, then in the next lemma d = −∇B(y).
Therefore, the lemma provides an estimate of strong monotonicity of the gradient of the barrier.

Lemma 2.4. Let y ,y ′ ∈ intK , and denote d := y−1, and d ′ := (y ′)−1. Then

(2.9) − 〈d ′ − d,y ′ − y〉 ≥ 1

λmax(y ′)λmax(y)
‖y ′ − y ‖2.

Proof. There exists a uniquew ∈ intK s.t. d ′ = Q−1
w y and d = Q−1

w y
′; see, e.g., [4, Corollary 3.1].

We thus see (2.9) to hold if

(2.10) Q−1
w ≥ 1

λmax(y ′)λmax(y)
.

In fact,w is given by the Nesterov–Todd direction

(2.11) w =
(
Qy−1/2(Qy 1/2d ′)1/2

)−1
.

Indeed, using the fundamental formula for quadratic presentations (Section 2.1(vii)), we see

(2.12) Q−1
w = Qw−1 = QQ

y−1/2 (Qy 1/2d
′)1/2 = Qy−1/2Q

1/2
Q
y 1/2d

′Qy−1/2 .

Following [37, p.42], from this we quickly compute

Q−1
w y = Qy−1/2Q

1/2
Q
y 1/2d

′e = Qy−1/2Qy 1/2d ′ = d ′.

Inverting d ′ = Q−1
w y , we get (d ′)−1 = y ′

= (Q−1
v y)−1 = Qvy

−1
= Qvd . Hence d = Q−1

v y . This

establishes the claimed properties ofw .

Continuing from (2.12), we also have

(2.13) Q−1
w = Qy−1/2 [Qy 1/2Qd′Qy 1/2]1/2Qy−1/2

From Section 2.1(i) and (2.3), we observe thatQd′ = Q−1
y ′ ≥ λmax(y ′)−2I . Thus

(2.14) Q−1
w ≥ 1

λmax(y ′)Qy−1/2[Qy ]1/2Qy−1/2 =
1

λmax(y ′)Qy−1/2 ≥
1

λmax(y ′)λmax(y)
.

This proves (2.10) and consequently (2.9). �

We now extend the estimate to the boundary of K with a penalty using the approximations

form Section 2.4.

Lemma 2.5. Let y ,d ∈ intK and ŷ, d̂ ∈ K with d = y−1, and ŷ ◦ d̂ = 0. Suppose there exist

y ′,d ′ ∈ K such that

(2.15) 〈d̂ − d ′,y − ŷ〉 = 0 and y ′ ◦ d ′ = e.

Then for any α ∈ (0, 1) and any a ∈ intK holds

(2.16) − 〈d − d̂,y − ŷ〉 ≥ 1 − α
λmax(ỹ)λmax(ỹ ′) ‖y − ŷ ‖2Qa

− λmax(d)λmax(d ′)
4α

‖y ′ − ŷ ‖2,

where ỹ := Q
1/2
a y , and ỹ ′ := Q 1/2

a y ′.

9



Proof. Let Qw be as in the proof of Lemma 2.4.

(2.17)

−〈d − d̂,y − ŷ〉 (2.15)
= −〈d − d ′,y − ŷ〉 = 〈y − y ′,y − ŷ〉Q−1

w

= 〈y − ŷ,y − ŷ〉Q−1
w
+ 〈ŷ − y ′,y − ŷ〉Q−1

w

≥ (1 − α)‖y − ŷ ‖2
Q−1
w
− 1

4α
‖y ′ − ŷ ‖2

Q−1
w
.

In the �nal step we have used Cauchy’s inequality.

Letw
˜
:= Qa1/2w . By the fundamental formula of quadratic presentations (Section 2.1(vii)),

Q−1
w = Q

1/2
a Q−1

Q
1/2
a w

Q
1/2
a = Q

1/2
a Q−1

w
˜
Q

1/2
a .

We also observe using fundamental formula of quadratic presentations that w
˜
is w from (2.11)

computed with the transformed variables ỹ = Q
1/2
a y and d

˜
′
= Qa−1/2d

′. We therefore estimate

Q−1
w̃

as in (2.14). Since (2.13) implies

Q−1
w = Qd 1/2 [Qd−1/2Qd′Qd−1/2 ]1/2Qd 1/2 ,

we also estimateQ−1
w ≤ λmax(d ′)λmax(d). Thus (2.16) follows from (2.17). �

Lemma 2.6. Let y ,d ∈ intK and ŷ, d̂ ∈ K withu ◦d = µe for some µ > 0, and ŷ ◦ d̂ = 0. Suppose

there exist y ′,d ′ ∈ K such that 〈d̂ −d ′,y − ŷ〉 = 0 and y ′ ◦d ′ = µe. Then for any α ∈ (0, 1) holds

(2.18) − 〈d − d̂,y − ŷ〉 ≥ (1 − α)µ
λmax(ỹ)λmax(ỹ ′) ‖y − y ′‖2Qa

− λmax(d)λmax(d ′)
4αµ

‖y ′ − ŷ ‖2.

Proof. We apply Lemma 2.5 with d̂ , d , and d ′ replaced by d̂/µ, d/µ, and d ′/µ. This causes the
right-hand-side of the estimate (2.16) to bemultiplied by µ, alongwith both λmax(d) and λmax(d ′)
to be divided by µ. �

Applied to solutions of (SCLPµ ), we can estimate λmax(y) and λmax(y ′).

Proposition 2.7. Suppose Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and b0 > 0. Fix µ > 0,

and let (y ,d, z) ∈ intK × intK × R
k solve (SCLPµ ). Likewise, suppose (yµ ,dµ , zµ ) ∈ intK ×

intK ×R
k solves (SCLPµ ) for c = ĉ, where (ŷ, d̂, ẑ) solves (SCLP) for c = ĉ . If ŷ and d̂ are strictly

complementary, d̂ dual non-degenerate, and ŷ primal non-degenerate, then for any α ∈ (0, 1) holds

(2.19) − 〈d − d̂,y − ŷ〉 ≥ (1 − α)µ
b20

‖y − ŷ ‖2Qa
−

Cc,µCĉ,µr

αλmin(Mŷ ,d̂
)2 µ,

where for some �xed y∗ ∈ intK with Ay∗ = b the constants

(2.20) Cc,µ :=
µr + 2b0 ‖c‖Q−1

a

λmin(y∗)
.
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Proof. We begin by applying Lemma 2.6 with (y ′,d ′) set to the µ-approximation (yµ ,dµ ) to
(ŷ, d̂) provided by Lemma 2.3. Inserting (2.8) into (2.18), we therefore obtain

(2.21) − 〈d − d̂,y − ŷ〉 ≥ (1 − α)µ
λmax(ỹ)λmax(ỹµ )

‖y − yµ ‖2Qa
−
µλmax(d)λmax(dµ )r
αλmin(Mŷ ,d̂

)2 .

It remains to estimate the eigenvalues in this expression.

First of all, we easily derive the necessary bounds on λmax(ỹ) and λmax(y ′) as

(2.22) λmax(ỹ) ≤ tr(ỹ) = 〈e, ỹ〉 = 〈a,y〉 = b0.

Secondly, regarding the estimate on λmax(d), we �x some y∗ ∈ intK satisfying Ay∗ = b.

Such a point exist by our assumption of there existing solutions to (SCLPµ ); see also Lemma 2.1.

Since d = A∗z + c for some z ∈ R
k , and d ◦ y = µe, we then derive

λmin(y∗)λmax(d) ≤ λmin(y∗)〈e,d〉 ≤ 〈y∗,d〉 = 〈ỹ∗,d
˜
〉

= 〈ỹ,d
˜
〉 + 〈ỹ∗ − ỹ,d

˜
〉 = µr + 〈ỹ∗ − ỹ, c

˜
〉

≤ µr + ‖c
˜
‖(λmax(ỹ) + λmax(ỹ∗)) ≤ µr + 2b0‖c˜

‖.

In the last inequalitywehave used (2.22) for both ỹ and ỹ∗. Sincey∗ ∈ intK , so thatλmin(y∗) > 0,

and ‖c
˜
‖ = ‖c‖Q−1

a
, this gives the claimed bounds on λmax(d) and λmax(d ′). �

2.6 strong monotonicity of the barrier in the second-order cone

In the second-order cone K = Ksoc ⊂ E1+m , under suitable constraints Ay = b, we have a

stronger result.

Lemma 2.8. Suppose y ,y ′,d,d ′ ∈ intKsoc with y ◦ d = y ′ ◦ d ′ = µe for given µ > 0. Then

(2.23) − 〈d − d ′,y − y ′〉J ≥ det(d) + det(d ′)
µ

‖y − y ′‖2−R ,

where ‖y − y ′‖2−R := ‖sy − sy ′‖2
Rm − (y0 − y ′

0)2 = − det(y − y ′).

Proof. We have d = µRy/det(y) = µ−1 det(d)Ry . Likewise d ′ = µ−1 det(d ′)Ry ′. We write for

brevity β := µ−1 det(d) and β ′ := µ−1 det(d ′). Then

−〈d − d ′,y − y ′〉J = −〈βRy − β ′Ry ′,y − y ′〉J = 2〈βy − β ′y ′,y − y ′〉−R ,

where the second “inner product” is 〈x,y〉−R := −〈Rx,y〉R1+m . We can thus write

−〈d − d ′,y − y ′〉J = 2β ‖y − y ′‖2−R + 2(β − β ′)〈y ′,y − y ′〉−R

as well as

−〈d − d ′,y − y ′〉J = 2β ′‖y − y ′‖2−R + 2(β − β ′)〈y ,y − y ′〉−R .
Summing these two expressions we deduce

(2.24) − 〈d − d ′,y − y ′〉J = (β + β ′)‖y − y ′‖2−R + (β − β ′)(‖y ‖2−R − ‖y ′‖2−R ).

11



Now observe that

‖y ‖2−R = y20 − ‖sy ‖2 = − det(y) = −µ2/det(d).
Thus

(β − β ′)(‖y ‖2−R − ‖y ′‖2−R ) = µ(det(d) − det(d ′))(det(d ′)−1 − det(d)−1)
= µ(det(d ′) − det(d))2/(det(d) det(d ′)) > 0.

This and (2.24) immediately prove the claim. �

For solutions of (SCLPµ ) with one-dimensional linear constraints,we can extend the estimate

to the boundary with some penalty. For this, we �rst bound the determinant with the distance

DF (w,d) := ‖Q 1/2
w d − µw,de‖ for µw,d = 〈w,d〉/r , (w,d ∈ K).

This distance is typically used to de�ne the so-called short-step neighbourhood of the central

path [?, see, e.g.,]]as-2003.

Lemma 2.9. Suppose y ,d ∈ intKsoc with y ◦ d = µe and 〈a,y〉 = b0 for some µ,b0 > 0 and

a ∈ intKsoc. Then

(2.25)
2µ2 +

√
2b0DF (a−1,d)µ
b20 det(a)

≤ det(d) ≤ 4µ2 +
√
2b0DF (a−1,d)µ
b20 det(a)

.

Proof. We de�ne ỹ := Q
1/2
a y , and d

˜
:= Q

−1/2
a d . Then 〈e, ỹ〉 = 〈a,y〉 = b0, and by [1, Lemma

28], ỹ ◦ d
˜
= µe. These conditions expand to ỹ0d˜0 + s̃y

T
sd
˜
= µ, ỹ0 sd

˜
+ d

˜0s̃y = 0, and 2ỹ0 = b0. (In

the latter, recall that the E1+m-inner product satis�es 〈e, ỹ〉 = 2eT ỹ .) We reduce this system to

d
˜
2
0 − ‖sd

˜
‖2 − 2d

˜0µ/b0 = 0, from where we solve

(2.26) d
˜0 =

µ +
√
µ2 + b20 ‖ sd

˜
‖2

b0
.

Thus

det(d
˜
) = d

˜
2
0 − ‖sd

˜
‖2 =

2µ2 + 2µ
√
µ2 + b20 ‖ sd

˜
‖2

b20
,

from which we easily estimate

(2.27)
2µ2 + 2µb0‖ sd

˜
‖

b20
≤ det(d

˜
) ≤

4µ2 + 2µb0‖sd
˜
‖

b20
.

To �nish deriving (2.25), from Section 2.1(x) we recall that det(d
˜
) = det(a) det(d). We also

have rd
˜0 = 〈d

˜
, e〉 = 〈d,a−1〉 for the rank r = 2, so

(2.28)
√
2‖sd

˜
‖Rn = ‖d

˜
− d

˜0e‖J = ‖Q−1/2
a d − µa−1,de‖J = DF (a−1,d),

where we emphasise the standard Euclidean norm on sd
˜

∈ R
n versus the

√
2-scaled standard

norm on J . With this, (2.27) gives (2.25). �
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If DF (a−1, d̂) > 0, or alternatively det(ŷ) > 0, then the next proposition shows local strong

monotonicity of the barrier for d close to d̂ and µ > 0 small. Moreover, if DF (a−1, d̂) > 0, the

factor of strong monotonicity does not vanish as µ ց 0.

Proposition 2.10. Let K = Ksoc, and suppose Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and

b0 > 0. Let (y ,d, z) ∈ intK × intK ×R
k solve (SCLPµ ), and likewise that (ŷ, d̂, ẑ) ∈ K ×K ×R

k

solve (SCLP) for c = ĉ. Then

(2.29) − 〈d − d̂,y − ŷ〉 ≥ µ + 2−1/2b0[DF (a−1,d) + DF (a−1, d̂)]
b20

‖y − ŷ ‖2Qa
− µ

+

2−1/2b0DF (a−1, d̂)µ
2µ + 2−1/2b0DF (a−1,d)

+

µ + 2−1/2b0DF (a−1,d)
b20/2

det(Q 1/2
a ŷ).

Proof. We have

(2.30) 0 = ŷ ◦ d̂ = (ŷ0d̂0 + ŝy
T

ŝd, ŷ0 ŝd + d̂0 ŝy).

Since 〈a, ŷ〉 = b0 > 0, and ŷ ∈ K , necessarily ŷ0 > 0. Since, moreover, ŷ , 0, we cannot have

d̂ ∈ intK for ŷ ◦ d̂ = 0 to hold. Therefore 0 = det(d̂) = d̂20 − ‖ ŝd ‖2. It follows from (2.30) that

d̂ = β̂Rŷ for

(2.31) β̂ = − ŝy
T

ŝd

ŷ20
=

d̂0

ŷ0
=

‖ ŝd ‖Rm

ŷ0
=

√
2DF (a−1, d̂)

b0
≥ 0.

In the �nal step we have reasoned as in (2.28). We may therefore repeat the steps of Lemma 2.8

until (2.24) to obtain

(2.32) − 〈d − d̂,y − ŷ〉 = (β + β̂)‖y − ŷ ‖2−R + (β − β̂)(‖y ‖2−R − ‖ŷ ‖2−R ).

We have det(ŷ) = −‖ŷ ‖2−R = ŷ20 − ‖ŝy ‖2 ≥ 0. If this is non-zero, ŷ ∈ intK . But in that case

ŷ ◦ d̂ = 0 implies d̂ = 0, and consequently β̂ = 0. Thus β̂ ‖ŷ ‖2−R = 0 whether or not ‖ŷ ‖2−R = 0.

Using ‖y ‖2−R = − det(y) = −µ2/det(d) and β = det(d)/µ, we therefore obtain from (2.32) that

(2.33) − 〈d − d̂,y − ŷ〉 = (µ−1 det(d) + β̂)‖y − ŷ ‖2−R − µ +
β̂µ2

det(d) +
det(d) det(ŷ)

µ
.

If a = e, we have y0 = ŷ0 = b0/2, so that 2‖y − ŷ ‖2−R = ‖y − ŷ ‖2J . The �nal equality from

(2.31) also gives β̂ =
√
2DF (e, d̂)/b0. With the help of Lemma 2.9, (2.33) thus yields

−〈d − d̂,y − ŷ〉 ≥ 2µ +
√
2b0[DF (e,d) + DF (e, d̂)]

b20
‖y − ŷ ‖2 − µ

+

√
2b0DF (e, d̂)µ

4µ +
√
2b0DF (e,d)

+

2µ +
√
2b0DF (e,d)
b20

det(ŷ).
(2.34)

Since λmin(e) = det(e) = 1, the estimate (2.29) is immediate in the case a = e.
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If a , e, we de�ne ỹ := Q
1/2
a y , and d

˜
:= Q

−1/2
a d as in Lemma 2.9. Then (ỹ,d

˜
, z) continues to

satisfy (SCLPµ ) with A replaced by Ã := AQ
−1/2
a and c

˜
:= Q

−1/2
a c. The same holds with (SCLP)

for ˜̂y := Q
1/2
a ŷ and d̂

˜
:= Q

−1/2
a d̂ . Therefore, (2.34) holds for these transformed variables. Since

DF (e,d˜
) = DF (a−1,d), as well as ‖ỹ − ˜̂y ‖2 = ‖y − ŷ ‖2Qa

, and −〈d −d ′,y − y ′〉 = −〈d
˜
− d̂

˜
, ỹ − ˜̂y〉,

we obtain the claim. �

Corollary 2.11. Let K = Ksoc, and suppose A = 〈a, · 〉 for some a ∈ intK . Suppose moreover

that 〈a−1, c〉 = 〈a−1, ĉ〉 = 0. Let (y ,d, z) ∈ intK × intK × R
k solve (SCLPµ ), and likewise that

(ŷ, d̂, ẑ) ∈ K × K ×R
k solve (SCLP) for c = ĉ . If ĉ , 0, then

−〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0[‖c‖Q−1

a
+ ‖ĉ‖Q−1

a
]

b20
‖y − ŷ ‖2Qa

− µ .(2.35)

Otherwise, if ĉ = 0 with ŷ = ba−1/2, then

(2.36) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0‖c‖Q−1

a

b20
‖y − ŷ ‖2Qa

.

We say that (2.35) is strong monotonicity of the barrier “with a penalty”, µ.

Proof. We do not until the very end of the proof use the assumption A = 〈a, · 〉. For now, we
use the weaker assumption that Ay = b implies 〈a,y〉 = b0. We apply Proposition 2.10. This

gives

(2.37) − 〈d − d̂,y − ŷ〉 ≥ µ + 2−1/2b0[DF (a−1,d) + DF (a−1, d̂)]
b20

‖y − ŷ ‖2Qa
− µ

+

2−1/2b0DF (a−1, d̂)µ
2µ + 2−1/2b0DF (a−1,d)

+

µ + 2−1/2b0DF (a−1,d)
b20/2

det(Q 1/2
a ŷ).

If DF (a−1, d̂) = 0, by assumption ŷ = 2b0a
−1. This implies det(Q 1/2

a ŷ) = b0/2. Consequently

µ + 2−1/2b0DF (a−1,d)
b20

det(Q 1/2
a ŷ) ≥ µ

2
.

Therefore no penalty is imposed, and (2.37) reduces to

(2.38) − 〈d − d̂,y − ŷ〉 ≥ µ + 2−1/2b0DF (a−1,d)
b20

‖y − ŷ ‖2Qa
.

Suppose then that DF (a−1, d̂) > 0. On the right hand side of (2.37), only the term −µ is

negative. Thus the condition holds if

(2.39) − 〈d − d̂,y − ŷ〉 ≥ µ + 2−1/2b0[DF (a−1,d) + DF (a−1, d̂)]
b20

‖y − ŷ ‖2Qa
− µ .
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Finally, using our assumptions that A = 〈a, · 〉 and 〈a−1, c〉 = 0, we have d = za + c and

µa−1,d = 〈a−1,d〉/r = z for some z ∈ R. Thus

(2.40) DF (a−1,d) = ‖Q−1/2
a (d − za)‖ = ‖c‖Q−1

a
.

Likewise DF (a−1, d̂) = ‖ĉ‖Q−1
a
. Therefore, the cases DF (a−1, d̂) > 0 and DF (a−1, d̂) = 0 are

equivalent to the cases on ‖ĉ‖ in the statement of the corollary. Inserting (2.40) into (2.38)

consequently yields the claimed estimates. �

3 an abstract preconditioned proximal point iteration

In this section, we recall some of the core results from [14]. We start by setting

(3.1) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
,

and for some τi ,ϕi ,σi+1,ψi+1 > 0, de�ning the step length and “testing” operators

(3.2) Wi+1 :=

(
τi I 0

0 σi+1I

)
, and Zi+1 :=

(
ϕi I 0

0 ψi+1I

)
.

We also let Vi+1 : X × Y ⇒ X × Y for each i ∈ N be an abstract non-linear preconditioner,

dependent on the current iterate ui . Then we consider the generalised proximal point method,

which involves solving

(PP) 0 ∈Wi+1H (ui+1) +Vi+1(ui+1)

for the unknown next iterate ui+1. To obtain convergence rates for the resulting method, the

idea from [14, 13] will be to analyse the inclusion obtained after multiplying (PP) by the testing

operator Zi+1.

Assuming G to be (strongly) convex with factor γ > 0, we also introduce

Ξi+1(γ ) :=
(

2γτi I 2τiK
∗

−2σi+1K 0

)
,

which is an operator measure of strong monotonicity of H .

The next lemma, which is relatively trivial to prove [14], forms the basis from which our

work proceeds.

Theorem 3.1. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y .

For each i ∈ N, for some V ′
i+1 : X × Y ⇒ X × Y andMi+1 ∈ L(X × Y ;X × Y ), take

(3.3) Vi+1(u) := V ′
i+1(u) +Mi+1(u − ui ).
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Assume that (PP) is solvable, Zi+1Mi+1 is self-adjoint, andG is (strongly) convex with factor γ ≥ 0.

If for all i ∈ N the estimate

(C0-Γ)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

︸                   ︷︷                   ︸
step length in local metric

+

1

2
‖ui+1 − û‖2Zi+1(Ξi+1(γ )+Mi+1 )−Zi+2Mi+2

︸                                         ︷︷                                         ︸
linear preconditioner update discrepancy

+ 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1︸                                          ︷︷                                          ︸
variably useful remainder from H

+ 〈Zi+1V ′
i+1(ui+1),ui+1 − û〉︸                          ︷︷                          ︸

from non-linear preconditioner

≥ −∆i+1

holds, then

(3.4)
1

2
‖uN − û‖2ZN+1MN+1

≤ 1

2
‖u0 − û‖2Z1M1

+

N−1∑

i=0

∆i+1, (N ≥ 1).

Proof. This is [14, Theorem 3.1] specialised to scalar step length and testing operatorsTi = τi I ,

Φi = ϕi I , Σi+1 = σi+1I , and Ψi+1 = ψi+1I , as well as Γ̃ = γ I . �

It is possible to extend this theorem to provide an estimate on an ergodic duality gap [?,

see]Theorem4.6]tuomov-proxtest. For the sake of conciseness,we have however decided against

including such estimates in the present work. For this reason, in the following, we concentrate

on strongly convex G.

4 a primal–dual method with a barrier preconditioner

Let F (y) := δ {A ·=b }(y) + δK(y) for some A ∈ L(J ;Z ), where J and Z are Hilbert spaces, J
also a Euclidean Jordan algebra. Let K be the cone of squares of J . We suppose there exists

some y ∈ intK with Ay = b. Then the subdi�erential sum formula (see, e.g., [26]) applies, so

that

(4.1) ∂F ∗(y) =
{
{A∗z | z ∈ Z } + NK (y), Ay = b and y ∈ K,
∅, otherwise.

In particular, if y ∈ intK with Ay = b, then ∂F (y) = {A∗z | z ∈ Z }. Note from Section 2.2(ix)

and (vi) that

NK (y) = {−d | d ∈ K, 〈p,d〉 = 0} (y ∈ K).
Thus 0 ∈ H (û) may also be written as the existence of (x̂, ŷ, d̂, ẑ) ∈ X × K × K × Z with

(IOC) − K∗ŷ ∈ ∂G(x̂), Aŷ = b, A∗ẑ − Kx̂ = d̂, ŷ ◦ d̂ = 0.

In the following, we develop an algorithm for solving this system, incorporating a barrier-

based nonlinear preconditioner for dual updates. As mentioned after Theorem 3.1, for concise-

ness we limit our attention to strongly convexG, and only analyse the convergence of iterates,

not the gap. The theory from [14] could be used to extend the analysis to the gap. Moreover, fol-

lowing the approach of [15], it would be possible to extend ourwork to stochastic and “spatially-

adaptive” updates.
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4.1 a general estimate for dual barrier preconditioning

To construct algorithms with the help of the theory from Section 3, we have to construct the

preconditionerVi+1(ui+1) := V ′
i+1(ui+1) +Mi+1(ui+1 − ui ). We speci�cally take

(4.2) Mi+1 =

(
I 0

0 0

)
, and V ′

i+1(ui+1) = (0,σi+1[K(x i+1 − x i ) − di+1]),

where di+1 ∈ intK is de�ned to satisfy y i+1 ◦ di+1 = µi+1e for some µi+1 > 0. The term

σi+1K(x i+1 − x i ) in V ′
i+1 decouples the primal and dual updates so that(PP) may be written as

the system

0 ∈ τi∂G(x i+1) + τiK∗y i+1 + (x i+1 − x i ),(4.3a)

0 ∈ σi+1[A∗zi+1 − Kx i − di+1], as well as(4.3b)

y i+1 ◦ di+1 = µi+1e and Ay i+1 = b with y i+1,di+1 ∈ intK .(4.3c)

For this general setup, we have the following lemma:

Lemma 4.1. Let F ∗ have the structure (4.1). TakeMi+1 andV
′
i+1 according to (4.2). Suppose for some

ωi+1,δi+1 ∈ R for all i ∈ N that

−〈di+1 − d̂,y i+1 − ŷ〉 ≥ ωi+1 ‖y i+1 − ŷ ‖2 − δi+1,(4.4a)

ψi+1σi+1 = ϕiτi ,(4.4b)

2ωi+1 ≥ τi ‖K ‖2, and(4.4c)

ϕi+1 ≤ ϕi (1 + 2τiγ̃ ).(4.4d)

Then (C0-Γ) holds with ∆i+1 = ψi+1σi+1δi+1, and Zi+1Mi+1 is self-adjoint with

(4.5) Zi+1Mi+1 =

(
ϕi I 0

0 0

)
≥ 0.

Proof. The condition (C0-Γ) now reads

(4.6)
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

︸                   ︷︷                   ︸
step in local norm

+

1

2
‖ui+1 − û‖2Di+2

︸              ︷︷              ︸
lin. precond. upd. d.

+ψi+1σi+1〈K(x i+1 − x i ),y i+1 − ŷ〉︸                                   ︷︷                                   ︸
de-coupling term from V ′

+ψi+1σi+1〈A∗(zi+1 − ẑ),y i+1 − ŷ〉 −ψi+1σi+1〈di+1 − d̂,y i+1 − ŷ〉︸                                                                           ︷︷                                                                           ︸
F ∗ term from (C0-Γ) as well as d i+1 from V ′

≥ −∆i+1

with the linear preconditioner update discrepancy

Di+2 := Zi+1(Ξi+1(γ ) +Mi+1) − Zi+2Mi+2.

The expansion and estimate (4.5) are trivially veri�ed along with the self-adjointness of

Zi+1Mi+1. This expansion allows us to write

Di+2 =

(
ϕi (1 + 2τiγ )I − ϕi+1I 2ϕiτiK

∗

−2ψi+1σi+1K 0

)
.
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Weuse (4.4b) to cancel the o�-diagonals ofDi+2 in (4.6). Thenwe use the fact thatA(y i+1−ŷ) = 0

to cancel the �rst term on the second line of (4.6). Finally, we use ∆i+1 = ψi+1σi+1δi+1 and (4.4a)

to estimate the second term on the second line of (4.6). This gives the condition

(4.7)
ϕi

2
‖x i+1 − x i ‖2 + ψi+1σi+1ωi+1

2
‖y i+1 − ŷ ‖2 + ϕi (1 + 2γτi ) − ϕi+1

2
‖x i+1 − x̂ ‖2

+ψi+1σi+1〈K(x i+1 − x i ),y i+1 − ŷ〉 ≥ 0.

Application of (4.4d), as well as Cauchy’s inequality to the inner product term, shows that (4.7)

and consequently (C0-Γ) is satis�ed if

ψi+1σi+1ωi+1 ≥
1

2
ϕ−1
i ψ

2
i+1σ

2
i+1KK

∗
.

This follows from (4.4b) and (4.4c). �

We de�ne τi through (4.4c) for a lower bound ω∗,i+1 of ωi+1. Likewise, we take (4.4d) as an

equality as the de�nition of ϕi+1. We observe that σi+1 andψi+1 are irrelevant to the algorithm

in (4.3), as will be the speci�c choice of ϕ0 > 0 to the satisfaction of (4.4). Taking ϕ0 = 1, we

obtain Algorithm 4.1 from (4.3).

Algorithm 4.1 (Barrier-preconditioned primal–dual method).

Require: Linear operator K ∈ L(X ;J), strongly convexG ∈ C(X ), and F ∗ ∈ C(J) of the
form (4.1). Factor γ > 0 of the strong convexity ofG. Rules for µi ,ω∗,i > 0.

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: Set initial testing parameter ϕ0 := 1.

3: repeat

4: Calculate µi , ω∗,i , and step length

τi := 2ω∗,i+1/‖K ‖2.

5: Update testing parameter

ϕi+1 := ϕi (1 + 2γτi ).

6: Perform dual update by solving for (y i+1,di+1, zi+1) ∈ intK × intK × Z the system

Ay i+1 = b, A∗zi+1 − Kx i = di+1, and y i+1 ◦ di+1 = µi+1e.

7: Perform primal update

x i+1 := (I + τi∂G)−1(x i − τiK∗y i+1).

8: until a stopping criterion is satis�ed.
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Remark 4.2 (Solution of Line 6 of Algorithm 4.1). The system on Line 6 is a standard (SCLPµ ). In

the second-order cone with A = 〈e, · 〉 and 〈e,R(K)〉 = {0}, it is easy to solve. Indeed, (0, sdi+1) =
−Kx i while di+10 is given by the expression in (2.26). Finally

y i+1 = µi+1(di+1)−1 =
µi+1Rd

i+1

det(di+1) =
µi+1Rd

i+1

(di+10 )2 − ‖ sdi+1‖2
.

More general cases A = 〈a, · 〉 and 〈a−1,R(K)〉 = {0} follow by scaling.

4.2 convergence rates in general symmetric cones

We still need to specify µi+1, verify (4.4a), and produce convergence rates. In general symmetric

cones, we have:

Theorem 4.3. WithK an arbitrary symmetric cone, andZ = R
k , let the requirements of Algorithm 4.1

be satis�ed. Assuming that Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and b0 > 0, suppose

there exists a solution (x̂ , ŷ, d̂, ẑ) ∈ X ×K×K×Z to (IOC) with ŷ and d̂ strictly complementary, d̂

dual non-degenerate, and ŷ primal non-degenerate. Suppose further that domG is bounded, or that

the primal iterates {x i }i∈N of Algorithm 4.1 stay bounded through other means. For some constant

θ > 0 and ζ ∈ (0,b−20 ), take

(4.8) µi+1 := θϕ
−1/2
i , and ω∗,i+1 := ζ λmin(a)µi+1 .

Then ‖xN − x̂ ‖2 = O(1/N ).
Remark 4.4. The assumption Z = R

k is merely for the simplicity of application of Proposition 2.7

and later Corollary 2.11. There would be nothing stopping us from applying the results on uncount-

able products of symmetric cones, for example.

Proof. We use Proposition 2.7, which veri�es (4.4a) with

δi+1 ≤ ĈC−Kx i ,µi+1C−Kx̂,µi+1µi+1 and ωi+1 = ω∗,i+1 = ζ λmin(a)µi+1
for C−Kx i,µi+1 , C−Kx̂,µi+1 de�ned in (2.20), and some Ĉ > 0. From (2.20) we see that the for-

mer constants are bounded as long as {µi }i∈N is non-increasing, and the sequence {‖Kx i ‖}i∈N
bounded. The latter is guaranteed by our assumptions, and the former by our construction of

µi+1 in (4.8) and Line 5 of the algorithm. Therefore δi+1 ≤ Cµi+1 for some constantC > 0. From

(4.4b) and (4.8) it now follows

(4.9) ∆i+1 := ψi+1σi+1δi+1 ≤ Cτiϕiµi+1 = Cθτiϕ
1/2
i .

Next we use Theorem 3.1 and Lemma 4.1. For C0 :=
1
2
‖u0 − û‖2Z1M1

, (3.4), (4.5), and (4.9) give

the combined estimate

(4.10)
ϕN

2
‖xN − x̂ ‖2 ≤ C0 +Cθ

N−1∑

i=0

τiϕ
1/2
i , (N ≥ 1).

Inserting ω∗,i+1 and µi+1 from (4.8), Lines 4 and 5 of the algorithm say

ϕi+1 = ϕi + γνϕ
1/2
i and τi = ϕ

−1/2
i ν/‖K ‖2 for ν := 2ζ λmin(a)θ .

It follows [?, see ]]tuomov-cpaccel that ϕN = Θ(N 2), while ∑N−1
i=0 τiϕ

1/2
i = Nν/‖K ‖2. Inserting

these estimates into (4.10), we verify the O(1/N ) rate. �
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4.3 convergence rates in the second-order cone

In the second-order cone, we obtain linear convergence under dual non-degeneracy:

Theorem 4.5. For K = Ksoc the second-order cone, Z = R
k , and A = 〈a, · 〉 for some a ∈ intK

with 〈a−1,R(K)〉 = {0}, let the requirements of Algorithm 4.1 be satis�ed. Suppose there exists a

solution (x̂ , ŷ, d̂, ẑ) ∈ X × K × K × Z to (IOC). If Kx̂ = 0, take ŷ = ba−1/2 and d̂ = 0 For some

θ > 0 and ζ ∈ (0,b−20 ], take

(4.11) µi+1 := θϕ
−1/2
i , and ω∗,i+1 := (µi+1ζ + 2−1/2b−10 ‖Kx i ‖Q−1

a
)λmin(a).

Suppose further that domG is bounded, or that the primal iterates {x i }i∈N of Algorithm 4.1 stay

bounded through other means. Then for some C, ε > 0 holds

‖xN − x̂ ‖2 ≤
{
C(1 + ε)−N , Kx̂ , 0,

C/N 2, Kx̂ = 0.

Proof. From Line 4 of the algorithm and (4.11), we expand

(4.12) τi := 2(ζθϕ−1/2
i + ℓ̃i+1)λmin(a)/‖K ‖2 for ℓ̃i+1 := 2−1/2b−10 ‖Kx i ‖Q−1

a
.

From (4.12) and Line 5, we estimate

(4.13) ϕN ≥ ϕ0 + 2γζθ

N−1∑

i=0

ϕ
1/2
i .

It follows from (4.12) that supi τi ≤ Cτ for some constant Cτ > 0. From (4.11), we also obtain

µi+1 ց 0.

We then use Corollary 2.11, which veri�es (4.4a) with

ωi+1 := (µi+1ζ + ℓi+1)λmin(a),




ℓi+1 :=
‖Kx i ‖

Q−1
a√

2b0
, and δi+1 := 0, if Kx̂ = 0,

ℓi+1 =
‖Kx̂ ‖

Q−1
a
+‖Kx i ‖

Q−1
a√

2b0
, and δi+1 = µi+1, if Kx̂ , 0,

Setting ℓ := ‖Kx̂ ‖Q−1
a
/(
√
2b0) > 0, we have ℓi+1 = ℓ̃i+1 + ℓ.

Next we use Theorem 3.1 and Lemma 4.1. Recalling (4.4b) and that ∆i+1 = ψi+1σi+1δi+1 in

Lemma 4.1, settingC0 :=
1
2
‖u0 − û‖2Z1M1

, (3.4) and (4.5) yield

(4.14)
ϕN

2
‖xN − x̂ ‖2 ≤ C0 + DN for DN :=

N−1∑

i=0

τiϕiδi+1 (N ≥ 1).

In the case Kx̂ = 0, we have δi+1 = 0. As in the proof of Theorem 4.3, by a standard analysis

[15, 13], it follows from (4.13) that ϕN ≥ CN 2 for some C > 0. We therefore get from (4.14) the

claimedO(1/N 2) rate.
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Consider then the case Kx̂ , 0. We estimate

(4.15) DN =

N−1∑

i=0

τiϕiµi+1 ≤ Cτ

N−1∑

i=0

ϕiµi+1

By Lines 4 and 5 of the algorithm, ϕN ≥ ϕ0 + 2γζ ‖K ‖−2 ∑N−1
i=0 ϕiµi+1 . Using these estimates in

(4.14), it follows that ‖xN − x̂ ‖ is bounded. If ℓ̃i+1 ց 0, (4.12) and (4.13) shows that also τi ց 0.

Restarting our analysis from a later iteration, we can therefore make Cτ > 0 arbitrarily small.

Consequently, for any ϵ > 0, for large enough N holds ‖xN − x̂ ‖ ≤ ϵ . Since ℓ > 0, this is in

contradiction to ℓ̃i+1 ց 0. We may therefore assume that ℓ̃i+1 ≥ ϵ̃ for some ϵ̃ > 0, at least for

large i. Since our claims are asymptotical, we may without loss of generality assume this for

all i.

From (4.12), we now estimate τi ≥ ϵ̃λmin(a)/‖K ‖2 =: τ∗ > 0. From Line 5 consequently

(4.16) ϕi+1 ≥ ϕi (1 + 2γτ∗).

This shows that ϕN ≥ Θ((1+γτ∗)N ) grows exponentially, predicting (4.14) to yield linear rates
from if we can control the penalty DN .

Continuing form (4.15), by Hölder’s inequality, since the conjugate exponent of 1/(1 − p) is
1/p, for any p ∈ (0, 1) holds

DN ≤ Cτθ

N−1∑

i=0

ϕ
1−p
i ϕ

p−1/2
i ≤ Cτθ

(
N−1∑

i=0

ϕi

) 1−p (
N−1∑

i=0

ϕ
1−1/(2p)
i

)p
.

By (4.16), the second sum on the right is bounded if 1 − 1/(2p) < 0, that is p ∈ (0, 1/2). From
Line 5 of the algorithm

ϕN − ϕ0 = 2γ

N−1∑

i=0

ϕiτi ≥ 2γτ∗

N−1∑

i=0

ϕi .

For some constant C ′ > 0 we therefore get

DN ≤ C ′(ϕN − ϕ0)1−p ≤ C ′ϕ
1−p
N
.

Minding (4.14) and (4.16), this shows the claimed linear rate. �

5 numerical demonstrations

We study the performance of the proposed algorithm on two image processing problems, total

variation (TV) denoising, and H 1 denoising. These can be written as

(5.1) min
x ∈Rn1n2

1

2
‖z − x ‖22 + αR(x),

wheren1×n2 is the image size in pixels, andz the noisy image as a vector inRn1n2 . The parameter

α > 0 is a regularisation parameter, and R a regularisation term. For TV regularisation, it is

R(x) = ‖Dx ‖2,1, and for H 1 regularisation, it is R(x) = ‖Dx ‖2. Here D ∈ R
2n1n2×n1n2 is a matrix
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for a discretisation of the gradient, and ‖д‖2,1 :=
∑n1n2
i=1

√
дi,1 + дi,2 for д = (д·,1,д·,2) ∈ R

2n1n2 .

We speci�cally take D as forward-di�erences with Neumann boundary conditions.

The problem (5.1) can in both cases be written in the saddle point form

min
x ∈Rn1n2

max
y ∈J

1

2
‖z − u‖22 + 〈Kx ,y〉 − δK∩A−1b (y),

where for H 1 denoising

J = E1+2n1n2 , Kx = (0,Dx), Ay = y0, b = α ,

and for TV denoising, for i = 1, . . . ,n1n2,

J = (E1+2)n1n2 , [Kx]i = (0, [Dx]i,1, [Dx]i,2), Ay = ((y1)0, . . . (yn1n2)0), b = (α , . . . ,α).

In the latter case, Line 6 of Algorithm 4.1 splits into n1n2 parallel problems of the form covered

by Remark 4.2. The remark therefore shows how to e�ciently solve the step for both example

problems.

While TV denoising [38] is a fundamental benchmark in mathematical image processing, we

have to emphasise here that H 1 denoising is not an approach of practical importance. It blurs

images unlike TV denoising. Nevertheless, it forms a non-trivial optimisation problem, as we

do not square the norm of the gradient. (The optimality conditions in that case would be linear:

in the continuous setting the heat equation.)

5.1 remarks on convergence rates

The linear convergence results for the second-order cone in Section 4.3 apply to H 1 denoising,

but they do not apply to TV denoising. In the latter case,K = Kn1n2
soc is a product of second-order

cones, but not a second-order cone. It would be possible to extend the analysis of Section 4.3

to product cones. Due to the coupling through (4.4b), a straightforward approach would yield

linear convergence whenmini ‖[Kx̂]i ‖ > 0. From the structure of the TV denoising problem, it

is however easy to see that it can often happen that [Kx̂]i = 0. This is the case when the solution

image is locally �at. This happens in total variationdenoisingmore often than onemight expect,

due to the characteristic staircasing e�ect of the approach [39]. Therefore, there is little hope

to obtain linear convergence on practical TV denoising problems using this approach.

5.2 numerical setup

We performed some numerical experiments on the parrot image (#23) from the free Kodak

image suite photo.1 We used the image, converted to greyscale, both at the original resolution

of n1 ×n2 = 768× 512, and scaled down to n1 ×n2 = 192× 128 pixels. To the high-resolution test

image, we added Gaussian noise with standard deviation 29.6 (12dB). In the downscaled image,

this becomes 6.15 (25.7dB). With the low-resolution image, we used regularisation parameter

α = 0.01 for TV denoising, and α = 5 for H 1 denoising. We scale these up to α/0.25 for the

high-resolution image [40].

1At the time of writing online at h�p://r0k.us/graphics/kodak/.
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Table 1: TV denoising performance: CPU time and number of iterations (at a resolution of 10)

to reach given duality gap, distance to target, or primal objective value.

low resolution

gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
Method iter time iter time iter time

PDHGM 4 0.01s 30 0.09s 27 0.08s
PEDI 16 0.04s 270 0.73s 280 0.75s
Dual FB 12 0.03s 6 0.02s 9 0.02s

high resolution

gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
iter time iter time iter time

4 0.13s 34 1.42s 13 0.52s
86 3.78s – – 400 17.76s
14 0.62s 21 0.96s 12 0.53s

We compared our algorithm (denoted PEDI, Primal Euclidean–Dual Interior) to the acceler-

ated Chambolle–Pock method (PDHGM, Primal–Dual Hybrid Gradient method, Modi�ed [41])

on the saddle-point problem, as well as forward–backward splitting on the dual problem (Dual

FB). For Dual FB we took as the basic step size τ = 1/L2, where L :=
√
8 ≥ ‖K ‖ [42]. For the

PDHGM,we tookτ0 ≈ 0.52/L andσ0 = 1.9/L, using the strong convexity parameterγ = 0.9 < 1

for acceleration. For our method, we took ζ = 0.9/b20 and θ = 1/ζ , keeping τ0 and γ unchanged

from the PDHGM. For the initial iterates we always took x0 = 0 and y0 = 0. The hardware we

used was a MacBook Pro with 16GB RAM and a 2.8 GHz Intel Core i5 CPU. The codes were

written in MATLAB+C-MEX.

For our reporting, we computed a target optimal solution x̂ by taking one million iterations

of the basic PDHGM. In Figure 1 and Table 1 for TV denoising, and Figure 2 and Table 2 for

H 1 denoising, we report the following: the distance to x̂ in decibels 10 log10(‖x i − x̂ ‖2/‖x̂ ‖2),
the primal objective value val(x) := G(x) + F (Kx) relative to the target 10 log10((val(x) −
val(x̂))2/val(x̂)2), as well as the duality gap 10 log10(gap2/gap20), again in decibels relative to

the initial iterate. For forward–backward splitting, to compute the duality gap, we solve the

primal variable x i from the primal optimality condition K∗y i = ∇G(x i ) = x i − z.

5.3 performance analysis and concluding remarks

As expected, the performance of PEDI on TV denoising is not particularly good, re�ecting the

O(1/N ) rates from Theorem 4.3. For H 1 denoising we observe signi�cantly improved conver-

gence, re�ecting the linear rates from Theorem 4.5, and of dual forward–backward splitting.

While PEDI eventually has better gap behaviour than dual forward–backward splitting, overall,

however, the method appears no match for the latter in our sample problems. Further research

is required to see whether there are problems forwhich the overall Primal Euclidean(Proximal)–

Dual Interior or similar approaches provide competitive algorithms.

Irrespective of the limited practicality of PEDI, our theoretical analysis helps to bridge the

gap in performance between direct primal or dual methods, and primal–dual methods. After all,

we have obtained linear rates without the strong convexity of bothG and F ∗ in the saddle point
problem (S). As a next step to take from here, it will be interesting to see if convergence rates

can be derived in our overall setup for the “distance-like” preconditioners from [16, 17, 18, 19].

Moreover, we are puzzled by what, if anything, makes the second-order cone special?
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Figure 1: TV denoising convergence behaviour: high and low resolution images; gap, distance

to target solution, and primal objective value in decibels.
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Figure 2: H 1 denoising convergence behaviour: high and low resolution images; gap, distance

to target solution, and primal objective value in decibels.
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Table 2: H 1 denoising performance: CPU time and number of iterations (at a resolution of 10)

to reach given duality gap, distance to target, or primal objective value.

low resolution

gap ≤ −150dB tgt ≤ −100dB val ≤ −100dB
Method iter time iter time iter time

PDHGM 360 0.91s – – 180 0.46s
PEDI 120 0.31s 87 0.22s 54 0.14s
Dual FB 44 0.11s 43 0.11s 22 0.05s

high resolution

gap ≤ −150dB tgt ≤ −100dB val ≤ −100dB
iter time iter time iter time

380 11.48s – – 120 3.60s
51 1.69s 39 1.28s 24 0.78s
17 0.74s 18 0.78s 8 0.32s
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