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Citation screening, an integral process within systematic reviews that identifies citations relevant to the
underlying research question, is a time-consuming and resource-intensive task. During the screening
task, analysts manually assign a label to each citation, to designate whether a citation is eligible for inclu-
sion in the review. Recently, several studies have explored the use of active learning in text classification
to reduce the human workload involved in the screening task. However, existing approaches require a
significant amount of manually labelled citations for the text classification to achieve a robust perfor-
mance. In this paper, we propose a semi-supervised method that identifies relevant citations as early
as possible in the screening process by exploiting the pairwise similarities between labelled and unla-
belled citations to improve the classification performance without additional manual labelling effort.
Our approach is based on the hypothesis that similar citations share the same label (e.g., if one citation
should be included, then other similar citations should be included also). To calculate the similarity
between labelled and unlabelled citations we investigate two different feature spaces, namely a bag-
of-words and a spectral embedding based on the bag-of-words. The semi-supervised method propagates
the classification codes of manually labelled citations to neighbouring unlabelled citations in the feature
space. The automatically labelled citations are combined with the manually labelled citations to form an
augmented training set. For evaluation purposes, we apply our method to reviews from clinical and pub-
lic health. The results show that our semi-supervised method with label propagation achieves statisti-
cally significant improvements over two state-of-the-art active learning approaches across both
clinical and public health reviews.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Systematic reviews are used to identify relevant citations and
answer research questions by gathering, filtering, and synthesising
research evidence. A primary objective of any systematic review is
to minimise publication bias [1] by analysing all citations relevant
to the review. To identify and subsequently analyse every possible
eligible study, reviewers need to exhaustively filter out citations
(retrieved by searches to literature databases) that do not fulfill
the underlying eligibility criteria. Developing systematic reviews
is a time-consuming and resource intensive process that can take
more than a year, with up to half of this time being spent searching
and screening hits. As an example, an experienced reviewer
requires 30 s on average to decide whether a single citation is
eligible for inclusion in the review, although this can extend to sev-
eral minutes for complex topics [2]. This amounts to a considerable
human workload, given that a typical screening task involves man-
ually screening thousands of citations [3–5].

To reduce the time and cost needed to complete the screening
phase of a systematic review, researchers have explored various
techniques, including crowdsourcing and text mining methods.
Crowdsourcing approaches efficiently address tedious tasks, e.g.,
assessing the quality of Wikipedia articles [6], by re-distributing
the overall workload to a large network of people. In the context
of systematic reviews, the EMBASE screening project,1 a Cochrane
initiative, adopts a crowdsourcing approach to identify reports of
randomised controlled trials (RCTs) and quasi-RCTs in the EMBASE
bibliographic database. Two years after the project started, 4606

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2017.06.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jbi.2017.06.018
http://creativecommons.org/licenses/by/4.0/
mailto:sophia.ananiadou@manchester.ac.uk
http://www.researchgate.net/project/The-Embase-project
http://dx.doi.org/10.1016/j.jbi.2017.06.018
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin


68 G. Kontonatsios et al. / Journal of Biomedical Informatics 72 (2017) 67–76
crowd workers have processed a total number of 1 million EMBASE
abstracts. Regarding the quality of the screening decisions, the
crowd workers were found to be very accurate achieving a sensitiv-
ity and specificity performance of 99%.

In addition to crowdsourcing approaches, previous studies have
investigated the use of automatic text classification to facilitate
citation screening of systematic reviews [5,7]. In citation screening
supported by automatic text classification, a human reviewer
needs to screen only a subset of the retrieved citations. The process
starts with a subset of citations manually annotated with labels,
which denote whether the citation should be included or excluded.
The citations paired with the labels serve as the training examples
for the automatic classifier. In a supervised learning manner, the
classifier is then trained on the manually annotated set to learn
how to discriminate between relevant and irrelevant citations. As
a final step, the trained classifier is applied to automatically screen
the remaining unlabelled citations.

In this paper, we focus on a special case of automatic text clas-
sification known as feedback-based or active learning classification
[2,8–11]. Active learning classification approaches are supervised
machine learning methods that are iteratively trained on an
increasing number of manually labelled citations. At each learning
cycle, the model selects a small sample of citations and interac-
tively requests a human analyst to manually label the citations.
The manually labelled sample of citations is added to the training
set and the model is retrained (updated). Results obtained by pre-
vious work [2,8] demonstrate that active learning classification
approaches can substantially decrease the screening workload
without reducing the sensitivity of the review (i.e., the method
identifies 95–100% of relevant citations). However, a drawback of
existing active learning methods is that the underlying model
yields a low performance during the early learning iterations due
to the limited number of labelled citations used as training
instances. This can be explained because active learning methods
exploit machine learning models whose hypothesis space, i.e.,
the possible set of decision boundaries, is constrained by the num-
ber training instances. Thus, a small number of training samples in
the initial stages may result in poor classification performance
[12].

Previous work [5,13] has outlined that the early identification of
eligible citations presents several advantages to systematic
reviewers and can significantly accelerate the overall citation
screening process. As an example, O’Mara-Eves et al. [5] argued
that, in a manually conducted citation screening task, reviewers
tend to screen at a lower rate during the initial stages of the task
while they incrementally increase their screening rate only after
processing a larger number of eligible citations. Thus, the prioriti-
sation of eligible citations during the initial active learning itera-
tions can enable reviewers to establish a higher screening rate
early in the process, reducing in this way the overall time needed
to complete the citation screening task.

Based upon this, we propose a semi-supervised active learning
method to improve the classification performance of active learn-
ing during the early stages of screening. In our approach, we adopt
the ‘cluster assumption’ [14], which states that instances that are
similar to each other will often share the same label. Accordingly,
we use label propagation [15] to copy the label from a manually
labelled citation to similar unlabelled citations (which are nearby
in the feature space). These pseudo-labelled samples are used as
additional training data for the classifier. To compute pairwise sim-
ilarities between labelled and unlabelled instances, we explore two
different feature representations of citations: (a) a bag-of-words
feature space which consists of words that occur in the title and/
or in the abstract of the citation and (b) a spectral embedding space
that approximates the similarities of the bag-of-words representa-
tion based on their relative location in a lower dimensional space
(neighbouring instances in the embedding should share similar
content).

The label propagation step, which extends the training set with
additional pseudo-labelled instances, can be used with any active
learning method. Here, we integrate the proposed label propaga-
tion method with two existing active learning strategies, namely
a certainty-based [8] and an uncertainty-based active learner [2].
The two strategies have different motivations. Uncertainty-based
sampling [16,11] learns to discriminate between eligible and inel-
igible citations by requesting feedback from an analyst on citations
that are more likely to change the current model. Certainty-based
sampling [8,17] seeks to identify the relevant citations as early as
possible, which is a useful strategy for systematic reviews [5].

For experimentation, we investigate the performance of the
semi-supervised active learning method when applied to both clin-
ical and public health systematic reviews. Such reviews are becom-
ing increasingly difficult to manually develop and update due to
the exponential growth of the biomedical literature (e.g., on aver-
age 75 trials and 11 systematic reviews are published daily in
MEDLINE [18]). As an example, only a third of systematic reviews
in the Cochrane library are being frequently updated with new rel-
evant evidence published in the literature [19]. Thus, semi-
automatic methods that can potentially accelerate the develop-
ment of clinical and public health reviews are needed [20].

The contributions that we make in this paper can be sum-
marised in the following points: (a) we propose a new semi-
supervised active learning method to facilitate citation screening
in clinical and public health reviews; (b) we show that a low-
dimensional spectral embedded feature space can more efficiently
address the high terminological variation in public health reviews
versus the bag-of-words representation; and (c) experiments
across two clinical and four public health reviews demonstrate that
our method achieves significant improvements over two existing
state-of-the-art active learning methods when a limited number
of labelled instances is available for training.

1.1. Previous work on automatic citation screening

Previous approaches to automatic citation screening can be
coarsely classified into automatic text classification and active
learning classification methods. Aphinyanaphongs and Aliferis
[21] proposed one of the earliest automatic text classification
approaches for identifying high-quality and content-specific
research articles useful for evidence-based reviews. They experi-
mented with different supervised machine learning methods
including a naïve Bayes classifier [22], boosting [23] and a support
vector machine (SVM) [24]. As the feature representation for arti-
cles, they exploited words occurring in the title and/or in the
abstract, the publication type (e.g., randomised control trial) and
MeSH terms. Experimental results determined that the SVM classi-
fier achieved an improved classification performance over the
naïve Bayes and boosting classifiers.

Cohen et al. [13] applied an automatic text classification model
in 15 systematic reviews relating to drug class efficacy for disease
treatment. They used a modified version of the voted perceptron
algorithm [25], i.e., a maximal-margin classifier which, similarly
to an SVM, tries to find a hyperplane to separate relevant from
irrelevant citations. As in previous work [21], they used a bag-of-
words feature representation complemented by publication type
and MeSH term features. In order to better address the high-
recall requirement of systematic reviews—that is, reviewers need
to identify all relevant citations for inclusion in the review—they
introduced a bias weight to control the learning rate of positive
(relevant) and negative (irrelevant) instances. Their results demon-
strated a significant reduction in the screening workload in 11 out
of the 15 reviews. Matwin et al. [26] explored the use of a
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factorised version of the naïve Bayes classifier as opposed to the
voted perceptron method used in [13]. The authors argued that
automatic screening decisions obtained by Bayesian classification
approaches are easier to interpret than screening decisions derived
by pattern recognition tools such as the voted perceptron classifier
or SVMs. In addition to this, they defined feature weights to assign
a higher priority to publication type and MeSH terms than to bag-
of-words features. The naïve Bayes screening model was shown to
achieve a better classification performance than the voted percep-
tron classifier on the 15 drug-specific systematic reviews.

Frunza et al. [27] employed an ensemble classification method
consisting of multiple naïve Bayes models. Each model was trained
to predict a different inclusion criterion of the underlying review
(e.g., inclusion of primary citations). Individual screening decisions
were then combined into a voting scheme to classify citations as
being eligible or ineligible for the review. They experimented with
a large scale medical review containing more than 47,000 citations
to be screened. Results determined that the ensemble classification
method substantially outperformed a monolithic naïve Bayes clas-
sifier trained only on global screening decisions. Howard et al. [28]
developed a regularised log-linear classification model which
exploits two types of features, namely bag-of-words weighted by
TF-IDF and topic-based features extracted by Latent Dirichlet Allo-
cation (LDA) [29]. Experiments across 20 systematic reviews were
performed, demonstrating a robust precision and a very high recall
of 95%. Elsewhere, García Adeva et al. [30] studied the contribution
of different segments of a citation (e.g., title, abstract or both) to
the overall classification performance; Shemilt et al. [31] showed
that SVM-based text classifiers can significantly reduce the screen-
ing workload of very large scoping reviews; while Timsina et al.
[32] investigated different strategies to mitigate the class imbal-
ance between eligible and ineligible citations which is known to
affect the performance of the classification model.

One limitation of automatic classification approaches is that
the underlying models rely upon fine tuning of weighting param-
eters to achieve high recall. Cohen et al. [13] noted that the value
of the weighting parameter that results in an acceptable recall
performance (i.e., P95%), ‘‘varies greatly” across the 15 drug-
specific systematic reviews. Moreover, the authors reported that
in one out of the 15 reviews the model was unable to converge
to high recall levels for any value of the parameter. This observa-
tion was subsequently confirmed by Bekhuis and Demner-
Fushman [33]. In their study, they evaluated different automatic
classification methods, including naïve Bayes, SVM, and k-
nearest neighbour, and showed that the models achieve low
recall when using default parameter settings. To improve the
recall of automatic text classification, they employed a grid opti-
misation technique that identifies optimal parameter settings for
the machine learning models.

A second-generation group of techniques, including our
approach, explores the use of active learning to train text classifi-
cation models. Unlike automatic classification methods that train
machine learning models on predefined training sets, i.e., ran-
domly drawn samples of the full set, active learning models start
with a very small random set and then incrementally select sam-
ples to be manually labelled and added to the training set. Wallace
et al. [2] presented an active learning strategy based on SVMs for
citation screening. Their method uses uncertainty sampling to
select instances lying closer to the classification hyperplane (i.e.,
the decision threshold between relevant and non-relevant cita-
tions) for inclusion in the training set. Uncertainty sampling
assumes that low confidence instances can be used to train a
machine learning model more efficiently (by refining the classifica-
tion hyperplane) and thus to improve the performance of the
active learner. The authors reported that the uncertainty-based
active learning method was able to reduce the number of items
that needed to be manually screened by 40–50% in clinical system-
atic reviews.

Miwa et al. [8] employed an SVM-based active learner with
certainty-based sampling that selects high confidence instances
to be included in the next training cycles as opposed to uncertainty
sampling [2]. Certainty-based sampling is known to better address
the skewed distribution of positive and negative instances that is
likely to occur in systematic reviews [17]. In addition to certainty
sampling, a weighting method was used to assign a higher impor-
tance to relevant instances. The weighting method was shown to
further alleviate class imbalance. Experimental results determined
that active learning with certainty sampling and weighting com-
pares favourably to active learning with uncertainty sampling
across clinical and public health reviews.

Previous work has obtained impressive results using active
learning classification methods for citation screening. However,
existing active learning methods require a large amount of labelled
data to yield a robust performance. In this study, we propose a
novel semi-supervised active learning method that is able to learn
from both labelled and unlabelled data. A similar approach was
recently presented in Liu et al. [34], comparing existing semi-
supervised classifiers [35,15,36] to an SVM-based automatic classi-
fication method. Although promising results were reported, that
study failed to demonstrate the potential benefits from using
semi-supervision within active learning. In our experiments, we
demonstrate that semi-supervision improves upon the perfor-
mance of both certainty and uncertainty-based active learning
when a limited number of manually annotated instances is avail-
able for training.
2. Methods

In this section, we present the overall architecture of our semi-
supervised active learning method. We then provide implementa-
tion details of the label propagation and the spectral embedding
feature space that we use to efficiently transfer classification labels
from manually labelled to unlabelled instances.
2.1. Semi-supervised active learning for citation screening

Fig. 1 shows the overall architecture of the proposed semi-
supervised active learning method. The process starts with a pool
of unlabelled citations. In the first iteration, a human reviewer
manually labels a small, randomly selected sample of citations.
The label propagation method generates additional training
instances by copying the class labels of previously labelled
instances to unlabelled instances most similar in the feature space.
These automatically labelled instances are combined with the
manually labelled instances to form an augmented training set,
which is used for training the text classification model. In the final
step of the active learning cycle, the active learning model is
applied to the pool of remaining unlabelled instances, the label
of each instance is predicted, along with a measure of certainty
for the label, and the reviewer re-initiates the active learning cycle
by annotating the highest ranked citations in the unlabelled set,
where the ranking depends on whether the user is interested in
performing certainty- or uncertainty-based active learning. For
certainty-based sampling, the highest ranked instances are those
most likely to be positive (eligible) according to the current model,
while uncertainty-based sampling prioritises instances with the
lowest confidence of the classifier’s prediction.

The semi-automatic citation screening will terminate when a
stopping criterion is met. In this work, we allow the model to anno-
tate the complete set of unlabelled citations and report the perfor-
mance on various intermediate iterations of the active learning



Fig. 1. Architecture of the semi-supervised active learning approach used for citations screening.
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method. In scenarios where the semi-supervised active learning
method is applied to ongoing systematic reviews, the reviewing
team can stop the screening process when the majority of relevant
citations has been identified. For example in the clinical domain,
active learning approaches converge to recall levels of 95–100%
after processing 50–60% of the total number of articles [2,8].

2.2. Label propagation

Our semi-supervised method automatically propagates the
class label from a labelled instance to the neighbouring unlabelled
instances. Formally, given a manually annotated instance ðd; yÞ,
where d 2 f1; . . . ; ng enumerates the citations, n is the total num-
ber of citations, and y 2 f0;1g is the corresponding class label
where 0 indicates a citation should be excluded and 1 designates
inclusion, our goal is to determine a set Nd � f1; . . . ;ng n d of the
k-nearest neighbours to d.

The class label of y is then assigned to any neighbours that are
unlabelled and these neighbours are used as additional training
instances for the classifier. If an unlabelled instance is the neigh-
bour of multiple labelled samples, the label of the closest instance
is assigned.

To calculate the distance between two instances, d and d0, we
use the cosine of the angle between the vector representations of
d and d0:

dðvd;vd0 Þ ¼ 1� cos h ¼ 1� hvd;vd0 i
kvdk kvd0 k

ð1Þ

where hv;ui ¼ Pq
i¼1v iui indicates the inner-product (dot-product)

between vectors v;u 2 Rq; q is the dimension of the vector space

and kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

i¼1v2
i

q
is the Euclidean norm. With the normalisation,

the cosine similarity provides a fair comparison between vectors of
different magnitude, which is especially important for the bag-of-
words representation where the magnitude is proportional to the
number of words. We explore two different vector representations
of citations formed from the title and abstract text: (a) bag-of-
words representation and (b) spectral embedded feature space, a
lower dimensional embedding of the bag-of-words space. The spec-
tral embedded feature space has been shown to better capture clus-
ter structures of instances [14]; thus, the distance between
instances of the same label is expected to be smaller in the spectral
space.

To better illustrate the underlying ‘cluster assumption’ we con-
ducted two experiments. Firstly, we computed the distribution of
distances in the spectral embedded space between citations that
share the same class label and between citations with contrasting
labels. Secondly, we use t-SNE [37], a visualisation algorithm for
high-dimensional data that maps the spectral embedded represen-
tation of citations into a two-dimensional space. The t-SNE
algorithm is able to preserve some of the topology of the high-
dimensional data in the lower dimensional space (i.e., adjacent
points in the visualisation are also close to each other in the
original space).

Fig. 2, shows the smooth density functions of the empirical dis-
tribution of distances between pairs of citations in a clinical review
(COPD) and in a public health review (Tobacco Packaging), respec-
tively. In both datasets, we observe that pairs of eligible citations
have relatively small distances, followed by pairs of ineligible cita-
tions, while mixed pairs (eligible-ineligible) present the highest
mean distance. Small distances between pairs of eligible citations
justify propagating labels between neighbouring citations.

Fig. 3 shows a t-SNE visualisation of eligible and ineligible cita-
tions. With respect to the clinical review (COPD), we observe that
citations tend to be organised into homogeneous clusters where
instances of the same class label are close to each other. In the case
of the public health review (Tobacco Packaging), we note similar
cluster structures, although several eligible instances are scattered
across the space. The apparent singleton clustering of eligible cita-
tions can be explained by the fact that public health reviews often
cover complex, multi-disciplinary topics (e.g., social sciences, psy-
chology, economics) [8,5]. The isolated but relevant citations
remain a challenge to identify using automatic text classification
methods.
2.2.1. Spectral embeddings
The neighbourhoods used in the label propagation depend on

the choice of vector representation for the citations. One option
is the ubiquitous bag-of-words representation, where citations
are deemed to be close if they share many of the same words.
The dimensionality of the bag-of-words representation is con-
trolled by the size of the vocabulary, and two different words are
always treated as orthogonal dimensions (even if they are seman-
tically similar). Because of the potential large variations in vocab-
ulary between different citations, this representation is not
always optimal.

As an alternative, we use a spectral embedding technique [14],
which is a data-dependent representation that can preserve
semantic similarity within a lower dimensional space. In particu-
lar, a lower-dimensional embedding is akin to principal component
analysis (PCA) in that it will preserve the dominant patterns of
similarity, thereby alleviating noise related to uncommon words



Fig. 2. Smoothed density function of the distances between pairs of citations in a spectral embedded feature space, which shows that distances between two eligible citations
is typically less than the distance between arbitrary pairs of citations.

Fig. 3. t-SNE visualisation of citations, encoded in a spectral embedded feature space, of a clinical and a public health review. Solid blue dots indicate eligible citations and red
crosses indicate ineligible citations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and variation. Other alternatives to bag-of-words representations
based on generative topic models, namely LDA, or distributed vec-
tor representations of portions of texts trained via shallow neural
networks [38], have also been shown to improve the simulated
performance of active learning on systematic review datasets
[8,39]. The advantage of spectral embeddings over these methods
is mainly computational, in that it can be computed very quickly
using standard linear algebra libraries. A comparison of the effect
of the representation choice on the semi-supervised active learning
is left for future research.

We compute a spectral embedded representation based on the
eigendecomposition of the normalised similarity matrix between
pairs of instances [14,40]. Let X denote the TF-IDF bag-of-words
feature matrix where Xd;w ¼ cd;w log 1

f w
is the product of the term-

count cd;w for word w in citation d, and f w is the fraction of the cita-
tions that contain w for w 2 f1; . . . ;mg, where m is the number of
words in the vocabulary, and d 2 f1; . . . ;ng. From its definition, X is
a non-negative matrix since cd;w and log 1

f w
are always non-negative.
We use a normalised representation the vector for each citation
stored in the matrix R ¼ ½r1; r2; . . . ; rn�T where
Rd;w ¼ ffiffiffiffiffiffiffiffiffi

Xd;w

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w0Xd;w0

p
. Due to the above mentioned positivity

and normalised representation, the inner product between two
normalised vectors rd and rd0 yields the Bhattacharya coefficient
measure [41] of similarity Cd;d0 ¼ hrd; rd0 i for d; d0 2 f1; . . . ;ng,
where 0 6 Cd;d0 6 1. The n� n matrix C is positive semidefinite (it
has no negative eigenvalues) and its diagonal entries are 1. A trun-
cated eigendecomposition of C can be used to form an embedding.
However, this decomposition tends to represent only the largest
groups of highly similar instances, while the remaining instances
remain near the origin of the embedding coordinate system. To
address this problem, we use a symmetrically normalised version
of C. This normalisation approach has been theoretically justified
and popularised for spectral clustering [40] and embedding [14].
The symmetrically normalised matrix is computed as
~C ¼ D�1=2CD�1=2 where D is a diagonal matrix with entries
Dd;d ¼

P
d0Cd;d0 for d 2 f1; . . . ;ng. Based on the symmetrically



Table 1
Characteristics of the employed systematic review datasets.

Domain # Instances # eligible / # ineligible

Proton Beam Clinical 4751 0.05
COPD Clinical 1606 0.14
Cooking Skills Public health 11,515 0.02
Sanitation Public health 5464 0.10
Tobacco Packaging Public health 3210 0.05
Youth Development Public health 15,544 0.11
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normalised matrix ~C, we compute an eigendecomposition
UKUT ¼ ~C where U is a unitary matrix with the eigenvectors as col-
umns and K a diagonal matrix with the eigenvalues on the diago-
nal. The diagonal elements can be sorted such that k1 P � � � P kp
are the first p entries corresponding to the largest eigenvalues.
We then compute an embedding of dimension p according to:

Z ¼ ½u1

ffiffiffiffiffi
k1

p
; . . . ;up

ffiffiffiffiffi
kp

p � ¼ ½z1; z2; . . . ; zn�T 2 Rn�p ð2Þ

where u1; . . . ;up are eigenvectors associated with the p largest

eigenvalues. In this notation, zd is the dth row of Z and is the embed-

ding coordinates for the dth instance. In our experiments, we set the
dimensionality of the embedded feature space to p ¼ 50.

In general, ~C is a non-sparse matrix. Hence, computing even a

truncated eigendecomposition of ~C becomes computationally
expensive for a large number of instances. However, ~C can be
implicitly defined in terms of the sparse normalised TF-IDF matrix
R and the diagonal matrix D : ~C ¼ D�1=2RRTD�1=2. In this form, the
matrix-vector multiplications required to obtain the eigendecom-

position can be efficiently computed as ~Cx ¼ D�1=2RRTD�1=2x ¼
D�1=2ðRðRTðD�1=2xÞÞÞ, since this equation consists of a series of
sparse matrix-vector multiplications.
3. Results

In this section, we present experiments to evaluate the pro-
posed semi-supervised active learning methods. Firstly, we
describe the 6 systematic review datasets which we used in our
experiments. Secondly, we define the evaluation metrics for
assessing the citation screening methods. Finally, we compare
our method against two existing active learning approaches across
the 6 evaluation datasets.
3 Based on some preliminary experiments, we chose k ¼ 3 to achieve a reasonable
increase in the number of training examples with the semi-supervised label
propagation. The supplementary material contains some experiments for different
values of k, which show that larger values of k, namely k ¼ 30, show larger gains in
3.1. Data

Table 1 summarises various characteristics of the employed
systematic review datasets, including the underlying scientific
domain (clinical or public health domain), the number of instances
and the ratio of eligible to ineligible (positive to negative)
instances. We use two systematic reviews from the clinical domain
(COPD and Proton Beam) and four reviews from the public health
domain (Cooking Skills, Sanitation, Tobacco Packaging and Youth
Development). The clinical reviews are publicly available datasets
and were previously used by Wallace et al. [2] to evaluate an
uncertainty-based active learner. The public health reviews were
developed by the EPPI-Centre2 and reused by Miwa et al. [8] to
investigate the performance of both certainty and uncertainty-
based active learners.

With regard to the size of the employed datasets, the Youth
Development review is the largest systematic review consisting
of 15,544 abstracts to be screened. On the assumption that a
human reviewer screens an average of one abstract in 30 s,
manually screening the entire Youth Development dataset
requires approximately 130 h of work; this is over 3 weeks at
40 h per week. Moreover, it should be noted that both the clinical
and the public health datasets are highly imbalanced, containing
far fewer eligible than ineligible citations. Such imbalanced
datasets constitute challenging cases for machine learning
methods [2,8,13,31].
2 http://eppi.ioe.ac.uk/cms/.
3.2. Evaluation settings

We have evaluated six automatic screening methods: active
learning with certainty sampling (AL-C) [8]; active learning with
uncertainty sampling (AL-U) [2]; two semi-supervised active
learning models that propagate classification labels using a bag-
of-words feature space (i.e., SemiBoW-AL-C for certainty sampling
and SemiBoW-AL-U for uncertainty sampling); and two semi-
supervised active learning methods that use a spectral embedded
space for label propagation (SemiSpectral-AL-C and SemiSpectral-
AL-U). The semi-supervised models (SemiBoW-AL and
SemiSpectral-AL) correspond to our novel methods (with the num-
ber of neighbours for label propagation fixed3 at k ¼ 3), while AL-C
and AL-U are used as baseline methods. All methods use linear SVMs.

As evaluation metrics, we use yield and burden [8,42,2]: yield is
the fraction of relevant citations identified by a given automatic
screening method, and burden is the fraction of the total number
of citations that a human reviewer needs to manually screen. They
are mathematically defined as:

yield ¼ tph þ tpa

tph þ tpa þ fna ð3Þ
burden ¼ nh þ tpa þ fpa

n
ð4Þ

where tp; fp; fn;n denote the number of true positives, false posi-
tives, false negatives, and total number of instances; and the super-
scripts �h and �a denote human and automatic labelling, respectively.
We assume manual labelling is correct, such that tph þ tnh ¼ nh

where nh þ na ¼ n. The goal of an active learning citation screening
method is to maximise yield (proportion of examined citations that
are eligible) while minimising burden (human workload involved in
the screening phase). At 100% burden, a (human) systematic
reviewer has screened the complete citation list and all eligible cita-
tions are identified (100% yield).

In order to provide a single evaluation metric of the active
learning performance, we use utility that considers both yield
and burden. Utility is computed as follows:

utility ¼ b� yieldþ ð1� burdenÞ
bþ 1

ð5Þ

where b is a weighting factor used to determine the importance of
yield and burden. Given that the identification and inclusion of all
relevant citations is a critical feature of each systematic review, a
high value of yield becomes more important than a low value of
burden [5]. Wallace et al. [43] noted that, according to experts, yield
utility based on larger increases in yield, while simultaneously increasing the burden.
Depending on the goals of the screening prioritisation, choosing a larger value of k
may be appropriate for a review.

http://eppi.ioe.ac.uk/cms/
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is 19 times more important than burden. Based upon this, we set
the weighting factor as b ¼ 19.

For assessment, the values of yield, burden and utility are com-
puted for each round of active learning-based screening according
to the predictions made by the classifier. These predictions cover
the remainder of the unlabelled instances, including those that will
not be presented to the human reviewer. That is, these metrics
quantify the performance as if the active learning process termi-
nated and the human reviewer annotated the instances predicted
to be relevant. In the case of the certainty-based screening, the
instances presented to the human reviewer are those most likely
to be relevant, while for uncertainty-based screening, the subset
presented to the reviewer may be a mixture of relevant and irrel-
evant instances for which the classifier has the least confidence.

We use the average utility to quantify the expected utility when
stopping earlier than a specified number of manually labelled
instances. The average utility performance after R iterations of
active learning is computed as

average utility@R ¼ 1
R

XR
r¼1

utilityr ð6Þ

where utility1 is the utility performance of the first active learning
iteration and utilityr is the utility of the r-th iteration. The advantage
Fig. 4. Utility performance achieved by certainty and uncertainty-based active learnin
Packaging) review.
of average utility is that it considers the utility performance across
previous iterations, providing a smoother metric for evaluation
purposes.
3.3. Overview of results

We evaluate the utility performance of certainty-based (AL-C,
SemiBoW-AL-C, SemiSpectral-AL-C) and uncertainty-based (AL-U,
SemiBoW-AL-U, SemiSpectral-AL-U) active learning models when
applied to one clinical and one public health review, i.e., Proton
Beam and Tobacco Packaging, respectively (please refer to the sup-
plementary material for the performance of the models on the
other datasets). Additionally, we record the performance of a con-
ventional, manually conducted citation screening process (i.e.,
Manual). The performance of active learning depends upon the ini-
tial seed of manually labelled instances, which are randomly
selected. Based upon this, we repeat each citation screening exper-
iment 10 times and we report the utility averaged across the 10
runs. The standard deviation of utility values over the 6 systematic
review datasets is also recorded.

Fig. 4a compares the utility performance of certainty-based
models on the clinical Proton Beam dataset. It can be noted that
during the initial learning iterations, the proposed semi-
g models when applied to a clinical (Proton Beam) and a public health (Tobacco
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supervised active learning models (i.e., SemiBoW-AL-C
and SemiSpectral-AL-C) achieve improved utility compared to
the baseline active learning method (i.e., AL-C). Specifically, the
SemiSpectral-AL-C method shows superior utility when 5% of the
citations is manually labelled and used for training (+9% utility
over the SemiBoW-AL-C method and +30% over the baseline AL-C
method). Moreover, all three active learning models obtain sub-
stantial improvements over the manual screening process (the
utility of manual screening increases approximately linearly with
the number of manually labelled instances). This demonstrates
the effectiveness of active learning citation screening over conven-
tional screening approaches. By comparing the uncertainty-based
methods on the same clinical dataset (see Fig. 4b), we observe that
the semi-supervised models (SemiBoW-AL-U and SemiSpectral-Al-
U), shows marginal performance improvements over the baseline
AL-U method (the SemiSpectral-Al-U improves the utility by only
1% over the baseline when 5% of the citations is used for training).
This can be explained by the fact that the baseline method quickly
converges to achieve very high utility when few labelled instances
are available for training (e.g., 92% utility performance using 5% of
the citations for training).

Fig. 4c and d shows the utility of certainty-based and
uncertainty-based models, respectively, when applied to a public
health review (i.e., Tobacco Packaging). With regard to the
certainty-based active learning methods (see Fig. 4c), we observe
that the utility achieved by the two semi-supervised methods
(i.e., SemiBoW-AL-C and SemiSpectral-AL-C) increases more
rapidly than the performance obtained by the AL-C baseline
method when few labelled instances are available for training. Per-
formance gains over the baseline method range between 15% and
20% when 5% of the instances are manually labelled and used for
training and between 1% and 5% when 10% of the instances are
used for training. Fig. 4d illustrates the performance of the
Table 2
Average utility performance (%) of certainty-based and uncertainty-based active learning
used for training across two clinical (i.e., COPD and Proton Beam) and four public health
Emboldened values indicate the highest utility performance for a given seed size and datase
values across 10 runs while the last two rows of the table report the average gain in utilit
namely SemiBow and SemiSpectral, across all six systematic review datasets. The sup
outperformed the AL method (across the n ¼ 6 datasets with a one-tailed sign test with p

Dataset Method Perc

5%
Ucert:=Uuncert: Uc

AL 60.92/73.71 64
COPD SemiBow 65.33/77.26 75

SemiSpectral 65.30/88.71 74

AL 47.57/79.23 62
Proton SemiBow 50.68/79.61 68
Beam SemiSpectral 53.65/79.57 70

AL 46.66/47.59 59
Cooking SemiBow 56.26/57.13 68
Skills SemiSpectral 60.71/53.17 70

AL 24.44/25.61 32
Sanitation SemiBow 24.27/24.68 35

SemiSpectral 24.37/17.30 37

AL 45.70/43.48 53
Tobacco SemiBow 50.27/55.61 61
Pack. SemiSpectral 54.70/60.78 63

AL 22.71/28.09 31
Youth SemiBow 32.61/41.43 42
Dev. SemiSpectral 36.40/49.91 44

AL 5:35=3:78 2
Average SD SemiBow 8:45=4:05 4

SemiSpectral 6:95=4:11 3

Average gain SemiBow 5.23/6.33 7
over AL SemiSpectral 7.85/8.62 9
uncertainty-based models when applied to the public health
Tobacco Packaging review. Here, we note that the semi-
supervised method that exploits a spectral embedded feature
space for label propagation (i.e., SemiSpectral-AL-U) obtains the
best utility during the initial active learning iterations (i.e., +10%
over the SemiBoW-AL-U method and +17% over the baseline AL-
U method when 5% of citations is used for training). In subsequent
learning iterations (i.e., >10% of the citations is manually screened),
the models converge to approximately the same yield and burden.

Table 2 summarises the average utility of certainty-based and
uncertainty-based (Ucert:=Uuncert:) active learning methods on two
clinical and four public health reviews. The average utility is com-
puted when 5%, 10%, 25% and 100% of the instances are manually
labelled. Moreover, the last two rows of the table record the aver-
age gain in utility that is achieved by the two semi-supervised
models across all systematic review datasets. In terms of average
utility, the semi-supervised approach significantly outperformed
the baseline AL method (across the n ¼ 6 datasets with a one-
tailed sign test with p ¼ 0:0156 and a significance level of 0:05)
for certainty-based sampling at 10%, 25%, and 100% of citations
manually labelled and at 25% and 100% manual labelling for
uncertainty-based sampling.

Overall, it can be observed that the SemiSpectral model, using
either certainty-based or uncertainty-based active learning,
achieved the best utility in most cases. Regarding certainty-based
active learning, the SemiSpectral model achieved performance
gains over the baseline AL method ranging between 0% and 14%
when 5% of the instances are used for training (an exception to this
is the Sanitation review where performance improvements were
observed after 10% of the instances were added to the training
set), 6–14% when using 10% of the instances for training, 4–11%
for a training set consisting of 25% of the instances and 1–2% after
manually screening 100% of the instances. The certainty-based
models (Ucert:=Uuncert:) when a seed size of 5%, 10%, 25% and 100% of the instances are
reviews (i.e., Cooking Skills, Sanitation, Tobacco Packaging and Youth Development).
t. The table also summarises the average standard deviation (i.e., average SD) of utility
y over the baseline AL method that is achieved by the two semi-supervised methods,
erscript H indicates that the corresponding semi-supervised method significantly
¼ 0:0156 at a level of 0:05).

entage of citations manually screened

10% 25% 100%
ert:=Uuncert: Ucert:=Uuncert: Ucert:=Uuncert:

.37/80.63 78.88/90.10 92.35/95.14

.41/80.57 86.19/89.36 94.19/94.91

.35/86.87 85.65/91.93 94.06/95.55

.57/88.31 82.65/94.39 93.33/96.21

.34/88.90 84.94/94.72 93.84/96.31

.49/89.08 86.03/94.87 94.12/96.37

.40/60.56 75.17/73.69 89.68/88.59

.05/66.11 80.75/76.77 91.43/89.07

.65/64.98 81.96/76.24 91.78/88.98

.10/32.23 52.09/48.49 82.49/80.63

.37/32.82 54.54/48.36 83.18/80.59

.71/31.52 57.38/54.03 83.95/82.09

.96/55.79 75.35/72.70 90.85/90.06

.92/62.79 78.66/75.78 91.68/90.56

.98/68.27 79.24/78.75 91.84/91.42

.34/36.52 51.97/56.34 82.81/83.66

.62/46.48 61.77/60.02 85.69/84.43

.13/53.73 62.29/64.56 85.94/85.83

:95=2:24 1:32=0:98 0:30=0:26
:46=2:21 1:89=1:15 0:49=0:31
:54=2:48 1:49=1:18 0:39=0:35

.99w/3.93 5.12w/1.55w 1.42w/0.26w

.59w/6.73 6.07w/4.11w 1.70w/0.99w
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SemiBow model also improved upon the utility of the baseline
method, although smaller improvements were observed here
(i.e., �0–10%, 3–11%, 2–10% and 0–2% for a training set of 5%,
10%, 25% and 100% of the instances, respectively).

When comparing the utility of the uncertainty-based active
learning models, we note that the SemiSpectral method demon-
strated an increase over the performance of the baseline approach
in four out of the six reviews (i.e., COPD, Cooking Skills, Tobacco
Packaging and Youth Development) when using between 5% and
25% of the instances for training. The uncertainty-based SemiBoW
model outperformed the baseline approach in three systematic
review datasets (Cooking Skills, Tobacco Packaging and Youth
Development) for a training set size of 5–25% of the instances.
With regard to the clinical Proton Beam review, the semi-
supervised methods obtained approximately the same utility
performance as the baseline model, while in the public health
Sanitation review, a higher utility (over the baseline method) is
observed only after 25% of the instances was used for training.
4. Discussion

The results showed that our novel method demonstrates a sub-
stantial improvement in utility over both certainty [8] and
uncertainty-based [2] active learning when a small sample of man-
ually screened citations was used for training. Thus, our method is
able to alleviate the problem of insufficient labelled data during
the initial active learning iterations. In practice, this means that
the semi-supervised active learning approach is able to discover
a large number of relevant citations earlier than conventional
active learning methods.

O’Mara-Eves et al. [5] highlighted that the identification of eli-
gible citations during the early stages of the screening process
has a number of advantages. Firstly, human reviewers gain a better
understanding of the inclusion criteria, which enables them to
screen at a higher rate once they have analysed the bulk of impor-
tant citations. Secondly, in screening tasks that involve screening
thousands of citations, it is only necessary for the reviewing team
to double-screen the initial, key citations. Afterwards, the first
reviewer can screen out the remaining citations that are prioritised
lower in the list (i.e., citations that are likely to be ineligible) while
the second reviewer can undertake the next task of the review.
Thirdly, Cohen et al. [13] suggested that the early prioritisation
of eligible citations can be useful when time and cost constraints
prevent reviewers from screening the complete citation list. This
ensures that a high proportion of eligible citations will be screened
and subsequently included in the final review.

Whilst early prioritisation of eligible citations can significantly
reduce the time and resources required to develop a systematic
review, existing automatic screening models, including our pro-
posed semi-supervised method, have only been evaluated against
completed systematic reviews. This retrospective evaluation pro-
tocol assumes that human reviewers screen at a constant rate,
which is not always the case in actual systematic reviews. For
example, reviewers tend to make cautious and slower screening
decisions during the initial stage of the process, while their screen-
ing rate is expected to increase after processing a significant num-
ber of relevant citations. Based upon this, we plan to integrate the
semi-supervised active learning method with ‘live’ systematic
reviews and assess workload savings achieved by our method in
real scenarios.
5. Conclusions

In this paper, we have presented a novel semi-supervised
approach based on label propagation to improve the efficiency of
the citation screening phase of systematic reviews. The semi-
supervised method leverages both labelled and unlabelled cita-
tions to enhance the classification performance during the early
cycles of active learning (when few instances have been manually
annotated). In our approach, we build upon the assumption that
similar instances are likely to share the same class label. Accord-
ingly, the method propagates classification codes from known
instances to nearby unlabelled instances. We explored two vector
space representations: (a) bag-of-words and (b) a data-
dependent, spectral embedding. The spectral embedded feature
space was shown to be effective in both clinical and public health
reviews and the semi-supervised method improved the perfor-
mance of both certainty and uncertainty-based active learning
when a limited number of citations was available for training.
Thus, the method can be applied successfully in developing sys-
tematic reviews in a manner that minimises cost and maximises
time efficiency.
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