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Abstract. In medical image analysis, image registration is one of the crucial steps required to facilitate automatic segmentation,
treatment planning and other application involving imaging machines. Image registration, also known as image matching, aims
to align two or more images so that information obtained can be compared and combined. Different imaging modalities and their
characteristics make the task more challenging. We propose a decomposition model combining parametric and non-parametric
deformation for multi-modality image registration. Numerical results show that the normalised gradient field perform better than
the mutual information with the decomposition model.

INTRODUCTION

A broad types of imaging machines in medical application makes registration of images from different modalities a
challenging task. It is an open and active area of research because alignment of multi-modal images are complementary
of each others. One of the common applications of multi-modality image registration is in the process of detection
of the breast cancer. Several modalities such as MRI, mammography and ultrasound are combine in order to have an
accurate measure of the cancerous tissues. The registration process has to deal with not only the geometric distortion
caused by patient movements but the intensity distortion such as the bias field effect which commonly appears in MRI.
In addition, what makes the task more difficult is non-existent of functional relation between the intensity values of the
same object in different images. One of the remedies is to use landmark registration method where clinician identifies
several corresponding feature points in images. However, this particular approach is time consuming, requires an
expert to extract the points and there are some possibilities of mismatching of the points.

One of the commonly used similarity measure for multi-modality images is mutual information (MI). It was first
introduced independently by Maes et al. in [1] and Viola and Wells in [2] and there is an assumption made based on
the information contents. This particular measure aims to find a statistical intensity relationship between the reference
and template images. When two images are aligned, the amount of share information is maximised. It has been
successfully applied to the rigid and affine image registration. See [3, 4, 5] for more details. For the non-rigid image
registration, the best implementation of MI is not trivial because it is a global measure, therefore its local estimation
is difficult and using MI as the distance measure increasing the non-convexity of registration problem [6]. In [7], the
authors provide a taxonomy for MI which summarises several variants of MI and their limitations.

Real images are often distorted by spatially varying intensity inhomogeneities. As such, MRI are affected by
additive or multiplicative bias field. Image registration models based on mutual information are at disadvantages with
the appearance of the bias field. In [8], the authors proposed an alternative measure known as normalised gradient
field (NGF), a novel similarity measure for multi-modality image registration which is more reliable and robust than
MI. NGF is based on the alignment of the edges in the reference and template images. In [9], NGF is used to register
dynamic contrast enhance (DCE)-MRI with elastic image registration model.
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In this paper, we propose the decomposition model [10] for multi-modality images using MI and NGF. The
decomposition model is based on combining parametric and non-parametric models where we particularly choose
cubic B-spline and linear curvature model by Fischer and Modersitzki [11, 12]. First, we introduce the mathematical
background for mutual information and normalised gradient field as distance measure for image registration. Second,
we review the decomposition model of parametric and non-parametric image registration using MI and NGF. Third,
we present the numerical algorithm to solve these two models. Then, we present numerical tests and finally, we discuss
and conclude the two models.

MULTI-MODALITY IMAGE REGISTRATION

In this section we introduce the mathematical background for mutual information as a distance measure in image
registration. We recall the mathematical setting for image registration followed by the definition of mutual information
and normalised gradient field.

Mathematical preliminaries for Image Registration: Given two images the reference R and template T
where they are compactly bounded and support operator T,R : R2 → R

+. The image domain is denoted as
Ωh = [0,N1] × [0,N2] and the pixel location is given by

xi, j = (x1,i, x2, j) ∈ Ωh, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

where x1,i = ih1, x2, j = jh2, h1 and h2 are pixel width and height and images R and T are of size N1 × N2. For the
ease of computation we use h = h1 = h2 and N = N1 = N2. We aim to align T and R such that the transform template
image T (ϕ) is aligned geometrically with R. The transformation ϕ is vector valued function where ϕ : R2 → R2. For
nonparametric image registration we can model the transformation ϕ as

ϕ(x) = x + u(x).

Mutual Information Distance Measure
The mutual information distance measureDMI is defined byDMI : Rd → R where

DMI(T,R;ϕ) = −
∫
R2

pT (ϕ),R(t, r) log
pT (ϕ),R(t, r)

pT (ϕ)(t)pR(r)
dt dr (1)

where ϕ is the transformation ϕ : R2 → R2 for two dimensional images. pT (ϕ),R(t, r) is the joint probability density.
pT (ϕ)(t) and pR(r) are the marginal probability probabity density for the transformed template image and the reference
image respectively. Mutual information is a measure of similarity between given images. When T (ϕ) and R are aligned
the information contain is maximal.

Normalised Gradient Field Distance Measure
The sum of the squared distance measure assumes the intensity values of R and the transformed template T (ϕ) is
equal. Meanwhile, mutual information made an assumption that there are statistical dependency between T (ϕ) and R.
A trade off between the SSD and MI is the normalised gradient field (NGF) distance measure where it is based on
the alignment of the edges of R and T (ϕ). The features in T (ϕ) and R can be observed by the intensity changes which
indicated by the gradient of T (ϕ) and R. Since we are not interested in the magnitude of the gradient because there is
no intensity relationship, we normalised the gradient with the magnitude of the gradient

nT (x) =
∇T
‖∇T‖εT

, nR(x) =
∇R
‖∇R‖εR

where

‖∇T‖εT =
√
‖∇T‖2 + ε2T , ‖∇R‖εR =

√
‖∇R‖2 + ε2R,
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εT and εR are added into the calculation of NGF to overcome the problem when dividing by zero. Based on [8, 13],
the values are given by

εT =
η

V

∫
Ω

‖∇T (x)‖ dΩ

where η is the estimated noise level and V is the volume of the domain Ω and similarly for εR. These parameters act
as threshold values for the edges. When ‖∇T (x)‖ > εT , it consider as an edges and when ‖∇T (x)‖ < εT , it is consider
as noise. For two vector a and b, the dot product is of

a · b = ‖a‖‖b‖ cos θ

and the cross product is

‖a × b‖ = ‖a‖‖b‖ sin θ.

where θ is the angle between a and b. Then,

cos θ =
a · b
‖a‖‖b‖ and sin θ =

‖a × b‖
‖a‖‖b‖

Based on the dot and cross products of two vectors, we can defined the NGF similarity measure as

DNGFc(T,R) =
1

2

∫
Ω

dc(T,R) dΩ, dc(T,R) = ‖nT (x) × nR(x)‖2

and

DNGFd(T,R) = −1

2

∫
Ω

dd(T,R) dΩ, dd(T,R) = (nT (x) · nR(x))2

which are equivalent from an optimisation point of view [8, 13]. In this paper we will use

DNGF(T,R) =

∫
Ω

1 − (nT (x)T nR(x))2 dΩ

as the normalised gradient field distance measure for image registration.

A DECOMPOSITION MODEL FOR IMAGE REGISTRATION

A general framework for image registration is given by

min
ϕ(x)
J(T,R, ϕ(x)) = D(T,R, ϕ(x)) + γS(ϕ(x))

whereD(T,R, ϕ(x)) is a similarity measure which quantified how much T and R are different, S(ϕ(x)) is the smooth-
ness or regularisation term and γ is the regularisation parameter. The decomposition model of parametric and non-
parametric image registration [10] decomposes the displacement field as

ϕ(x) = up(x) + unp(x)

where up(x) and unp(x) are the displacement field from parametric and non-parametric model respectively. In [10],
the authors recommend this particular choice:

ϕ(x) = ucubic B-spline + uFMC

where u cubic B-spline is the cubic B-spline based model [14] and uFMC is Fischer and Modersitzki linear curvature model
[11, 12]. The functional minimisation problem for the decomposition model is given by

min
ucubic B-spline,uFMC

Jγp,γnp = D(T,R, ucubic B-spline, uFMC) + γpSTP(ucubic B-spline) + γnpSFMC(uFMC). (2)
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The regularisation terms for equation (2) are as follows:

STP(u) =

2∑
l=1

∫
Ω

(ul,x1 x1
)2 + (2ul,x1 x2

)2 + (ul,x2 x2
)2) dΩ,SFMC(u) =

∫
Ω

(Δu1)2 + (Δu2)2 dΩ.

where ul,x1 x1
= ∂

2ul

∂x2
1

and similarly for ul,x1 x2
and ul,x2 x2

. For multi-modality images, we will used two distance measure

D MI(T,R;ϕ) =

∫
Ω

pT (ϕ),R(t, r) log
pT (ϕ),R(t, r)

pT (ϕ)(t)pR(r)
dt dr,DNGF(T,R;ϕ) =

∫
Ω

1 − (nT (T (ϕ)))T nR(x))2 dΩ

as discussed in the previous section. Denote ucubic B-spline = up and uFMC = unp for a more general framework. Since the
parametric displacement fields up are depending on a certain number parameter of α, then we will minimise (2) with
respect to the parameters α.

Problem (2) can be solved by alternating minimisation of two subproblems

min
α
J I
γp
= D(T,R, up(x, α), unp) + γpSTP(up(x, α)) (3)

and
min

u
J II
γp
= D(T,R, up(x, α), unp) + γnpSFMC(unp(x)). (4)

We use the discretise than optimise scheme for numerical solutions. At the kth iteration, the alternate update are done
as follows:

Fixing u(k)
np(x), we solve problem (3):

u(k+1)
p (x, α)← min

α
J I
γp
=

N−1∑
i, j=0

D(T (up(xi, j, α) + unp(xi, j)),R(xi, j)) + γpSTP(up(xi, j, α)) (5)

=

N−1∑
i, j=0

D(T (up(xi, j, α) + unp(xi, j)),R(xi, j)) + γp

2∑
l=1

N−1∑
i, j=0

(
up,l,x1 x1

(xi, j, α)
)2

+ 2
(
up,l,x1 x2

(xi, j, α)
)2
+
(
up,l,x2 x2

(xi, j, α)
)2

Fixing u(k+1)
p (x, α), we solve problem (4):

u(k+1)
np (x)← min

unp(x)
J I
γnp

=

N−1∑
i, j=0

D(T (up(xi, j, α) + unp(xi, j)),R(xi, j)) + γnpSFMC(unp(xi, j)) (6)

=

N−1∑
i, j=0

D(T (up(xi, j, α) + unp(xi, j)),R(xi, j))γnp

2∑
l=1

N−1∑
i, j=0

[
− 4unp,l(xi, j) + unp,l(xi+1, j)

+ unp,l(xi−1, j) + unp,l(xi, j+1) + unp,l(xi, j−1)
]2

To solve (5), up(x, α) are defined by the cubic B-splines with coefficient α:

up,1(x, α1) =
∑
i, j

Bi, j(x)α1,i, j, up,2(x, α2) =
∑
i, j

Bi, j(x)α2,i, j

where α = (α1, α2)T , is the lattice of control points which are the parameters for the cubic B-spline model. Bi, j(x) are
given by

Bi, j(x) =

{
Bl(μ)Bm(ν), i = ĩ + l, j = j̃ + m, for l,m = 0, 1, 2, 3;
0, elsewhere.
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where Bl(μ) and Bm(ν) are cubic B-spline basis functions as follows:

B0(μ) = (1 − μ)3/6, (7)

B1(μ) = (3μ3 − 6μ2 + 4)/6,

B2(μ) = (−3μ3 + 3μ2 + 3μ + 1)/6,

B3(μ) = μ3/6,

ĩ = � x1

δx1
	 − 1, j̃ = � x2

δx2
	 − 1, μ = x1

δx1
− � x1

δx1
	 and ν = x2

δx2
− � x2

δx2
	. The spacing of the control points δx1 and δx2 are the

predefined parameters. Next is to solve (6) iteratively using LBFGS method. See [10] for more details.

NUMERICAL RESULTS

We use three sets of tests to show the performance of the decomposition model for multi-modality images. In Test
1, we have a reference image from photon density weighted MRI and a template image which is coming from T2-
MRI. For Test 2, we have synthetic images from [15] to illustrate the type of images where mutual information
and decomposition model are at disadvantages. We obtain a good result using normalised gradient field and the
decomposition model for Test 2. Meanwhile, for Test 3, we are using images from [16] to illustrate case where both
models fail to deliver good registration results.

Test 1: Photon Density Weighted MRI and T2-MRI
The results for mutual information and decomposition model for Test 1 are shown in Figure 1. In Figure 1, we
can observe that the decomposition model with mutual information as the distance measure are able to solve real
medical image where the reference and template images are coming from photon density weighted MRI and T2-MRI
respectively. We show the results for Test 1 using normalised gradient field in Figure 2. The transformed template
image for normalised gradient field and the decomposition model is shown in Figure 2 (b). We have an acceptable
level of the transformed template image where it appears similar with the reference image except at the middle right
part of the brain.

Test 2: Synthetic Images
In Test 2, we aim to illustrate type of images where mutual information and the decomposition model fail to deliver
good registration results. Since mutual information used the statistical dependency of the intensity values between the
reference and template images, the model fails to register this type of problem because only the reference image has
the square object inside the circle. However, we have a good result using normalised gradient field as shown in Figure
4.

Test 3: Bias Field Registration
Bias field or intensity inhomogeneities is a common problems in medical image analysis where some part of the same
object in the image appears to become darker than the rest of the object. It is a very common problem in MRI. In
Figure 5, we show the results of mutual information with strong bias field in the template image. Normalised gradient
field and the decomposition model also fail to register Test 3 as depicted in Figure 6. We can see that in the figure, the
most outer boundary of the brain in transformed template image is not aligned with the one in reference image.
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(a) T, withD MI(T,R) = −0.5966 (b) R

(c) ϕ(x) =(d) T (ϕ(x)) withD MI(T (ϕ(x)), R)
−0.8013

FIGURE 1. Test 1: Results of mutual information as the distance measure with the decomposition model for multi-
modality images. We can see that the model delivers a good alignment between the transformed template image in (d)
and the reference image in (b).

(a) ϕ(x) (b) T (ϕ(x)) withD MI(T (ϕ(x)),R)=

−0.9709

FIGURE 2. Test 1: Results of normalised gradient as the distance measure with the decomposition model for multi-
modality images. The resulting transformed template in (b) is in alignment with the reference image except at the
middle part of the brain.
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(a) T withD MI(T,R) = −0.2472 (b) R

(c) ϕ(x) (d) T (ϕ(x)) withD MI(T (ϕ(x)),R)=

−0.3777

FIGURE 3. Test 2: Results of mutual information as the distance measure with the decomposition model for multi-
modality images. We can see that the model fails the deformed the circle in the template image in (a) due to the
existence of the inner square in the reference image (b).

(a) ϕ(x) (b) T (ϕ(x)) withD MI(T (ϕ(x)),R) =

−0.4902

FIGURE 4. Test 2: Results of normalised gradient as the distance measure with the decomposition model for multi-
modality images. We can see the model is able to solve this particular problem.
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(a) T withD MI(T,R) = −0.5710 (b) R

(c) ϕ(x) (d) T (ϕ(x)) withD MI(T (ϕ(x)),R) =

−0.5742

FIGURE 5. Test 3: Results of mutual information as the distance measure with the decomposition model for multi-
modality images. We can see that the model fails to register the template with the reference image due to the strong
bias field in (a).

(a) ϕ(x) (b) T (ϕ(x)) withD MI(T (ϕ(x)), R) =

−0.6773

FIGURE 6. Test 3: Results of normalised gradiet field as the distance measure with the decomposition model for
multi-modality images. We can see that the model fails to register the template with the reference image due to the
strong bias field in (a).
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CONCLUSIONS

From the numerical tests, we can observe that the normalised gradient field and decomposition model work better than
the mutual information. However both models are at disadvantages when there are strong bias field in the images.
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