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Computing Invariants of Knotted Graphs Given
by Sequences of Points in 3-Dimensional Space

Vitaliy Kurlin

Abstract We design a fast algorithm for computing the fundamental group of the
complement to any knotted polygonal graph in 3-space. A polygonal graph consists
of straight segments and is given by sequences of vertices along edge-paths. This
polygonal model is motivated by protein backbones described in the Protein Data
Bank by 3D positions of atoms. Our KGG algorithm simplifies a knotted graph
and computes a short presentation of the Knotted Graph Group containing powerful
invariants for classifying graphs up to isotopy. We use only a reduced plane diagram
without building a large complex representing the complement of a graph in 3-space.

1 Introduction: Our Motivations, Key Concepts
and Problems

This research is on the interface between knot theory, algebraic topology, homolog-
ical algebra and computational geometry. Our main motivation is the application
of topological and algebraic methods to recognizing knotted structures in 3-
dimensional geometric graphs of long molecules such as protein backbones.

Backbones of Proteins are Polygonal Curves in 3-Space A protein is a large
molecule containing a big number of amino acid residues. The primary structure
or the backbone of a protein is the linear sequence of its amino acids. More than
100K proteins have been tabulated in the Protein Data Bank http://www.rcsb.org/
pdb, which is a large database of pdb files. The pdb file of a single protein contains
noisy coordinates (x, y, z) of all atoms that are linearly ordered in the backbone.

A natural way to model a protein is to assume that each atom is a point in 3-
dimensional Euclidean space R>, while every chemical bond between atoms is a
straight line segment between corresponding points. In general, a polygonal curve
with vertices py,...,pn € R? is the union of line segments connecting each point
pi—1 with p; fori = 2,...,m. In addition, if py = p,,, we get a closed curve in R3.
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Fig. 1 Knotted polygonal graphs (trefoil, Hopf link, Hopf graph) and open trefoil with vertices
vo = (=2,-2,1), vy = (2,2,—1), v, = (2,—1,0), v3 = (—2,—1,0), v4 = (—2,2,2), v5 =
(2,—2,—1) in R? and crossings ¢ = (—1, —1), ¢; = (0,0), c; = (1, —1) in the (x, y)-plane R?

Definition 1 A polygonal knotted graph is any embedded graph K C R? consisting
of finitely many straight line segments with pairwisely disjoint interiors. The
number 7 of line segments in K is called the length of the polygonal graph K C R3.

The degree of a vertex v in a graph K is the number deg v of edges attached to
v, and a loop is counted twice. Vertices with deg # 2 are essential. An edge-path
of K is a polygonal chain with essential vertices at two endpoints and only non-
essential vertices of degree 2 between them. The open trefoil in Fig. 1 is the edge-
path with four non-essential vertices vy, v,, v3, V4 between two essential vertices
vg, Vs of degree 1. In practice, a polygonal graph K in 3-space is represented in a
computer memory as

¢ an unordered list of points (x, y, z) corresponding to all essential vertices of K

e a sequence of points (x,y,z) at non-essential vertices along every edge-path
of K. The edge-path of the trefoil K in Fig. 1 is represented by the sequence
V1, U3, U3, V4.

If the graph K is a circle, then K C R? is a knot. If K is a disjoint union of several
circles, then K C R is a link. Knotted graphs are usually studied up to isotopy that
is a continuous deformation of R? moving one graph to another, see Definition 3.

Recognition Problem for Protein Backbones and Knotted Graphs in 3-Space
To distinguish different knots or graphs K C R? up to isotopy, mathematicians
construct knot invariants that should take the same value on all knots isotopic to
each other. If such an invariant has different values on two knots, these knots are
different.

The simplest non-trivial invariant is the number of connected components of a
graph K C R3, which is preserved under any continuous deformation of R?. Hence a
knot is not equivalent to a link consisting of at least two circles. However, this simple
invariant can not distinguish any knots, so more powerful invariants are needed. A
knot invariant can be called complete if it distinguishes all knots up to isotopy.

The complement R* — K of a knotted graph is 3-dimensional and contains more
information about the isotopy class of K in the ambient space R*® than the 1-
dimensional graph K itself. The oldest invariant of a knot K C R? is the fundamental
group of the knot complement R®> — K. Briefly, this group describes algebraic
properties of closed loops that go around K in R? and can be continuously deformed
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without intersecting K, see Definition 6. The Alexander polynomial of K is a simpler
invariant that can be extracted from the fundamental group [2]. We highlight the
advantages of the fundamental group over combinatorial invariants of knots.

* The group 71 (R* — K) is defined for any graph K C R3, not only for knots, and
is an almost complete invariant of the isotopy class of K, see Theorems 7-9.

» Many invariants of knots K C R? are introduced in terms of a plane diagram,
which is a projection of K to R? with only double crossings. These invariants are
often computed in time exponential with respect to the number of crossings.

* Despite the group 71 (R* — K) is non-abelian, it leads to numerous abelian invari-
ants that distinguish all prime knots with up to 11 crossings, see Theorem 12,
using practically efficient algorithms from the HAP package of GAP [3].

Contributions of the Current Work to Recognizing Knotted Graphs Our input
is any knotted polygonal graph K, which is motivated by real-life knotted structures.
Our preferred invariant is the fundamental group 71 (R® — K) and is justified above.
Our main result (Theorem 2 below) is a robust algorithm for a guaranteed fast
computation of this almost complete invariant for arbitrary knotted graphs K C R?.

Theorem 2 Given any polygonal graph K C R* of a length n, our KGG algorithm
first simplifies K to a small diagram with ¢ crossings in time O(n*) and then writes
a short presentation of the Knotted Graph Group m(R3 — K) in time O(c).

The KGG algorithm and a proof of Theorem 2 are presented in Sect.4. We
highlight the improvements over the related past work, see more details in Sect. 3.

» We work with a Gauss code of a knotted graph K C R3 without modelling the
complement R3 — K by a cubical complex at a fixed resolution as in [1] and speed
up the running time from seconds to milliseconds on a similar laptop, see Table 3.

» The fundamental group m;(R*® — K) is more powerful than the Alexander
polynomial, which was used for recognising knotted proteins in the KnotProt
[6].

* We substantially extend the KMT algorithm [9, 18], which smooths polygonal
curves, to a simplification of any polygonal graph K C R3. Our implementation
handles round-off errors much better than the state-of-the-art version in [8].

The KGG algorithm can fit well in a future version of the Homological Algebra
Programming package (HAP) of GAP: Groups, Algorithms, Programming [3].
Moreover, the KGG algorithm can be used for connecting the Rosetta software
(predicting protein structures as geometric graphs in 3-space) with the state-of-the-
art recognition algorithm of trivial knots at http://www.javaview.de/services/knots.

This knot recognition is based on 3-page embeddings whose full theory was
already extended to knotted graphs in R* [10]. Gauss codes of knotted proteins
produced by the KGG algorithm in this paper can be the input for the linear time
algorithm [12] drawing 3-page embeddings of graphs. Hence we can visualize
knotted proteins in a 3-page book (a union of three half-planes with the same
boundary line).
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2 Background on Topological Invariants of Knotted Graphs

Knot Theory: Equivalences and Plane Diagrams of Knotted Graphs A home-
omorphism is a bijection f : X — Y such that both f,f~! are continuous. It is
convenient to consider knots and graphs in the compact sphere %, which is obtained
from R3 by adding a point at infinity, so §* — {any point} ~ R* are homeomorphic.

Definition 3 Two knotted graphs K, K’ C S° are called equivalent if there is a
homeomorphismf : §* — S3 taking K to K/, so f(K) = K'. The graphs K, K’ C §*
are ambiently isotopic if the above homeomorphism also preserves an orientation
of 3 or, equivalently, there is an ambient isotopy that is a continuous family of
homeomorphismsf; : S — §3, t € [0, 1], such that f, = id on S* and f(K) = K’

The two mirror images of a trefoil are equivalent, but not isotopic, see a short
proof in [4]. A knot K C $3 is trivial (or the unknot) if K is isotopic to a round
circle. The main problem in knot theory is to classify knots and more general knotted
graphs up to equivalence or ambient isotopy from Definition 3. A plane diagram of
a knotted graph K C S is the image of K under a projection to a horizontal plane
R? in a general position having only transversal intersections (double crossings).

At each crossing we specify a short arc that crosses over another arc, see Fig. 1.
The natural visual complexity of the isotopy class of a knotted graph K C R? is the
minimum number of crossings over all plane diagrams representing the graph K.

Knot Recognition: Reidemeister Moves and Gauss Codes of Graphs For the
KGG algorithm in Sect.4, we use the Reidemeister move R1 from generalized
Reidemeister’s Theorem 4 below saying that any isotopy of knotted graphs in R3
can be realized by a finite sequence of moves on plane diagrams in Fig. 2.

Theorem 4 ([7]) Two plane diagrams represent isotopic knotted graphs in 3-space
R? if and only if the diagrams can be obtained from each other by an isotopy in (a
continuous deformation of) R* and finitely many Reidemeister moves in Fig. 2. (The
move R5 is only for rigid graphs, the move RS’ is only for non-rigid graphs.)

S ¥E

Fig. 2 Reidemeister moves on plane diagrams of knotted graphs, see Theorem 4
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Fig. 3 Plane diagrams with directed edge-paths and labeled crossings illustrating Definition 5

The move R4 in Fig.?2 is for a vertex of degree 4 and similarly works for other
degrees. The move RS turns a small neighborhood of a vertex upside down. So a
cyclic order of edges at vertices is preserved by R5. The move R5’ can reorder all
edges at a vertex. Theorem 4 includes all symmetric images of moves in Fig. 2.

As described in [11], we shall encode a diagram of a knotted graph K C R? by a
simple Gauss code, which will be later converted into a presentation of the Knotted
Graph Group 71 (R? — K). If a graph K contains a circle S! that is disjoint with the
rest of the graph, then one of degree 2 vertices on S! will be essential so that the
circle can be formally considered as an edge-path from this vertex to itself.

Definition 5 Let D C R? be a plane diagram of a knotted graph K with only
double crossings and essential vertices A, B, C, ... of degree not equal to 2. We fix
directions of all edge-paths in K and arbitrarily label all crossingsof Dby 1,2, ..., [
The Gauss code of D consists of all words Wyp associated to directed edge-paths
AB of K from one essential vertex A to another essential vertex B as follows, see
Fig. 3:

*  Wyp starts with A, finishes with B and has the labels of all crossings in AB;
» if the edge-path AB goes under another edge-path of the graph K at a double
crossing i, then we add the negative sign in front of the label i in the word Wyp.

The neighbors (vertices or crossings) of each vertex A are clockwisely ordered in
IR?, so the Gauss code specifies a cyclic order of all words starting or finishing at A.

The trefoils in Fig. 3 have codes (1,-3,2,—1,3,-2) and (2,-3,1,-2,3,—1),
which are defined up to cyclic permutations. The Hopf link has the Gauss code
consisting of two words (1, —2) and (—1, 2). The Hopf graph has the Gauss code
consisting of three words corresponding to the three edges: (A, B), (A,—1,2,A),
(B,1,-2,B).

The Fundamental Group and Abelian Invariants of a Graph Complement in S*

Definition 6 Let X C R3 be a path-connected subset, so any two points in X can
be connected by a continuous path within X. A closed loop at a base point p €
X is a continuous map f : [0,1] — X with f(0) = p = f(1). Two such loops
Jo.fi 2 [0,1] — X are path-homotopic if they can be connected by a continuous
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\% a\{// A\ K#b

Fig. 4 A connected sum K#K’ of two trefoils K and K’ is well-defined up to ambient isotopy in
R3

Table 1 Exact numbers of prime non-trivial knots from http://www.indiana.edu/~knotinfo

Number of crossings <6 7 8 9 10 11 12 <12
Knot isotopy classes 7 7 21 49 165 552 2176 2977

family of loops f; : [0,1] — X, t € [0, 1], always passing through the base point
p = fi(0) = f,(1) for t € [0, 1]. The fundamental group 71 (X, p) is the group of all
path-homotopy classes of closed loops in X. The product of two loops is obtained
by going along the first loop (starting and finishing at the base point p), then along
the second loop.

A connected sum K#K' of knots K, K’ is obtained by removing two short open
arcs a C K, @ C K’ and by joining the resulting four endpoints to form a larger
knot (K —a) U (K’ — d’), see Fig. 4. The isotopy class of K#K’ depends only on the
isotopy classes of K, K’, not on a choice of a, @’. A knot not isotopic to a connected
sum of non-trivial knots is called prime. Any knot uniquely decomposes into a
connected sum of prime knots (up to permutations), hence only prime knots are
classified (Table 1).

Theorems 7 and 8 imply that 7;(S® — K) is a complete invariant for all prime
knots. So 71 (S* — K) and its abelian invariants can be used for recognizing knots.
For a knotted graph K C S?, let N(K) be a small open neighborhood of the graph
K. For instance, this neighbourhood can be the open e-offset K° = U,exB(p; ¢)
consisting of open balls with a small radius ¢ > 0 and centers at all points p € K.
The complement §* — N(K) is a compact 3-manifold whose boundary is N (K).

Theorem 7 ([5, Theorem 1]) Two knots K, K’ C R? are equivalent if and only if
there is a homeomorphism between their complements S> — N(K) ~ §* — N(K').
Two knots K, L C R? are ambiently isotopic if and only if there is an orientation-
preserving homeomorphism between their complements S> — N(K) ~ §*> — N(K").

Theorem 8 ([20]) Ifprime knots K, K’ C S* have isomorphic groups 1 (S*>—K) =
11(S? — K'), then their complements are homeomorphic: S* — K ~ S*> —K'.
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The Knotted Graph Group 7 (S* — K) is almost a complete invariant in the sense
that a peripheral structure of m(S> — K) should be also preserved under a group
isomorphism. Peripheral structures are completely characterised for links in [13].

We will assume that a knotted graph K C S* (if disconnected) is not splittable,
namely K is not equivalent to a graph whose components are located in disjoint balls
in 3. The complement of any splittable graph K contains a sphere S*> C §* — N(K)
separating components of K, so S* — N(K) can be simplified by cutting S2. The
complement of any non-splittable graph can not be simplified in this way. In this
case any S C S3—N(K) is called incompressible and S —N(K) is called irreducible.

A cycle C C K in a knotted graph K C S is trivial if the knot C in C U (§* — K)
is trivial, namely C bounds a topological disk D? in S* — K. If a knotted graph K
has a trivial cycle C, we can compress the complement S* — N(K) along the disk D?
spanning C, so S* — N(K) can be simplified by cutting D?. The complement of K
without trivial cycles can not be simplified in this way. In this case (S — N(K)) is
called incompressible and S* — N(K) is called boundary-irreducible.

Theorem 9 ([19, Corollary 6.5]) For two non-splittable knotted graphs K, K' C
S3 without trivial cycles, let ¢ : w1 (S*—N(K)) — m1(S*—N(K')) be an isomorphism
that descends to an isomorphism 1 (3(S*—N(K))) — 1 (d(S*—~N(K"))). Then there
is a homeomorphism S* — N(K) ~ S> — N(K') inducing the isomorphism ¢.

Theorems 7 and 9 imply that K, K’ are equivalent. So the Knotted Graph Group
71(S* — K) is an almost complete invariant (complete with a peripheral structure).

Theorem 10 Any finitely generated abelian group Z is isomorphic to a direct sum
of cyclic groups 7" ® Zy, @ -+ ® Ly, where r > 0 is the rank and q1, ..., q; are
powers of primes. The numbers r, q, . .., q; are called the abelian invariants of the
group Z and are uniquely determined by Z up to a permutation of indices qy, . . ., qi.

The above classification theorem says that any finitely generated abelian group
can be completely described by its abelian invariants (a set of integers) and leads to
numerous abelian invariants below that can be extracted from a non-abelian group
G and efficiently computed by GAP if G has a short enough presentation [3].

Definition 11 The index of a subgroup H in a group G is the number of disjoint
cosets gH = {gh | g € G, h € H} that fill the group G. The abelianization of
H is the quotient H/[H, H] over the commutator subgroup [H, H]| generated by all
[a.b] = aba™'b™', a,b € H. The abelian invariants of a non-abelian group G are
the abelian invariants of H/[H, H] over all subgroups H C G up to a certain index.

3 Past Work on Computing Invariants of Knotted Proteins

Standard KMT Algorithm for Shortening a Knotted Protein Backbone The
KMT algorithm is named after Koniaris and Muthukumar [9] and Taylor [18],
though their methods are different. Taylor [18] actually suggested how to smooth
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A C
empty vertex B
triang|e removed

Fig. 5 Left: removing vertex B when AABC is empty. Right: ABCDE splits into three tetrahedra

a protein backbone. Namely, each vertex B with two neighbours A, C is iteratively
replaced by the center of the triangle AABC, which visually smooths an original
polygonal curve K. The standard KMT algorithm simply shortens K replacing the
chain ABC by the single edge AC when the isotopy class of K is preserved.

We discuss the implementation of the KMT algorithm [8] used in the Rosetta
program predicting structures of proteins at https://www.rosettacommons.org. One
orders all degree 2 vertices vy, ..., v; according to the distance between their only
neighbors A, C. Then the triangle AABC based on a shortest segment AC is likely
to be small and will probably not intersect any edge of K, see Fig. 5.

To check a potential intersection of AABC with another edge DE, the plane ABC
is intersected with the infinite line through DE. Finding an exact intersection point
P requires divisions and leads to floating point errors, especially when DE is almost
parallel to the plane ABC. Then three angles ZAPB, ZAPC, ZBPC are computed
by using the arccos function, which also quickly accumulates computational errors.

Now the point P is inside the triangle AABC if and only if the sum of three angles
is2m = LAPB+ ZAPC + ZBPC. In practice, for points P inside AABC, the above
sum is only close to 27, so the width of 3x 10~* is used to handle round off errors.

In Sect. 4 we extend KMT to the KGG (Knotted Graph Group) algorithm using
only additions and multiplications without evaluations of complicated functions. We
have checked that our algorithm correctly runs on similar protein backbones from
the PDB database with the much smaller error of only 10719 see Sect. 5.

Alexander Polynomial of Knotted Proteins in KnotProt [6] The knot recog-
nition of polygonal graphs K C R? in the largest database KnotProt of knotted
proteins is based on the Alexander polynomial [2, Sect. 8.3], which is a polynomial
invariant of the fundamental group 7, (R* — K). Historically, there were no efficient
algorithms to compare non-abelian groups up to isomorphism, hence a cubic
computational time for the Alexander polynomial was acceptable. Moreover, the
Alexander polynomial indeed classifies all knots with up to eight crossings.
However, the Alexander polynomial attains only 550 different values on 801
prime non-trivial knots (without mirror images) up to 11 crossings. So we feel
that the time has come for more powerful invariants, especially due to the efficient
algorithms in GAP [3]. The following experimental result by Brendel et al. [1]
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demonstrates the power of the fundamental group for a practical classification of
knots.

Theorem 12 ([1, Theorem 2]) The abelianizations of subgroups with an index up
to 6 in the fundamental group 7w (R® —K) distinguish all 801 prime non-trivial knots
(up to mirror image) with plane diagrams having up to 11 crossings.

Best methods for enumerating knots are based on triangulations of knot comple-
ments with a hyperbolic metric, which is not adapted yet for knotted graphs.

Discrete Morse Theory for Computing the Fundamental Group of a Complex
Brendel et al. [1] suggested a general algorithm for computing the fundamental
group of any regular cell complex. The algorithm uses a discrete Morse theory and
is practically fast, though the theoretical complexity was hard to determine.

A protein backbone was modelled by a cubical knot K C R?, which is a union
of small cubes at a fixed manually chosen resolution. For instance, the complement
of the protein backbone 1V2X with joined endpoints in R? was represented as a
cubical complex C with 5,674,743 cells. This 3-dimensional complex C is deformed
through several stages to a regular 2-dimensional complex C” with 30,743 cells.
The time for computing the knot group of 1V2X is about 35 s [1, Sect. 5], while our
KGG algorithm takes 67 ms on a similar laptop, see Table 2.

Here are the key differences between our new approach and past work [1, 6, 8].

e The KMT algorithm only shortens a linear chain, while our KGG algorithm
simplifies any knotted graph K and computes 77; (R>—K), which is more powerful
than the Alexander polynomial used for recognizing knotted proteins in [6].

* Our KGG algorithm avoids evaluations of complicated functions and better
handles floating point errors than KMT, also using the Reidemeister move R1
for extra reductions in the overall size of a knotted polygonal graph K C R3.

Table 2 Reduction in the number of vertices and crossings by the KMT and KGG algorithms
PDB Original Original Reduced | Reduced | Knot | KMT time | KGG time

code #vertices | #crossings | #vertices | #crossings | type in seconds | in seconds
lyrl 1875 1144 37 43 4 0.82 0.81
4n2x 1788 1033 81 211 6, 1.05 1.01
1qmg 2049 1455 44 71 4, 1.03 1.02
3wj8 1788 972 79 180 6, 1.08 1.07
4d67 6548 5485 97 301 ? 14.45 14.12
4uwa | 13,296 17,288 99 391 ? 59.79 57.05
4ujc 11,938 10,180 217 731 ? 61.77 59.91
4uwe | 13,288 25,449 114 686 ? 61.48 61.05
4ujd 11,938 10,565 212 755 ? 72.42 70.27
4ug0 11,675 10,073 206 617 ? 81.59 78.23



358 V. Kurlin

+ We compute a simple presentation of the fundamental group m;(R?® — K) by
working with only a given knotted polygonal graph K C R? without modelling
the complement R? — K as a large cubical complex at a fixed resolution as in [1].

4 KGG Algorithm for Computing the Knotted Graph Group

The input is a knotted polygonal graph K C R? given by sequences of vertices along
edge-paths. The output is a presentation of the Knotted Graph Group m;(R3 — K)
with generators and relations. Here is a high-level description of all the stages.

1. In a given graph K C IR3, identify all non-essential vertices that can be removed
keeping the isotopy class of K after computing only five 3-by-3 determinants.

2. For asimplified graph K’ C R?, find all crossings in a plane diagram of K’. Going
along K’, compute the Gauss code using the found crossings in the plane diagram
of K’. Apply the Reidemeister move R1 for a further reduction if possible.

3. Turn a Gauss code into a presentation of the fundamental group m;(R* — K)
whose abelian invariants can be calculated using efficient algorithms of GAP.

Stage 1: Robust Algorithm for Shortening a Polygonal Graph Each degree 2
vertex B of a graph K has two neighbours, say A, C. We process all non-essential
vertices B in the increasing order of |AC|. In comparison with the KMT algorithm,
we much more robustly check if the interior of the triangle AABC meets any edges
of K.

For any edge DE with endpoints D, E ¢ {A, B, C}, first we check if D, E are
on different sides of the plane ABC. It is enough to compute the signed volumes
of the tetrahedra ABCD and ABCE, see Fig.5. The volume Vypcp is proportional
(with factor %) to the 3-by-3 determinant whose columns are formed by the three

coordinates of the three vectors fTé, A_C)‘, A_l>) The points D, E are on different sides
of the plane ABC if and only if the signed volumes Vpcp and Vapcr have opposite
signs.

If the edge DE intersects the plane ABC, we should check whether the intersec-
tion is inside the triangle AABC. Here is a simple geometric criterion: the edge DE
meets the triangle AABC if and only if the three tetrahedra ABDE, ACDE, BCDE
in Fig. 5 cover the union of the tetrahedra ABCD and ABCE without any overlap.

Such a geometric splitting is equivalent to the following algebraic identity
between unsigned volumes: |Vapcep| + |Vascel = |Vaspel + |Vacoel + |Veepel-
Hence it remains to compute only three more 3-by-3 determinants for the quadruples
ABDE, ACDE, BCDE. All computations involve only basic additions and multipli-
cations.

Stage 2: Computing a Gauss Code of a Reduced Plane Diagram of K Let K C
R? be a simplified polygonal graph obtained by all possible shortenings at Stage 1
above. Now we simply project K’ to the (x,y)-plane R? finding all intersections
between straight edges in the projection of K. If the plane diagram of K’ is not in
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a general position, we slightly perturb its vertices to guarantee that we have only
double crossings, because we are interested only in the isotopy class of K’ C R3.

This stage requires a quadratic time O(m?) in the length m of the simplified graph
K’, because we check all potential pairwise intersections of non-adjacent edges.
In experiments on protein backbones in Sect. 5, the chain K’ is much shorter than
the original backbone K, hence this stage is fast enough in practice. For each edge
[vi, vig-1] of K, we build a list of crossings with other edges [v;, vj4+1]. We keep this
list of crossings in order from the vertex v; to v;+. Apart from the actual coordinates
(x,y) of a crossing, we also note the corresponding indices i, j and the heights z;, z;
of the points in the intersecting edges above the crossing (x, y).

After completing these ordered lists over all edges, we can go along each edge-
path of K’ and assign a correct label to every crossing, because we can recognize if a
crossing has been passed before. Since we kept actual heights z;, z; at each crossing,
we can add negative signs to all undercrossings as needed by Definition 5.

Finally, if a Gauss code contains a consecutive pair of labels (I, —I) or (-, ), the
plane diagram contains a small loop that can be easily removed by the Reidemeister
move R1 in Fig.2. Assume that this crossing (x,y) in the move R1 is formed by
(projections of) edges [v;, v;i+1] and [vj, vj41] for i + 1 < j. Then we can shorten
these edges by continuously moving the endpoints v; and v; towards the points
(at the heights z;, zj, respectively) that project exactly to the crossing (x, y) in R?.

The chain of edges from v;4 to v; does not cross any other edges by our choice
of the crossing in the move R1 and can be replaced by the single vertical edge from
(x,y,z) to (x,y,z). This extra simplification can potentially make a few triangles
on three consecutive vertices empty. Hence we can check if the simplifications from
Stage 1 are possible for a few triangles related to the vertices v;, Vi+1, Vj, Vj+1.

Stage 3: Writing a Wirtinger Presentation for the Fundamental Group We
remind how to write down a presentation of the group 7 (R* — K) by using a plane
diagram D of a knotted graph K C R, see more details in [2, Sect. 6.1].

We arbitrarily orient all edge-paths of K, though our choice will not affect
71 (R3—K). We fix a base point p € R? at infinity, say at the point (0, 0, z) for a large
coordinate z > 0. If we cut all essential vertices (of degree at least 3) and crossings
(in lower edges), the diagram D splits into several oriented arcs aj, ..., a,. In the
3rd picture of Fig. 6 these arcs in D contain the following vertices and crossings:

ay = [vo,c1, 2], ax=[c,v1,v2,¢3,¢c1), az=|[c1,v3,v4,C2,€3),  as=][c3, V5]

We associate to every resulting arc a; a generator x; € ; (R?>—K). Each generator
x; can be represented by a closed loop X; that goes from the base point p to a point
near the arc a; along a path y;, makes a loop around the oriented arc a; and then
goes back to the base point p along y; in the opposite direction. In the 2nd and 3rd
pictures of Fig.6 we show each long loop X; only by a short arrow under a;. Each
short arrow is labelled by the generator x; € m; (R? — K) represented by the loop ;.
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At each a crossing, two consecutive arcs a;, aj+1 share the same endpoint ¢ and
another arc a; crosses over ¢, see the 2nd picture of Fig. 6. To this crossing we
associate the relation x;x;x; ! = xj4 saying that the loop X4 around aj4+; can be
obtained by going first along X;, then along X; and along the reversed loop %; ~'.

If we join two vertices of degree 1 away from the rest of the diagram, the
initial and final generators are equal, e.g. x; = x4 in the 3rd picture of Fig. 6. The
crossings ¢y, ¢z, ¢3 in the same picture have the associated relations xlxle_l = X3
and x3'x1x3 = x, and xox4x;! = x3, respectively. Together with x; = x4, the 4
relations reduce to the short presentation (x1,x, | xjxx; = xpx1x2) of the trefoil
group.

If a vertex v has attached arcs ay, ..., a;, then write the relation xi‘ .. .xf’ =1,
where ¢; = +1 for arcs a; coming to v and &; = —1 for arcs a; going out of v. The
vertex v in the Ist picture of Fig. 6 has the associated relation xxx; ' = 1.

Any closed loop in the complement R? — K easily decomposes into a product of
loops X; around arcs aj, . .., a,,. However, it is a non-trivial theorem that the simple
relations above define the fundamental group (R3 — K), see [2, Sect. 6.3].

We can convert a Gauss code of a plane diagram of K into a Wirtinger
presentation of 7j(R> — K) as follows. The above arcs a; between successive
undercrossings in the plane diagram D correspond to subsequences between vertices
and negative labels in the Gauss code of D. For each negative label (—j), we
know two subsequences that meet at (—j) and also we can find the ith subsequence
containing the positive label j, so we can write the corresponding relation x;x;x; ! =
Xjt1-

For each vertex v of deg > 3, we can find subsequences in the code that start or
finish with the symbol v and write the product of corresponding generators (if the
subsequence starts with v) or their inverses (if the subsequence finishes with v).

Proof of Theorem 2. At Stage 1 of the KGG algorithm in Sect. 4, for each degree 2
vertex B of a polygonal graph K C R3, we compute the distance between the two
neighbours A, C of B in total time O(n), where n is the length of K. We sort all
degree 2 vertices B € K by the increasing distances AC in time O(n logn).

X; X) = Xj41 X;

Fig. 6 Left: generators around a vertex and crossing. Right: four generators for four arcs in a
diagram
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Starting with a vertex B with a shortest segment AC, we check if the 3-chain ABC
can be replaced by the single edge AC, which requires five 3-by-3 determinants for
every other edge DE of K. If AABC doesn’t meet all edges DE, we remove B and
update the sorted distances AC in time O(log n). The time of Stage 1 is O(n?).

At Stage 2 we check all pairwise intersections of m < n projected edges in the
simplified graph K’ C R3, which requires O(m?) time. Stage 3 is linear in the length
of a Gauss code which has ¢ = O(m?) crossings. Hence the total time is O(n?). O

S Experimental Results: Recognizing Knots in Protein
Backbones

Table 2 shows how the numbers of vertices and crossings of a protein backbone K
are reduced by Stage 1 of the KGG algorithm from Sect. 4. The knot types are 0
(unknot), 3; (trefoil knot), 4; (figure-eight knot) and 6, (Stevedore’s knot).

The classical KMT algorithm for a polygonal chain of n edges has the running
time O(n?). The time to compute the Alexander polynomial of a knotted graph with
k crossings is O(k*), where k = O(m?) for a simplified graph of a length m.

Recall that the backbone of a protein is a polygonal chain of carbon atoms
ordered as in a given PDB file. We linearly extend terminal edges of a backbone
and join them away from all other vertices to get a closed knot. Table 2 shows the
numbers of vertices and crossing after reductions by the KGG algorithm. In some
cases the KMT algorithm outputs a few more crossings. because the Reidemeister
move R1 wasn’t used. In all cases the KGG algorithm is faster despite these extra
moves.

The last six rows in Table 2 are for longest proteins from PDB. Even simplified
backbones are too long and we hope to determine their knot types in the future.

The KGG algorithm can be extended to visualize knotted proteins using 3-page
embeddings [12, 14] and to compute abelian invariants of the Knotted Graph Group
using GAP [3, Sect.47.15]. The C++ code is at author’s website http://kurlin.org.
Table 3 shows Gauss codes obtained at Stage 3 of the KGG algorithm.

Table 3 Knot types and Gauss codes of the reduced backbones of knotted proteins from PDB

Knot type and Knot type and Gauss
Original | Gauss code Original | code after reduction
PDB code | #crossings | after KGG PDB code | #crossings | by KGG
1v2x 39 3, (1-23-12-3)|3nou 304 4, (-123-451-2-54-3)

3oil 102 3 (1-23-12-3)|3not 300 4, (-(123-451-2-54-3)
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6 Conclusions, Discussion and Open Problems for Future
Work

We have designed a new easy-to-implement KGG algorithm in Sect. 4 to compute
the Knotted Graph Group 71 (R* — K) for any polygonal graph K C R3 given by
a sequence of points in R3. The experimental results in Sect.5 confirm substantial
reductions in the complexity of knotted backbones. Our approach strikes right in the
middle of a wide range of topological objects. Namely, the KGG algorithm works
for arbitrary knotted graphs, which are more general than knots or links and runs
faster than memory expensive methods designed for regular 2D complexes [1].

A theta-curve is a knotted graph & C R? with two vertices joined by three
edges as in the Greek character 6. The enumeration of theta-curves with up to seven
crossings was manually completed [17] by analyzing the Alexander polynomial and
three knots obtained from § C R* by removing one of three edges. That is why
we believe that abelian invariants of the quickly computable Knotted Graph Group
71 (R? — K) can be enough for enumerating more complicated theta-curves and
general graphs.

Our robust computation of the fundamental group 7; (R? — K) for any knotted
graph K C IR? opens the following new possibilities for further research.

 Automatically enumerate all isotopy classes of knotted graphs K C R? with a
few essential vertices and up to a maximum possible number of crossings. A
good starting point is to check the manual classification of theta-curves in [17].

* Build distributions for isotopy classes of large random knots modelled as in [16],
when the Alexander polynomial can be too weak to distinguish different knots.

* Study the persistence and stability of abelian invariants similarly to the persis-
tence of the group 71 (R* — K) in a filtration of knot neighborhoods from [15].
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