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Abstract 24 

Despite essential progress towards understanding the evolution of cooperative behaviour, we 25 

still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, 26 

evolutionary dynamics and ontogeny. An international workshop 'Genetics and Development of 27 

Cooperation', organized by the University of Bern (Switzerland), aimed at discussing the current 28 

progress in this research field and suggesting avenues for future research. Here, we synthesize 29 

the concepts of genetic and non-genetic inheritance of cooperation, and we review a quantitative 30 

genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue 31 

that including non-genetic inheritance, such as trans-generational epigenetic effects, parental 32 

effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of 33 

cooperation. We summarize those genes and molecular pathways in a range of species that seem 34 

promising candidates for mechanisms underlying cooperative behaviours. Concerning the 35 

neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the 36 

ability to cooperate, 1) event memory, 2) synchrony with others and 3) responsiveness to others. 37 

Taking a closer look at the developmental trajectories that lead to the expression of cooperative 38 

behaviours, we discuss the dichotomy between early morphological specialization in social 39 

insects and more flexible behavioural specialization in cooperatively breeding vertebrates. 40 

Finally, we provide recommendations for which biological systems and species may be 41 

particularly suitable, which specific traits and parameters should be measured, what type of 42 

approaches should be followed, and which methods should be employed in studies of 43 

cooperation in order to better understand how cooperation evolves and manifests in nature. 44 

 45 

Introduction  46 

The question of how cooperation evolves has been a major conceptual puzzle for biologists for 47 

centuries. Despite significant inroads in our understanding of the evolution of cooperation over 48 

the past 60 years, it remains one of the major challenges in biology to date. While most research 49 

into cooperation has been devoted to the functional significance of cooperation, an increasing 50 

number of scientists argue that a more holistic approach incorporating functional and 51 

mechanistic aspects of phenotypic traits is necessary to provide a complete picture (Soares et al. 52 
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2010; Weitekamp & Hofmann 2014; Bshary & Oliveira 2015; Taborsky & Taborsky 2015). First, by 53 

only focussing on the functional significance, one implicitly assumes that cooperation is not 54 

constrained by their underlying physiological, neural, molecular and developmental mechanisms. 55 

However, behaviours such as cooperation can only evolve by changes in those underlying 56 

mechanisms (Fawcett et al. 2013). Second, an integrative approach allows us to address 57 

questions of convergent molecular evolution (Aubin-Horth 2015) which is of particular 58 

importance for cooperation since it is thought to have evolved multiple times independently 59 

(Maynard-Smith & Szathmary 1997). Finally, theoretical and empirical research can be mutually 60 

informative. Detailed knowledge of the mechanisms underlying cooperation and evolutionary 61 

constraints on cooperative traits could lead to the development of models that better reflect the 62 

actual environmental complexity (McNamara & Houston 2009; Soares et al. 2010).  63 

 64 

Our goal in the workshop 'Genetics and Development of Cooperation' organized by the University 65 

of Bern, held in Bern, Switzerland in February of 2016, was to explore new horizons in the fields 66 

of genetics and developmental mechanisms of cooperation. A list of the guest speakers and the 67 

titles of talks, as well as the names of the workshop participants, is provided in the supporting 68 

information. In the workshop, we focused on cooperative strategies such as reciprocity, 69 

mutualism, and coercion between family groups and non-kin for feeding, protection and raising 70 

young. We also discussed cooperative parental care, parent-offspring and sibling conflict, and 71 

communal nesting. Plenary talks were used as a launching pad for discussion sessions and poster 72 

sessions showcased individual participants’ research. In the following sections we relate the 73 

content and questions raised by the workshop sessions. Moreover, we provide an outlook and 74 

further avenues for research in an effort to synthesize the various key points raised by the 75 

workshop.  76 

 77 

Modes of inheritance of cooperation 78 

Defining cooperation is notoriously difficult because of the complex interplay of fitness costs and 79 

benefits that accrue over different time periods and the varieties of situations under which it 80 

occurs (Sachs et al. 2004). For the purpose of the workshop, we followed the definition given in 81 
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Taborsky & Taborsky (2015) stating that "cooperation refers to the simultaneous or consecutive 82 

acting together of two or more individuals by same or different behaviours". Cooperative acts 83 

are typically costly for the individuals involved, but their net result is a fitness benefit. 84 

Cooperation can evolve if it yields immediate or delayed fitness benefits for all partners. 85 

Alternatively, if one partner can coerce the other into cooperation, only the receiver gains fitness 86 

benefits. Cooperative acts that yield direct fitness benefits for all partners are, for instance, 87 

improved prey capture when hunting in small groups in wolves (MacNulty et al. 2012),  lowered 88 

predation risk through flocking behaviour in birds  (Beauchamp 2003), reduced heat loss in 89 

huddling penguins (Ancel et al. 1997) and increased energetic benefit during V-formation flight 90 

in migrating birds (Voelkl et al. 2015; Voelkl & Fritz 2017). Altruistic behaviours, however, impose 91 

costs on actors without yielding direct benefits and result in a net decrease of the actor's direct 92 

fitness while increasing the recipient's fitness (Lehmann & Keller 2006). Examples of altruism 93 

include sterile castes of social insects that raise a queen's offspring (reviewed in (Ratnieks & 94 

Wenseleers 2008), but also the willingness to share food, engage in collective warfare, or to bear 95 

costs to punish non-cooperators in encounters with unrelated and even unknown individuals in 96 

humans (Fehr & Fischbacher 2003). 97 

 98 

An explanation of how such costly altruistic behaviours may evolve is predicated in the 99 

theoretical work by Hamilton who suggested that altruistic genes evolve under the scenario of 100 

inclusive fitness (Hamilton 1964a; b). In his seminal paper (Hamilton 1964b), he stipulates under 101 

which conditions altruism should evolve by deriving the famous Hamilton's rule, rB > C. Under 102 

this scenario, costs to the focal individual (C) are outweighed by the benefits to the receiver (B), 103 

weighted by the genetic relatedness (r) between the two individuals. If the costs and benefits are 104 

similar, cooperation should arise based on genetic relatedness, which is also known as kin 105 

selection. Despite this illuminating theoretical foundation, definite evidence for specific drivers 106 

for the evolution of cooperation remains difficult to identify for many species that display 107 

cooperative behaviours. For example, the evidence for kin selection as a driver of cooperation is 108 

mixed (Riehl 2013; Taborsky et al. 2016) and costs and benefits can be difficult to assess and 109 

compare objectively within and between species (Hatchwell & Komdeur 2000; Sachs et al. 2004). 110 
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Knowledge of the genetic, molecular and physiological mechanisms that underlie cooperative 111 

behaviours can greatly improve our understanding of the evolution of cooperation. For instance, 112 

genetic variation in cooperative behaviours reflects their evolutionary potential, i.e. how those 113 

traits can respond to natural selection. Evolutionary theory predicts that cooperative behaviour, 114 

like other phenotypic traits, should have a heritable basis if they are the product of adaptive 115 

evolution (Tinbergen 1963; Komdeur 2006; Hofmann et al. 2014). In fact, there is some empirical 116 

support for heritable differences in cooperative behaviours (e.g. in western bluebirds Sialia 117 

mexicana (Charmantier et al. 2007), and in humans (Cesarini et al. 2008). However, an individual's 118 

cooperative tendency is likely to be influenced additionally by social and non-social 119 

environmental conditions to allow for plasticity during development or to fine-tune payoffs in its 120 

current situation (Fischer et al., in revision; Kasper et al., in revision; Koenig et al. 1992; Stiver et 121 

al. 2004; Sanderson et al. 2015b). Moreover, non-genetic inheritance of cooperation through 122 

social interactions and cultural transmission may add additional layers to the complexity of the 123 

evolution of cooperation (Uller & Helanterä; Avital & Jablonka 2000; Danchin et al. 2011), but 124 

this field is thus far underdeveloped for cooperation.  125 

 126 

Genetic inheritance and indirect genetic effects 127 

For a cooperative – or any other – trait to be subject to selection, it needs to vary among 128 

individuals. This variation should result in differential fitness and should be heritable (Lewontin 129 

1970). Quantitative genetic models allow researchers to explore the extent to which genetic 130 

variation influences phenotypic variation by estimating the proportional contributions of 131 

heritable genetic variation and environmental variation to the total phenotypic variation. By 132 

combining these estimates with estimates of the fitness consequences of this variation, we can 133 

predict how a trait will respond to selection (Lande & Arnold 1983).  134 

 135 

Accounting for the social environment of individuals adds a further dimension to cooperative 136 

behaviour because it involves interactions with other individuals, making the behaviour of an 137 

individual contingent upon the behaviour and genotype of its social partners. Therefore, the 138 

cooperative phenotypes should be considered as being partly influenced by interactions with 139 
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social partners and the genes they carry: i.e., their 'interacting phenotype' (Moore et al. 1997). 140 

This influence of the social environment sets those traits apart from traits that are solely 141 

influenced by heritable genetic and non-social environmental components, and therefore 142 

requires additional theoretical considerations (Bleakley et al. 2010). Especially for cooperative 143 

traits, we can expect that the genotypes of interaction partners affect the fitness of an individual 144 

in a similar way as the individual's own genes (McGlothlin et al. 2014). For instance, in species 145 

that provide biparental care, parents can negotiate the amount of care each provides which 146 

equally affects both parents’ fitness in terms of offspring survival (McNamara & Houston 2005). 147 

Another example where social environment may play a key role is cooperative breeding, where 148 

helpers might adjust their helping effort based on the contributions of other group members 149 

(Adams et al. 2015). Parents can reduce their level of care when helpers are present (Taborsky et 150 

al. 2007; Johnstone 2011), or where subordinates are coerced into helping (Clutton-Brock & 151 

Parker 1995; Fischer et al. 2014).   152 

 153 

In his talk, 'A social effects perspective on kin selection', Jason Wolf outlined the quantitative 154 

genetic version of Hamilton's rule that takes into account the impact of the focal individual's own 155 

phenotype on its fitness ('non-social selection gradient', 𝛽𝑁 ), but also the phenotype of the 156 

individual with whom it interacts ('social selection gradient', 𝛽𝑆, Fig. 1, (McGlothlin et al. 2014). 157 

This model demonstrates that selection will favour altruism when the benefits (𝛽𝑆), weighted by 158 

the phenotypic similarity of the partners, are greater than the costs (-𝛽𝑁 ). In cases where 159 

phenotypic similarity solely arises due to genetic relatedness, it is equivalent to Hamilton's 160 

relatedness term (Queller 1992; McGlothlin et al. 2014). However, genetically unrelated 161 

individuals can be phenotypically similar. Covariances between the partners can arise due to the 162 

influence of genes expressed in another individual, providing an 'alternative pathway from 163 

genotype to fitness' via indirect genetic effects (IGEs, McGlothlin et al. 2014). Unlike a direct 164 

genetic effect (DGE) where an individual’s genotype directly affects its phenotype, IGEs are the 165 

expression of one individual’s genotype influencing the expression of another individual’s 166 

phenotype. Thus, IGEs need to be scaled by a parameter that reflects the genetic influence of an 167 

interaction on the trait expressed in the focal individual. Here, the interaction effect coefficient 168 
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(𝜓)  illustrates this relationship and ranges from -1 to 1 (Fig. 1). In the absence of genetic 169 

relatedness, cooperation should only evolve if benefits scaled by the interaction effect coefficient 170 

(𝜓𝛽𝑆) outweigh costs (-𝛽𝑁). This framework provides an extension of the quantitative genetics 171 

approach to Hamilton's rule to interactions between unrelated individuals. Mutually beneficial 172 

behaviours can evolve even in the absence of relatedness between the interaction partners, 173 

because both partners gain direct net fitness benefits immediately or with some delay, and hence 174 

no conflict of interest occurs (Lehmann & Keller 2006). Many examples of cooperation in birds 175 

(Riehl 2013), fish (Wong & Balshine 2011), vampire bats (Wilkinson et al. 2016), humans (Jaeggi 176 

& Gurven 2013) and insects (Field & Leadbeater 2016; Gadagkar 2016) demonstrate that 177 

interaction partners are indeed often unrelated. Therefore, kin selection may not be the primary 178 

evolutionary force driving cooperation in these systems (Taborsky et al. 2016), and alternative 179 

hypotheses focusing on the IGEs should be considered.  180 

 181 

Non-genetic inheritance 182 

Heritability is not limited to the transference of genetic information from parent to offspring. 183 

Non-genetic information can potentially contribute to the evolution of a cooperative trait if it is 184 

transmitted from one generation to the next (Uller & Helanterä, in press). Distinguishing between 185 

different forms of heritability is crucial, because the form of transmission determines who 186 

inherits from whom and also how reliable the transmitted information is. In his talk 'Nongenetic 187 

inheritance, maternal effects, epigenetics, and cultural transmission: where are we now?', 188 

Etienne Danchin discussed the concept of inclusive inheritance, which allows not only for the 189 

transference of information via genes, but also through mechanisms of non-genetic inheritance 190 

(Danchin et al. 2014). Non-genetic inheritance is defined as the transmission of factors other than 191 

the DNA sequence from ancestors to offspring that affect the offspring’s phenotype 192 

(Bonduriansky & Day 2009). Some of these mechanisms include heritable epigenetic effects, 193 

parental effects, ecological (or habitat) inheritance, and cultural (or social) inheritance (Danchin 194 

et al. 2011).  195 

 196 
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Narrow sense epigenetic inheritance occurs when phenotypic variation arises from heritable 197 

changes in gene expression, rather than differences in the DNA sequence itself. This variation can 198 

occur as a result of structural changes to the genome. For example, the modification of histone 199 

proteins or the methylation of cytosine bases in DNA can upregulate, downregulate, or silence 200 

gene expression (Jenuwein & Allis 2001; Suzuki & Bird 2008; Lee et al. 2010). These epigenetic 201 

modifications can be inherited from one generation to the next (Jablonka & Raz 2009; Danchin 202 

et al. 2011). For example, mice that are conditioned to fear an odour for its associated negative 203 

stimulus pass on the fear of this odour to their descendants. Hypomethylation of an odour 204 

receptor gene (Olfr151) is transferred via the gametes, resulting in naïve mice having an innate 205 

fear of the odour (Dias & Ressler 2014). If and how epigenetic inheritance influences cooperative 206 

traits and learned social behaviours warrants further investigation.  207 

 208 

Parental effects—effects that parents have on the phenotype of their offspring, but not via the 209 

inherited genome—can also act as mechanisms for non-genetic inheritance (Mousseau & Fox 210 

1998). The relevance of parental effects is now widely accepted and considered an additional 211 

source of heritability that contributes to parent-offspring resemblance with important 212 

evolutionary implications. Parental effects can be genetic, when parental genetic variation is the 213 

cause of the environmental component affecting offspring development (Danchin et al. 2011). 214 

However, parental effects can also be non-genetic (Danchin et al. 2011). For instance, helping 215 

tendencies in cooperative breeders have been shown to be influenced by maternal identity 216 

(Kasper et al., in revision). To date, the exact mechanism of transmission is unclear, but candidate 217 

mechanisms are maternal allocation of resources towards egg size or composition (Russell et al. 218 

2007; Taborsky et al. 2007; Robinson et al. 2008), or parental care quality (Fischer et al., in 219 

revision; Goodson et al. 2005), which may have subsequent bearing on offspring phenotypes. 220 

Parental effects can be accounted for in quantitative genetics models by including them as IGEs 221 

(see 'Genetic inheritance of cooperation'). 222 

 223 

Individuals may modify their environments through a process known as ‘niche construction’ that 224 

might alter the selective forces they experience (Laland et al. 2016). These modified 225 
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environments can be passed down to offspring through ecological inheritance, which contributes 226 

to inclusive heritability (Danchin et al. 2011). For example, termite mounds are cooperative 227 

efforts to modify temperature and humidity and are inherited both within and across generations 228 

(Odling-Smee et al. 2003). Within the quantitative genetic framework we developed earlier this 229 

means that phenotypes of others (the 'partners' in Fig. 1) modify the environment, which changes 230 

the selection gradients affecting the fitness of the focal individual (𝛽𝑁 and possibly 𝛽𝑆 in Fig. 1) 231 

and these environments can be inherited.    232 

 233 

Finally, cooperative behaviours can also be transmitted via cultural inheritance (Avital & Jablonka 234 

2000; Danchin et al. 2011). For cultural information to be conveyed, a trait must be (i) socially 235 

learned, (ii) transmitted across generations or from older to younger individuals, (iii) expressed 236 

sufficiently long to be picked-up by younger individuals and (iv) individuals must be able to 237 

generalize the social information to use it in new contexts (Danchin & Wagner 2010). For 238 

example, in cooperatively breeding long-tailed tits Aegithalos caudatus, individuals preferentially 239 

help at the nests of related birds. Kin recognition and inclination to help are determined through 240 

the similarity of vocalizations, which are learned in early development (Hatchwell et al. 2001; 241 

Sharp et al. 2005). If kin recognition operates only via those vocalizations and individuals are able 242 

to recognize kin they have never encountered before based on their dialect, kin recognition 243 

depends on culturally inherited differences in song.  244 

 245 

An important consideration for all non-genetic inheritance mechanisms is their significance 246 

relative to genetic inheritance mechanisms. The contributions of non-genetic inheritance are 247 

likely to be highly variable depending on the trait and species in question, and their effect on the 248 

pace, and direction of evolution and maintenance of traits can be highly significant (Kirkpatrick 249 

& Lande 1989). For instance, non-genetic inheritance could explain the missing heritability — a 250 

lack of genetic markers explaining parent-offspring resemblance —in certain traits. Non-genetic 251 

inheritance could also play a role in the spread of novel alleles, maladaptive behaviours, and 252 

major organisational transitions (Danchin et al. 2011). An interesting way to investigate the 253 

relative importance of non-genetic inheritance is by incorporating it in quantitative genetic 254 
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models through the introduction of a double pedigree: one for genetic and one for non-genetic 255 

correlations (Helanterä & Uller 2010; Day & Bonduriansky 2011). 256 

 257 

Prior to any empirical efforts, it is vital to consider under which conditions non-genetic 258 

inheritance is expected to be adaptive. In a group discussion on “Non-genetic inheritance and 259 

the evolution of social/cooperative traits” led by Reinder Radersma, we explored such conditions 260 

for adaptive non-genetic inheritance. First, the transference of information across generations is 261 

beneficial in cases where the environment varies in a repeatable and predictable way over time. 262 

Generation time should be shorter than the period of environmental change, leading to a 263 

correlation between the parental phenotype and the environment the offspring will encounter. 264 

Second, changes in the environment should happen at a rate faster than the genome is able to 265 

accommodate (English et al. 2015b; Leimar & McNamara 2015; Fig 2). Third, within-generation 266 

phenotypic plasticity should be too costly, or individuals are physically, developmentally, or 267 

behaviourally constrained to adequately respond to the changing environment (Uller 2008). 268 

Finally, the benefits of non-genetic inheritance of a trait must outweigh the costs of the 269 

inheritance mechanism (Uller 2008). The reliability and quality of the information offspring or 270 

parents are able to gather about the environment is a critical component of the costs and greatly 271 

affects the adaptiveness of different inheritance mechanisms (Leimar & McNamara 2015). 272 

Further theoretical development, in tandem with empirical studies, should help to elucidate and 273 

quantify non-genetic inheritance of cooperative traits and behaviours in the future.  274 

 275 

Relevance of IGEs and non-genetic inheritance to understanding the evolution of cooperation 276 

The IGE framework has the potential to improve our understanding of the evolution of 277 

cooperation by modelling how social interactions with conspecifics shape the fitness of 278 

cooperating individuals. Specifically, IGEs can be thought of as epistatic interactions between the 279 

focal trait and genes expressed in conspecifics and are thus part of the genetic architecture of a 280 

trait (Meffert et al. 2002). By providing the possibility of more realistic models of the non-additive 281 

selective pressures posed by the social environment on cooperative traits, different conclusions 282 

about the rate and even the direction of evolution might be drawn than from frameworks that 283 
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do not explicitly model IGEs. For instance, for social interactions that involve feedback loops 284 

between the same or different traits expressed in interacting individuals, the rate of evolution is 285 

expected to be 5 to 9 times faster than in the absence of IGEs, given that ψ is rather high (Fig. 1B 286 

and C, Moore et al. 1997). Furthermore, by changing the resemblance of relatives, the presence 287 

of IGEs could mask or exaggerate heritable genetic variance (Bijma & Wade 2008). 288 

 289 

The inclusive inheritance framework provides a more nuanced view of the evolution of 290 

cooperation by treating inheritance as a multidimensional phenomenon. For instance, failing to 291 

incorporate cultural inheritance into models of evolution of human behaviour is demonstrated 292 

to lead to substantive discrepancies between predicted and observed evolutionary outcomes 293 

(Richerson & Boyd 1978). Moreover, the phenotype with maximum fitness can differ depending 294 

on the mode of inheritance—for example between genetic and cultural inheritance—and thus 295 

conflict between these systems can arise. This means that maladaptive behaviours like costly acts 296 

of altruism towards unrelated individuals could spread in a population in cases where variance in 297 

cultural transmission is higher than variance in genetic transmission. Consequently, positive 298 

cultural selection could override negative selection in the genetic domain (Aguilar & Akçay 2016).  299 

 300 

Genetic and molecular pathways underlying cooperation  301 

A cursory review of genetic mechanisms in various systems demonstrates that there are 302 

numerous molecular pathways leading to the evolution of cooperative traits (Table S1 in the 303 

supporting information). Although a variety of molecular mechanisms have been identified, the 304 

overwhelming majority of studies indicate that hormonal regulatory pathways seem to hold the 305 

key to the evolution of cooperation in many of the examples found in social insects and 306 

vertebrates (Table S1).  307 

 308 

The changes in how reproductive hormonal signalling systems work can have significant 309 

consequences for the emergence of helping behaviour which is often associated with supressed 310 

reproduction. The insulin signalling – juvenile hormone (JH) – vitellogenin (Vg) regulatory 311 

pathway is a fundamental component involved in the evolution of cooperation in insects. Here 312 
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both JH and Vg are related to reproduction with JH being a gonadotropin and Vg being a yolk 313 

protein (Corona et al. 2007). In many insect species, JH and Vg are synergistically regulated 314 

(Handler & Postlethwait 1978; Comas et al. 1999; Sheng et al. 2011). In contrast, the regulation 315 

of JH and Vg in eusocial honeybees, Apis mellifera, is antagonistic (Corona et al. 2007) and 316 

regulates caste differentiation and division of labour in honeybees. The same regulatory pattern 317 

in the JH-Vg pathway was recently discovered in two sub-social species, the European earwig 318 

Forficula auricularia and the burying beetle Nicrophorus vespilloides (Engel et al. 2016, Wu et al., 319 

unpublished). These findings suggest that this pathway may be co-opted in post-hatching 320 

parental care behaviours and in social evolution (Corona et al. 2007). 321 

 322 

In vertebrates, oxytocin (OXT), vasopressin (AVP), their non-mammalian homologs mesotocin, 323 

isotocin (IT) and vasotocin, and dopamine and serotonin are key endocrine players in cooperative 324 

behaviour (Soares et al. 2010; Ebstein et al. 2010; Madden & Clutton-Brock 2011; Anacker & 325 

Beery 2013). These hormones affect social affiliation (Reddon et al. 2015), social recognition and 326 

approach (Thompson & Walton 2004), reward estimates (Messias et al. 2016a), social learning 327 

(Messias et al. 2016b; Soares et al. 2016) and pair bonding (Insel & Shapiro 1992). For example, 328 

in humans, OXT is suggested to favour trust and parochial cooperation (De Dreu 2012), whereas 329 

AVP increased cooperative tendencies in reciprocal interactions (Rilling et al. 2012). Cooperation 330 

can also be enhanced or decreased by social stress and its underlying hormones (glucocorticoids, 331 

GCs). For example, in many social species, reproductive suppression of subordinate individuals is 332 

regulated by behaviours of dominant individuals that elicit higher levels of GCs in subordinates 333 

(Creel et al. 1996; Sanderson et al. 2015a). 334 

 335 

The neuroendocrine pathways regulated by hormones appear critical for the evolution of 336 

cooperative behaviours in vertebrates (Goodson 2005, 2013; Donaldson & Young 2008; Soares 337 

et al. 2010; O’Connell & Hofmann 2011a; c), but the strength and direction of their regulatory 338 

effects depend on species, social context, and sex. A recent comparison of brain gene expression 339 

of IT and AVT and their receptors between different social and non-social species pairs of cichlids 340 

revealed contrasting patterns (O’Connor et al. 2015). Furthermore, experimentally increased OXT 341 
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(or its homolog IT) increased helping behaviours and decreased aggression in cooperatively 342 

breeding meerkats, Suricata suricatta (Madden & Clutton-Brock 2011), and the sensitivity to 343 

social information in N. pulcher (Reddon et al. 2012), but it decreased sociability in this species 344 

(Reddon et al. 2014). However, the direction of the effect of IT treatment depended on the pre-345 

treatment sociability in gold fish (Thompson & Walton 2004), and OXT had no effect in house 346 

mice, Mus musculus domesticus (Harrison et al. 2016). In humans, experimentally administered 347 

OXT increased cooperation within groups, but also enhanced competition between groups (De 348 

Dreu 2012). Interestingly, these effects of OXT on social behaviour in humans have been 349 

demonstrated to differ between women and men (Gao et al. 2016).  350 

 351 

The evolution of sociality from solitary ancestry and the evolution of cooperative from non-352 

cooperative behaviours requires the emergence of novel social traits (Taborsky & Taborsky 2015). 353 

Genes present in solitary species could be co-opted towards social evolution. For example, Vg 354 

encodes the precursor of yolk protein (Corona et al. 2007); in sub-social European earwigs and 355 

burying beetles its expression is associated with parental care (Roy-Zokan et al. 2015; Wu et al. 356 

unpublished); in eusocial honey bee it regulates division of labour and caste differentiation 357 

(Amdam et al. 2003, 2004). Another example is the PebIII gene which had a direct genetic effect 358 

on the metamorphosis of the solitary insect Drosophila melanogaster (Sabatier et al. 2003). In 359 

the sub-social European earwigs, this gene is co-regulated and co-adapted between parent and 360 

offspring. RNAi knock-down of this gene showed an indirect genetic effect on offspring 361 

development and a direct genetic effect on maternal future reproduction in the earwigs (Wu et 362 

al., unpublished). Potential neo-functionalization or sub-functionalization of this gene was found 363 

in the eusocial termite Reticulitermes flavipes, with differential expression of two transcripts of 364 

PebIII between reproductive castes (Steller et al. 2010).  365 

 366 

Neurobiological mechanisms of cooperation 367 

Group-living animals often cooperate, as well as compete, with the same individuals multiple 368 

times over their lifespan. To assess the costs and benefits of social interactions, individuals need 369 

to continuously process social stimuli and keep track of past interactions. Responding to the 370 
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multitude of daily social challenges encountered by social species requires behavioural flexibility 371 

and social competence (sensu Taborsky & Oliveira 2012; Bshary & Oliveira 2015). These complex 372 

social decisions require highly developed neuronal networks, which integrate many brain areas 373 

and populations of neurons (Platt et al. 2016). For example, group size and the corresponding 374 

availability of social partners predict structural changes of the thickness of grey matter in multiple 375 

brain regions (Sallet et al. 2011). Group size also leads to functional change in terms of different 376 

co-activation of two brain regions, the superior temporal sulcus and the rostral prefrontal cortex 377 

(Sallet et al. 2011). To understand how individuals make flexible social decisions while engaged 378 

in cooperative or competitive interactions, researchers often focused on species with more 379 

complex cognitive abilities such as humans or primates. However, recent work has highlighted 380 

that many physiological and neurological mechanisms are conserved across taxonomic groups 381 

(O’Connell & Hofmann 2011c). Further, seemingly cognitively demanding abilities, such as 382 

individual recognition or keeping track of past interactions, might be the result of learning 383 

processes involving operant-conditioning rather than sophisticated cognitive mechanisms 384 

(Bshary et al. 2016). Hormones and ontogeny can also affect the cognitive skills necessary for the 385 

ability to cooperate. We suggest these consist of three aspects: 1) event memory, 2) synchrony 386 

with others and 3) responsiveness to others. For example, zebra finches were prevented from 387 

cooperating in a prisoner's dilemma task when their stress hormone levels were experimentally 388 

raised. These hormones reduce memory capacity required for reciprocity and remove incentive 389 

for cooperation (Larose & Dubois 2011). In addition, humans and many animals cooperate better 390 

when more receptive to social stimuli through synchronization in terms of personality, 391 

experience, or hormonal physiology. For example, shared excitement synchronizes brain activity 392 

in humans to enable better cooperation in times of need (Nummenmaa et al. 2012). 393 

 394 

It is now well established that two evolutionarily conserved neural circuits are fundamental in 395 

regulating social decision-making in vertebrates and are commonly referred to as the Social 396 

Decision Making Network (SDMN) (O’Connell & Hofmann 2011b). The SDMN is comprised of two 397 

neural circuits: the mesolimbic reward system, which evaluates the salience of external stimuli 398 

to generate an adaptive response, and the social behaviour network, which evaluates external 399 
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stimuli (Goodson 2005). Only the interconnected activity of both systems enables animals to 400 

regulate and implement adaptive behavioural outputs in response to environmental challenges 401 

and opportunities. Many hormones that influence key aspects of cooperative behaviour, such as 402 

OXT, AVP, dopamine or serotonin, are part of the SDMN. However, even though the SDMN is 403 

doubtless an important player in social behaviour, it remains an open question whether 404 

cooperative behaviour itself is regulated by the SDMN.  405 

 406 

Developmental regulation of sociality/cooperative behaviour 407 

Modes of development can have a huge impact on the evolution of early phenotypic 408 

specialization versus extended phenotypic plasticity (English et al. 2015a). Invertebrates, and in 409 

particular eusocial insects, are more prone to early developmental specialization because they 410 

have to commit to the development of a certain phenotype before metamorphosis (Wilson 411 

1971). Most social insects show a strict behavioural and morphological caste differentiation 412 

determined by different developmental trajectories, which leads to a division of labour in insect 413 

colonies (Wilson 1971). Arguably, the most famous example is the development of queens in 414 

honeybees induced by the ingestion of royal jelly (Kaftanoglu et al. 2011). Early caste 415 

determination is a common phenomenon in most eusocial insects where nutrition and inhibitory 416 

pheromones play an important role (Schwander et al. 2010). There are, however, a number of 417 

social insect species that are cooperative breeders without morphological specializations, which 418 

can switch between the role of subordinates and dominants within a lifetime (Field & Leadbeater 419 

2016; Gadagkar 2016). 420 

 421 

In contrast to many social insects, most social vertebrates remain morphologically and 422 

behaviourally flexible throughout their life. For example, dominant breeders and subordinate 423 

group members in cooperatively breeding vertebrates maintain their full reproductive capacity 424 

(Bruintjes et al. 2011; Bell et al. 2012), but can adapt their social roles and behaviours contingent 425 

on the social context and environmental conditions (Bruintjes & Taborsky 2011). Therefore, most 426 

social vertebrates do not develop morphological specialisations based on their social rank or role 427 

(Carter et al. 2014; Huchard et al. 2014; Sanderson et al. 2015b; Taborsky et al. 2015; Zöttl et al. 428 
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2016, but see Jarvis 1981; Fischer et al. 2015). Nevertheless, early behavioural specialization 429 

might be beneficial, for instance, when deciding if and when to disperse (Fischer et al., in revision; 430 

Zöttl et al. 2013), if and when to challenge the dominant individual in the home territory (Sharp 431 

& Clutton-Brock 2011), and whether to rear offspring communally or solitarily (Jo Manning et al. 432 

1995). All of these decisions require specific behavioural repertoires. Bolder, more risk-prone 433 

phenotypes are more successful dispersers (Chapman et al. 2011) while larger individuals with 434 

superior fighting abilities are better able to challenge dominants for territory take-overs (Huchard 435 

et al. 2016). A communal nest requires individuals to express prosocial behaviours towards 436 

breeding partners and foreign young (Weidt et al. 2008, 2014; Dugdale et al. 2010). Social 437 

behaviour can be costly (Grantner & Taborsky 1998; Cram et al. 2015) and misdirected 438 

behaviours may have high fitness costs and can lead to evictions from the group (Bell et al. 2012), 439 

infanticide (Schmidt et al. 2015) and even to fatal conflicts (Enquist & Leimar 1990). Thus, 440 

environmentally induced developmental programming of behavioural strategies, e.g. via 441 

parental effects or own early experience, might be also important in cooperatively breeding 442 

vertebrates.  443 

 444 

The cues responsible for early phenotypic specialization are diverse and can induce phenotypic 445 

specializations between and within social groups. For example, intragroup caste specialization is 446 

dependent on group size (Ferguson-Gow et al. 2014) or the level of competition between nests 447 

(Passera et al. 1996) in ant species. In cooperatively breeding vertebrates, group size can 448 

influence maternal investment in eggs. Smaller eggs are produced when more helpers are 449 

available to compensate for the reduced maternal investment in individual eggs (Russell et al. 450 

2007; Taborsky et al. 2007). In turn, offspring developing in larger groups may express different 451 

behavioural phenotypes than offspring from small groups as a result of developmental plasticity 452 

(Fischer et al. 2015). Within-group factors such as the provision of more or better food to 453 

particular group members can lead to divergent behavioural phenotypes such as the 454 

development of different caste phenotypes in social insect societies (Schwander et al. 2010) or 455 

different degrees of competitiveness in some vertebrates (Buston 2003; Heg et al. 2004a; 456 

Huchard et al. 2016).  457 
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 458 

A second important role of developmental plasticity for social organisation is the regulation of 459 

conflict within groups. The level of conflict in cooperative societies is particularly high when 460 

subordinates are fertile and therefore have a vested interest their own breeding opportunities. 461 

Subordinates queuing for a dominant position may compete with other subordinate group 462 

members about the position in the social hierarchy (Huchard et al. 2016). If access to 463 

reproductive opportunities is strongly skewed towards a few dominant individuals, conflicts over 464 

reproduction can also arise between dominant breeders and maturing subordinates (Heg et al. 465 

2004b). As social rank is often size-dependent, developmental plasticity of growth strategies may 466 

play a key role in either reducing or enhancing conflict. In response to social cues obtained from 467 

other group members, growth may be strategically enhanced to outcompete rivals or reduced to 468 

lower potential conflict with dominant group members. In her talk 'Measuring cooperation and 469 

associated phenotypes in the field: developmental trajectories and genetic basis', Elise Huchard 470 

showed that in cooperatively breeding meerkats, growth rates remain flexible throughout the 471 

entire ontogeny (Huchard et al. 2014). In this species, rank position depends on size and age, and 472 

subordinate females queue for the position of the dominant female, which is usually the oldest 473 

and heaviest female of the group. When Huchard and colleagues (Huchard et al. 2016) 474 

experimentally increased the growth rate of a subordinate by supplemental feeding, same-sex 475 

rivals responded by accelerating their own growth and food uptake. Conversely, subordinates of 476 

the cooperatively breeding cichlid fish, N. pulcher, inhibit their growth if their size difference to 477 

the same-sex dominant breeder becomes too small, as subordinates reaching body sizes too 478 

close to that of dominants risk expulsion from the group (Heg et al. 2004b). 479 

 480 

Finally, developmental processes may mediate conflict between dominant breeders and their 481 

offspring and future helpers or workers. In cooperative societies, not only are offspring 482 

dependent on care, but become carers themselves later in ontogeny. The optimal contribution 483 

to alloparental care required by dominant breeders versus the optimal contribution subordinate 484 

helpers are willing to give may diverge and depend on the options for dispersal and independent 485 

breeding by subordinates (Russell & Lummaa 2009). For instance, in his talk 'Hormonal signals, 486 
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epigenetic regulation, maternal effects, and their consequences for cooperation and conflict', 487 

Nikolaus von Engelhardt suggested that breeding females endow eggs with hormones or RNA 488 

transcripts, which might influence growth and behavioural propensities of offspring in a way that 489 

optimizes maternal fitness. These maternal effects may then influence the offspring’s future 490 

willingness to contribute to alloparental care of younger broods. At the prenatal stage offspring 491 

depend on parental cues to adjust their development, since they do not directly experience their 492 

environment. However, offspring may use cues obtained postnatally to "disagree" with the 493 

maternal program and reverse their behavioural tendencies (Fischer et al. 2015). 494 

 495 

Because of the important role of developmental plasticity for the regulation of cooperative 496 

behaviours it is conceivable that in the course of the evolution of cooperation, environmentally 497 

induced phenotypic plasticity precedes, or even facilitates, genetic adaptation known as the 498 

'plasticity-first hypothesis' (West-Eberhard 2003; see Levis & Pfennig 2016 for a review). In a first 499 

step plasticity enables a rapid adaptive response to changing environments through phenotypic 500 

accommodation. In a second step, genetic accommodation allows for the relatively slow 501 

refinement of genotypes by accumulating beneficial genetic mutations. This, together with the 502 

co-option of genes as discussed in previous sections, could provide an answer to the longstanding 503 

question how novel cooperative traits emerge when cooperative species evolve from non-504 

cooperative ancestors. Since the underlying genetic architecture of cooperative behaviour is 505 

arguably complex and polygenic, genetic adaptation alone is unlikely to account for these 506 

relatively fast transitions. Thus, phenotypic plasticity that precedes genetic adaptation as 507 

described above might offer another explanation for the fast emergence of cooperative traits.  508 

 509 

Outlook 510 

In previous sections we discussed ways in which cooperative behaviour can be transmitted from 511 

one generation to the next, either genetically, through heritable epigenetic changes, or through 512 

social learning and culture. We also outlined reasons why the evolutionary dynamics of 513 

cooperative traits might be less straightforward than generally assumed. Following Anna 514 
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Lindholm's talk and the ensuing discussion, here we focus on practical considerations and we 515 

provide promising avenues for future research in the genetics and development of cooperation. 516 

 517 

Which systems are suitable? The suitability of a system will ultimately depend on the exact 518 

question under investigation. In general, information on individuals is required for quantitative 519 

genetic approaches and desirable for molecular genetic approaches. Some taxa show a naturally 520 

occurring array of closely related species with a range of cooperative social behaviours. For 521 

example, Hymenoptera display a wide cooperative continuum from solitary to subsocial to 522 

eusocial species (Wilson 1971), and species of the teleost family Cichlidae represent a wide range 523 

of social systems from non-social to highly social (Taborsky 1994; Heg & Bachar 2006). The 524 

parasitoid bethylid wasps presented by Ian Hardy at the workshop provides an excellent example 525 

of a tractable social study system. In one of these species, Sclerodermus harmandi, multiple 526 

unrelated foundresses cooperatively rear each other's offspring on a single host resource 527 

(Kapranas et al. 2016). There is a broad scope for experimental manipulation of resource size, 528 

relatedness, foundress number, and offspring survival in bethylid wasps (e.g. Sreenivas & Hardy 529 

2016). The quasisocial nature of this species makes it a particularly suitable candidate for the 530 

study of cooperative behaviours in insects at the threshold of the evolution of complex sociality.  531 

 532 

Comparisons between the genomes and transcriptomes of species along the continuum of 533 

sociality can indicate likely genes and pathways for further investigation (Robinson et al. 2005; 534 

Rehan & Toth 2015; Kapheim 2016; Trapp et al. 2016; Toth & Rehan 2017). Comparisons within 535 

species are also useful to examine possible molecular causes of phenotypic variance. Systems in 536 

which individuals differ in their tendency to cooperate or cheat in social situations (Santorelli et 537 

al. 2008), or in the amount of alloparental care to provide (Fischer et al., in revision; Kasper et al., 538 

in revision), are particularly well suited to studies of the underlying genetic architecture or gene 539 

expression patterns at the basis of cooperative phenotypes. Furthermore, the evolution of 540 

cooperative behaviours might not only depend on interactions within, but also between species 541 

(West et al. 2007) or between different organizational levels of sociality (West & Gardner 2013). 542 

We provide an example for multilevel cooperation, namely between microbiota and their host, 543 
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in the supporting information.  544 

 545 

Which specific traits and parameters should be measured? It is of paramount importance to 546 

understand the biology of a system well enough in order to be able to accurately quantify fitness, 547 

and to decide which traits to measure. It is especially important to carefully consider if the 548 

phenotype measured is indeed a target of selection. In some instances, it might be better to 549 

measure the underlying mechanism, for instance an individual’s physiology or cognitive ability, 550 

instead of the behavioural phenotype (behavioural gambit, Fawcett et al. 2013). Moreover, the 551 

interaction coefficient 𝜓  could itself be considered a trait that varies genetically between 552 

individuals and is thus subject to selection (Bleakley & Brodie IV 2009) and of particular 553 

importance for the evolution of cooperative traits. For instance, 𝜓 can be estimated empirically 554 

as the partial regression coefficient of a phenotype on its partner's phenotype while keeping the 555 

direct genetic influence constant. However, this requires isogenic lines or large-scale breeding 556 

designs with repeated measures of the same genotype with different social partners. Measuring 557 

individual-level phenotypic proxies could provide a more feasible approach for vertebrates, 558 

assuming a close phenotype-genotype resemblance (Edenbrow et al. 2017). Those proxies could 559 

be estimates of the extent to which traits covary between interaction partners, for example, 560 

spatial proximity.  561 

 562 

What type of approach should be followed? Ideally, questions about the genetic basis of 563 

cooperative traits should combine both field observations and controlled laboratory studies. 564 

Moreover, insights gained from theoretical modelling of mechanisms underlying cooperation 565 

(see Supporting Information) and quantitative genetic modelling, for instance indirect genetic 566 

effects, should be considered. While the study of wild populations provides a more realistic 567 

picture of selective pressures in nature, a laboratory setting allows for easier control of 568 

confounding non-genetic effects (e.g. parental or other transgenerational effects) that 569 

potentially distort estimates of heritability (Kasper et al., in revision). Ideally, field studies should 570 

use cross-fostering techniques to account for and estimate those effects (Hadfield et al. 2013). 571 

Likewise, laboratory experiments should use offspring of wild-caught individuals to preserve 572 
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natural patterns and breadth of genetic variation within the population and avoid artefacts due 573 

to genetic drift or lab-specific selection. Furthermore, studying individuals in highly artificial test 574 

settings that do not properly reflect the actual biology of a species could lead to ecologically or 575 

evolutionarily meaningless results. This caveat is corroborated by recent studies that found an 576 

effect of laboratory rearing on gene expression, physiology, behaviour and social dynamics in 577 

paper wasps Polistes fuscatus (Jandt et al. 2015) and an effect of the laboratory environment on 578 

prosocial behaviour of chimpanzees (Tennie et al. 2016).   579 

 580 

Which methods should be employed? As with selection of study species, approach, trait, and 581 

setting, the most appropriate experimental method depends on the questions being asked. 582 

Quantitative genetic methods provide insight on the relative proportions of heritable and several 583 

types of environmental variance of cooperative traits and their covariance with other traits, and 584 

thus on the inheritance and genetic architecture of a cooperative trait. Combined with selection 585 

experiments, they can be used to predict how traits respond to selection. This could be followed 586 

up by quantitative trait locus or genome-wide association study approaches to search for 587 

candidate genetic polymorphisms that are responsible for phenotypic differences in cooperative 588 

tendency. Recent association studies in humans have shown that particular genotypes for the 589 

oxytocin receptor (OXTR) gene were highly associated with Asperger Syndrome, a type of autism 590 

(Di Napoli, Warrier et al. 2014). Particular genotypes may also be associated with OXTR and social 591 

empathy as measured through cooperative games (Thompson, Hurd et al. 2013). Several new 592 

technologies are available for the manipulation of gene expression at the transcriptomic level 593 

(e.g. RNA interference, Castel & Martienssen 2013), or by altering genes at the DNA level (e.g. 594 

gene editing via CRISPR-Cas, Hsu et al. 2014). These approaches could be employed to verify and 595 

validate candidate genes once identified by the above approaches. Future studies should 596 

incorporate new technologies for detecting genetic and epigenetic signatures of cooperation. For 597 

example, comparing genomes between closely related species exhibiting a continuum from 598 

solitary life style to advanced sociality may provide insights into the genomic structure underlying 599 

cooperation and the evolution of sociality along phylogenetic trees (Fischman et al. 2011; 600 

Kapheim et al. 2015). Furthermore, exploring correlations of epigenetic marks with phenotypic 601 
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variation in cooperativeness may provide insight in how gene expression is regulated in response 602 

to environmental factors (Jensen 2015; Li-Byarlay 2016). Investigating the stability of those 603 

epigenetic marks over time can shed light on the molecular pathways connecting previous social 604 

experience to future cooperative behaviour (Cardoso et al. 2015; Shpigler et al. 2017). Thus, in 605 

conclusion, we advocate a holistic approach that integrates complementary methods to unravel 606 

the proximate and ultimate causation of cooperation and social evolution, including comparative 607 

phenotypic and genomic approaches to tackle questions of adaptation and convergent evolution, 608 

the study of norms of reaction and shifts in gene regulatory networks to appreciate the role of 609 

phenotypic plasticity, and the study of interactions between individuals and their social and 610 

physical environment to unravel the role of natural selection. 611 
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Figure Legends 1016 

Figure 1. Indirect genetic effects on cooperation. An individual's own genes and its environment 1017 

jointly influence its cooperation phenotype (direct genetic effect, solid black line), which 1018 

influences the focal's fitness ('non-social selection gradient', βN). Cooperative behaviours are 1019 

expressed in a social setting that constitutes a component of the environment. A Non-reciprocal 1020 

indirect genetic effect: A cooperation partner's genes influence the focal's phenotype indirectly 1021 

via the partner's phenotype (indirect genetic effect, dashed black line). The strength of the 1022 

influence of the genes in the social environment on the focal's phenotype is reflected by the 1023 

interaction effect coefficient, ψ, and thus the focal's fitness is affected by genes expressed in 1024 

other individuals ('social selection gradient', βS). B Two different traits expressed in two 1025 

individuals influence each other reciprocally. For instance, the focal individual grooms its partner, 1026 

which leads to an increased tolerance towards the focal (ψ1,2), which, in turn, results in more 1027 

grooming by the focal (ψ2,1). C The same trait expressed in two different individuals influences 1028 

itself reciprocally. For instance, the focal's propensity to share food with its partner could 1029 

increase the partner's propensity to share food and vice versa (ψ1,1). Assuming a ψ of 0.75, the 1030 

feed-back loops depicted in B and C lead to a 5 and 9-fold increase in the evolutionary rate 1031 

compared to models without IGEs (Moore et al. 1997). 1032 

 1033 

Figure 2. Non-genetic inheritance indicated on the information retention axis (in grey). The 1034 

information retention axis symbolises the time scale at which information needs to be retained 1035 

in a biological system to be adaptive. This adaptiveness depends on the variability of the selective 1036 

environment. There is scope for non-genetic inheritance when information needs to be 1037 

transferred over generations (arrow pointing to the right) and the environment is too variable 1038 

for genes to adapt (arrow to the left). The number of generations, the time scale and the 1039 

variability of the environment are conceptual examples - roughly at scale - and are study system 1040 

specific. The types of information and the information carriers are hypothetical examples.  1041 
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Workshop speakers and participants 
Jason Wolf (University of Bath, UK) spoke about the need to incorporate the social 

environment as a part of the genetic architecture of cooperative traits into quantitative 

genetics models. Ian Hardy (University of Nottingham) provided a detailed case study of 

cooperative brood care and resource conflict within bathylid wasps. Elise Huchard 

(CNRS Montpellier, France) presented her work on the interplay of genes and 

environment in shaping growth trajectories of cooperatively breeding meerkats. Anna 

Lindholm (University of Zurich, Switzerland) led a discussion session on how to select 

suitable systems, which molecular methods should be applied, in which cases controlled 

laboratory studies should be preferred to field observations, and which parameters 

should be measured. Etienne Danchin (CNRS Toulouse, France) detailed various 

empirical studies demonstrating modes of non-genetic inheritance, social information, 

and their evolutionary implications. The broader theoretical implications of non-genetic 

inheritance to sociobiology and evolution of cooperative behaviour were discussed in a 

session led by Reinder Radersma (University of Lund, Sweden), while Nikolaus von 

Engelhardt (Plymouth University, UK) led a discussion session about physiological 

mechanisms and their role in cooperation.  

 

The workshop was organized by Claudia Kasper and Maddalena Vierbuchen from the 

University of Bern, Switzerland, and attended by the following persons (given in 

alphabetical order): Laurie Belcher (University of Bath, UK), Rhiannon Bolton 

(University of Liverpool, UK), Christelle Couchoux (University of Sussex, UK), Filipa 

Cunha-Saraiva (KLIVV, University of Veterinary Medicine, Vienna, Austria), Jeremy 

Field (University of Sussex, UK), Stefan Fischer (University of Liverpool, UK), Janaina 

Lima de Oliveira (University of Bath, UK), Kenyon Mobley (University of Lausanne, 

Switzerland), Philip Madgwick (University of Bath, UK), Aura Raulo (University of 

Helsinki, Finland), Maria Reyes (University of Bern, Switzerland), Eva Schultner 

(University of Helsinki, Finland), Sakshi Sharda, Barbara Taborsky and Michael 

Taborsky (University of Bern, Switzerland), Bernhard Völkl (Vetsuisse Bern, 

Switzerland), Mukta Watve and Cecilia Wikström (University of Bern, Switzerland), Min 

Wu (University of Basel, Switzerland). 



Genetic and physiological mechanisms of cooperative behaviours across taxa 
Table S1.  Examples of genetic and physiological mechanisms for cooperation across taxonomic groups indicating whether a genetic 
polymorphism (GP) has been identified, or whether differential gene expression in hormones and their receptors are responsible for phenotypic 
differences (DGE). We also present studies that identified differences in hormone levels (HL) or distribution of hormone receptors (RD) as the 
mechanism underlying cooperative phenotypes.  

 System Type of cooperative behaviour Mechanism GP DGE HL RD Citations 
Proteo-
bacteria 

Vibrio fischeri Quorum sensing/bioluminescence Ain and lux proteins X    (Lupp & Ruby 2005) 
Myxococcus xanthus Fruiting bodies to survive starvation PX mutation X    (Fiegna et al. 2006) 

Amoebozoa Slime molds (Dictyostelium 
discoideum) 

Colony formation dimA X    (Foster et al. 2004) 

Plants Volvox carteri Reproductive altruism RegA/SAND-like domain 
 

X X   (Kirk et al. 1999; 
Nedelcu & Michod 
2006) 

Fungi Budding yeast 
(Saccharomyces cerevisiae) 

Biofilm-like cooperation FLO-1 X    (Smukalla et al. 2008) 

Animals Caenorhabditis elegans Social vs. solitary feeding behaviour Npr-1   X X (Macosko et al. 2009) 

Insects 

Honeybee (Apis mellifera) Division of reproductive castes and labour Insulin-juvenile hormone-
vitellogenin pathway, 
vitellogenin receptor, Anarchy 

 X X  (Amdam et al. 2003; 
Corona et al. 2016; 
Ronai et al. 2016a; b)  

Termites (Cryptotermes 
secundus) 

Reproductive division of labour Neofem2  X   (Korb et al. 2009) 

Ants (Solenopsis invicta) Monogynous/polygynous colony 
(supergene/'social chromosome') 

Gp-9  X    (Keller & Ross 1998; 
Wang et al. 2013) 

Ants (Polyrhachis moesta) Queens cooperate (have nest together) Octopamine   X  (Koyama et al. 2015) 
Earwigs (Forficula 
auricularia) 

Parent-offspring co-adaptation, maternal 
care 

PebIII, Th, juvenile hormone-
vitellogenin pathway and 
vitellogenin receptor 

 X   Wu et al., unpublished 

Burying beetles 
(Nicrophorus vespilloides) 

Parental care juvenile hormone-vitellogenin 
pathway and vitellogenin 
receptor 

 X   (Roy-Zokan et al. 2015; 
Engel et al. 2016) 

Teleosts 

Gold fish (Carassius 
auratus) 

Social approach behaviour, vasotocine 
inhibits social approach, isotocine 
stimulates it 

arginine vasotocin/isotocin   X  (Thompson & Walton 
2004) 

Lamprologine cichlids Social behaviour expression arginine vasotocin/arginine 
vasotocin receptor  
isotocin, isotocin receptor 1, 
isotocin receptor 2 
 

 X X  (O’Connor et al. 2015; 
Reddon et al. 2015) 

Birds 

Ruff (Philomachus pugnax) Cooperative male-male relationships 
(different mating phenotypes) in leks  
 

Androsteroid homeostasis 
(HSD17B2) 

X    (Küpper et al. 2015; 
Lamichhaney et al. 
2015) 

Great tits and blue tits 
(Parus major, Cyanistes 
caerulus) 

Parental care and corticosterone levels 
covary 

corticosterone, testosterone   X  studies cited in (Hau & 
Goymann 2015) 

White-throated sparrows 
(Zonotrichia albicollis) 

Parental care; monogamy, aggression 
differences between white and tan morph 
(morph is det. by supergene) 

Steroid metabolism; serotonin  
 

X    (Tuttle et al. 2016) 



Mammals 

Meerkats (Suricata 
suricatta) 

'Cooperative syndrome'  (increased 
digging, guarding, pup-feeding and 
associating with pups; decreased 
aggression) 

oxytocin    X  (Madden & Clutton-
Brock 2011) 

Domestic dog (Canis lupus) Social bonds  oxytocin   X  (Romero et al. 2014) 
Rodents general Species differences in alloparental care oxytocin receptor    X (Olazábal & Young 

2006) 
Mice (Mus musculus) Communal nesting & lactation oxytocin   X  (Harrison et al. 2016) 
Rats (Rattus norvegicus) Maternal care; epigenetic (cytosine 

methylation) 
Estrogen receptor ER-α  X   (Champagne et al. 

2006) 
Rats (Rattus norvegicus) coordination during cooperative task Norepinephrine, serotonin, 

dopamine 
  X  (Tsoory et al. 2012) 

Peromyscus californicus, P. 
maniculatus (monogamous 
vs polygamous species) 

Pair bond as a proxy for group living 
 

V1aR/ oxytocin receptor    X (Young et al. 2001; 
Hammock & Young 
2005; Anacker & Beery 
2013) 

Prairie voles (Microtus 
ochrogaster) 

Reduced alloparental effort in males when 
treated with antagonist 

oxytocin   X  (Bales & Carter 2003) 

Tuco-tucos (Ctenomys 
sociabilis & C. haigi) 

Communal nesting oxytocin receptor    X (Anacker & Beery 2013) 

Naked mole rats 
(Heterocephalus glaber) 

Cooperative breeding/eusociality oxytocin receptor    X (Anacker & Beery 2013) 

New World primates general Social behaviour oxytocin / oxytocin receptor 
and arginine vasopressin /Va1 
receptor 

X    (Bergey et al. 2016; 
French 2016) 

Vervet monkeys 
(Chlorocebus aethiops, C. 
pygerythrus) 

Parental care/parent-offspring interaction dopamine receptor D4 X    (Kaitz et al. 2010; 
Fairbanks et al. 2012) 

Chimpanzees (Pan 
troglodytes) 

Building cooperative relationships; 
oxytocin levels elevated after grooming 

oxytocin   X  (Crockford et al. 2013) 

Chimpanzees (Pan 
troglodytes) 

Kin and non-kin bonds, food sharing oxytocin   X  (Wittig et al. 2014) 

Humans (Homo sapiens) 
 

Pro-social behaviour (dictator game) arginine vasopressin receptor 
1a; receptor S 3 repeat  

X    (Knafo et al. 2008; 
Avinun et al. 2011) 

Pro-social behaviour (dictator game; social 
value orientation task), Autism 

oxytocin receptor X    (Israel et al. 2009; di 
Napoli et al. 2014) 

Social behaviour/ parental care/parent-
offspring interaction,  
Self-reported social behaviour 

dopamine receptor D4, 
dopamine receptor D5, IGF2 

X    (Bakermans-
Kranenburg & 
Ijzendoorn 2006; 
Sheese et al. 2007) 

Donation behaviour COMT Val158Met (rs4680) X    (Reuter et al. 2011), but 
see (Anacker & Beery 
2013) (no effect) 

Self-reported social behaviour GABRB2 (rs187269) X    (Tsang et al. 2013) 

  



Multilevel cooperation - case study 'Cooperation and microbiota' 
An important future avenue to understand the complexity of cooperation lies in the 

study of 'multilevel' cooperation. Recent evidence highlights that individual behaviours 

are not only influenced by the properties of the cooperation partners and the group 

(Carpenter 2004; West et al. 2007), but also by the properties of higher organizational 

levels of sociality (West & Gardner 2013). For example, the presence or absence of 

conflict between groups is predicted to influence within-group social behaviours and 

may ultimately determine the amount of cooperation (Radford et al. 2016). Specifically, 

we believe that the field of microbiome science will highlight a unique 'multilevel' 

perspective on cooperation. While cooperative systems have been studied in various 

scales from genes to cell organelles, single-celled organisms like bacteria (Rakoff-

Nahoum et al. 2016), to multi-cellular organisms  (Maynard-Smith & Szathmary 1997; 

Bourke 2011), a simultaneous, "multi-level" perspective on the cooperation of bacteria 

with their host species is still lacking. Microbiota, the mutualistic bacteria living in and 

on their host vertebrates, form a functionally essential part of their host phenotype 

through complex interactions that can be seen as a form of multilevel-multispecies 

cooperation: the bacteria cooperating within, but also with their host. Furthermore, 

several authors suggested mutualistic microbes as a factor driving the evolution of social 

behaviour or the initial sociality (Troyer 1984; Lombardo 2008; Ezenwa et al. 2012; 

Montiel-Castro et al. 2013), a pre-requisite of host cooperative behaviour. This is 

because transmission of microbes through social contact has the potential to both 

enhance host immunity (Troyer 1984; Lombardo 2008; Archie & Theis 2011; Gilbert et 
al. 2015) and directly affect host social behaviour (Bravo et al. 2011; Ezenwa et al. 2012; 

Montiel-Castro et al. 2013). In this way immunological factors, mainly microbiota, can 

create a positive feedback loop in the evolution of sociality (Fig. 3). The consequence of a 

more synchronized, diverse and resilient microbiota within a host social group can be 

seen by itself as a form of multi-level immunological cooperation, analogous to 

behavioural cooperative defence mechanisms. 

 



 
Figure 3. Evolutionary framework for positive feedback loop of host social behavior and social 

transmission of microbiota. Socially transmittable microbiota has the potential to manipulate 

host behaviour as well as enhance host immunity and subsequent fitness.



Future avenues of modelling the evolution of cooperation  
Cooperation is a flexible and complex trait. It is now apparent that adaptive cooperative 

behaviour is not shaped solely by genes, but also by non-genetic environmental factors.  

So far, satisfactory explanations for the evolution of decision rules of animal cooperation 

and the evolution of the genetic architecture and cognitive mechanisms underpinning 

these rules are largely lacking. Although this field is still in its infancy, promising first 

theoretical results demonstrating that the particular mechanisms clearly play a role in 

determining evolutionary outcome (Akçay & Van Cleve 2012; Berg & Weissing 2015; 

Quiñones et al. 2016). For instance, (Berg & Weissing 2015) showed that different 

behavioural architectures (1:1 genotype-phenotype mapping vs. a neural network) or 

different mutation regimes greatly influence decisions in cooperative games and 

consequently the dynamics and outcome of social evolution. These findings challenge 

the standard optimality theory often used to model cooperation. Theory thus may need a 

paradigm shift towards considering underlying mechanisms, rather than behavioural 

outcomes, as target of selection (Fawcett et al. 2013). 
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