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Abstract. The Care-O-bot is an autonomous robotic assistant that can
support people in domestic and other environments. The behaviour of the
robot can be defined by a set of high level control rules. The adoption
and further development of such robotic assistants is inhibited by the
absence of assurances about their safety. In previous work, formal models
of the robot behaviour and its environment were constructed by hand
and model checkers were then used to check whether desirable formal
temporal properties were satisfied for all possible system behaviours. In
this paper we describe the details of the software CRutoN, that provides
an automatic translation from sets of robot control rules into input for the
model checker NuSMV. We compare our work with previous attempts to
formally verify the robot control rules, discuss the potential applications
of the approach, and consider future directions of research.

1 Introduction

Robot assistants are autonomous robots that can help with home and work-
oriented activities collaborating closely with humans. Personal care robots assist
those who might be vulnerable due to illness, age or disability. In 2014 a new
ISO safety standard for personal care robots was published, providing guidelines
to manufacturers of personal care robots to ensure the safety of their design,
construction and application [7]. However, the development and deployment of
robotic assistants has been restricted by the lack of formal assurances of their
safety.

Formal verification is the application of mathematical techniques to deter-
mine whether or not a system conforms exactly to its specification. These tech-
niques are used in the development of software and hardware systems, notably
in the development of critical systems where system failure can have drastic
human or economic repercussions. Formal verification has already been applied
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to robotic systems, for instance, Cowley and Taylor [2] used linear logic and
dependent-type theory to verify assembly robots. A different approach using hy-
brid automata and hybrid statecharts was employed by Mohammed et al. [10]
to formally model and verify multirobot systems, and control algorithms for a
surgical robot were verified by Kouskoulas et al. in [8]. Applying formal verifica-
tion to the behaviours of robotic assistants can help to support their safety and
trustworthiness by demonstrating that the robot always behaves in accordance
with a set of formal requirements. We might, for instance, want to show that for
all possible executions of robot behaviours the robot eventually performs some
good action, or conversely that some bad action is never performed.

The Care-O-bot R© is a robotic assistant that has been deployed in a domestic-
style house at the University of Hertfordshire. The house is equipped with sen-
sors which provide real-time information on the state of the house and its oc-
cupants. Studies have already been conducted to apply formal verification to
the behaviours of the Care-O-bot in this environment. Model checking, an au-
tomated algorithmic verification technique, was applied in [3]. A model of the
robot and its environment was manually constructed and the model checker
NuSMV [1] was used to prove several properties relating to the priority and
interruptibility of behaviours. Sensor data pertaining to the house was modelled
by non-deterministically selecting one of several possible values for every sensor
at any moment in time. In [17] algorithmic verification was again applied to the
set of Care-O-bot behaviours. Here, models of the robot and its environment
were manually constructed using the intelligent agent modelling and simulation
language Brahms [15]. The BrahmsToPromela tool [16] was then used to auto-
matically translate Brahms models into PROMELA, the input language for the
model checker Spin [6]. This approach differed from the first in that the model of
sensor data was more restrictive. The non-deterministic choice of sensor values
was constrained using data taken from an activity log for a real 6 hour execution
period of the robot.

These studies clearly demonstrated that the high level decision making of
the Care-O-bot could indeed be verified using model checking, however both ap-
proaches had limiting factors. Firstly, effort was required to manually construct
formal models for a fixed set of robot behaviours. Furthermore, a new set of con-
trol rules means the model needs to be constructed again. Secondly, in [3] the
timing constraints in the control rules were dealt with in an ad-hoc manner. Ad-
ditionally, the properties checked focused on the operation of the robot control
rules rather than general requirements of the robot. In this paper we describe
the software CRutoN1, developed in [5], that proves to be an effective solution to
the problem. CRutoN automates the generation of formal input models for the
NuSMV model checker, and minimises the time needed to apply model checking
to different sets of robot behaviours. Given a set of rules at the design stage,
generated models could be used to find unexpected behaviour in the model. Less
effort would then be required to refine the design since modification of the for-

1 The software, sample output files, and input used in this paper, are available at
https://github.com/PaulGainer/CRutoN.
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mal model is automated. We show that the models generated using the software
retain the same desirable properties as those constructed manually, and describe
features of the software that facilitate modulation of the granularity of temporal
aspects of the robot behaviours.

The Care-O-bot, the environment in which it operates, and the behaviours
that determine the actions of the robot are introduced in Sec. 2. An overview
of the CRutoN software, and the translation of control rules for the robot into
an intermediate form representation are given in Sec. 3. In Sec. 4 we formalise
the behaviour of the robot using linear time temporal logic, and we specify
the expected behaviour of the robot in any generated formal model. Section 5
describes the translation from the intermediate form representation into input
for the model checker NuSMV. In Sec. 6 the results of applying this translation
to sets of control rules are presented, and we discuss the limitations of our
approach. We give concluding remarks in Sec. 7 and outline some future work.

2 The Care-O-bot and the Robot House

The Robot House is a typical suburban house in Hertfordshire, UK. The house is
appropriately furnished, and is equipped with a number of sensors. The sensors
provide real time information about the state of the house and its occupants, for
instance pressure sensors that detect when an occupant is seated, or electrical
sensors indicating whether doors are open or closed [4,13].

The house provides a realistic setting in which experiments can be conducted
using a number of robots, including the Care-O-bot. The Care-O-bot is a com-
mercially available robot assistant developed at the Fraunhofer Institute for
Manufacturing Engineering and Automation [12]. The robot has an articulated
torso with a manipulator arm and tray, stereo optical sensors, LED lights, and
appropriate sensors that provide information about its current state. The robot
software is based on the Robot Operating System [11].

Control Rules and Behaviours. The high level decision making of the Care-O-bot
is specified by a set of behaviours whose execution is controlled by a scheduler.
Each behaviour consists of a sequence of atomic preconditions and a sequence of
actions. Atomic preconditions and actions are also called control rules. Actions
correspond to operations executed by the robot, including the setting of internal
variables, implemented as ROS scripts. For instance, the robot may move to the
living room and say “It’s time for your medicine”, or may turn its inbuilt lights
to yellow. Atomic preconditions are propositional statements that check either
the internal state of the robot or the state of the environment in which the robot
operates. They may include an additional constraint requiring the condition to
have remained true for some period of time, or requiring the condition to have
been true at least once within some period of time.

The atomic preconditions of a behaviour are linked by Boolean operators
into a propositional precondition. This precondition must evaluate to true for
the behaviour to be scheduled for execution. If the sequence of atomic precon-
ditions for a behaviour is empty then the associated propositional precondition,
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Fig. 1. The Care-O-bot (a) operating in the Robot House in Hertfordshire, and the
floor plan of the house (b).

the empty conjunction, is always true. Behaviours without atomic preconditions
can be declared to be subroutines. Subroutines cannot be picked by the sched-
uler for execution but can be executed directly by actions in other behaviours.
Behaviours that are not subroutines are also called schedulable.

Behaviour Scheduling. The algorithm in Figure 3 describes how the Care-O-
bot schedules its behaviours. When all preconditions of a behaviour are true,
then the behaviour can be selected by the scheduler for execution. Only one
behaviour can be executed at a time and when a behaviour is executed, the robot
will sequentially perform its sequence of actions. Each behaviour has a priority,
given by a natural number, which is used by the scheduler to decide which
behaviour to execute if the preconditions of several behaviour are true at the
same time. Behaviours with higher priorities will be scheduled before those with
lower priorities, and if more than one behaviour shares the highest priority then
one of these will be non-deterministically selected for scheduling. A behaviour
can be declared to be interruptible. The execution of the sequence of actions of
an interruptible behaviour can be interrupted by another schedulable behaviour
having a priority greater than the priority of the executing behaviour, if, and
only if, the preconditions of the interrupting behaviour hold. Any remaining
actions in the interrupted behaviour are lost, and the behaviour must again wait
to be scheduled as usual. All subroutines are uninterruptible.

Figure 2 shows the control rules for the S1-Med-5PM-Remind behaviour. Rules 1
and 2 are atomic preconditions and rules 3−9 are actions. For each control rule
in the database there is a flag indicating if that rule is a precondition or an
action. These are omitted here for simplicity. Rule 1 requires the time to be af-
ter 5pm and rule 2 requires the robot’s internal flag ::502::5PM-MedicineDue
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1. Time is on or after 17:00:00

2. ::502::5PM-MedicineDue is true

3. Turn light on ::0::Care-O-Bot 3.2 to yellow

4. move ::0::Care-O-Bot 3.2 to ::14:: Living Room Sofa Area in the

Living Room and wait for completion

5. Turn light on ::0::Care-O-Bot 3.2 to white and wait for completion

6. ::0::Care-O-Bot 3.2 says ’Its time for your medicine’ and wait for

completion

7. ::0::Care-O-Bot 3.2 GUI,S1-Set-GoToKitchen, S1-Set-ReturnHome,

S1-Set-WaitHere

8. SET ::502::5PM-MedicineDue TO false

9. SET ::503::5PM-MedicineReminder TO true

Fig. 2. The S1-Med-5PM-Remind Behaviour

to be true. When both preconditions hold, and this behaviour is scheduled for
execution, the robot will sequentially execute actions 3−9. It first turns its lights
to yellow, then moves to the living room, near the sofa and then turns its lights
to white. The robot then tells the occupant “It’s time to take your medicine”,
and displays some options on its GUI that allow the occupant to either send the
robot to the kitchen, send the robot to its charging point, or instruct the robot
to do nothing. The values of two internal variables are then set to true and false
respectively.

3 Intermediate Form Translation

As a first step to the transformation of Care-O-bot control rules into input for
NuSMV, we translate the extracted control rules into a succinct intermediate
form representation that represents all of the information extracted from the
control rules. This intermediate form facilitated the final translation into SMV.
This was so that translations from the intermediate form into input for other
model checkers could potentially be defined and implemented.

Precondition Classification. For the translation into intermediate form, we dis-
tinguish two categories of atomic preconditions: Value Check and Time Constraint.
A Value Check checks the value of some variable corresponding to the internal
state of the robot or the state of the environment. A Time Constraint requires the
current time of day to be within some given time interval. Table 1 gives examples
of preconditions for each of the two categories. The first Value Check checks the
value of the Boolean variable ::502::5PM-MedicineDue, which equates to an
internal variable of the robot, the second Value Check checks that the location of
the robot is in the living room, and the two Time Constraints require the current
time to be at or after 5pm, or between midnight and 5pm.

Action Classification. We also distinguish four categories of actions: Value As-
signment, Behaviour Execution, Behaviour Selection, and Delay. A Value Assign-
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Table 1. Precondition Categories

Value Check ::502::5PM-MedicineDue is true

::0::Care-O-Bot 3.2 location is ::14::the Living

Room

Time Constraint
Time is on or after 17:00:00

Time is between 00:00:00 and 16:59:00

ment assigns some value to a variable. This can represent a change in the in-
ternal state of the robot, or a change in the state of the environment. A Be-
haviour Execution transfers control from some scheduled behaviour to another
behaviour. A Behaviour Selection again transfers control to another behaviour,
however, here a choice of possible behaviours is presented to the occupant of the
house via the GUI of the Care-O-bot. A Delay instructs the robot to do noth-
ing for a given number of seconds. Table 2 gives examples of actions for each
of the four categories. The first Value Assignment assigns the value true to the
internal variable ::503::5PM-MedicineReminder, while the second Value As-
signment selects a phrase to be vocalised by the robot. The Behaviour Execution
executes the behaviour S1-sleep, and the Behaviour Selection allows the occupant
to choose to execute one of the S1-Set-GoToKitchen, S1-Set-ReturnHome, and
S1-Set-WaitHere behaviours. Finally, the Delay instructs the robot to do noth-
ing for 1 second.

Parsing and Translation. As can be observed from the tables, the control rules
can have a wide variety of syntactic forms. To ensure that future control rules
that may use additional categories of preconditions or actions can be translated
correctly, the parsing and extraction of information from the rules is not hard
coded into the software. The translator takes as input a set of Grammar Rules
defining the syntax of the control rules, and a set of Data Extraction Rules that
define how information should be extracted from the control rules. The Gram-
mar Rule for a new control rule allows an automaton to be constructed at run
time that can be used to parse this new syntactic rule form. This Grammar
Rule has a corresponding Data Extraction Rule that describes how meaningful in-
formation can be extracted from the text parsed by the automaton. The software

Table 2. Action Categories

Value Assignment
SET ::503::5PM-MedicineReminder TO true

::0::Care-O-Bot 3.2 says Its time for your medicine

Behaviour Execution Execute sequence S1-sleep on ::0::Care-O-Bot 3.2

Behaviour Selection
::0::Care-O-Bot 3.2 GUI,S1-Set-GoToKitchen,

S1-Set-ReturnHome, S1-Set-WaitHere

Delay Wait for 1 seconds on ::0::Care-O-Bot 3.2
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procedure BehaviourScheduling
sched← none
while true do

S ← all schedulable behaviours
whose preconditions hold

P ← b ∈ S with highest priority
if sched = none and S 6=∅ then

sched← P
else if interruptible(sched) and

priority(P ) > priority(sched) then
sched← P

else if all actions executed then
sched← none

else execute next action
end if

end while
end procedure

Fig. 3. Care-O-bot Behaviour Scheduling.

Control
Rules

CRutoN
Parser

Parameter
Input

Intermediate
Form

Grammar &
Data Rules

Input for
other Model
Checkers

NuSMV
Model

Fig. 4. A System Diagram of CRutoN.

has options that regulate the level of automation of the translation process and
determine when a user should be prompted to disambiguate input if necessary.

Figure 4 shows a diagram of the system. Given a set of Care-O-bot be-
haviours S, a set of Grammar Rules and Data Extraction Rules, and parameter
input for the parser, we construct an intermediate form representation (IFR).
The IFR of S is a tuple I(S) = 〈Γ,Ω, fsch , fint〉, where Γ is a set of behaviours
in intermediate form, fsch and fint are predicates over Γ that are true if, and
only if, a behaviour is respectively schedulable or interruptible, and Ω is a set
of variables that represent the internal state of the robot and the state of the
environment. A behaviour B ∈ Γ is a tuple B = 〈P,A, ρ〉, where P is a formula
formed by combining the atomic preconditions of the behaviour, ρ ∈ N is the
priority of the behaviour, and A is a sequence of actions. Each individual action
α ∈ A is a tuple of values. A Value Assignment is a pair (ω, ν), where ω ∈ Ω
is a variable and ν is a value from the domain of ω, a Behaviour Execution is a
subroutine B ∈ Γ , a Behaviour Selection is a set of subroutines B ⊆ Γ , and a
Delay is a natural number D.

4 Property Specification

There was no available formal semantics specifying the behaviours of the Care-O-
bot. An analysis of the set of control rules modelled in [3,17] and input from the
development team led to the formulation of desirable properties that would be
expected to hold in any model resulting from the translation into model checker
input. Linear-time temporal logic (LTL) was used to specify these properties.
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Linear Temporal Logic. In LTL the model of time is isomorphic to the natural
numbers, and a model for a formula is a sequence of states Σ = σ0, σ1, . . . such
that each state σi is a valuation for the set of variables V at the ith moment in
time, and σi(ω) is finite for every ω ∈ V and i ≥ 0. The set of LTL formulae can
be defined inductively as

ϕ ::= > | ⊥ | (ω=ν) | ¬ϕ | (ϕ∨ψ) | (ϕ∧ψ) | (ϕ =⇒ ψ) |#ϕ |2ϕ | ♦ϕ

where ω ∈ V and ϕ and ψ are LTL forumlae. If ω is a Boolean variable we will
often use ω for (ω=true), and ¬ω for (ω=false). We can define (Σ, i) |= Φ, the
truth of a formula Φ in Σ at time i, as follows:

(Σ, i) |= (ω=ν) iff σi(ω)=ν

(Σ, i) |= #Φ iff (Σ, i+ 1) |= Φ

(Σ, i) |= ♦Φ iff for some k ∈ N, (k ≥ i) and (Σ, k) |= Φ

(Σ, i) |= 2Φ iff for all k ∈ N, (k ≥ i) implies (Σ, k) |= Φ.

The semantics of propositional operators is defined as usual.

Formal Model of the System State. Given a set of Care-O-bot behaviours S, and
its intermediate form representation I(S) = 〈Γ,Ω, fsch , fint〉, we define variables
sched and step that are used to model the behaviour scheduling procedure of the
robot. The scheduling variable sched ranges over the values {none} ∪ {schedB |
B ∈ Γ} and its value indicates the behaviour that is currently scheduled by the
robot with none indicating that no behaviour is scheduled. The step variable
step ranges over the values {none} ∪ {step1, . . . , stepk} where k = max{|A| |
〈P,A, ρ〉 ∈ Γ}, and its value indicates the index of an action that is being
executed in the sequence of actions for a behaviour that is currently scheduled
by the robot, with none indicating that no action is being executed. A model of
our system is a sequence of states Σ = σ0, σ1, . . ., and each state is a valuation
for Ω ∪ {sched, step}.

Specification. We now formally express properties that we would expect to
hold in any generated NuSMV model. The following schematic formulae intend
to capture the behavioural semantics of the robot with regards to behaviour
scheduling and action execution. Let Γ sch = {B ∈ Γ | fsch(B)} be the set of all
behaviours that are schedulable, and let Γ int = {B ∈ Γ | fint(B)} be the set
of all behaviours that are interruptible. For every B = 〈P,A, ρ〉 ∈ Γ we define
4B = {〈P ′,A′, ρ′〉 ∈ Γ | ρ′ > ρ} to be the set of all behaviours in Γ that have a
higher priority than B.

If the kth action of a scheduled behaviour B is the Value Assignment (ω, ν)
and this action is executed, then the variable ω should have the value ν in the
next moment in time.

2
[ (

sched = schedB ∧ step = stepk
)

=⇒ #
[
(ω = ν)

] ]
(1)
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Scheduling. If no behaviours are scheduled and the preconditions to at least one
behaviour hold, then in the next moment in time a behaviour will be scheduled.

2
[(

sched = none
∧
∨
〈P,A,ρ〉∈Γ sch P

)
=⇒ #

[
step = step1

∧
∨
B∈Γ sch sched = schedB

]]
(2)

Termination. For any behaviour B that executes a Value Assignment or Delay as
its kth action, and this is the last action of the behaviour, if the preconditions
to no other schedulable behaviour hold then in the next moment in time no
behaviour should be executing.

2
[(

sched = schedB ∧ step = stepk

∧
∧
〈P,A,ρ〉∈Γ sch ¬P

)
=⇒ # sched = none

]
(3)

Prioritisation. If no behaviour is scheduled, and the preconditions to one or more
behaviours hold, then in the next moment in time the schedulable behaviour with
the highest priority will be executing its first action.

2


(
sched = none ∧

∨
〈P,A,ρ〉∈Γ sch P

)
=⇒∨

B∈Γ sch

(∧〈P ′,A′,ρ′〉∈4B∩Γ sch ¬P ′

∧#[sched = schedB ∧ step = step1]

) (4)

Persistence. For every uninterruptible behaviour B, if it has been scheduled and
has an action sequence of length k, then it should always eventually execute its
last (kth) action.

2
[
sched = schedB =⇒ ♦(sched = schedB ∧ step = stepk)

]
(5)

Continuity. For any interruptible behaviour B that executes a Value Assignment
or Delay as its kth action, where that action is not the last action, in the next
moment in time the behaviour should be executing its (k+1)th action if no other
behaviour can interrupt B.

2
[

(sched = schedB ∧ step = stepk ∧
∧
〈P,A,ρ〉∈4B∩Γ sch ¬P )

=⇒ #[sched = schedB ∧ step = stepk+1]

]
(6)

Note that without the 3rd conjunct we can also show continuity for uninterrupt-
ible behaviours executing Value Assignment or Delay actions.

Discontinuity. For all interruptible behaviours it should be the case that if the
behaviour can be interrupted in the next moment in time, the schedulable be-
haviour having the highest priority of all the behaviours that can interrupt should
be executing its first action.

∧
B∈Γ int

2
[∨
B′∈4B∩Γ sch

(
#[sched = schedB

′
∧ step = step1]

∧
∧
〈P,A,ρ〉∈4B′∩Γ sch ¬P

)]
(7)
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Delegation. For every behaviour B executing a Behaviour Execution, Bex , as its
kth action, if B is not interrupted by another behaviour then in the next moment
in time Bex should be scheduled and executing its first action.

2
[(

sched = schedB ∧ step = stepk

∧
∧
〈P,A,ρ〉∈4B∩Γ sch ¬P

)
=⇒ #

[
sched = schedBex

∧ step = step1

]]
(8)

Resumption. For every behaviour B executing a Behaviour Execution Bex as its
kth action, where that action is not the last action, if B is not interrupted by an-
other behaviour then at some time after that Bex should have finished executing
its actions, and the original behaviour should be executing its (k+1)th action.

2
[(

sched = schedB ∧ step = stepk

∧
∧
〈P,A,ρ〉∈4B∩Γ sch ¬P

)
=⇒ ♦

[
sched = schedB

∧ step = stepk+1

]]
(9)

Selection. For every behaviour B executing a Behaviour Selection B as its kth

action, if B is not interrupted by another behaviour then in the next moment in
time a behaviour in B should be scheduled and executing its first action.

2

 sched = schedB

∧ step = stepk

∧
∧
〈P,A,ρ〉∈4B∩Γ sch ¬P

=⇒
∨
Bex∈B #

[
sched = schedBex

∧ step = step1

] (10)

Selection Resumption. For every behaviour B executing a Behaviour Selection B
as its kth action, where that action is not the last action, if B is not interrupted by
another behaviour then at some time after that any subroutine in B should have
finished executing its actions, and the original behaviour should be executing its
(k+1)th action.

2

 sched = schedB

∧ step = stepk

∧
∧
〈P,A,ρ〉∈4B∩Γ sch ¬P

 =⇒
∨
Bex∈B♦

[
sched = schedB

∧ step = stepk+1

] (11)

5 Translation into SMV

NuSMV [1] is a symbolic BDD-based model checker. The model checker accepts
as input a finite state transition system defined using the modelling language
SMV [9]. NuSMV input models can be decomposed into separate modules. Every
model has at least one module, the main module, and some number of additional
parameterisable modules. Each model consists of three sections: VAR, ASSIGN,
and DEFINE. The VAR section defines variables and instances of modules; vari-
ables can be Booleans, symbolic enumerated types, or finitely bound integers.
The global state of a NuSMV model is a valuation for all variables in the model.
Initial states of the model and transitions between states are defined in the AS-
SIGN section. Finally, macro expressions can be defined in the DEFINE section.

Given a set of Care-O-bot behaviours S, and its intermediate form represen-
tation I(S)=〈Γ ,Ω,fsch ,fint〉, we construct an input model for NuSMV as follows.
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State Variables. For every ω ∈ Ω there is a variable declaration in the VAR
section of the main module. Variables are either Booleans or enumerated types –
variables over a set of symbolic constants. Variables that correspond to internal
flags of the robot are initialised to false, and initial values for variables corre-
sponding to the environment are non-deterministically chosen by NuSMV in the
initial state. Initial values for both types of variable can also be explicitly spec-
ified in the form of additional input to the software. As in Sec. 4 we also define
the enumerated variables scheduled and step. Initially, both variables have the
value none. The additional variable scheduled last ranges over the same values
as scheduled, and is used to record a behaviour that executes a Behaviour Exe-
cution or Behaviour Selection so that it can be rescheduled once the subroutine
has executed all of its actions. The initial value of scheduled last is none. Since
we only use one variable to record behaviours that should be rescheduled, we
can only construct models where the level of nesting of behaviour executions is
at most 1. Introducing additional variables would allow us to extend the nesting
level, at the expense of model size.

The time variable records the time of day in the Robot House. Values for
time are defined by partitioning a 24 hour period into intervals during which
different subsets of the set of all Time Constraints in the model hold. The initial
value of time is non-deterministically chosen in the initial state, and the value
then remains constant throughout a run of the system. If desired, time can be
set to an exact time of day using a parameter to the software, but still remains
constant throughout. Note that this is a limitation relating to explicit time.

Behaviours. For every B = 〈P,A, ρ〉 ∈ Γ there is a corresponding macro ex-
pression for P in the main module; for non-schedulable behaviours this is simply
false. In NuSMV a variable assignment occurs if some constraint holds. There is
an ordering on variable assignments such that if the constraints hold for multiple
assignments to a single variable then the assignment ordered first will be applied.
We can exploit this to ensure that behaviours with higher priorities are scheduled
before those with lower priorities i.e. scheduled is assigned a value corresponding
to the behaviour having the highest priority of all those that can be scheduled.
Assignments to scheduled are constrained by the expression corresponding to P ,
and by an interruptibility macro expression that evaluates to true if a behaviour
with a lower priority is currently scheduled. For each Value Assignment in A there
is a corresponding variable assignment, constrained by scheduled having a value
corresponding to B and step having a value corresponding to the index of the
action in A. For each Behaviour Execution there is a corresponding assignment to
scheduled last of a value corresponding to B, an assignment of 1 to step, and an
assignment to scheduled of a value corresponding to that of the subroutine being
executed. Additional variable assignments model the rescheduling of a behaviour
that calls a subroutine, once the subroutine has executed all of its actions.

Temporal Constraints. Some Value Check rules have additional temporal con-
straints. There are two types of constraint, Been-In-State and Was-In-State, that
require some variable ω ∈ Ω to have respectively maintained some value ν dur-
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Table 3. Priorities and Flags for Care-O-bot Behaviours

Name Pri Int Sch

S1-Med-5PM-Reset 90 0 1
checkBell 80 0 1
unCheckBell 80 0 1
S1-remindFridgeDoor 80 0 1
answerDoorBell 70 0 1
S1-alertFridgeDoor 60 0 1
S1-Med5PM 50 1 1
S1-Med5PM-Remind 50 1 1
S1-gotoKitchen 40 1 1
S1-gotoSofa 40 1 1

Name Pri Int Sch

S1-gotoTable 40 1 1
S1-kitchenAwaitCmd 40 1 1
Sw-sofaAwaitCmd 40 1 1
S1-tableAwaitCmd 40 1 1
S1-WaitHere 40 1 1
S1-ReturnHome 40 1 1
S1-continueWatchTV 35 1 1
S1-watchTV 30 1 1
S1-sleep 10 1 1

ing some previous period of time, or to have had the value ν at least once
during some previous period of time. We model Been-In-State and Was-In-State
constraints by introducing additional variables that record the number of tran-
sitions of the model since a variable last had a value other than ν or since a
variable last had the value ν respectively. We associate with each state of the
model some fixed length of time in seconds (duration), and this determines the
number of values over which these additional variables range. The software has
a parameter determining the granularity of these temporal aspects of the model.

6 Results and Discussion

We focus on the complete set of 31 behaviours developed as part of the EU
Accompany project2 and available from the project’s Git repository3. The pri-
ority (Pri), interruptibility (Int), and schedulability (Sch) of the 19 schedulable
behaviours is given in Table 3. There were also 12 unschedulable subroutines all
with Pri, Int, and Sch set to 0. For every behaviour, and every action in those
behaviours, we instantiated the corresponding properties specified in Sec. 4. The
full specification for the system was the conjunction of all of these individually
instantiated properties. All models generated using all behaviours with different
sets of parameter input for CRutoN satisfied their corresponding specification.

Generated models can be used to check properties pertaining to specific be-
haviours and robot actions. We might, for instance, want to check whether a
behaviour will eventually be scheduled, or if the robot will eventually perform
some action, given the current state of the robot and environment. We validated
our model by checking properties that were originally specified in [3]. For exam-
ple, “is it always the case that if the fridge door is open and the robot has not
already alerted the user, then at some point in the future the robot will alert the
user?” We found that for all generated models the verification results matched
those obtained by checking the properties in the manually constructed model.

2 http://accompanyproject.eu
3 https://github.com/uh-adapsys/accompany
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Table 4. Model Size and Model Checking Times for Different Temporal Granularities.

Seconds per State 600 500 400 300 200 100 50

States 249 249 249 250 251 253 256

Reachable States 222 222 223 223 224 226 228

Model Build Time(s) 11.94 12.08 13.17 15.13 20.43 39.43 108.64

Model Checking Time(s) 0.73 0.82 0.99 1.16 1.75 3.77 8.95

Recall that CRutoN accepts parameters to allow modulation of the tempo-
ral granularity of the model, and associates a fixed length of time (duration) in
seconds with every state in the formal model. Table 4 shows the effect of tempo-
ral granularity on the size of the models, and the time taken to perform model
checking. The results correspond to the initial set of 31 behaviours. We generated
models for 7 different durations for each state. The model checking times indicate
the time taken to check the property 2((scheduled = S1-alertFridgeDoor∧step =
step1) =⇒ ♦(scheduled = S1-alertFridgeDoor ∧ step = step9)), which was true
in each model as it is always the case that if the behaviour S1-alertFridgeDoor is
executing its first action then is should eventually execute its last (9th) action,
since the behaviour is not interruptible. Note that this sample property was ar-
bitrarily selected, and checking this property serves only to illustrate the effect
of temporal granularity on model size, and hence model checking times. The
results show that we can use a sensible duration of time for each state and still
perform model checking within a reasonable amount of time. Using shorter du-
rations per state would result in larger models, and hence longer model checking
times. We can therefore extrapolate a trade-off between the time taken to per-
form model checking, and the time that would be required to manually extend
existing formal models to include new behaviours.

For all investigated durations the corresponding model generated using CRu-
toN contains more reachable states than the manually constructed model de-
scribed in [3]. One reason for this difference is that in the manual construction a
distinction between value assignments to internal variables of the robot and all
other actions was made. Only the latter result in a new state, the former do not.
Whilst CRutoN currently does not make such a distinction and any action re-
sults in a new state, we could differentiate between value assignments and other
actions (see Table 2) to group sequences of value assignments into one state.

It is clear that our modelling of temporal aspects is not ideal. Time Constraints
are either always satisfied, or always not satisfied, along a run of the model, since
the time of day is fixed for each path. Alternatively, we could allow the time of
day to be non-deterministically chosen in each state, and then constrain that
choice in the properties. We also note that it is sometimes difficult to determine
a sensible value for the duration of time associated with a single state of the
formal model, since setting this value too low can result in large models in
which it is infeasible to check properties within a realistic amount of time, and
setting this value to be too high results in unrealistic models where many of
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the constraints imposed by Been-In-State and Was-In-State conditions are not
included in the model as the durations of time to which they refer are too small.

We also applied our automatic transformations to an extended set of Care-
O-bot behaviours provided by the development team working with the robot.
The original set of 31 behaviours with 156 control rules was extended to 88
behaviours with 324 control rules. Some rules had new syntactic forms, however
the expressiveness of the Grammar Rules and Data Extraction Rules allowed the
software to parse all control rules, and automatically generate a formal NuSMV
model that satisfied its specification.

7 Conclusion

We have described a translation from a set of control rules defining the be-
haviour of the Care-O-bot into both an intermediate form representation, and
furthermore into input for the model checker NuSMV. We presented the soft-
ware CRutoN that automates these translation processes. Formal models that
satisfy their specifications are automatically generated for different sets of input
parameters to the software, and the complexity of the generated models was
evaluated with regards to the granularity of the temporal aspects. We aim to
generalise our approach so that formal models could be automatically generated
for other robot systems using similar rule constructs.

The generated intermediate form representation for a set of control rules
could be used to develop further translations into input for other model checkers.
We could, for instance, extend our models to incorporate uncertainty arising from
faulty sensors or actuators, or the unpredictable behaviour of a human in the
Robot House, and develop a translation into a probabilistic model checker. In
Sec. 6 we discussed the limitations of our model with regards to the temporal
aspects of robot behaviours. Translations into input for verification tools for
real-time systems could be developed to refine our model of time.

Recent work in the robot house has allowed users to add their own behaviours,
built upon existing primitives, via the ‘TeachMe’ system [14]. We have carried out
a static analysis on the priorities and preconditions of newly added behaviours to
advise users of potential problems. For example, the added behaviour will never
be executed because an existing behaviour with a higher priority has a subset of
the preconditions of the added behaviour. Evaluations have shown that users find
this helpful when adding behaviours. The tool accomplishes this using an inter-
mediate form representation of the behaviours generated by the CRutoN parser.

The analysis of scheduling issues arising from the prioritisation of behaviours
could be complemented by formalising a set of properties relating to changes in
the state of the robot and its environment resulting from robot actions, and
automatically checking that these hold in generated models. Properties to be
checked could include safety properties that would require the robot to never
perform a specific action when in proximity to a human. A further issue that
could be addressed is how counterexamples, generated when requisite properties
fail to hold in the model, could be presented to a user in a comprehensible form.
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robot teamwork. In: Fariñas del Cerro, L., Herzig, A., Mengin, J. (eds.) JELIA
2012. LNCS, vol. 7519, pp. 385–397. Springer, Berlin (2012), doi:10.1007/
978-3-642-33353-8_30

17. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Daut-
enhahn, K., Saez-Pons, J.: Toward reliable autonomous robotic assistants through
formal verification: A case study. IEEE Trans. Human-Machine System 46(2), 186–
196 (2016)

15

http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-319-10401-0_9
http://intranet.csc.liv.ac.uk/research/techreports/tr2017/ulcs-17-003.pdf
http://dx.doi.org/10.1007/978-3-642-33353-8_30
http://dx.doi.org/10.1007/978-3-642-33353-8_30

	CRutoN: Automatic Verification of a Robotic Assistant's Behaviours 

