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Introduction

0.1. Statement of the main result. A singular point o of an algebraic variety
V is factorial, if every prime divisor D 3 o in a neighborhood of this point is given
by a single equation f ∈ Oo,V . (For a non-singular point o ∈ V this is a well known
theorem of the classical algebraic geometry.) Majority of the modern techniques
work for factorial or Q-factorial varieties (in the latter case it is required that some
multiple of every prime divisor D 3 o were given by one equation, see, for instance,
[1] or any paper on the minimal model program). A standard example of a non-
Q-factorial (and the more so, non-factorial) variety is the three-dimensional cone in
P4 over a non-singular quadric in P3: no multiple of a plane passing through the
vertex of the cone (and contained in that cone) can be given by one equation in the
local ring of the vertex of the cone. The aim of this paper is to estimate from below
the codimension of the complement to the set of factorial hypersurfaces of degree
d in PN , N > 7, d > 4. More precisely, let Pd,N+1 be the space of homogeneous
polynomials of degree d in the coordinates x0, . . . , xN on PN . Let P fact

d,N+1 ⊂ Pd,N+1

be the subset, consisting of such f ∈ Pd,N+1 that the hypersurface {f = 0} is
irreducible, reduced and factorial.

Theorem 0.1. (i) Assume that 4 6 d 6 N (that is, {f = 0} is a Fano
hypersurface). Then the estimate

codim
(Pd,N+1 \ P fact

d,N+1

)
> min

[
3

(
d + N − 5

N − 2

)
−N, 5

(
d + N − 6

N − 3

)]

holds, and in the case d = N (that is, {f = 0} is a Fano hypersurface of index one)
in the right hand side one can leave only 5

(
d+N−6

N−3

)
.

(ii) Assume that d > 2N (in particular, the hypersurface {f = 0} is a variety of
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general type). Then the following estimate holds:

codim
(Pd,N+1 \ P fact

d,N+1

)
>

(
d + N − 4

N − 4

)
+ 4

(
d + N − 5

N − 4

)
− 4(N − 3).

In fact, we will obtain an estimate for the codimension of the complement to the
set P fact

d,N+1 for any values d > 4 (Theorem 3.1), just in the Fano case (d 6 N) and
in the case d > 2N that estimate can be essentially simplified to the inequalities of
Theorem 0.1.

0.2. The plan of the proof and the structure of the paper. Our proof
is based on the famous Grothendieck’s theorem [2] and the technique of estimating
the codimension of the set of hypersurfaces in PN with a singular set of prescribed
dimension, developed in [3, 4]. Grothendieck’s theorem claims that a variety with
hypersurface singularities (in fact, with complete intersection singularities) is factorial,
if the singular locus has codimension at least 4. For that reason, in order to
estimate the codimension of the complement to P fact

d,N+1, it is sufficient to estimate
the codimension of the subset consisting of polynomials f ∈ Pd,N+1 such that the
singular locus of the hypersurface {f = 0} has codimension at most 3. This is what
we will do in the present paper.

The paper is organized in the following way. In §1 we compute the codimensions
of two sets of polynomials f ∈ Pd,N+1: such that the hypersurface {f = 0} has
a linear space of singular points and such that the hypersurface {f = 0} has a
subvariety of singular points which is a hypersurface in a linear space. After that
we set the general problem of estimating the codimension of the set of polynomials
f ∈ Pd,N+1, such that the singular locus of the hypersurface {f = 0} is of dimension
at least i > 1, and state the main technical result — Theorem 1.1, solving this
problem.

§2 contains the proof of Theorem 1.1 by means of the technique developed in
[3, 4]. In §3 we obtain an estimate of the codimension of the set of non-factorial
hypersurfaces, which implies Theorem 0.1.

0.3. Historical remarks and acknowledgements. Factoriality of algebraic
varieties is a very old topic in Algebraic Geometry, with lots of papers written on the
subject. We will only point out a few recent papers that demonstrate that the topic
is still actively investigated today: [5, 6, 7, 8, 9]. Various technical points related
to the constructions of this paper were discussed by the author in his talks given in
2009-2014 at Steklov Mathematical Institute. The author thanks the members of
divisions of Algebraic Geometry and Algebra and Number Theory for the interest to
his work. The author is also grateful to his colleagues in Algebraic Geometry group
at the University of Liverpool for the creative atmosphere and general support.

The author thanks the referee for the useful comments.
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1 Hypersurfaces with a large singular locus

In this section we consider the problem of estimating the codimension of the set of
polynomials f , defining hypersurfaces with a large singular locus. As a first example
we compute the codimension of the set of polynomials f , such that the hypersurface
{f = 0} has a linear subspace of singular points (Subsection 1.1). The next by
complexity case, when the singular locus is a hypersurface in a linear subspace, is
made in Subsection 1.2. In Subsection 1.3 we give a precise setting of the problem
in the general case and state the main result.

1.1. Hypersurfaces with a linear subspace of singular points. Let PN

be the complex projective space with homogeneous coordinates (x0 : x1 : · · · : xN),
N > 3 and

Pd,N+1 = H0(PN ,OPN (d))

the linear space of homogeneous polynomials of degree d in x∗. For a polynomial
f ∈ Pd,N+1 \ {0} the set of singular points of the hypersurface {f = 0} is denoted
by the symbol Sing(f). Set

P(i)
d,N+1 = {f ∈ PN,d | dim Sing(f) > i},

where for the identically zero polynomial f ≡ 0 we set Sing(0) = PN . Obviously,

the sets P(i)
d,N+1 are closed and for i > j we have P(j)

d,N+1 ⊂ P (i)
d,N+1.

In order work with the sets P(i)
d,N+1, it is convenient to represent them as a union of

more special subsets that take into account more information about the set Sing(f),
not only its dimension. For k > i let

P(i,k)
d,N+1 ⊂ P (i)

d,N+1

be the closure of the set P(i)
d,N+1, consisting of polynomials f , such that Sing(f)

contains an irreducible component C of dimension i > 1, the linear span 〈C〉 of

which is a k-plane in PN . For instance, P(i,i)
d,N+1 consists of polynomials f , such that

Sing(f) contains a i-plane in PN . The closure in this case is not needed: the set

P(i,i)
d,N+1 allows the following obvious explicit description.

Proposition 1.1. The following equality holds:

codim
(
P(i,i)

d,N+1 ⊂ Pd,N+1

)
=

(
d + i

d

)
+ (N − i)

(
d + i− 1

d− 1

)
− (i + 1)(N − i).

Proof. For an i-plane P ⊂ PN by the symbol P(i,i)
d,N+1(P ) we denote the closed

set of polynomials f , such that P ⊂ Sing(f). Fixing P , we may assume that

P = {xi+1 = . . . = xN = 0},
so that the property f ∈ P (i,i)

d,N+1(P ) is defined by the set of identical equalities

f |P ≡ ∂f

∂xi+1

∣∣∣∣
P

≡ . . . ≡ ∂f

∂xN

∣∣∣∣
P

≡ 0.
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It is easy to see that these equalities are equivalent to vanishing the coefficients at
the monomials in x0, . . . , xi and the monomials of the form

xjx
a0
0 xa1

1 . . . xai
i ,

j = i+1, . . . , N , which are all distinct. Therefore, the codimension of the closed set
P(i,i)

d,N+1(P ) is (
d + i

d

)
+ (N − i)

(
d + i− 1

d− 1

)
.

Taking into account that for a general polynomial f ∈ P (i,i)
d,N+1(P ) the equality

Sing(f) = P holds for some i-plane P , we obtain the claim of the proposition.

1.2. The singular locus is a hypersurface in a linear subspace. Let us
consider now the next by complexity example: let us estimate the codimension of
the set P(i,i+1)

d,N+1 . This set is the closure of the set of polynomials f , such that for

some (i + 1)-plane P ⊂ PN and an irreducible hypersurface C ⊂ P of degree q > 2
we have the inclusion C ⊂ Sing(f). Fixing the linear subspace P , we obtain the

closed subset P(i,i+1)
d,N+1 (P ) ⊂ P (i,i+1)

d,N+1 , so that

P(i,i+1)
d,N+1 =

⋃

P⊂PN

P(i,i+1)
d,N+1 (P ),

where the union is taken over all (i+1)-planes in PN . By Bertini’s theorem (and the

explicit description of the polynomials f ∈ P(i,i+1)
d,N+1 (P ), given below in the proof of

Proposition 1.2), for a general polynomial f ∈ P (i,i+1)
d,N+1 there is a unique (i+1)-plane

P ⊂ PN , such that f ∈ P (i,i+1)
d,N+1 (P ), and for that reason the equality

codim
(
P(i,i+1)

d,N+1 ⊂ Pd,N+1

)
= codim

(
P(i,i+1)

d,N+1 (P ) ⊂ Pd,N+1

)
− (i + 2)(N − i− 1)

holds.

Now let us fix P : we may assume that

P = {xi+2 = . . . = xN = 0}.
It is clear that C ⊂ Sing(f |P ). If f |P 6≡ 0, then C is a multiple component of
the hypersurface {f |P = 0}. There are at most

[
d
4

]
such components and they are

determined by the polynomial f |P . However, there is also another option: P =
Sing(f |P ), that is, f |P ≡ 0. In that case the subvariety of singularities C ⊂ P is
determined by the polynomial f , but not by its restriction f |P . In order to take
both options into account, let us write

P(i,i+1)
d,N+1 (P ) = P(i,i+1;i)

d,N+1 (P ) ∪ P(i,i+1;i+1)
d,N+1 (P ),

where P(i,i+1;l)
d,N+1 (P ) is the closure of the set of polynomials f ∈ P (i,i+1)

d,N+1 (P ), such that

dim Sing(f |P ) = l.
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The codimension of the set P(i,i+1)
d,N+1 (P ) is the minimum of the codimensions of those

two sets. It is obvious from the explicit formulas for those codimensions that the
minimum is attained at the first set.

Proposition 1.2. (i) For d > 4, d 6= 6 or for d = 6, i 6 N − 2 the following

equality holds: codim
(
P(i,i+1;i)

d,N+1 (P ) ⊂ Pd,N+1

)
=

=

(
d + i + 1

i + 1

)
−

(
d + i− 3

i + 1

)
−

(
i + 3

i + 1

)
+ (N − i− 1)

((
d + i

i + 1

)
−

(
d + i− 2

i + 1

))
.

(ii) For d = 6, i = N − 1 the following equality holds

codim
(
P(N−1,N ;N−1)

6,N+1 (P ) ⊂ P6,N+1

)
=

(
N + 6

6

)
−

(
N + 3

3

)
− 1.

(iii) The following equality holds codim
(
P(i,i+1;i+1)

d,N+1 (P ) ⊂ Pd,N+1

)
=

= min

{(
d + i + 1

i + 1

)
−

(
i + 3

i + 1

)
+ (N − i− 1)

((
d + i

i + 1

)
−

(
d + i− 2

i + 1

))
,

(
d + i + 1

i + 1

)
+ (N − i− 2)

((
d + i

i + 1

)
− 1

)}
.

Proof. Let us show the claim (i). For a general polynomial f ∈ P (i,i+1;i)
d,N+1 (P )

we have: f |P 6≡ 0, the hypersurface {f |P = 0} ⊂ P has a multiple component C of
degree q > 2, and moreover,

∂f

∂xj

∣∣∣∣
C

≡ 0 (1)

for j = i + 2, . . . , N . Note that the coefficients of the polynomials f |P and ∂f
∂xj

∣∣∣
P
,

j = i + 2, . . . , N , corrrespond to distinct coefficients of the original polynomial f .
The requirement that the hypersurface {f |P = 0} ⊂ P has a double component C
of degree q > 2, gives

Eq =

(
d + i + 1

i + 1

)
−

(
d− 2q + i + 1

i + 1

)
−

(
q + i + 1

i + 1

)

independent conditions for the coefficients of the polynomial f |P .

Lemma 1.1. For d 6= 6 the minimum of the numbers Eq, q = 2, . . . , [d/2], is
attained at q = 2.

Proof. We have: (i + 1)!(Eq+1 − Eq) =

= [(d− 2q + i + 1) . . . (d− 2q + 1)− (d− 2q + i− 1) . . . (d− 2q − 1)]−

−[(q + i + 2) . . . (q + 2)− (q + i + 1) . . . (q + 1)],
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whence after simplifications we get i!(Eq+1 − Eq) =

= (2d− 4q + i)(d− 2q + i− 1) . . . (d− 2q + 1)− (q + i + 1) . . . (q + 2).

The first product decreases when q is increasing, the second one is increasing. It
is easy to check that for d > 7 the inequality E3 > E2 holds. Therefore, for the
sequence of integers Eq, q = 2, . . . , [d/2], there are two options:

• either it is increasing,

• or it is first increasing (q = 2, . . . , q∗), and then decreasing (q = q∗, . . . , [d/2]).

In the first case the claim of the lemma is obvious. In the second case the
minimum of the numbers Eq is attained either at q = 2, or at q = [d/2], and an easy
check shows that the minimum corresponds precisely to the value q = 2. Q.E.D. for
the lemma.

Now let us fix the polynomial f |P 6≡ 0. Since the hypersurface {f |P = 0} has
finitely many components, we may assume that the irreducible hypersurface C of
degree q > 2 is fixed. Now the requirement (1) imposes on the coefficients of the
polynomial (∂f/∂xj)|P precisely

(
d + i

i + 1

)
−

(
d− q + i

i + 1

)
(2)

independent conditions, and it is obvious, that the minimum of the last expression
is attained at q = 2. This completes the proof of the claim (i) (an explicit check
shows that it is true for d = 6, too, although for d = 6 the claim of Lemma 1.1 is
not true: E3 < E2.) The claim (ii) is shown by explicit simple computations.

Let us show the claim (iii). In that case the hypersurface {f = 0} contains
the entire subspace P . The closed subset of polynomials f , such that f |P ≡ 0, has
codimension

(
d+i+1

i+1

)
. Furthermore, either all partial derivatives ∂f

∂xj
, j = i+2. . . . , N ,

vanish on P , so that P ⊂ Sing(f) and this gives an essentially higher codimension
than what is claimed by (iii), and for that reason this option can be ignored, or
∂f
∂xj
|P 6≡ 0 for some j ∈ {i + 2, . . . , N}. Without loss of generality we may assume

that j = i + 2. Then all polynomials ∂f/∂xj, j = i + 3, . . . , N , vanish on one of the

components C of the hypersurface

{
∂f

∂xi+2

= 0

}
⊂ P , where deg C = q > 2. This

component can be assumed to be fixed and this gives for each of the (N − i − 2)
polynomials ∂f/∂xj, j = i + 3, . . . , N , the new independent conditions, the number
of which is given by the formula (2). Taking into account that the hypersurface
{∂f/∂xi+2 = 0} is reducible, we finally obtain

(
d + i + 1

i + 1

)
+ (N − i− 1)

((
d + i

i + 1

)
−

(
d− q + i

i + 1

))
−

(
i + q + 1

i + 1

)

independent conditions for the coefficients of the polynomial f . Using the same
method as in the proof of the claim (i), it is easy to show that the minimum of the
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last expression for q = 2, . . . , d − 1 is attained at one of the end values of q: either
at q = 2, or at q = d− 1. Proof of Proposition 1.2 is complete. Q.E.D.

1.3. Statement of the main result for the general case. Now let us
consider the general case. By the symbol P(i,k;l)

d,N+1(P ) for a k-plane P ⊂ PN denote
the closure of the set of polynomials f ∈ Pd,N+1 such that:

• the set Sing(f) has an irreducible component C ⊂ P of dimension i, and
moreover 〈C〉 = P ,

• the set Sing(f |P ) has an irreducible component B of dimension l > i, and
moreover C ⊂ B.

By the symbol P(i,k)
d,N+1(P ) for a k-plane P ⊂ PN denote the closure of the set

of polynomials f ∈ Pd,N+1 such that the first of the two conditions stated above is
satisfied. Obviously,

P(i,k)
d,N+1(P ) =

k⋃

l=i

P(i,k;l)
d,N+1(P ).

Everywhere in the sequel the codimension of various closed sets in the space of
polynomials Pd,N+1 is meant to be with respect to that space, so that, for instance,

codimP(i,k)
d,N+1(P ) is the minimum of the codimensions codimP(i,k;l)

d,N+1(P ), where l =
i, . . . , k, and the following estimate holds:

codimP(i,k)
d,N+1 > codimP(i,k)

d,N+1(P )− (k + 1)(N − k).

Remark 1.1. It is easy to see that for N − k < l − i the singular set of a
polynomial f ∈ P (i,k;l)

d,N+1(P ) is of dimension at least i + 1. Indeed, Sing(f |P ) contains
an l-dimensional irreducible component C ⊂ P , where l > i. If k = N , then
C ⊂ Sing(f). If k < N , then

[
C ∩

{
∂f

∂xk+1

∣∣∣∣
P

= . . . =
∂f

∂xN

∣∣∣∣
P

= 0

}]
⊂ Sing(f),

so that dim Sing(f) > l − (N − k) > i, as we claimed. For that reason everywhere

below, whenever we consider the sets P(i,k;l)
d,N+1(P ), we assume that the inequality

N + i > k + l holds.

In order to give a compact statement of the main result about these codimensions,
we introduce one notation more. For positive integers a, b, c, where b 6 N , set

τ(a, b, c) = max

{(
a + c

c

)
, ab + 1

}
.

If we fix c, then the first of the two numbers exceeds the second one for the values

of a that are higher than a number of order
c

e
N

1
c , where e is the base of the natural

logarithm. If we fix a, the first of the two numbers exceeds the second one for
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the values of c that are higher than a number of order
a

e
N

1
a . The meaning of the

function τ will be clear in §2.

Theorem 1.1. For l 6 k − 2 the following estimate holds:

codimP(i,k;l)
d,N+1(P ) > (k − l + 1)

(
d + l − 2

l + 1

)
+ (N + i− k − l) τ(d− 1, k, i).

Theorem 1.2. (i) For l = k − 1, d 6= 6 the following estimate holds:

codimP(i,k;l)
d,N+1(P ) >

[(
d + k

k

)
−

(
d− 4 + k

k

)
−

(
k + 2

k

)]
+(N+i−2k+1) τ(d−1, k, i).

(ii) For l = k − 1, d = 6 the following estimate holds:

codimP(i,k;l)
d,N+1(P ) >

[(
k + 6

k

)
−

(
k + 3

k

)
− 1

]
+ (N + i− 2k + 1) τ(5, k, i).

Theorem 1.3. For l = k the following estimate holds:

codimP(i,k;l)
d,N+1(P ) >

(
d + k

k

)
+ (N + i− k − l) τ(d− 1, k, i).

Proof of these three theorems will be given in §2.

2 Good sequences and linear spans

In this section we prove Theorems 1.1-1.3. Theorem 1.1 is the hardest one. First
(Subsection 2.1) we describe the strategy of the proof of this theorem and give the
definition of good sequences and associated subvarieties: this technique amkes it
possible to reconstruct the subvariety C ⊂ Sing(f) inside the, generally speaking,
larger subvariety B ⊂ Sing(f |P ). After that we estimate the codimension of the
subset of polynomials on P with a non-degenerate subvariety of singular points of
dimension l (Subsection 2.2). Finally, in Subsection 2.3 we complete the proof of
Theorem 1.1 by means of well known methods of estimating the codimension of the
set of polynomials, vanishing on a given non-degenerate subvariety; after that we
show Theorems 1.2 and 1.3, which is easy.

2.1. Plan and start of the proof of Theorem 1.1. Let us describe the
strategy of the proof of Theorem 1.1. Fix a k-plane P ⊂ PN . We will assume that
it is the coordinate plane

P = {xk+1 = . . . = xN = 0}.

As we noted in Subsection 1.2, the coefficients of the polynomials f |P and ∂f
∂xj

∣∣∣
P
,

j = k + 1, . . . , N , correspond to distinct coefficients of the polynomial f . For that
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reason, considering the general polynomial f ∈ P (i,k;l)
d,N+1(P ), one has to solve three

problems:

1) estimate the codimension of the closed subset P(l,k)
d,k+1 in the space Pd,k+1 (since,

obviously, f |P ∈ P (l,k)
d,k+1),

2) using the l − i polynomials ∂f
∂xj

∣∣∣
P
, where j ∈ I ⊂ {k + 1, . . . , N}, so that

|I| = l − i, reconstruct the variety of singular points C ⊂ Sing(f) as a subvariety
of codimension l− i of the variety of singular points B ⊂ Sing(f |P ), which depends
on the restriction f |P only and for that reason can be assumed to be fixed, if we fix

the polynomial f |P ∈ P (l,k)
d,k+1,

3) estimate the codimension of the closed set of polynomials h ∈ Pd−1,k+1,
vanishing on a fixed non-degenerate subvariety B ⊂ P , and apply this estimate

to the (N + i− k − l) polynomials ∂f
∂xj

∣∣∣
P
, j ∈ {k + 1, . . . , N}, j 6∈ I.

The sum of the estimate, obtained at the stage 1), with the (N + i − k − l)-
multiple of the estimate, obtained at the stage 3), is precisely the inequality, claimed
by Theorem 1.1.

Let us start to realize this programme.

First of all, recall the following definition (see [12, Section 3] or [11, Chapter 3]).

Definition 2.1. A sequence of homogeneous polynomials g1, . . . , gm of arbitrary
degrees on the projective space Pe, e > m + 1, is said to be a good sequence, and an
irreducible subvariety W ⊂ Pe of codimension m is its associated subvariety, if there
exists a sequence of irreducible subvarieties Wj ⊂ Pe, codim Wj = j (in particular,
W0 = Pe) such that:

• gj+1|Wj
6≡ 0 for j = 0, . . . , m + 1,

• Wj+1 is an irreducible component of the closed algebraic set gj+1|Wj
= 0,

• Wm = W .

A good sequence can have more than one associated subvarieties, but their number
is bounded from above by a constant, depending on the degrees of the polynomials
gj only (see [12, Section 3]).

Assuming the polynomial f |P and the subvariety B to be fixed, let us construct
a good sequence of polynomials on P = Pk with the subvariety C as one of its
associated subvarieties. This sequence starts with g1 = f |P 6≡ 0. Since B is an
irreducible l-dimensional component of the closed set Sing(f |P ), for some (k− l−1)

polynomials ∂f
∂xj

∣∣∣
P
, j ∈ {0, . . . , k}, we obtain a good sequence of polynomials with

B as one of its associated subvarieties. If l = i, then there is nothingmore to

construct. Assume that l > i + 1. Then among the polynomials ∂f
∂xj

∣∣∣
P
, j ∈ {k +

1, . . . , N}, there is one which does not vanish on B (otherwise, B ⊂ Sing(f), so

that f ∈ P (l,k;l)
d,N+1(P ), and this contradicts to the assumption that C ⊂ B, C 6= B is
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an irreducible component of the set Sing(f)). We add this polynomial to already
constructed sequence. Continuing in this way (using at every step the fact that C
is an irreducible component of the set Sing(f)), we complete the construction of
a good sequence. Assuming the polynomials of the good sequence to be fixed, we
may assume that the variety C ⊂ P to be fixed as well. This solves the problem 2),
stated above. Now let us consider the most difficult problem 1).

2.2. Linearly independent singular points. The problem 1), stated above,
is solved in the following claim.

Proposition 2.1. The following estimate holds:

codim
(
P(l,k)

d,k+1 ⊂ Pd,k+1

)
> (k − l + 1)

(
d + l − 2

l + 1

)
. (3)

Proof. In order to simplify the notations, we assume that k = N . Let us
describe the technique of estimating the codimension of the closed subset of the
space Pd,N+1, consisting of polynomials with many singular points. The following
claim is true.

Lemma 2.1. Assume that d > 3. For any set of m linearly independent points
p1, . . . , pm ∈ PN , m 6 N + 1, the condition

{p1, . . . , pm} ⊂ Sing(g),

g ∈ Pd,N+1, defines a linear subspace of codimension m(N + 1) in Pd,N+1.

Proof. We may assume that

p1 = (1 : 0 : 0 . . . : 0), p2 = (0 : 1 : 0 : . . . : 0)

and so on correspond to the first m vectors of the standard basis of the linear
space CN+1. The condition pi ∈ Sing(g) means vanishing of the coefficients at the
monomials xd

i−1, x
d−1
i−1 xj, for all j 6= i− 1. For d > 3 all these m(N + 1) monomials

are distinct. Q.E.D. for the lemma.

Now let us consider an arbitrary linear subspace Π ⊂ PN of codimension r + 1,
where r > 1, given by a system of r + 1 equations

l0(x) = 0, l1(x) = 0, . . . , lr(x) = 0,

where l0, . . . , lr are linearly independent forms. For each i = 1, . . . , r fix an arbitrary
set of distinct constants λi,0, . . . , λi,d−1 ∈ C; we assume that λi,0 = 0 for all i =
1, . . . , r. Now for any integer valued point

e = (e1, . . . , er) ∈ Zr
+, ei 6 d− 1,

by the symbol Θ(e) we denote the linear subspace

{li(x)− λi,ei
l0(x) = 0 | i = 1, . . . , r} ⊂ PN
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of codimension r. Obviously, Θ(e) ⊃ Π. Set

|e| = e1 + . . . + er ∈ Z+.

For every tuple e ∈ Zr
+ with |e| 6 d− 3 consider an arbitrary set

S(e) = {p1(e), . . . , pm(e)} ⊂ Θ(e)\Π

of m linearly independent points (so that m 6 N − r + 1).

Proposition 2.2. The set of conditions

S(e) ⊂ Sing(g|Θ(e)),

e ∈ Zr
+, |e| 6 d− 3, defines a linear subspace of codimension

m(N − r + 1)|∆|

in Pd,N+1, where

∆ = {e1 > 0, . . . , er > 0, e1 + . . . + er 6 d− 3} ⊂ Rr

is an integer valued simplex and |∆| is the number of integral points in that simplex,
|∆| = ](∆ ∩ Zr).

Proof. We may assume that l0 = x0, l1 = x1, . . . , lr = xr. In order to
simplify the formulas we will prove the affine version of the proposition: set v1 =
x1/x0, . . . , vr = xr/x0 and ui = xr+i/x0, i = 1, . . . , N − r. In the affine space
AN ⊂ PN , AN = PN\{x0 = 0} with coordinates (u, v) = (u1, . . . , uN−r, v1, . . . , vr)
the affine spaces A(e) = Θ(e)\Π are contained entirely:

A(e) = Θ(e) ∩ AN ,

so that S(e) ⊂ A(e) for all e. Obviously,

A(e) = {v1 = λ1,e1 , . . . , vr = λr,er} ⊂ AN

is a (N−r)-plane, which is parallel to the coordinate (N−r)-plane (u1, . . . , uN−r, 0, . . . , 0).
Now let us write the polynomial g in terms of the affine coordinates (u, v) in the
following way:

g(u, v) =
∑

e∈Zr
+,|e|6d

ge1,...,er(u)
r∏

i=1

ei−1∏
j=0

(vi − λi,j)

(if ei = 0, then the corresponding product is meant to be equal to 1). Here ge(u) =
ge1,...,er(u) is an affine polynomial in u1, . . . , uN−r of degree deg ge 6 d − |e|. When
λi,j are fixed, this expression is unique. By Lemma 2.1, the condition

S(0) = S(0, . . . , 0) ⊂ Sing(g|A(0))

11



defines a linear subspace of codimension m(N − r + 1) in the space of polynomials
Pd,N−r+1. However it is easy to see that

g|A(0) = g0,...,0(u),

since for e 6= 0 in the product

r∏
i=1

ei−1∏
j=0

(vi − λi,j)

there is at least one factor (vi − λi,0) = vi, which vanishes when we restrict it onto
the (N−r)-plane A(0). Therefore, the condition S(0) ⊂ Sing(g|A(0)) imposes on the
coefficients of the polynomial g0,...,0(u) precisely m(N−r+1) independent conditions,
whereas the polynomials ge(u) for e 6= 0 can be arbitrary.

Now let us complete the proof of Proposition 2.2 by induction on |e|. More
precisely, for every a ∈ Z+ set

∆a = {e1 > 0, . . . , er > 0, e1 + . . . + er 6 a} ⊂ Rr,

so that ∆ = ∆d−3. Let us prove the claim of Proposition 2.2 in the following form:
for every a = 0, . . . , d− 3

(∗)a the set of conditions

S(e) ⊂ Sing(g|Θ(e)),

e ∈ Zr
+, |e| 6 a, defines a linear subspace of codimension

m(N−r+1)|∆a| in Pd,N+1, and, moreover, the linear conditions
are imposed on the coefficients of the polynomials ge(u) for
e ∈ ∆a, whereas for e 6∈ ∆a the polynomials ge(u) can be
arbitrary.

The case a = 0 has already been considered, so that assume that a 6 d− 4 and
the claims (∗)j for j = 0, . . . , a have been shown. Let us show the claim (∗)a+1.
Let e ∈ Zr

+ be an arbitrary multi-index, |e| = a + 1. The restriction onto the
affine subspace A(e) means the substitution v1 = λ1,e1 , . . ., vr = λr,er . Therefore the
polynomial ge(u) comes into the restriction g|A(e) with the non-zero coefficient

αe =
r∏

i=1

ei−1∏
j=0

(λi,ei
− λi,j).

On the other hand, for e′ 6= e, |e′| > a + 1 the product

r∏
i=1

e′i−1∏
j=0

(λi,ei
− λi,j).

12



is equal to zero, since for at least one index i ∈ {1, . . . , r} we have e′i > ei and
so this product contains a factor equal to zero. Therefore, g|A(e) is the sum of the
polynomial αege and a linear combination of the polynomials ge′ with |e′| 6 a with
constant coefficients. Now, fixing the polynomials ge′ with |e′| 6 a, we obtain that
the condition

S(e) ⊂ Sing(g|A(e))

defines an affine (generally speaking, not linear) subspace of codimension m(N −
r + 1) of the space of polynomials ge(u1, . . . , uN−r) of degree at most d − |e|, the
corresponding linear subspace of which is given by the condition

S(e) ⊂ Sing ge(u).

Moreover, no restrictions are imposed on the coefficients of other polynomials ge′

with |e′| = a + 1.

This proves the claim (∗)a for all a = 0, . . . , d − 3. Proof of Proposition 2.2 is
complete.

Now let

Θ = Θ[l0, . . . , lr; λi,j, i = 1, . . . , r, j = 0, . . . , d− 1] = {Θ(e) | e ∈ ∆}

be some set of linear subspaces of codimension r in PN , considered in Proposition
2.2. We define the subset

Pd,N+1(Θ) ⊂ Pd,N+1

by the following condition: for every subspace Θ(e) with |e| 6 d − 3 there is a
set S(e) ⊂ Θ(e)\Π, consisting of m linearly independent points, such that S(e) ⊂
Sing(g|Θ(e)).

Proposition 2.3. The following inequality holds:

codim(Pd,N+1(Θ) ⊂ Pd,N+1) > m|∆|.

Proof is obtained by means of the obvious dimension count: the subspaces Θ(e)
are fixed, so that every point pi(e) varies in a (N − r)-dimensional family. Q.E.D.
for the proposition.

Finally, let us complete the proof of Proposition 2.1. Set N = k, so that the
space of polynomials of degree d is Pd,k+1. For an arbitrary set Θ = {Θ(e) | e ∈ ∆}
of linear subspaces of codimension l in P = Pk let

P(l,k)
d,k+1(P, Θ) ⊂ P (l,k)

d,k+1

be the set of polynomials h ∈ P (l,k)
d,k+1 such that the set Sing(h) has an irreducible

component Q of dimension l, where 〈Q〉 = P and the variety Q is in general position
with the subspaces from the set Θ: for all e ∈ ∆ the set Θ(e)∩Q contains (k− l+1)

linearly independent points. Since 〈Q〉 = P , the subset P(l,k)
d,k+1(P, Θ) is a Zariski

open subset of the set P(l,k)
d,k+1, so that the inequality (3) will be shown, if we prove
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it for P(l,k)
d,k+1(Θ) instead of P(l,k)

d,k+1. However, for P(l,k)
d,k+1(Θ) this inequality follows

immediately from Proposition 2.3, since in that case m = k−l+1 and |∆| = (
d+l−2

l+1

)
.

Proof of Proposition 2.1 is complete. Q.E.D.

2.3. Polynomials, vanishing on a given variety. By the symbol Pd−1,k+1(B)
we denote the closed subset of polynomials h ∈ Pd−1,k+1 such that h|B ≡ 0 for a
fixed irreducible subvariety B. In our case dim B = i and 〈B〉 = Pk. There are two
methods of estimating the codimension of the set Pd−1,k+1(B).

The first method was developed in [10] (see also [11, Chapter 3]). Consider a
general linear projection Pk 99K Pi, so that π|B is a regular surjective map. For any
non-zero polynomial g ∈ Pd−1,i+1 we have π∗g|B 6≡ 0, so that

codimPd−1,k+1(B) > Pd−1,i+1 =

(
d− 1 + i

i

)
.

The second method was developed in [12] (see also [11, Chapter 3]). Since
〈B〉 = Pk, a non-zero linear form can not vanish on B. Therefore, the closed subset
of decomposable forms

P1,k+1 · P1,k+1 · · · · · P1,k+1︸ ︷︷ ︸
d−1

⊂ Pd−1,k+1

intersects with Pd−1,k+1(B) by zero only, so that

codimPd−1,k+1(B) > (d− 1)k + 1.

Finally we get:

codim(Pd−1,k+1(B) ⊂ Pd−1,k+1) > τ(d− 1, k, i).

By the arguments of Subsection 2.1 about good sequences and Proposition 2.1, this
completes the proof of Theorem 1.1.

Let us show Theorems 1.2 and 1.3. By the arguments given above, we only need
to prove the inequalities

codim(P(k−1,k)
d,k+1 ⊂ Pd,k+1) >

(
d + k

k

)
−

(
d− 4 + k

k

)
−

(
k + 2

k

)

for d 6= 6 and

codim(P(k−1,k)
6,k+1 ⊂ P6,k+1) >

(
k + 6

k

)
−

(
k + 3

k

)
− 1

(both are in fact equalities), which are obtained by repeating the arguments that
were used in the proof of Proposition 1.2 word for word. The claim of Theorem 1.3
is obvious.
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3 The codimension of the set of non-factorial

hypersurfaces

In this section we prove Theorem 0.1. First we give the list of possible values of the
parameters i = N − 4, k, l, so that the complement to the set of polynomials P fact

d,N+1

is contained in the union of the sets P(i,k;l)
d,N+1. After that, the estimates obtained in

§§1-2 are applied in order to estimate the codimension of the set of non-factorial
hypersurfaces (Subsection 3.1); this estimate is used for proving part (ii) of Theorem
0.1 in Subsection 3.2 and part (i) of Theorem 0.1 in Subsection 3.3.

3.1. Hypersurfaces with the singular locus of codimension three. Note
the following simple

Proposition 3.1. For N > 7, d > 4, k 6 N and (d, k, N) 6= (4, 7, 7) the
following equality holds:

τ(d− 1, k,N − 4) =

(
d + N − 5

N − 4

)
.

Proof: simple computations. The case d = 4 is easy to do, considering the cubic
(in N) polynomial (

N − 1

N − 4

)
=

(
N − 1

3

)
.

Therefore assume that d > 5. The claim of the proposition is equivalent to the
inequality

(N − 3)((N − 3) + 1) . . . ((N − 3) + (d− 2)) > N(d− 1)(d− 1)!.

Since for N > 7 we have N < 2(N−3), the last inequality follows from the estimate

ξ(N − 3) > 2(d− 1)(d− 1)!,

where ξ(t) = (t + 1)(t + 2) . . . (t + (d− 2)). Since the function ξ(t) is increasing, it
is sufficient to set N = 7 and show the inequality

ξ(4) =
(d + 2)!

4!
> 2(d− 1)(d− 1)!,

which for d > 5 is equivalent to the inequality

d(d + 1)(d + 2) > 48(d− 1).

This inequality holds for d > 5 in an obvious way. Q.E.D. for the proposition.

By Grothendieck’s theorem,

Pd,N+1 \ P fact
d,N+1 ⊂ P (N−4)

d,N+1 ,
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so that in order to estimate the codimension of the set of non-factorial hypersurfaces,
we will estimate the codimension of the set of hypersurfaces with the singular locus
of codimension three. In the notations of §1, the set P(N−4)

d,N+1 is the union of the
following eight sets:

P(N−4,N−4)
d,N+1 , P(N−4,N−3)

d,N+1 , P(N−4,N−2;N−4)
d,N+1 , P(N−4,N−2;N−3)

d,N+1 ,

P(N−4,N−2;N−2)
d,N+1 , P(N−4,N−1;N−4)

d,N+1 , P(N−4,N−1;N−3)
d,N+1 , P(N−4,N)

d,N+1 .

We set respectively:

α1 =

(
d + N − 4

N − 4

)
+ 4

(
d + N − 5

N − 4

)
− 4(N − 3),

α2 = min{α2a, α2b}, where

α2a =

(
d + N − 3

N − 3

)
−

(
d + N − 7

N − 3

)
+3

[(
d + N − 4

N − 3

)
−

(
d + N − 6

N − 3

)]
−(N + 5)(N − 2)

2
,

α2b =

(
d + N − 3

N − 3

)
+ 2

(
d + N − 4

N − 3

)
− 3N + 4.

Furthermore,

α3 = 3

(
d + N − 6

N − 3

)
+ 2

(
d + N − 5

N − 4

)
− 2(N − 1),

α4 =

(
d + N − 2

N − 2

)
−

(
d + N − 6

N − 2

)
+

(
d + N − 5

N − 4

)
− (N + 4)(N − 1)

2

and

α′4 =

(
N + 4

6

)
−

(
N + 1

3

)
+

(
N − 1

3

)
− 2N + 1

depends on the dimension N only. Finally,

α5 =

(
d + N − 2

N − 2

)
− 2(N − 1),

α6 = 4

(
d + N − 6

N − 3

)
+

(
d + N − 5

N − 4

)
−N,

α7 = 3

(
d + N − 5

N − 2

)
−N

and

α8 = 5

(
d + N − 6

N − 3

)
.

Now Propositions 1.1, 1.2 and Theorems 1.1-1.3, taking into account Proposition
3.1, immediately imply

16



Theorem 3.1. For N > 7 the following inequality holds:

codim
(Pd,N+1 \ P fact

d,N+1

)
> min{αi | i = 1, . . . , 8}.

Remark 3.1. For d = 6 in this inequality one should replace α4 by α′4, however,
the minimum of the right hand side is attained at α8 all the same, so that the claim
of Theorem 3.1 remains correct in this case as well.

3.2. Hypersurfaces of general type. In oredr to prove the claim (ii) of
Theorem 0.1, one needs to check that αi > α1 for i > 2, if d > 2N . This check
is elementary and we do not perform it here, giving only one example: setting
d = 2N + a, write

α8 − α1 = 4(N − 3) +
(3N + a− 6)!

(N − 3)!(2N + a)!
×

×[10N(2N + a− 1)(2N + a− 2)− (N − 3)(3N + a− 5)(11N + 5a− 4)].

It is easy to see that for a > 0 the expression in the square brackets is positive, which
implies that α8 > α1. (In fact, the difference α8 − α1 is quite large, but we do not
need that.) The remaining inequalities αi > α1 for i 6= 2 are shown in a similar way.
The reason why α1 realizes the minimum of αi, i = 1, . . . , 8, is the polynomiality
of the functions αi in d when the dimension N is fixed: α1 is a polynomial of the
least degree N − 4. The polynomial α2a also has the degree N − 4, but its senior
coefficient is much higher. The claim (ii) of Theorem 0.1 is shown.

We see that for d > 2N the irreducible component of the maximal dimension of
the closed set P(N−4)

d,N+1 is P(N−4,N−4)
d,N+1 , that is, the set of polynomials f ∈ Pd,N+1 such

that the hypersurface {f = 0} has a (N − 4)-lane of singular points.

3.3. Fano hypersurfaces. Let us prove the claim (i) of Theorem 0.1. Again
an elementary (but tiresome) check shows that for i = 1, . . . , 6 the inequality

αi > min{α7, α8}

holds (for d = 6 with α4 replaced by α′4), which implies the claim (i). We do not
give the tiresome computations here, except for one example:

α6 − α8 = −N +
(d + N − 6)!

(N − 3)!(d− 1)!
[−d2 + d(N − 1) + (N2 − 9N + 18)].

It is easy to see that for d = 4, . . . , N the difference α6− α8 is positive. In a similar
way the other inequalities αi > α8 for i = 1, . . . , 5 are checked. Proof of the claim
(i) of Theorem 0.1 is complete.

Remark 3.2. Elementary computations, which we do not give here, show that
for d = 4, . . . , d∗(N) the inequality α7 6 α8 holds, and for d = d∗(N) + 1, . . . , N the
opposite inequality α7 > α8 holds. Here d∗(N) ∼ 2

3
N . More precisely, if N = 3m+e,

e ∈ {0, 1, 2}, then d∗(N) = 2m + e + 1.
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