
On the use of higher order bias approximations for 2SLS and k-class
estimators with non-normal disturbances and many instruments

Abstract

The first and second moment approximations for the k-class of estimators were originally
obtained in a general static simultaneous equation model under the assumption that the
structural disturbances were i.i.d. and normally distributed. Later, higher-order bias
approximations were obtained and were shown to be important especially in highly overi-
dentified cases. It is shown that the higher order bias approximation continues to be valid
under symmetric, but not necessarily normal, disturbances with an arbitrary degree of
kurtosis, but not when the disturbances are asymmetric. A modified higher-order approx-
imation for the bias is then obtained which includes the case of asymmetric disturbances.
The effect of asymmetry in the disturbances is explored in the context of a two equation
model where it is shown that the bias of 2SLS may be substantially changed when the
skewness factor increases. The use of the bias approximation is illustrated using empirical
examples from the literature on return to schooling, which employs a model with many
instruments, and on higher education wage premia.
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1. Introduction

Moment approximations of estimators in simultaneous equation models have a long
history. The seminal paper was Nagar (1959) who derived approximations to the first
and second moments of the consistent k-class of estimators in a general simultaneous
equation model with exogenous regressors. In obtaining the results, it was assumed that the
structural disturbances were independently and normally distributed. Later Mikhail (1972)
extended Nagar’s O(T−1) bias approximation for the 2SLS case to a higher order, viz.
O(T−2), and under the same assumptions while Iglesias and Phillips (2010) give the higher
order approximation for the consistent k-class estimator. Nagar’s work led to a great deal of
research concerned with the small sample properties of simultaneous equation estimators; in
particular, various writers examined conditions under which Nagar’s approximations were
valid, see Srinavasan (1970). The main result was given by Sargan (1974) who showed that
a necessary and sufficient condition was that the estimator moments should exist. Much
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work has been done to explore the existence of estimator moments especially in simplified
models. However, a paper which is of particular relevance, given its generality, is Kinal
(1980). His results show that in the general simultaneous equation model chosen by Nagar,
the 2SLS estimator has moments up to the order of overidentification. However, k-class
estimators behave differently depending on the value taken by k. In cases where k > 1,
which includes the LIML estimator, the k-class estimators do not possess moments of any
order while when k < 1 higher moments exist and this does not depend on the order of
overidentication. Nagar type approximations have also been used in other contexts, see
e.g. Bun and Windmeijer (2010).

In Phillips (2000) it was shown that the Nagar bias approximation for the 2SLS estima-
tor is correct under much less restricted conditions than assumed by Nagar. In particular,
the result does not require the assumption of normality nor, indeed, symmetry. In Phillips
(2007) it was noted that for the Nagar bias approximation to hold a sufficient condition is
that the disturbances obey the classical Gauss-Markov assumptions which includes, in par-
ticular, the class of conditionally heteroscedastic disturbances such as ARCH/GARCH.
Neither paper considered the higher order approximation however.

While the Nagar bias approximation has attracted considerable attention, this has not
been the case for the higher order approximation perhaps because of the relatively strict
assumptions under which it has been presented, such as requiring normality, but also it
may be seen as adding little to the Nagar result. In this paper it is shown, firstly, that the
Mikhail higher order bias approximation is valid without assuming normality for the dis-
turbances. It does, however, require that the disturbances are distributed symmetrically.
If disturbances have a skewed distribution then the approximation has to be modified. An
important and new contribution of this paper is to present the 2SLS higher order bias ap-
proximation in the context of asymmetrically distributed disturbances. An extension of the
results to the consistent members of the k-class is available in a Supplementary Appendix.
Secondly, it is shown that in strongly overidentified cases the Nagar approximation may
overstate the bias while the higher order bias approximation may be far more accurate.
This arises when the additional terms are opposite in sign to the first order approximation.
It is then argued that bias correction is better conducted based upon the higher order bias
approximation especially in cases where the number of instruments is large.

The effect of asymmetry on the bias of 2SLS is initially explored in a simple two-
equation simultaneous equation model. It is found that the bias may be significantly
affected as the degree of asymmetry increases. Both the approximation terms and the
actual percentage bias figures show that asymmetry can play a greater role in 2SLS bias
than suggested in Knight (1984), where the allowable skewness and excess kurtosis values
were relatively small (in asymmetric cases). After presenting the main results, the 2SLS
bias approximation is applied to estimates for the return to schooling in Staiger and Stock
(1997) based on Angrist and Krueger (1991), and to an empirical model in Fortin (2006)
for higher education wage premia.
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2. A simple case

The effects of asymmetry on 2SLS estimation bias are explored in a very simple si-
multaneous equation model in this section, in an attempt to isolate the key factors, and
to demonstrate that the asymmetry effect can be substantial even in cases where the bias
values are moderate. The approximate bias expressions for 2SLS bias in Section 6 and
k-class bias in Supplementary Appendix A provide a means for estimating the biases in
the context of a general model.

The following simple model is considered:

y1,t = β1y2,t + u1,t, (1)

y2,t = β2y1,t + γ′zt + u2,t (2)

t = 1, 2, ..., T,

where zt is a p× 1 vector of exogenous variables. The reduced form for y2,t is given by

y2,t = β2(β1y2,t + u1,t) + γ′zt + u2,t

= β1β2y2,t + γ′zt + u2,t + β2u1,t

= π′2zt + vt (3)

where π′2 = γ′

1−β1β2 and vt =
u2,t+β2u1,t

1−β1β2 .

Theorem 2 in Section 6 presents the approximate 2SLS bias to order O(T−2) for
estimation of a general model without assuming normality or symmetry in the structural
disturbances, and the part due to the asymmetry of the disturbances can be specialised to
the following, see Appendix 2, for the model above in the special case of β1:

∆? = (1− β1β2)(σ111β
2
2 + 2σ112β2 + σ122) (4)

×
[

4
∑

(γ′zt)
3

(
∑

(γ′zt)
2)3
− 3

∑
(γ′zt)z

′
t(Z
′Z)−1zt

(
∑

(γ′zt)2)2

]
where Z is a T × p matrix with t-th row z′t, t = 1, . . . , T , and σijk = E[uitujtukt] for
i, j, k = 1, 2.

Importantly, note that the second factor does not involve β1 or β2 or the disturbance
third moments but depends upon the exogenous variable coefficient vector γ which can be
varied independently so it is clear that, for non-zero third moments of the disturbances
and appropriate choice of β1 and β2, ∆? may become large.

This simple case provides evidence that skewness of disturbances seems likely to cause
estimation biases to differ substantially in some situations compared to when disturbances
are symmetric. The analogous result for the general k-class of estimators in the simple
case is given in Supplementary Appendix A.
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2.1. Numerical and Simulation Results

It is possible to investigate the relationship between the third moment parameters
σ111, σ112 and σ122 and the bias numerically, via the approximation ∆? and also by Monte
Carlo, for given values of β1 and β2. The two-equation model above can be used to
investigate the performance of the new higher-order bias approximation (4) in asymmetric
cases, and to illustrate how the bias can be shaped by the third moments of structural
disturbances.

The estimation of β1 is considered here. 50 million Monte Carlo replications are used
for each moment computation, so that the MC simulated moments may reasonably be
called the ”true” moments. The sample size is T = 50, and fixed exogenous data for each
element zjt of zt, j = 1, 2, 3, was drawn from an AR(1) model zjt = 0.9zj,t−1 + νt with

νt
i.i.d.∼ N(0, 1). Attention is drawn in particular to Figure 1, where the bias is depicted

for a large number of different skewness cases in two separate models. It is found that the
skewness of the structural distubances in each equation can have a substantial effect on the
bias of the 2SLS estimator, and that the approximation does well in capturing the effect.
Table 1 summarises the improvement compared with the approximations due to Nagar and
Mikhail over a number of different skewness cases for the structural disturbances.

When generating the data the following are specified: the coefficients of the structural
model, the structural covariance matrix Σ, and the u1 and u2 skewness coefficients γ1

1 and
γ2

1 , respectively. Two different ways of generating the structural disturbance term ut are
considered, ”Beta” and ”Lognormal”. The Lognormal cases are genuine multivariate log-
normal, while the ”Beta” cases are a linear combination of Beta random variables. The
underlying parameters of the distributions in both cases are chosen numerically to yield
structural disturbances with the desired covariance matrix and with specified skewness val-
ues γ1

1 and γ2
1 - this is then repeated for various choices of the skewness values. Full details

about the data generation are given in Supplementary Appendix C, where, in particular,
the values used for the underlying distributional parameters are provided. Summary re-
sults are presented in the present section for the Beta cases, where the skewness can be
positive or negative, while Supplementary Appendix B presents additional results including
the Lognormal cases.

The parameters of the main structural model considered are below, and were chosen
numerically with a constraint that the 2SLS bias should be in a mild or moderate range
of 10-20% in absolute value. It is not clear from (4) that large differences in third moment
values necessarily lead to large changes in bias, as the effect depends on other parameters
and the exogenous data. This was found to be the case in simulations, and the parameteri-
sations below were selected as cases where the size of the asymmetry effect was of practical
relevance. If the constraint on the size of the 2SLS bias is removed, there are parameteri-
sations where the effect of varying the third moment values can be very large, but where
the 2SLS biases are relatively extreme. Models A and B below are therefore examples of
what can happen due to asymmetry, while avoiding the relatively extreme cases. Values for
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the first stage ”population” F statistic Fpop = π2Z
′Zπ2, see Cruz and Moreira (2005), are

given as a measure of the strength of the instruments. Neither model is considered a weak
instruments case (Fpop ≤ 1), while Model A is a good instruments case (Fpop ≥ 10). The re-
duced form covariance matrix Ω, implied by the choices of Σ, β1 and β2, is also given below.

Model A

β1 = 2.733, β2 = −16.388, γ = (38.126, 6.205, 3.870)′,

Σ =

(
38.106 −11.780
−11.780 92.107

)
,Ω =

(
0.316 0.068
0.068 5.111

)
, Fpop = 35.66.

Model B

β1 = −3.92, β2 = 47.04, γ = (39.84,−12.94,−10.71)′,

Σ =

(
13.06 7.48
7.48 60.98

)
,Ω =

(
0.03 −0.03
−0.03 0.86

)
, Fpop = 4.74.

A grid of u1 and u2 skewness values is considered in Figure 1, and the true and approxi-
mate bias values are computed at each point for Models A and B. Sets of Beta distribution
parameters (α1, β1) are chosen, see Supplementary Appendix C, to achieve u1 skewness
values in the set s = {−5,−4.5, . . . ,−0.5, 0,+0.5, . . . ,+4.5,+5}, and the same is done for
the (α2, β2) corresponding to u2 skewness values in this set. S = s×s then represents a grid
of skewness values for u1 and u2. Bias denotes a vector of Monte Carlo simulated (”true”)
bias values corresponding to members of S, while BiasNagar, BiasMikhail, and BiasNew are
vectors of the corresponding approximate values using, respectively, the approximations by
Nagar, Mikhail, and the result in Theorem 2.

Figure 1 plots the Monte Carlo simulated bias and the improved bias approximation for
Models A and B over the skewness pairs, and it is seen that the bias can vary substantially
with skewness. The results suggest that the skewness of the structural disturbances can
have a substantial effect on the 2SLS estimation bias, and that the O(T−2) approximation
taking third moments into account can capture this well. The bias approximations that
do not take into account the asymmetry of model disturbances are given by the horizontal
planes. The true bias is nonlinear in the skewnesses, but is approximated well by the
expression in Theorem 2.
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Figure 1: Simulated Bias vs the new O(T−2) approximate Bias
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The nearness of BiasNagar and BiasNew to Bias can be compared in terms of Euclidean
distance, and this is also done for the approximation due to Mikhail. The distances dBiasNagar,

dBiasMikhail and dBiasNew are summary performance measures for the approximations over u1 and
u2 skewness values in the interval [−5, 5], based on a total of 212 = 441 pairs of skewness
values. The results in Table 1 indicate that the new bias approximation does best in this
overall sense for both Model A and Model B.

Table 1: Distance from true bias

dBiasNagar dBiasMikhail dBiasNew

Model A 3.02 2.69 0.63
Model B 5.65 4.70 2.21

The values are Euclidean distances be-

tween the vector of simulated biases,

Bias, and the vectors of approximate bi-

ases. For example, dBias
New = ||Bias −

BiasNew||.

3. Model and Notation

A simultaneous equation model given by

Byt + Γzt = ut (5)
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is considered, in which yt is a G × 1 vector of endogenous variables, zt is a K × 1 vector
of strongly exogenous variables and ut is a G × 1 vector of independently and identically
distributed structural disturbances with G×G positive definite covariance matrix Σ. The
matrices of structural parameters, B and Γ are, respectively, G × G and G × K. It is
assumed that B is non-singular so that the reduced form equations corresponding to (5)
are:

yt = −B−1Γzt +B−1ut

= Πzt + vt,

where Π is a G×K matrix of reduced form coefficients and vt is a G× 1 vector of reduced
form disturbances with a G×G positive definite covariance matrix Ω. With T observations
the system may be written as

Y B′ + ZΓ′ = U. (6)

Here, Y is a T ×G matrix of observations on endogenous variables, Z is a T ×K matrix
of observations on the strongly exogenous variables and U is a T ×G matrix of structural
disturbances.

The first equation of the system is given by

y1 = Y2β + Z1γ + u1, (7)

where y1 and Y2 are, respectively, a T ×1 vector and a T ×g matrix of observations on g+1
endogenous variables, Z1 is a T ×k matrix of observations on k exogenous variables, β and
γ are, respectively, g× 1 and k× 1 vectors of unknown parameters and u1 is a T × 1 vector
of independently and identically distributed disturbances with positive definite covariance
matrix E(u1u

′
1) = Σ11. The reduced form of the system includes Y1 = ZΠ1 + V1 in which

Y1 = (y1 : Y2), Z = (Z1 : Z2) is a T ×K matrix of observations on K exogenous variables
with an associated K× (g+1) matrix of reduced form parameters given by Π1 = (π1 : Π2),
while V1 = (v1 : V2) is a T × (g + 1) matrix of reduced form disturbances. The transpose
of each row of V1 is independently and identically distributed with zero mean vector and
(g+1)×(g+1) positive definite covariance matrix Ω1 = (ωij) while the T (g + 1) vector
vecV1, obtained by stacking the columns of V1, has a positive definite covariance matrix
of dimension T (g + 1)× T (g + 1) given by Cov(vecV1) = Ωvec

1 and has finite moments up
to fifth order. This latter condition is required to ensure that the expansion used has a
remainder term of appropriate order, see Phillips (2000). It is further assumed that:

1. Equation (7) is over-identified so that K > g + k, i.e. the number of excluded
variables exceeds the number required for the equation to be just identified. This
over-identifying restriction is sufficient to ensure that the Nagar expansion is valid in
the case considered by Nagar and that, at least, the first estimator moment exists:
see Sargan (1974).
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2. The T × K matrix Z is strongly exogenous and of rank K and there exists a K ×
K positive definite matrix with limit matrix ΣZZ = limT→∞ T

−1Z ′Z. Following
Anderson et. al. (1986, p7) it will also be assumed that T−1Z ′Z = ΣZZ + o(T−1).

4. Nagar Approximations to the bias

The 2SLS estimator of α = (β′, γ′)′ is given by

α̂ =

(
Y ′2Y2 − V̂ ′2 V̂2 Y ′2Z1

Z ′1Y2 Z ′1Z1

)−1(
Y ′2 − V̂ ′2
Z ′1

)
y1. (8)

The Nagar approximation for the bias of the 2SLS estimator for α is given by

E(α̂− α) = [L− 1]Qq + o(T−1), (9)

where L = K−g−k is the order of overidentification, q = 1
T

[
E(V ′2u1)

0

]
and Q = (X ′X)−1

where X = (ZΠ2 : Z1).
The Mikhail higher-order approximation for the 2SLS estimator for α, in the same

framework as Nagar, but extending the expansion to include terms up to Op(T
−2), is given

by
E(α̂− α) = (L− 1)[I + tr(QC)I − (L− 2)QC]Qq + o(1/T 2), (10)

which adds two terms to Nagar’s result, namely, (L−1)tr(QC)Qq and−(L−1)(L−2)QCQq,
both of which are O(T−2). The (g + k)× (g + k) matrix C above is defined by

C =

[
(1/T )E(V ′2V2) 0

0 0

]
.

It is apparent that when L is relatively large these added terms can be important. Also,
in the two-equation case, tr(QC)Qq = QCQq so that the higher order terms cancel for
L = 3 while for L > 3 the higher order terms will be opposite in sign to the leading bias
term, see Table 2 of Hadri and Phillips (1999) where this is noted. Hence in models with
a large number of instruments the higher order approximation will be of particular value
since reliance on the leading bias term may severely overstate the bias; in such a case bias
correction may fail. Some evidence for this is given in Iglesias and Phillips (2012), and the
issue will be considered again in an empirical application with large L in Section 7.1.

The assumptions made by Mikhail in obtaining this result were the same as those used
by Nagar so that normality was assumed for the disturbances. It is shown in Section 6 that
the assumption of normality for disturbances can be relaxed, and that the approximation
is modified when the disturbances are asymmetric.
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5. An Alternative Approach to Approximating the 2SLS Bias

In Phillips (2000) an alternative approach to finding 2SLS moment approximations
was introduced. To illustrate, consider the estimation of the equation given in (7) by the
method of 2SLS. It is well known that the 2SLS estimator can be written in the form

α̂ =

(
β̂
γ̂

)
=

(
Π̂′2Z

′ZΠ̂2 Π̂′2Z
′Z1

Z ′1ZΠ̂2 Z ′1Z1

)−1(
Π̂′2Z

′Zπ̂1

Z ′1Zπ̂1

)
(11)

where Π̂2 = (Z ′Z)−1Z ′Y2 and π̂1 = (Z ′Z)−1Z ′y1. This representation of 2SLS was con-
sidered in Harvey and Phillips (1980) and in Phillips (2000, 2007). As shown in Phillips
(2000), it is possible to write both α̂ = f(vecΠ̂1) and α = f(vecΠ1), which enables a Taylor
expansion of the estimation error α̂i − αi about the point vecΠ1 as follows:

fi(vecΠ̂1) = fi(vecΠ1) + (vec(Π̂1 −Π1))′f
(1)
i

+
1

2!
(vec(Π̂1 −Π1))′f

(2)
i (vec(Π̂1 −Π1))

+
1

3!
ΣK
r=1Σg+1

s=1(π̂rs − πrs)(vec(Π̂1 −Π1))′f
(3)
i,rs(vec(Π̂1 −Π1))

+
1

4!
F (vec((Π̂1 −Π1)) + op(T

−2) (12)

where f
(1)
i is a K(g+1) vector of first-order partial derivatives, ∂fi

∂vecΠ̂1
: f

(2)
i is a (K(g+1))×

(K(g+1)) matrix of second-order partial derivatives, ∂2fi
∂vecΠ̂1(∂vecΠ̂1)′

, f
(3)
i,rs is a (K(g+1))×

(K(g + 1)) matrix of third-order partial derivatives defined as f
(3)
i,rs =

∂f
(2)
i

∂πrs
, r = 1, ....,K,

s = 1, ..., g + 1. The derivatives, f
(1)
i , f

(2)
i and f

(3)
i,rs are given in Phillips (2000). The

expression F (vec((Π̂1 − Π1)) represents the unknown fourth term which will involve the
fourth order partial derivatives and products of four components of vec(Π̂1 − Π1). All
derivatives are evaluated at vecΠ1.

The bias approximation to order T−1 is obtained by taking expectations of the first
two terms of the stochastic expansion to yield:

E(α̂i − αi) =
1

2!
tr
[
f

(2)
i (I ⊗ (Z ′Z)−1Z ′)Ωvec

1 (I ⊗ Z(Z ′Z)−1)
]

+ o(T−1).

When the partial derivatives f
(2)
i are introduced and Ωvec

1 is interpreted in terms of the
structural parameters, the bias approximation is readily found. It is of interest to examine
this bias approximation further. Note that the approximation changes as the matrix Ωvec

1

changes. When Ωvec
1 = Ω1 ⊗ IT , which is the case where the rows of the matrix V1 are

serially uncorrelated and homoscedastic, the approximation reduces to that given by Nagar:

E(α̂i − αi) = e′iQq + o(T−1), (13)
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where ei is (here and throughout) an appropriately sized row vector of zeros with a 1 in
position i. However, to obtain his approximation Nagar assumed that the disturbances
were normally distributed while here it need only be assumed that the row vectors of
V1 obey the Gauss Markov assumptions so that the row vectors are serially uncorrelated
and homoscedastic.

To find the bias approximation to order T−2 it will also be necessary to evaluate the
expected values for each of the terms in the expansion in (12). It has proved possible to
find an explicit representation for the first three terms, see Phillips (2000), but it is quite
difficult to do so for the fourth term. Notice that the third term

1

3!
ΣK
r=1Σg+1

s=1(π̂rs − πrs)(vec(Π̂1 −Π1))′f
(3)
i,rs(vec(Π̂1 −Π1) (14)

is a linear function of products of three components of vec(Π̂1−Π1) and the bounded third
order derivatives which are evaluated at vec(Π1). It may be shown that the third moment
of the least squares regression estimator is O(T−2), see for example Phillips and Liu-Evans
(2011), from which it may be deduced that the expectation of the third term in (12) is also
O(T−2) and this is evaluated in Appendix 1.

While an explicit representation cannot be found for the fourth term in the expansion,
F (vec((Π̂1 − Π1)), it turns out that we do not need to do so. It may readily be deduced
that it is a linear function of fourth order products of the components of vec(Π̂1 − Π1)
and the bounded fourth order derivatives evaluated at vec(Π1). We find that not knowing
its precise form is of no consequence in context because the fourth moment of the least
squares regression estimator does not depend upon the kurtosis of the error distribution
to the order of the approximation. This is shown in Phillips and Liu-Evans (2011) where
we demonstrate that the fourth moment of the least squares regression estimator in the
general linear regression model has two components. The first of these is O(T−2) while the
second, which involves the kurtosis of the error distribution is O(T−3) and, as such, plays
no role in our approximation to O(T−2). This latter result is also implicit in the work of
Ullah, see Ullah (2004).

Because of this, the expectation of the fourth term in (12) to the order of the approx-
imation will not depend upon the actual distribution of the errors provided the moment
condition on vecV1 is satisfied. Hence the expectation based upon the normal distribution,
which has already been found by Mikhail, can also be employed for other distributions
and in finding the higher order bias approximation to order T−2 the relevant part of the
Mikhail result will simply be added.

6. The Higher Order Bias Approximations for 2SLS

In this section the bias approximation is presented under weaker conditions than those
assumed by Mikhail. In case the disturbances are non-normal but symmetric, the evalu-
ation of the expected value of the third term in (12) is trivially zero while the evaluation
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of the fourth term has already been done by Mikhail for the normal distribution and, as
noted at the end of Section 5, the same evaluation will apply here also. Hence the Mikhail
approximation carries over directly for non-normal but symmetric distributions for which
the moment conditions are met and does not depend upon kurtosis. The following theorem
is deduced:

Theorem 1. In the model of Section 3 where the errors are symmetrically but not neces-
sarily normally distributed, the bias of the ith component of the 2SLS estimator in (11) is
given by

E(α̂i − αi) = (L− 1)[e′iQq + tr(QC)e′iQq − (L− 2)e′iQCQq] + o(T−2)

for i = 1, 2, . . . , g + k.

This is exactly the approximation found by Mikhail for the case of normally distributed
errors and the proof of the theorem follows immediately from the preceding discussion. This
result helps to explain the findings of Knight (1985) who, using exact finite sample theory
in the context of a two equation model, found that a moderate level of kurtosis had little
effect on the bias of the 2SLS estimator.

The second case of interest is where the errors are asymmetrically distributed. Now it
is necessary to extend the Mikhail approximation to allow for asymmetry but, again, the
approximation does not depend upon the kurtosis of the error distribution. Introducing
the evaluation of the third term of (12) it is found that the revised approximation is given
in the following.

Theorem 2. In the model of Section 3 where the errors may be asymmetrically distributed,
the bias of the ith component of the 2SLS estimator is given by

E(α̂i − αi) = (L− 1)[e′iQq + tr(QC).e′iQq − (L− 2)e′iQCQq] +

e′iQH(β′0 ⊗ Ig+1)Ω∗H ′QX ′∆xz + e′i(QHΩ∗′(Ig+1 ⊗ β0)H ′

+tr(QH(Ig+1 ⊗ β′0)Ω∗H ′).Ig+k)QX
′∆xz

+tr((Ig+1 ⊗ β′0)Ω∗ H ′QX ′Diag(XQei)XQH) + o(T−2)

where the effects of the asymmetry of the disturbances are indicated by the presence of the
(g+1)2×(g+1) matrix of third moments Ω∗ which is obtained by stacking the (g+1)×(g+1)
matrices Ωijs, s = 1, . . . , (g+1), which have ij-th element ωijs = E(vpivpjvps), p = 1, . . . , T .
The T ×1 vector ∆xz has pth component x′p(X

′X)−1xp−z′p(Z ′Z)−1zp, β0 = (−1, β′)′, and

H =

(
0 Ig
0 0

)
is a (g+k)×(g+1) selection matrix. When Ω∗ is zero the bias approximation

reduces to that of Mikhail (1972).

The proof of the above is given in Appendix 1. If it is required to express the asymmetry
effect in terms of the structural parameters one can replace the transpose of Ω∗ with its
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structural parameter representation, viz, Ω∗′ = ((B′)−1
g+1)′Σ?((B′)−1

g+1 ⊗ (B′)−1
g+1) where

(B′)−1
g+1 comprises the first g + 1 columns of (B′)−1, Σ∗ is the G × G2 matrix formed as

Σ∗ = (Σij1,Σij2, ....,ΣijG) and Σijk is a G × G symmetric matrix with general element
equal to the third moment σijk = E[uitujtukt], i, j, k = 1, . . . , G.

Notice that the asymmetry effect does not depend explicity on L−1 and so it is present
whatever the order of overidentification; in particular, the asymmetry effect does not go to
zero in this case. The plots in Figure 2 are based on estimates of β1 in a sequence of models
where L = 1 and where different values for the coefficient on the excluded non constant
exogenous variable are considered, see Model Group L below. While the other structural
parameters are the same as Model A and were kept fixed, a choice of γ? = (24.49,−0.89)
for the vector of reduced form coefficients yielded the largest asymmetry effect that could
be found in the region [−100, 100]2.

Model Group L

β1 = 2.73,β2 = −16.39, γ = (24.49,−0.89(0.5 + s))′ ,

Σ =

(
38.11 −11.78
−11.78 92.11

)
.

On the left in Figure 2 the percentage biases are plotted against E[R2], the Monte
Carlo average of the sample R2 values for the first stage reduced form estimate. Lower
values for E[R2] indicate that the instruments are weaker, and correspond to smaller values
of s. The simulations are run for three of the Beta cases used earlier. In particular, the
two dotted lines correspond to structural disturbances with u1 and u2 skewnesses (γ1

1 , γ
2
1)

of either (−1, 1) or (1,−1), while the two solid lines correspond to skewnesses of either
(−0.5, 0.5) or (0.5,−0.5), and the dashed line is a case of zero skewness. On the right in
Figure 2, the dotted and solid lines plot the vertical difference between the respective lines
in the previous plot. It is evident here that the moderate levels of skewness are having
a substantial effect on the bias when the instrument is weak but not too weak. When
E[R2] = 0, the 2SLS estimator will be equivalent to OLS, which has a smaller asymmetry
effect in this example.
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Figure 2: Simulated Bias of β̂1,2SLS when L = 1
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It is apparent that the asymmetry effect is a complicated function of the endogenous
variable parameters in the model and all the third moments of the structural disturbances.
As such it is difficult to deduce its sign or magnitude in general though it is possible to
calculate the value of the approximation for a given structure. The study by Knight (1985)
referred to above also examined the effect of error skewness on the bias of 2SLS and found
that a moderate degree of skewness appeared to have only a small effect; however, there
have been no results for substantial departures from symmetry until now nor, indeed, for
cases with a large number of instruments.

Theorem 2 suggests that the magnitude of the bias will increase with K, due to the
three terms involving ∆xz. Appendix 3 shows that the first of these is bounded below as
follows

|c′∆xz| ≥
K − g − k√

T
||c||2|c̃|

where c = (e′iQH(β′0⊗ Ig+1)Ω?HQX ′)′ while c̃ and ||c||2 are scalars that do not go to zero
with K. For a given sample size T , this is increasing in K, and the other two terms in
Theorem 2 involving ∆xz are of the same form and therefore have similar lower bounds that
increase with T . In practice there will be many cases where the effect of asymmetry does
not increase with K. Theorem 2 applies to 2SLS, but the estimator will be equal to OLS
when K = T , and the OLS asymmetry effect may be relatively low. For sufficiently weak
instruments, there may not be much change at all in the asymmetry effect from increasing
K, and it could be decreasing over some or all values of K.

13



Figure 3 presents percentage biases and differences as in Figure 2, but now these are
plotted againstK as additional instruments are added to the model. To see a case where the
asymmetry effect would increase with K an initial model with relatively strong instruments
was chosen (Fpop = 320.89), then, to avoid E[R2] growing too quickly towards 1, the
additional instruments were given a very small reduced form coefficient. The results in
the figure are for a similar model to Model A initially, but with the three reduced form
coefficients multiplied by three, so that γ = (3 ∗ 38.126, 3 ∗ 6.21, 3 ∗ 3.87)′. Additional
instruments are added with a reduced form coefficient of 0.000000001. It can be seen that
the effect of asymmetry on bias does increase in this example, though the effect is more
noticable at relatively high skewness values of 3 and -3.

Figure 3: Simulated asymmetry effect on the bias of β̂1,2SLS for different values of K
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7. Empirical applications

7.1. Compulsory school attendance and earnings, Angrist and Krueger (1991)

Angrist and Krueger (1991) investigate the effect of compulsory school attendance on
schooling and earnings levels using US Census data. The topic continues to be interest, see
e.g. Devereux and Hart (2010). Others have investigated the wider benefits of compulsory
education, see Stephens and Yang (2014). Angrist and Krueger (1991) used 2SLS estimates
to comment on the bias in OLS estimation of the return to education. Previous studies had
focused on correcting for OLS estimation bias caused by omitted variables that would be
positively correlated with education years, such as ”innate ability”, but the 2SLS estimates
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in Angrist and Krueger suggested a negative bias in the OLS estimation of the return to
education. That is to say, the 2SLS results suggested that the returns to education were
higher than previously thought.

While the original analysis was concerned with the OLS bias, measured using 2SLS,
this section uses the approximation in Theorem 2 to account for the estimation bias that
arises when using 2SLS. The study by Angrist and Krueger is well known, making it
appealing for the purpose of illustration. However, the possibility of weak instruments,
see Bound, Jaeger and Baker (1995), may affect the accuracy of the bias approximations.
Thus the specification in Case 2 of Staiger and Stock (1997) is used, which Cruz and
Moreira (2005) find to be free from the weak instruments problem. The sample sizes are
large, ranging from 247,199 to 486,926 across the three survey cohorts, yet 2SLS biases of
around 3 to 4% in absolute value persist. The interest is in estimation of α in the following
structural equation for log wage, ln(W ), where i denotes the ith individual while c and j
denote the year and quarter in which the individual was born:

lnWi = X ′iβ +
∑
c

Yicζc + αEi + ui

Ei = X ′iπ +
∑
j

Qijδj +
∑
c

∑
j

YicQijθjc + εi.

Here Ei denotes the education years of the ith individual, Xi is a vector of covariates, Qij
is a dummy variable taking value 1 if individual i was born in quarter j, while Yic is a
dummy variable taking value 1 if individual i was born in year c. The quarter of birth Qjc
and interaction terms YicQij are correlated with education years, but seem unlikely to be
correlated with omitted variables from the wage equation.

Column (1) of Table 2 replicates the estimates for Case II in Tables 2 of Staiger and
Stock (1997), and provides estimates of the skewness of the wage equation structural distur-
bances, while Column 2 provides the estimated percentage biases, obtained using Theorem
2, with E[V ′2u1] estimated by V̂ ′2,OLS û1,2SLS and the elements ωijs of Ω∗ estimated by

ω̂ijs = 1
T

∑T
t=1 v̂tiv̂tj v̂ts, where v̂tl is the tl-th element of V̂OLS . Matlab code for this is

available upon request. It can be seen that the estimated biases, as a percentage of the
2SLS estimate, are between -3.47% and 3.82%, depending on the sample. The O(T−2)
estimates for the 1930-39 cohort in Column (2) suggest that the returns to schooling were
3.47% higher, while the estimated returns for the 1920-29 and 1940-49 cohorts were biased
upwards by 2.05% and 3.82%, respectively.
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Table 2: Estimation of α, and the 2SLS bias, Staiger and Stock (1997)

(1) (2) (3)

Staiger and Stock %̂ Bias %̂ BiasNagar
1920-29 α 0.0633 2.05 2.53

(n = 247199) γ̂(u1) -2.23

1930-39 α 0.0806 -3.47 -4.22
(n = 329509) γ̂(u1) -2.40

1940-49 α 0.0393 3.82 4.33
(n = 486926) γ̂(u1) -2.31

Column (1) replicates values from Case 2 of Staiger and Stock (1997). Column

(2) estimates the bias using Theorem 2, while (3) estimates the bias using the

original Nagar approximation.

Despite the estimated skewnesses being substantial, the amount of bias that can be
attributed to the third moments of the structural disturbances, according to the analytical
approximation, turns out to be negligible in the present example. It can be seen, though,
that the higher-order bias terms taken as a whole are important. The O(T−2) bias terms
are non trivial and opposite in sign to the Nagar O(T−1) bias, so that the total bias,

%̂ Bias, is relatively small. Thus if the Nagar approximation were used to bias-correct
in this case it would make the bias worse than if the 2SLS estimator were not corrected
at all. When the bias approximation up to order O(T−2) is used, though, this mistake is
avoided. The importance of the higher-order terms may be expected, as there are a total of
30 instruments in this specification, making the order of overidentification relatively high
at L = 29. The higher-order bias terms will tend to become more important at higher
values of L, and it was noted in Section 4 that the contribution will be opposite in sign to
the O(T−1) bias.

7.2. The own-cohort supply effect on college wage premia, Fortin (2006)

Fortin (2006) investigates the relationship between state-specific supply of higher educa-
tion college labour in the US and the wage premia obtained by college graduates between
1979 and 2002. The interest is in the estimation of α1 in the following inverse relative
demand equation for state s at time t, a 3-year pooled time period:

rst = α0 + α1qst + α2qst
O + α′3Yst + Ss + Pt + εst

where rst = ln(wYcst/w
Y
hst) is the college-high school wage gap for young workers, qst =

ln(CYst/H
Y
st) is the relative supply of young workers with college education to those without,

qOst is the same but for old workers, Yst is a vector of observable demand variables, while Ss
and Pt represent state and time effects, respectively. The coefficients can be collected in a
vector α. The coefficient α1 therefore reflects the effect on the wage premium of shifting
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the relative supply of young college workers, and it has implications for higher education
policies and wage inequality.

The relative supply of new college graduates, qst, is likely to be influenced by εst, the
inverse relative demand shocks to the college wage premium, though, and it is therefore
an endogenous variable. One of the ways Fortin (2006) accounts for this endogeneity
is by using a feasible weighted 2SLS estimation, with a number of instruments for qst.
There are four instruments used in Panel C of Table 8 in the paper by Fortin: three
supply-related determinants of lagged enrollment rates in public colleges, along with a
variable representing the lagged level of enrollment in private colleges, making the order of
overidentification L = 3.

The coefficient on qst is re-estimated by 2SLS here, and the bias is estimated using the
approximation in Theorem 2. The first column of Table 3 presents the feasible weighted
2SLS estimates of α1 due to Fortin, while the second column is 2SLS, with heteroskedas-
ticity robust standard errors in parenthesis. Two estimates are obtained, corresponding
to US states with relatively low and high enrollment in private colleges, where the state
educational policies under consideration do not apply. The results are qualitatively similar
to those of Fortin, in that the point estimates suggest a greater supply effect on the wage
premium in states where enrollment in private colleges is lower; α1 is still significant at
the 10% level in this part of the sample, and not significant for the states with relatively
high private enrollment, the point estimate also changes sign in this latter case, so that it
is now the same as for the Low Enrollment sample. Moreover, the difference between the
estimates in the two samples is not as pronounced.

Column 3 provides the estimated percentage biases, obtained using Theorem 2 as before.
It can be seen that the estimated biases are quite substantial at 6.6% and 33.6%. In
parenthesis are the proportions of the biases that can be attributed to the third moments
of the structural disturbances according to the analytical approximation. The values are
still low in the present example, though this may be expected given the estimated skewness
of the structural equation disturbances, which is almost zero.
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Table 3: Estimation of α1, and bias statistics

(1) (2) (3) (4)

Private Enroll-
ment

Fortin (2006) 2SLS %̂ Bias r̂10%

Low (N = 217) α1 -0.22 (0.08) -0.13 (0.08) 6.6% (0.39%) 6.75% (0.36%)
γ̂(u1) -0.06 -0.15

High (N = 126) α1 0.11 (0.14) -0.026 (0.08) 33.6% (0.63%) 93.9% (0.95%)
γ̂(u1) 0.20 0.30

Column (1) replicates the Feasible Weighted 2SLS results, from Panel C of Table 8 in Fortin (2006).

Column (2) presents 2SLS estimates with robust standard errors, (3) presents estimates of the 2SLS bias

using Theorem 2 with the proportion attibuted to skewness in parenthesis, and (4) presents values for the

measure of relative bias risk and the proportion attributed to skewness. The 2SLS results are different to

what would be obtained using the Stata code provided on the AER website after removing the weighting

for heteroskedasticity, due to the way in which Stata removes colinear variables in 2SLS regression. In

particular, Z in the present setup contains all exogenous data.

The fourth column reports an approximate measure of bias-related risk using the new
analytical bias approximation. This would be relatively challenging to compute for the An-
grist and Krueger (1991) application due to the large sample sizes, but it is straightforward
in the present setting. Recall that, given a model defined in terms of a parameter vector Θ
belonging to a space C, a standard measure of global estimation risk for a single parameter
θ, see for example E.L. Lehmann (1983), is the maximum risk given by r = supΘ∈C R(θ, δ)
where δ is the estimator of θ and R(θ, δ) = EΘ[L(θ, δ)] is a risk function defined in terms
of a loss function L. If the loss function is set to L(θ, δ) = |θ − δ| then R is the absolute
bias in estimation of θ at a particular point Θ ∈ C and r is the maximum bias over C.
The term r̂10% is an empirical version of this, where the approximate relative bias using
Theorem 2 is numerically maximised over values for the Equation 1 structural coefficients
that lie within narrow 10% confidence intervals. A small confidence level of 10% is chosen
here to compare the bias risk in the Low and High private enrollment states, because wider
confidence intervals for α1 in the High private enrollment states include zero, where the %
bias is undefined; the confidence interval at 10% is (-0.04, -0.016).

If the bias were simulated for the Fortin model in order to calculate R for a particu-
lar parameterisation, an underlying parametric distrbution for the structural disturbances
would be chosen, along with the structural coefficients for both equations. The absolute
bias could be calculated this way for many different choices of the structural coefficients,
and then the maximum could be taken as an estimate of the global risk r. The approxi-
mate bias, however, just requires a specification for E[V ′2u1] in q, and Ω∗. By setting the
Equation 1 structural coefficients to a new set of values α̃, different to the 2SLS estimates,
and using the observed data y1, Y2, and Z1, the term E[V ′2u1] can be set to V̂ ′2,OLS ũ1,
where ũ1 = y1 − Z1α̃. By doing this, the structural covariance matrix, and the endoge-
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nous variable coefficient in the relative supply equation (see Fortin (2006)), are implicitly
constrained to take values within the set where the expected value E[V ′2u1] is equal to
V̂ ′2,OLS ũ1. The approximate relative biases are computed for each α̃, and r̂10% denotes the
maximum obtained numerically.

The statistic suggests that there is more (relative) bias risk associated with 2SLS
estimation in the high private enrollment sample than in the low private enrollment sample,
in addition to the higher point estimate of the bias given in Column 3.

8. Conclusion

The 2SLS estimator has an important place in the history of simultaneous equation
estimation and continues to be frequently used in practice; hence, the more that is known
about its properties the better. The results in this paper are of both theoretical and
practical interest. As noted previously, the Mikhail 2SLS bias approximation is likely
to be of particular importance when equations are heavily overidentified since then the
higher order terms may be relatively large. The fact that the approximation holds under
symmetric distributions and any degree of kurtosis obviously increases its applicability in
practical cases. However, when the errors are asymmetrically distributed it is seen that
the Mikhail approximation to order T−2 no longer holds and we have presented the correct
approximation for such cases.

The earlier work of Knight indicated that the 2SLS bias is not much affected by
disturbance kurtosis and our analysis supports this since the O(T−2) bias approximation
is unchanged in its presence. In fact kurtosis is only relevant at the O(T−3) level of
approximation. Knight also concluded that the 2SLS bias was relatively robust to skewness
in the disturbances. Our analysis supports this too for small values of the skewness measure
since the asymmetry effect is of order T−2. However the effect of asymmetry on the bias can
be significant at larger skewness values. More generally, the larger the degree of skewness
the greater the effect on the 2SLS bias although the effect of asymmetry on the bias is not
unidirectional. It is found that an increase in disturbance skewness may have a different
impact depending on the sign of the skewness measure. It is shown, using two simple
examples, that increasing positive skewness can lead to a reduction in positive bias or
an increase in negative bias, while an increase in negative skewness may reduce negative
bias or increase positive bias. Thus an estimator may have more/less bias as a result of
asymmetry.

Given the above, it is clear that asymmetry is an important concern when estimating
by 2SLS, as its contribution to bias can be substantial and in either direction. As long as
there is significant estimator bias we shall wish to reduce it and, fortunately, we have the
means of doing so since a bias approximation to order T−2, which includes the asymmetry
effect, is available along with code for implementing it. This can be used directly for bias
reduction. It is also possible to estimate the incremental bias that is due to asymmetry and
check the effect it has on the overall bias. Bai & Ng (2005) provide a test for skewness of
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error terms in multiple regression models, and the analysis above suggests that an extension
to models containing one or more endogenous variables would be worthwhile.

While we give particular attention to the effect of skewness on estimator bias, it has
been shown that with or without skewness the higher order bias approximation is to be
preferred, particularly in strongly overidentified cases, since bias correction can break down
if the higher order bias terms are neglected. Indeed the foregoing discussion makes the case
for bias correction to be generally based on the higher order bias approximation.

Finally, the k-class of estimators where k < 1 are also of interest partly because esti-
mators in this class have all necessary moments while 2SLS has moments up to the order
of overidentification. As mentioned above, the higher order bias approximation is available
for this class of estimators too.
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Appendix

Appendix 1: Theorem 2

In this Appendix we evaluate the expectation of the skewness term

1

3!

∑∑
(π̂rs − πrs)(vec(Π̂1 −Π1))′f

(3)
i,rs(vec(Π̂1 −Π1)).

We commence with the following:

Lemma 1. E{(π̂rs − πrs)(vecV1)(vecV1)′} = Ωijs ⊗Diag(zr) where

Ωijs =


ω11s ω12s ..... ω1,g+1.s

ω21s ω22s ..... ω2,g+1,s

.

.
.
.

.

.
.
.

ωg+1,1,s ωg+1,2,s .... ωg+1,2,s

 and

Diag(zr) =


zr1 . . 0
0 zr2 o
. .
0 0 zrT


To see this we proceed from

E{(π̂rs − πrs)(vecV1)(vecV1)′} = E{e′r(Z ′Z)−1Z ′vs(vecV1)(vecV1)′}

= E{e′r(Z ′Z)−1Z ′vs


v1v
′
1 v1v

′
2 ... v1v

′
g+1

v2v
′
1 v2v

′
2 .... v2v

′
g+1

. . ... ....
vg+1v

′
1 vg+1v

′
2 ..... vg+1v

′
g+1

}

where vj is a T × 1 vector forming the jth column of V1.
We shall write e′r(Z

′Z)−1Z ′ = z̄′r and e′r(Z
′Z)−1Z ′vs = z̄′rvs and consider E(z̄′rvsviv

′
j)

with general term E(z̄′rvsvpivqj) for p, q = 1, 2, . . . , T , which is non-zero only when the
stochastic terms are of the same time period. When p = q it is seen that E(z̄′rvsvpivpj) =
E(z̄prvpsvpivpj) = z̄pjωijs where z̄pr is the pth component of z̄r and E(vpivpjvps) = ωijs.
More generally,

E(z̄′rvsviv
′
j) = ωijs


z̄r1 0 .... 0
0 z̄r2 0

. .
0 0 .... z̄rT


= ωijsDiag(z̄r) for i, j, s = 1, 2, . . . , g + 1.
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In Phillips (2000) it is shown that the term of interest

1

3!

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vec(Π̂1 −Π1))′f
(3)
i,rs(vec(Π̂1 −Π1)) (15)

is equal to the sum of the following three terms:

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}vecV1

+

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{H ′Q(X ′ZErsH
′ +HE′rsZ

′X)Qeiβ
′
0 ⊗ (PX − PZ)}vecV1

+

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{β0e
′
iQX

′ZErsH
′QX ′ ⊗XQH}I∗vecV1

where Ers is a K × (g + 1) matrix of rank one with unity in the r, sth position and zeroes
elsewhere, and I∗ is a T (g+1)×T (g+1) commutation matrix, see Magnus and Neudecker
(1979).

It is required to find the expected value of the above and we shall do so by evaluating
each of the three components in turn.

(a) First term. We examine

(π̂rs − πrs)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}vecV1

= tr[(π̂rs − πrs)(vecV1)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}] (16)

where π̂rs − πrs, which is the K(r− 1) + sth component of V ec(Π̂1 −Π1), and which may
be written as π̂rs − πrs = e′r(Z

′Z)−1Z ′vs. Here e′r is a 1 × K unit vector with unity in
the rth position and zeroes elsewhere. Thus it picks out the rthcomponent of (Z ′Z)−1Z ′vs
where vs is a T × 1 vector of reduced form disturbances appearing in the sth reduced form
equation, i.e. the sth column of V1.

The term of interest can then be written as

tr[e′r(Z
′Z)−1Z ′vs(vecV1)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}]. (17)

We have shown above in Lemma 1 that

E{e′r(Z ′Z)−1Z ′vs(vecV1)(vecV1)′} = Ωijs ⊗Diag(z̄r)

so it follows that

E{tr[e′r(Z ′Z)−1Z ′vs(vecV1)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}]}
= tr[Ωijs ⊗Diag(z̄r){H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}]
= tr{ΩijsH

′Qeiβ
′
0E
′
rsZ
′XQH}tr{Diag(z̄r)(PX − PZ)}.
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Some simplification is possible by writing

tr{Diag(z̄r)(PX − PZ)} = z̄′r∆xz.

Next we shall write Ers = ere
′
s where es is a (g + 1) × 1 unit vector with unity in the sth

position. On putting e′sβ0 = βs0, the sth component of β0, the above expression may be
written as

e′iQHΩijsH
′QX ′Zerβs0z̄

′
r ∆xz. (18)

Finally we need to find the value of

K∑
r=1

g+1∑
s=1

e′iQHΩijsH
′QX ′Zerβs0z̄

′
r ∆xz. (19)

We shall proceed by first finding the summation for r = 1, . . . ,K and so we consider

K∑
r=1

e′iQHΩijsH
′QX ′Zerβs0z̄

′
r∆xz

= βs0e
′
iQHΩijsH

′QX ′Z
K∑
r=1

ere
′
r(Z

′Z)−1Z ′∆xz

= βs0e
′
iQHΩijsH

′QX ′∆xz

where we have used the fact that
K∑
r=1

ere
′
r = IK and X ′Z(Z ′Z)−1Z ′ = X ′.

To complete the evaluation we simply need to sum over s. Hence the final expression is

E

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{H ′Qeiβ′0E′rsZ ′XQH ⊗ (PX − PZ)}vecV1

= e′iQH(

g+1∑
s=1

βs0Ωijs)H
′QX ′∆xz

= e′iQH(β′0 ⊗ Ig+1)Ω∗H ′QX ′∆xz (20)

Here we have used the result that
g+1∑
s=1

βs0Ωijs can be written as (β′0 ⊗ Ig+1)Ω∗ where Ω∗ is

a (g + 1)2 × (g + 1) matrix obtained by stacking the matrices Ωijs, s = 1, ..., g + 1.

(b) Second term. Recall that this is

K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{H ′Q(X ′ZErsH
′ +HE′rsZ

′X)Qeiβ
′
0 ⊗ (PX − PZ)}vecV1.
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The expected value for this term can be found using the same approach as for the above
term as is shown in Phillips and Liu-Evans (2011). In fact

E{
K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{H ′Q(X ′ZErsH
′ +HE′rsZ

′X)Qeiβ
′
0 ⊗ (PX − PZ)}vecV1}

= e′i
(
QHΩ∗′(Ig+1 ⊗ β0)H ′ + tr(QHΩ∗′(Ig+1 ⊗ β0)H ′).Ig+k

)
QX ′∆xz.

= e′i
(
QHΩ∗′(Ig+1 ⊗ β0)H ′ + tr(QH(Ig+1 ⊗ β′0)Ω∗H ′).Ig+k

)
QX ′∆xz.

(c) Third and final term. The expected value is

E{
K∑
r=1

g+1∑
s=1

(π̂rs − πrs)(vecV1)′{β0e
′
iQX

′ZErsH
′QX ′ ⊗XQH}I∗vecV1}

= tr{(Ig+1 ⊗ β′0)Ω∗H ′QX ′Diag(XQei)XQH}

where Diag(XQei) is a diagonal matrix with j, jth component e′jXQei = x′jQei.
Summing the three terms in (a), (b) and (c) above yields finally:

E{ 1

3!

∑∑
(π̂rs − πrs)(vec(Π̂1 −Π1))′f

(3)
i,rs(vec(Π̂1 −Π1))}

= e′iQH(β′0 ⊗ Ig+1)Ω∗H ′QX ′∆x,z

+ e′i
(
QHΩ∗′(Ig+1 ⊗ β0)H ′ + tr(QH(Ig+1 ⊗ β′0)Ω∗H ′).Ig+k

)
QX ′∆xz

+ tr{(Ig+1 ⊗ β′0)Ω∗H ′QX ′Diag(XQei)XQH}.

The result is in terms of the (g + 1) × (g + 1)2 matrix Ω? which itself is obtained by
stacking the matrices Ωijs where the ijthelement of Ωijs is ωijs = E[vitvjtvst]. Ω∗ may
be expressed in terms of the structural parameters, see Phillips and Liu-Evans (2011) as
follows:

Ω′∗ = ((B′)−1
g+1)′Σ

′?((B′)−1
g+1 ⊗ (B′)−1

g+1) (21)

where (B′)−1
g+1is a G × (g + 1) matrix containing the first (g + 1) columns of (B

′
)−1and

where Σ
′? is a G×G2 matrix given by Σ

′? = [Σij1, . . . ,ΣijG].

Appendix 2

In this appendix we find expressions for the asymmetric terms in the context of the
simple model in Section 2.

Note that y2 = Zπ2 + v2 from which we shall write X = Zπ2. We shall also require
β0 = (−1, β′1)′, ei = 1, Q = (π′2Z

′Zπ2)−1 = 1
π′
2Z

′Zπ2
, H = (0, 1), and

Ω∗′ =

[
ω111 ω211 ω112 ω212

ω121 ω221 ω122 ω222

]
.
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We now define the vector

∆x,z =


x′1(X ′X)−1x1 − z′1(Z ′Z)−1z1

x′2(X ′X)−1x2 − z′2(Z ′Z)−1z2

....
x′T (X ′X)−1xT − z′T (Z ′Z)−1zT

 =


z′1(π2π′

2)z1
π′
2Z

′Zπ2
− z′1(Z ′Z)−1z1

z′2(π2π′
2)z2

π′
2Z

′Zπ2
− z′2(Z ′Z)−1z2

....
z′T (π2π′

2)zT
π′
2Z

′Zπ2
− z′T (Z ′Z)−1zT


where X ′ = π′2(z1, z2, ....., zT ), and X ′∆xz =

∑
(z′jπ2)3

π′
2Z

′Zπ2
−
∑
π′2zjz

′
j(Z
′Z)−1zj . All summa-

tions run from 1 to T .
The first of the asymmetric terms is

e′iQH(β′0 ⊗ Ig+1)Ω∗H ′QX ′∆x,z

=
1

π′2Z
′Zπ2

(0, 1)

[
1 0 −β1 0
0 1 0 −β1

]
ω111 ω121

ω211 ω221

ω112 ω122

ω212 ω222

( 0
1

)

× 1

π′2Z
′Zπ2

[∑
(z′jπ2)3

π′2Z
′Zπ2

−
∑

π′2zjz
′
j(Z
′Z)−1zj

]
= (ω221−β1ω222)

[ ∑
(z′jπ2)3

(π′2Z
′Zπ2)3

−
∑
π′2zjz

′
j(Z
′Z)−1zj

(π′2Z
′Zπ2)2

]
(22)

The second asymmetric term is, using the fact that ω122 = ω221,

e′i(QHΩ∗′(Ig+1 ⊗ β0)H ′ + tr(QH(Ig+1 ⊗ β′0)Ω∗H ′).Ig+k)QX
′∆xz

= 2(ω221 − β1ω222)

[∑
(z′jπ2)3

π′2Z
′Zπ2

−
∑
π′2zjz

′
j(Z
′Z)−1zj

(π′2Z
′Zπ2)2

]
(23)
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The third asymmetric term is

tr((Ig+1 ⊗ β′0 )Ω∗H ′QX ′Diag(XQei)XQH)

= tr{XQH(Ig+1 ⊗ β′0)Ω∗H ′QX ′Diag(XQei)}

= tr

{
Zπ2

π′2Z
′Zπ2

(0, 1)

[
1 −β1 0 0
0 0 1 −β1

]
ω111 ω121

ω211 ω221

ω112 ω122

ω212 ω222

( 0
1

)

× π′2Z
′

π′2Z
′Zπ2


z′1π2

π′
2Z

′Zπ2
0 0 0

0
z′2π2

π′
2Z

′Zπ2
0

. .

0
z′T π2

π′
2Z

′Zπ2


}

= tr

{
1

π′2Z
′Zπ2

(ω221 − β1ω222)

× π′2Z
′

π′2Z
′Zπ2


z′1π2

π′
2Z

′Zπ2
0 0 0

0
z′22π

π′
2Z

′Zπ2
0

. .

0
z′T π2

π′
2Z

′Zπ2



z′1π2

z′2π2

.
z′Tπ2

}

= (ω221−β1ω222)

[ ∑
(z′jπ2)3

(π′2Z
′Zπ2)3

]
. (24)

Finally, summing (22)-(24), we find that the asymmetric effect

e′iQH(β′0 ⊗ Ig+1)Ω∗H ′QX ′∆x,z + e′i((QHΩ∗′(Ig+1 ⊗ β0)H ′

+ tr(QH(Ig+1 ⊗ β′0)Ω∗H ′).Ig+k)QX
′∆xz)

+ tr((Ig+1 ⊗ β′0 )Ω∗H ′QX ′Diag(XQei)XQH) + o(T−2)

is equal to

3(ω221 − β1ω222)[

∑
(z′jπ2)3

(π′2Z
′Zπ2)3

−
∑
π′2zjz

′
j(Z
′Z)−1zj

(π′2Z
′Zπ2)2

]

+ (ω221 − β1ω222)[

∑
(z′jπ2)3

(π′2Z
′Zπ2)3

] + o(T−2) (25)

for this special case. It is seen that the above expression is of order T−2 as expected and
the bracketed terms may go to zero quite quickly as T gets large. Clearly (ω221 − β1ω222)
plays a key role.
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It is helpful to interpret the disturbance skewness factors in terms of the structural
parameters. Noting that

ω221 − β1ω222 = E(v1,tv
2
2,t)− β1E(v3

2,t)

= E(
ε1,t + β1ε2,t

1− β1β2
)(
β2ε1,t + ε2,t

1− β1β2
)2

−β1E(
β2ε1,t + ε2,t

1− β1β2
)3 (26)

which with some manipulation simplifies to

ω221 − β1ω222 =
σ111β

2
2 + 2σ112β2 + σ122

(1− β1β2)2
(27)

it is clear that this term can be made large for suitable choice of the parameters, especially
since β1 and β2 are unrestricted other than the requirement that β1β2 6= 1.

Consider now the part not involving ω221 − β1ω222. If we put π′2 = γ′

1−β1β2 then

4

∑
(z′jπ2)3

(π′2Z
′Zπ2)3

− 3

∑
π′2zjz

′
j(Z
′Z)−1zj

(π′2Z
′Zπ2)2

= (1− β1β2)3

[
4

∑
(z′jγ)3

(γ′Z ′Zγ)3
− 3

∑
γ′zjz

′
j(Z
′Z)−1zj

(γ′Z ′Zγ)2

]
(28)

and the expression in (25) is

{(1− β1β2)(σ111β
2
2 + 2σ112β2 + σ122)}

×
[
4

∑
(γ′zj)

3

(
∑

(γ′zj)
2)3
− 3

∑
(γ′zj)z

′
j(Z
′Z)−1zj

(
∑

(γ′zj)2)2

]
(29)

The terms involving the zj , j = 1, . . . , T , are O(T−2) and so are likely to become small
quite rapidly as T gets large. However the expression in the numerator (1−β1β2)(σ111β

2
2 +

2σ112β2 +σ122) can be made large through suitable choice of coefficients β1 and β2 and the
third moment parameters; hence there will be structures where the non-symmetry effect
on the bias in estimating β2 will be non-trivial despite the fact of being O(T−2).

This simple case suggests that skewness of disturbances seems likely to cause estima-
tion biases to differ substantially in some situations compared to when disturbances are
symmetric.

Appendix 3 (Asymmetry and K)

Approximate lower bound

The first asymmetry term is

e′iQH(β′0 ⊗ Ig+1)Ω?HQX ′∆xz (30)
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where ∆xz has p-th element x′p(X
′X)−1xp − z′p(Z ′Z)−1zp. This can be written as

c′∆xz = c′(cx − cz) (31)

where c = {e′iQH(β′0⊗ Ig+1)Ω?HQX ′}′, cx has p-th element x′p(X
′X)−1xp and cz has p-th

element z′p(Z
′Z)−1zp. The absolute value can be written as

|c′(cx − cz)| =
∣∣∣∣||c||2||cx − cz||2c̃∣∣∣∣ (32)

where ||.||2 is the Euclidean norm. The term c̃ is the cosine of the angle between the vectors
{e′iQH(β′0 ⊗ Ig+1)Ω?HQX ′}′ and ∆xz, which does not go to zero with K. Similarly, ||c||2
does not generally decrease with K. The following lower bound on the term ||cx − cz||2 is
increasing in K though:

||cx − cz||2 ≥
||cx − cz||1√

T
(33)

≥
||cx||1 − ||cz||1√

T
(34)

=
trace(Px)− trace(Pz)√

T
(35)

=
K − g − k√

T
(36)

So that

|c′(cx − cz)| ≥
K − g − k√

T
||c||2|c̃| (37)

with ||c||2 and |c̃| not generally decreasing with K.
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