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Abstract 
Ambient vibration test has gained increasing popularity in practice as it provides an 

economical means for modal identification without artificial loading. Since the signal-to-

noise ratio cannot be directly controlled, the uncertainty associated with the identified 

modal parameters is a primary concern. From a scientific point of view, it is of interest to 

know what factors the uncertainty depends on and what the relationship is. For planning 

or specification purposes, it is desirable to have an assessment of the test configuration 

required to achieve a specified accuracy in the modal parameters. E.g., what is the 

minimum data duration to achieve a 30% coefficient of variation (c.o.v.) in the damping 

ratio? To address these questions, this work investigates the leading order behavior of the 

‘posterior uncertainties’ (i.e., given data) of the modal parameters in a Bayesian 

identification framework. In the context of well-separated modes, small damping and 

sufficient data, it is shown rigorously that, among other results, the posterior c.o.v. of the 

natural frequency and damping ratio are asymptotically equal to 2/1)2/( fcBNπζ  and 

2/1)2/(1 ζπζ BNc , respectively; where ζ  is the damping ratio; cN  is the data length as a 

multiple of the natural period; fB  and ζB  are data length factors that depend only on the 

bandwidth utilized for identification, for which explicit expressions have been derived. 

As the Bayesian approach allows full use of information contained in the data, the results 

are fundamental characteristics of the ambient modal identification problem. This paper 

develops the main theory. The companion paper investigates the implication of the results 

and verification with field test data.  
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1. Introduction 
The modal properties of a structure primarily include the natural frequencies, damping 

ratios and mode shapes. Identifying them based on measured vibration data is an 

important task often performed in vibration control or structural health monitoring 

[1][2][3][4]. Ambient vibration (output-only) tests have gained increasing popularity in 

both theory development and practical applications [5][6][7][8]. This is to a large extent 

attributed to its economy in implementation. Ambient vibration data are obtained when 

the structure is under unknown working load assumed to be random with broadband 

spectral characteristics. The latter assumptions are required to establish a theoretical 

stochastic description of the response statistics without knowing the loading time history.  

 

In ambient vibration tests the loading comes from the stochastic environment whose 

intensity and frequency content cannot be directly controlled. In the absence of specific 

loading information, the uncertainty of the identified modal parameters is often 

significantly larger than that using forced vibration (known input) or free vibration tests 

where the signal-to-noise (s/n) ratio can be managed to an adequate level. The identified 

damping ratio, for example, exhibits large variability from one data set to another. The 

observed variability may come from physical variability, e.g., as a result of thermal or 

amplitude dependence, or merely statistical variability due to lack of data or modeling 

error [9][10][11][12][13]. Significant variability can also exist in the mode shape at 

where the value is small or when the modes are closely-spaced. 

 

It will be useful to assess beforehand the uncertainty in the identified modal properties for 

given test configuration, although this task can be challenging, recognizing the 

sophistication of ambient modal identification (operational modal analysis) theories. A 

Bayesian identification approach allows the ‘posterior uncertainty’ (i.e., given data) to be 

calculated for given data and modeling assumptions [14][15][16][17]. However, the 

expressions depend implicitly on the data and they are too generic to give any insights.  
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This work investigates the leading order behavior of the posterior uncertainties of modal 

properties identified using ambient vibration data, with the aim to providing insights for 

managing their uncertainties. A Bayesian FFT approach is adopted that rigorously 

processes the information available in the data to yield information about the modal 

parameters. Working in the frequency domain allows a natural extraction of information 

in the data relevant to the mode and is well suited to time-invariant linear systems with 

classical modes. This does not introduce any loss of generality by virtue of the one-one 

correspondence between the time-domain and FFT data. The original formulation first 

appeared in [18]. Fast equivalent formulations that allow practical implementations are 

due to [19][8][20]. A recent review can be found in [21]. 

 

To keep the problem tractable we focus on the case of well-separated modes, where one 

can select a frequency band around the natural frequency of interest so that the 

contribution of response from other modes can be ignored in the identification model. We 

analyze in detail the posterior covariance matrix of modal parameters and derive its 

leading order behavior under asymptotic conditions applicable in typical situations, 

namely, small damping and long data duration. The outcomes are ‘asymptotic uncertainty 

laws’ that govern the achievable limits in the accuracy of modal parameters given the 

modeling assumptions. This paper develops the theory. The companion paper discusses 

their qualitative aspects, implications and verification with field data.  

 

2. Bayesian modal identification theory 
Let the acceleration time history measured at n degrees of freedom (dofs) of a structure 

be },...,1:ˆ{ NjRn
j =∈x  and abbreviated as }ˆ{ jx , where N  is the number of samples per 

channel. In the context of Bayesian inference, it is modeled as jjj εθxx += )(ˆ  , where 

)(θx j  is the model (theoretical) response that depends on the set of parameters θ  to be 

identified; jε  is the prediction error that accounts for the difference between the model 

response and data, due to measurement noise and modeling error. The FFT }{ kF  of }ˆ{ jx  

is defined as: 
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where 12 −=i  and t∆  is the sampling interval. For qNk ,...,2= , kF  corresponds to 

frequency tNkfk ∆−= /)1( , where ]2/[NNq int= +1 ( [.]int  denotes the integer part)  is 

the index at the Nyquist frequency. In practice, only the kF ’s on a selected frequency 

band containing the mode(s) of interest is used for identification, which significantly 

simplifies the identification model. The power spectral density (PSD) of the loading and 

prediction error need only be flat within the band. This relaxes the conventional white 

noise assumption, making the method more robust than time-domain methods. Other 

bands with irrelevant information or which are difficult to model are legitimately ignored, 

therefore avoiding modeling error. This does not require any signal pre-processing such 

as filtering or averaging.  

 

Let the structure be classically-damped, i.e., its response can be written as a sum of 

modal responses that satisfy their own (uncoupled) equation of motion. Assuming a 

single contributing mode in the selected band, the FFT of the acceleration response in the 

band is given by )()( kk η FF Φx =  where nR∈Φ  is the mode shape confined to the 

measured dofs assumed to have unit norm, i.e., 1|||| 2 == ΦΦΦ T ; )(kηF  is the FFT of the 

modal acceleration response η , which satisfies the modal equation of motion: 

)()()(2)( 2 tpttt =++ ηωηζωη         (2) 

Here fπω 2= ; f  is the natural frequency (in Hz), ζ  is the damping ratio and )(tp  is 

the modal force (including the modal mass in its denominator) with PSD S  within the 

selected band (i.e., need not be white). The set of parameters θ  to be identified is then 

given by 

},,,,{ Φθ eSSf ζ=          (3) 

where eS  is the PSD of the prediction error within the selected band (i.e., need not be 

white).  
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Let n
kkk R2];[ ∈= GFZ , where kk FRe=F  and kk FIm=G . The FFT data within the 

selected band is denoted by }{ kZ . Using Bayes’ Theorem, the posterior probability 

density function (PDF) of the set of modal parameters θ  given the FFT data }{ kZ  is 

given by 

})({
)()|}({}){|(
k

kk p
ppp

Z
θθZZθ =        (4) 

This equation turns around the question about the likelihood of θ  given the information 

of the data }{ kZ  into a question about the likelihood of obtaining the data for a given θ . 

The term )|}({ θZkp  is called the ‘likelihood function’. It links the measured data with 

the identification model and must be constructed based on modeling assumptions. The 

term })({ kp Z  does not depend on θ  and so it does not affect the posterior PDF. The 

term )(θp  is called the ‘prior PDF’, which reflects one’s knowledge about θ  in the 

absence of data. In modal identification, prior information is of little relevance because 

with sufficient data in practice the variation of the posterior PDF is dominated by that of 

the likelihood function. Thus, assuming a flat (i.e., constant) prior PDF, the posterior 

PDF is simply proportional to the likelihood function.  

 

As a standard result in signal processing, for a stationary (or even some weakly non-

stationary) stochastic process (possibly vector-valued), the kF ’s at different frequencies 

(i.e., k ) are for large N  asymptotically independent and jointly Gaussian [22]. In 

addition, with a single contributing mode kF  and kG  are asymptotically independent. As 

a result,  

])(
2
1exp[)](det[)2()|}({}){|( 12/1 ∑∏ −−− −=∝
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kk
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nN
kk

fpp ZθCZθCθZZθ π  (5) 

where the sum and product are over index k  in the selected band with fN  terms; )(θCk  

is the model covariance matrix of kZ . For small t∆  it is given by [19] 

n
e
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=        (6) 

where n
n R∈0  denotes a zero matrix and n

n R2∈I  denotes the identity matrix;  
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resembles the dynamic amplification factor, except that the frequency ratio is defined as 

kk ff /=β  (rather than ffk / ). For analysis purpose it is convenient to write 

)](exp[}){|( θZθ Lp k −∝ ,  where 

∑∑ −+=
k

kk
T
k

k
kL ZθCZθCθ 1)(

2
1)(detln

2
1)(      (8) 

is called the ‘negative log-likelihood function’ (NLLF). With sufficient data the posterior 

PDF of θ  can be well-approximated by a Gaussian PDF centered at the most probable 

value (MPV), which is equivalent to a second order approximation of )(θL  about the 

MPV [13]. Correspondingly, the posterior covariance matrix is equal to the inverse of the 

Hessian of )(θL  evaluated at the MPV. This Hessian is the primary target of analysis in 

this work. 

 

It should be noted that the ‘raw FFTs’ }{ kF  are used in the likelihood function and hence 

in the Bayesian modal identification process. There is no need for averaging or any form 

of signal processing (e.g., Welch averaging). This is one of the major advantages of the 

Bayesian FFT method that eliminates possible distortion from signal processing artifacts. 

Making inference directly based on the FFT as data instead of statistical proxies (e.g., the 

spectral density) also allows full use of information contained in the data within the 

selected frequency band.       

 

2.1. Fast equivalent formulation 
Due to the non-trivial dependence of the NLLF on the modal parameters, the MPV of the 

modal parameters and the posterior covariance can only be computed numerically for 

given data. The NLLF in (8) is not conducive to computations because it involves the 

inverse of kC  which is close to singular for data with large s/n ratio and whose dimension 

grows with the number of measured dofs. In view of this, an alternative equivalent form 

has been recently derived which allows a fast solution [19]: 
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kk

T
kkk GGFFD +=          (12) 

The significance of (9) is that all terms involved are well-conditioned and the mode shape 

has been isolated into a quadratic form so that its MPV can be determined analytically. 

This form has allowed an extremely fast procedure for determining the posterior MPV 

and covariance matrix. It also allows an analytical study of the posterior uncertainty of 

modal parameters in this work. 

 

3. Outline of results 
In the remaining part of this paper, we shall investigate the leading order behavior of the 

posterior covariance matrix through the Hessian of the NLLF at the MPV. As will be 

seen, the mathematical derivations are quite lengthy. However, the results are remarkably 

simple. For the ease of reading, here we summarize the context of the problem and 

outline the results.  

 

1. Structure: The damping ratio ζ  is assumed to be small. 

 

2. Data length: The data duration dT  is assumed to be long compared to the natural 

period fT /1= . That is,  

1>>=
T
TN d

c          (13) 

 

3. Spectral information: The selected frequency band is assumed to be symmetrically 

centered about the resonance peak with a bandwidth of κζ2 , i.e., )1( κζ±f , where κ  is 
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called the ‘bandwidth factor’ and is a )1(O  constant (often greater than 1). This 

parameterization takes into account of the fact that the resonance bandwidth is generally 

)(ζO . For example, the half-power band is )1( ζ±f ; the band )61( ζ±f  accounts for 

90% of the response variance. The bandwidth factor depends on the selected frequency 

band, which is a trade-off between modeling error risk and the information used for 

modal identification. Since the bandwidth is fκζ2  and the frequency interval is 

TNT cd /1/1 = , the number of FFT ordinates in the selected band is equal to  

c
c

f N
TN
fN κζκζ 2

/1
2

==          (14) 

This is assumed to be large. 

 

In the above context, we will show that the (squared) posterior coefficient of variation 

(c.o.v.=standard deviation/MPV) of modal parameters are given by, to the leading order, 
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are ‘data length factors’ that only depend on the bandwidth factor κ .  

 

Assuming that the mode shape is normalized to have unit norm, i.e., 1=ΦΦT , its 

posterior covariance matrix is given by 

)(
)(

~ T
n

cBN
ΦΦIC −

Φ
Φ κ

nζ         (17) 

where 

κκ 1tan)( −
Φ =B          (18) 

is the bandwidth factor for the mode shape; and 
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S
Se=n            (19) 

is called the ‘noise-to-environment’ (n/e) ratio. The ‘expected Modal Assurance 

Criterion’ (MAC) [23] that quantifies the overall uncertainty of the mode shape is given 

by 
2/12 )1(~ −

Φ+ δρ          (20) 

where 2
Φδ  is the sum of principle variances (i.e., eigenvalues) of ΦC  given by 

)(
)1(~2

κ
nζδ

Φ
Φ

−
BN

n
c

         (21) 

 

Significant correlation exists only between ζ  and S , which is )( 2/1−κO . The correlation 

between any other pair among Φ,,,, eSSf ζ  is asymptotically small, at most )(ζO . 

 

Table 1 summarizes these results, which are asymptotically correct as 0→ζ  and 

∞→fc NN , . They depend only on the (dimensionless) scales ζ , n , κ  and cN . These 

‘uncertainty laws’ shall be proven in Sections 5 to 7 of this paper, before which the 

analysis strategy shall be outlined in Section 4. Readers interested in applications may 

skip to the companion paper, where the implication and verification of the uncertainty 

laws will be discussed. 

 

4. Analysis strategy and preliminaries 
From first glance it seems unlikely that the posterior covariance matrix can be expressed 

in a simple form because it is the inverse of the Hessian, which is a )4( n+ -square full 

matrix with each entry given by a complicated expression implicitly in terms of modal 

parameters and data. It turns out, however, that significant simplifications can result 

under the asymptotic conditions. These are outlined logically as follows. 

 

As will be discussed in Sections 4.1 and 4.2, we make use of the fact that the main 

contribution of the sums in (9) and (10) comes from the resonance region for which 
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1~kβ  and 1/ >>= ekk SSDγ . This allows us to obtain a simpler form for the NLLF and 

its second derivatives. To study the leading order behavior, when analyzing the Hessian 

of the NLLF we replace the MPV by the value corresponding to the data and model the 

latter by a stochastic representation consistent with identification assumptions. This is 

legitimate because the random deviatory part is of smaller order.    

 

Critical facts have been discovered that significantly simplify analysis of the Hessian. We 

will show in Section 5 that at the MPV the cross-derivatives of the NLLF with respect to 

eS  and the remaining parameters are asymptotically small, implying that eS  is 

‘decoupled’ from them. The same is also true for the mode shape Φ , as will be shown in 

Section 6. The Hessian then has a block diagonal structure and its inverse is simply a 

block diagonal matrix containing the inverse of the individual blocks. The decoupling of 

eS  and Φ  implies that the covariance matrix of the remaining parameters ),,( Sf ζ  can 

be obtained as the inverse of the corresponding 3-by-3 partition in the Hessian. This 

inverse can be managed algebraically, resulting in close form expressions. This will be 

shown in Section 7. The remaining part of this section introduces the mathematical 

facilities that are used for developing the theory. 

 

4.1. Asymptotics of log-likelihood function 
The analysis starts with an asymptotic expression for the NLLF for small ζ . Recall the 

NLLF in (9). For small ζ  and 1~kβ , one has 1>>kD  and  

1>>=
e

k
k S

SDγ           (22) 

Consider the following Taylor expansions for small kek SDS /1 =−γ : 
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where  
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Applying up to the first order of these approximations to (9) and rearranging yields 
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Without much loss of generality we assume that 1>n  so that the term ef SNn ln)1( −  in 

the first bracket of (26) does not vanish. This form leads to the asymptotic MPV for S , 

eS  and Φ  [8].  

 

Direct differentiation of (26) and evaluating at the MPV gives the derivatives of the 

NLLF as follows. For simplicity in notation, we use a variable in the superscripted 

parenthesis to denote a derivative with respect to it (e.g., ζζ ∂∂∂≡ fDD k
f

k /2)( ). Also, the 

MPV is denoted directly by its parameter symbol. The auto-derivatives (evaluated at the 

MPV) are given by: 

∑∑ ++ −−

k
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where 0λ  is the largest eigenvalue of 0A . The asymptotic nature of (27) to (31) inherits 

from (26). The second derivative of the third term ∑ −−
k ke DSS 11  in (26) has been omitted 

from (29) because it is dominated by the leader order term shown. For the same reason 

the second derivative of the term ΦΦΦDΦ T
k

T /  has been omitted from (31). The cross-

derivatives (evaluated at the MPV), on the other hand, are given by: 
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Note that the mode shape Φ  is assumed to have unit norm, i.e., 1|||| 2 == ΦΦΦ T . The 

above expressions will be used later for studying their asymptotic behavior. The 

derivatives of kD  involved in these expressions are given in Appendix I. As the term 

ΦDΦ k
T  appears frequently in the derivatives we analyze its leading order behavior in 

the next subsection. 

 

4.2. Asymptotics of spectral density matrix  
Although the term ΦDΦ k

T  depends on the measured data which is unknown prior to 

testing, it is possible to assess its leading order behavior based on modeling assumptions 

built in the identification process. Recall from (12) that T
kk

T
kkk GGFFD += . Since kF  

and kG  are independent and identically distributed (i.i.d.), it is sufficient to investigate 

the behavior of T
kkFF . Within the selected band, kF  is dominated by a single mode in 

combination with the prediction error. It can be represented by  

k
e

k
k

k
SXSD WΦF
22

+=         (42) 
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where kX  is a standard Gaussian random variable (i.e., zero mean, unit variance) 

associated with the FFT of the modal response and kW  is an n-dimensional standard 

Gaussian vector with independent components associated with the prediction error; kX  

and kW  are independent. It can be easily checked using (42) that 0F =][ kE  and 

2/)(][ ne
T

k
T
kk SSDE IΦΦFF += . Expanding the terms, 

)(
2
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22
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eT
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kk XSDSSXSD ΦWΦWWWΦΦFF +++=    (43) 

Summing (43) over k , 
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The summand in the first term is a positive scalar. The summand in the second term is a 

positive definite (random) matrix. Consequently the first two terms are )( fNO . The third 

term is a sum of uncorrelated matrices with zero mean. It is generally )( 2/1
fNO  and 

therefore can be neglected compared to the first two terms. Thus, to the leading order, 
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Writing 2
kX  and T

kk WW  as a sum of its mean and a (zero-mean) deviatory part, the sums 

in (45) can be further separated into a sum of the expectation and a sum of the deviatory 

parts. The former is )( fNO  while the latter is )( 2/1
fNO  because the deviatory parts are 

uncorrelated with zero mean. Consequently, for large fN  the expression in (45) is 

dominated by its expectation, i.e., 
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e
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T
kk NSSD IΦΦFF
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As ∑k
T
kkGG  has the same asymptotic behavior,  

nfe
k

k
T NSSD IΦΦA +∑ )(~0         (47) 
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We next investigate the eigenvalues of 0A . Let },...,1:{ njRn
j =∈a  be an orthonormal 

basis with Φa =1 . Substituting ∑ =
=

n

j
T
jjn 1

aaI  into (47) gives 
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k
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2
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This indicates that asymptotically the largest eigenvalue of 0A  is given by 

∑ +
k

ek SSD )(~0λ          (49) 

and the remaining )1( −n  eigenvalues of 0A  are all equal to feNS . Consequently, 
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4.3. Decoupling  
Significant simplification results by discovering that the prediction error eS  and the mode 

shape Φ  are asymptotically ‘decoupled’ from the remaining parameters. This shall be 

investigated in the next section. For this purpose we introduce a working definition for 

‘decoupling’. A parameter iθ  is ‘perfectly decoupled’ from the remaining ones if (at the 

MPV) 0)( =jiL θθ  for all ij ≠ . In general, the coupling of a scalar-valued parameter with 

the remaining ones can be considered small if 1|| <<
ji

q θθ  for all ij ≠ , where 
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ji LL
Lq θθθθ

θθ

θθ =         (51) 

is a dimensionless ‘cross-sensitivity coefficient’ between iθ  and jθ . This idea can be 

extended to assessing the decoupling of the mode shape Φ , which is vector-valued. In 

this case, the sensitivity coefficient is defined as 

2/1)(2/1)(
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1|||| ][][
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Φ

=
∈

Φ =
LL

Lq
TR jj

j

nj θθ

θ

θ        (52) 

The mathematical basis of this definition is as follows. Consider the second order Taylor 

series of the NLLF subjected to small increments jθ∆  and Φ∆  about the MPV: 
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where the first order terms vanish due to optimality; and  
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θ θ , ΦΦ ∆∆= ΦΦ

ΦΦ
)(LQ T    (54) 

Writing (53) in complete-square form, 

)1()(
2
1 2/12/122/12/1 qQQQQL

jjjj
−−+≈∆ ΦΦΦΦ θθθθ       (55) 

where 2/12/1/ ΦΦΦ= QQQq
jjj θθθ . Using (54) and writing uΦΦ |||| ∆=∆ , where nR∈u  is a unit 

vector, we have 2/1)(2/1)()( ][]/[ uuu ΦΦΦ= LLLq Tjjj θθθ . Thus, if 1|| <<q  for any unit vector u  

then the second term in (55) is approximately 2/12/1
ΦΦQQ

jjθθ  and hence 2/)( 22
ΦΦ+≈∆ QQL

jjθθ , 

which does not involve any cross derivative term between jθ  and Φ . This condition is 

equivalent to || Φj
qθ <<1 defined in (52). Table 2 gives a summary of the sensitivity 

coefficients in terms of their scaling order, which will be derived later in the paper.  

 

5. Uncertainty law for prediction error PSD 

5.1. Decoupling 
We show here that eS  is asymptotically decoupled from the remaining parameters, i.e., 

efSq , 
eSqζ , 

eSSq  and ΦeSq  are asymptotically small compared to 1. First, consider 
efSq . 

Substituting (109) from Appendix I into (35) gives, 









+−+=+− ∑∑∑ −−−−

k
k

k
kkk

k
kk

fS fSfSL e 2221122211)( 2)1)(1(4)21(4~ βζβββζββ  (56) 

Taking 1~kβ  and simplifying, 

])1([8~ 211)( ∑ −+−−

k
kf

fS NfSL e βζ        (57) 

The magnitude of the sum can be assessed using (125) from Appendix II with 0=a  and 

1=b  (first case), giving )()1( 33
c

k
k NO ζκβ =−∑ . This implies that, since 

)( 32
cf NON κζζ = ,  
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)( 3311)(
c

fS NfSOL e ζκ−−=         (58) 

On the other hand, from (30), )()( 22)(
ceef

SS nNSOnSNOL ee κζ−− == . It is shown later (see 

(94)) that )( 12)(
c

ff NfOL −−= ζ . Combining these orders and noting SSe /=n  gives 

1)( 2/132/5 <<= −nOq
efS ζnκ         (59) 

 

We next consider 
eSqζ . Substituting (110) from Appendix I into (36) gives, taking 1~kβ , 

)(168~8~ 2121121)(
ccf

k
k

S NSONSNSSL e κζκζζβζζ −−−− ==∑    (60) 

From (135) of Appendix IV, )( 1)(
cNOL −= ζζζ . Combining these orders gives 

1)( 2/122/1 <<= −nOq
eS ζnκζ         (61) 

 

For 
eSSq , recall from (37) that ∑ −−−=

k k
SS DSL e 12)( . Using (124) from Appendix II with 

1−=a  and 0=b  (first case) gives )( 331
ck k NOD ζκ=∑ −  and hence 

)( 332)(
c

SS NSOL e ζκ−= . From (29), )(~ 22)(
cf

SS NSONSL κζ−− = . Combining these orders 

gives 

1)( 2/122 <<= −nOq
eSS ζnκ         (62) 

For )( ΦeSL , the form in (26) gives 0~)( ΦeSL  in (38) because asymptotically Φ  is the 

eigenvector of 0A . To determine the leading order, we need to consider the second order 

term in (24) that has been omitted from (26). This gives a term of 

∑ −−−
k

T
k

T
ke DSS ΦΦΦDΦ /22  in the expression of L . Differentiating with respect to eS  

and Φ , and evaluating at the MPV gives  

∑ −− −−Φ
k

T
k

T
k

T
k

S DSL e ])([2~ 22)( ΦΦDΦDΦ      (63) 

Using this form it is shown in (164) of Appendix IV that for any unit vector nR∈u ,  

)( 2/12/72/712/3)(
ce

S NSOL e ζκn −Φ =u        (64) 

Combining with )( 2)(
ce

SS nNSOL ee κζ−=  (see (30)) and )( 11)(
c

T NOL −−ΦΦ = ζnuu  (see (85) 

later),  
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1)( 2/12/12/732 <<= −−
Φ cS NnOq

e
ζκn        (65) 

In summary,
efSq , 

eSqζ , 
eSSq  and ΦeSq  are all asymptotically small, and so eS  is 

asymptotically decoupled from the remaining parameters.  

 

5.2. Posterior variance 
Since eS  is decoupled from the remaining parameters, its posterior variance is simply 

equal to the reciprocal of )( ee SSL , i.e.,  

1121)( )1(~]var[ −−−
−= fe

SS
e NnSLS ee        (66) 

The (squared) coefficient of variation of eS  is given by 

112 )1( −−−= fS Nn
e

δ          (67) 

This result assumes that 1>n , for otherwise the term involving eSln  in (26) vanishes 

and other terms will dominate.  

 

6. Uncertainty law for mode shape 

6.1. Decoupling 
We show that, similar to eS , Φ  is also asymptotically decoupled from the remaining 

parameters, i.e., Φfq , Φζq , ΦSq  and ΦeSq  are all small compared to unity. Since Φ  is 

vector-valued, the cross-sensitivity coefficient is defined by (52).  

 

We first analyze the leading order behavior of Φfq , which involves studying the 

magnitude of u)( ΦfL  for any unit vector nR∈u . The latter can be interpreted as the 

projection of )( ΦfL  along the direction of u . We shall first study the projection of )( ΦfL  

on an orthonormal basis. From this, the projection on u  can be established, since any u  

can be represented as a linear combination of the basis vectors.  
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Recall )( ΦfL  from (39). Let },...,1:{ njRn
j =∈a  be an orthonormal basis with Φa =1 . 

For nj ,...,2= , since 0=j
TaΦ  by orthogonality,  

∑∑ += −−−−Φ

k
j

T
kk

T
j

T
kk

Tf
k

k
jk

Tf
kj

f DSDSL )()(2)(2~ )(11)(11)( aGGΦaFFΦaDΦa  (68) 

Using (43) and simplifying gives 

))((
2

2/1
kkk

T
j

T
k

e
j

T
kk

T XS γ+= WΦaWaFFΦ       (69) 

Note that )( 2/12/1
kkk OX γγ = . Since Φ  is a unit vector and kW  is a standard Gaussian 

vector with uncorrelated components, k
T WΦ  is a sum of uncorrelated random variables 

and it has zero mean and unit variance. This means that 2/1)1( kk
T O γ<<=WΦ  and 

therefore 

kj
T
kkej

T
kk

T XS )(
2
1~ 2/1 aWaFFΦ γ   nj ,...,2=     (70) 

Using this result and substituting (109) from Appendix I for )(1)( f
kD−  gives 

∑∑ +−−−−−

k
kj

T
kkkke

k
j

T
kk

Tf
k XfSSDS )()21(4~)(2 2/122211)(11 aWaFFΦ γζββ  (71) 

This is a sum of uncorrelated random variables with zero mean, whose magnitude can be 

assessed by its standard deviation. The variance of the sum is equal to the sum of the 

individual variances, giving 

∑∑ +−−−−−

k
kkke

k
j

T
kk

Tf
k DfSSDS 222421)(11 )21(16~])(2var[ ζββaFFΦ   (72) 

since ekk SSD /=γ  and  

1][])[(])[(])var[( 2222 === kj
T
kkj

T
kkj

T
k XEEXEX aWaWaW     (73) 

Using SSe /=n  and 22224 )1(4~)21( −+− kkk βζββ , 

∑∑ −−−−

k
kk

k
j

T
kk

Tf
k DfDS 22)(11 )1(64~])(2var[ βnaFFΦ     (74) 

Applying (124) from Appendix II with 1=a  and 2=b  (first case), 

)()1( 2
ck kk NOD κζβ =−∑  and so 

)(])(2var[ 2)(11
c

k
j

T
kk

Tf
k NfODS nκζ−−− =∑ aFFΦ      (75) 
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Since kG  has the same behavior as kF , we obtain  

)( 2/12/12/12/11)(
cj

f NfOL ζκn−Φ =a   nj ,...,3,2=      (76) 

Note also that 0)(
1

)( == ΦΦ Φa ff LL . Since any unit vector nR∈u  can be represented as a 

linear combination of },...,1:{ njj =a , we can conclude that  

)(|| 2/12/12/12/11)(
c

f NfOL ζκn−Φ =u        (77) 

It is shown later that )(|| 12)(
c

ff NfOL −−= ζ  (see (94)) and )(|| 11)(
c

T NOL −−ΦΦ = ζnuu  (see 

(85)). Combining these orders, we conclude 

1)(
][][

max 2/12/32/1
2/1)(2/1)(

)(

1||||

<<== −
ΦΦ

Φ

=
∈

Φ cTff

f

R
f NO

LL
Lq

n
ζnκ

uu
u

u
u

    (78) 

Similar arguments can be used to show that the cross-sensitivity of Φ  with ζ  or S  is 

also small, whose details can be found in Appendix IV:  

1)( 2/12/3 <<= −
Φ cNOq nζζ         (79) 

1)( 2/12/3 <<= −
Φ cS NOq nκζ         (80) 

Note also that 1)( 2/12/12/732 <<= −−
Φ cS NnOq

e
ζκn , as found before in (65). 

 

6.2. Posterior covariance matrix 
Since Φ  is asymptotically decoupled from the remaining parameters its posterior 

covariance matrix is simply equal to the inverse of )(ΦΦL  in (31). Again, let 

},...,1:{ njRn
j =∈a  be an orthonormal basis with Φa =1 . Using the asymptotic form of 

0A  in (48) and 0λ  in (49), 

∑∑∑∑
===

=+−=−
n

j

T
jj

k
k

n

j

T
jjfe

T
n

j

T
jjn SDNS

22
110

1
000 )(][ aaaaaaaaAI λλλ    (81) 

Consequently, 

∑∑∑∑
==

−ΦΦ =
n

j

T
jj

k
k

n

j

T
jj

k
ke SDSL

22

1)( )2()2(~ aaaa γ      (82) 

This indicates that )(ΦΦL  has a zero eigenvalue with eigenvector Φ . The remaining 

)1( −n  eigenvalues are ∑k kγ2 , corresponding to the eigenvectors },...,2:{ njj =a . This 
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is consistent with the fact that the NLLF is invariant to the scaling of Φ . In reality the 

mode shape is identified unambiguously with a norm constraint. It has been shown that 

when inverting )(ΦΦL  to obtain the covariance matrix the singularity along the direction 

Φ  can be ignored [23]. Consequently, the posterior covariance matrix of the mode shape 

is given by 

)()2()2(~ 1

2

1 T
n

k
k

n

j

T
jj

k
k ΦΦIaaC −= −

=

−
Φ ∑∑∑ γγ      (83) 

Note that  

κζnγ 1111 tan~22 −−−− ∑∑ = c
k

ke
k

k NDSS       (84) 

since κζ 1tan)2/( −=∑ ck k ND  from Table 3. Thus 

)(tan~
1

)( T
n

cNL ΦΦI −
−

ΦΦ

nζ
κ        (85) 

)(
tan

~ 1
T

n
cN

ΦΦIC −−Φ κ
nζ         (86) 

 

6.3. Expected MAC 
Analogous to the deterministic case it has been shown that the posterior uncertainty of 

mode shape can be assessed by the expected value of the modal assurance criterion 

(MAC), i.e., cosine of the hyper-angle between the most probable mode shape and a 

random mode shape with the posterior distribution [23]. It can be shown that the expected 

MAC is given by 
2/1

2
2 )1(~ −

=∑+ n

j jδρ          (87) 

where },...,1:{ 2 njj =δ  are the eigenvalues of ΦC  arranged in ascending order of 

magnitude; 01 =δ  as discussed before. This expression is asymptotically correct for 

0→jδ  ( nj ,...,2= ) or ∞→n . Equation (86) implies that 

κ
nζδ 1

2

tan
~ −

c
j N

  nj ,...,2=       (88) 

and so 
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[ ] 2/121~ −

Φ+ δρ          (89) 

where 2
Φδ  is the sum of eigenvalues of ΦC : 

κ
nζδδ 1

2

22

tan
)1(~ −

=
Φ

−
= ∑

c

n

j
j N

n         (90) 

Since ρ  is often close to unity, it is more convenient to discuss based on 2
Φδ . Note that 

ΦΦ− δδρ cos~2/1~ 2  for small Φδ , and so Φδ  can be interpreted as the equivalent mean 

hyper-angle between the uncertain mode shape and its MPV. Thus, Φδ  is proportional to 

the overall uncertainty of mode shape. 

 

7. Uncertainty law for frequency, damping and modal 
force PSD 

The asymptotic decoupling of eS  and Φ  from the remaining parameters means that the 

posterior covariance matrix for f , ζ  and S  can be obtained from the inverse of the 

corresponding 3-by-3 partition of the Hessian. We shall next investigate the asymptotic 

behavior of this Hessian and its cross-sensitivities.   

 

7.1. Auto-derivatives and cross-sensitivities 
We first consider )( ffL , recalling from (27). Using (116), the first term is given by 

∑∑

∑∑∑
−−

−−

−−

+−−+−=

k
k

k
kk

k
kkk

k
kkk

k

ff
k

DfDf

DfDfD

2222

2222222422)(

8)1(64~

)213(4)21(16)(ln

β

ζββζββ
 (91) 

On the other hand, using (111) from Appendix I, the second term in (27) is given by 

∑

∑

∑∑

−

−−

−−−−

+

++−=+

k
k

k
ek

T
k

ek
T

kk
k

ek
Tff

k

Df

SfS

SfSSDS

2

21

22221)(11

8~

)(8~

))(213(4)()(

ΦDΦ

ΦDΦΦDΦ ζββ

 (92) 

after using (50) and keeping the leading order terms. Combining (91) and (92) gives 

∑ −−

k
kk

ff DfL 222)( )1(64~ β         (93) 
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Using Table 3 for the sum, we obtain 

)
1

(tan4~ 2
1

2
)(

+
−−

κ
κκ

ζf
NL cff         (94) 

The asymptotic behavior of other derivatives )(ζζL , )( ζfL , )( SL ζ  and )( fSL  have been 

derived similarly in Appendix IV. The results are:  

)
1

(tan4~ 2
1)(

+
+−

κ
κκ

ζ
ζζ cNL         (95) 









+
+

−− −−
22

2
11)(

)1(
)1822(tan10~

κ
κκκζ fNL c

f       (96) 

κζ 11)( tan4~ −−− SNL c
S         (97) 

)
1

tan54(~ 2
111)(

+
+− −−−

κ
κκκζfSNL c

fS       (98) 

 

We next assess the order of magnitude of the cross-sensitivities among f , ζ  and S . The 

following can be deduced: 

)(~ 12)(
c

ff NfOL −− ζ , )(~ 1)(
cNOL −ζζζ , )(~ 2)(

c
SS NSOL κζ−    (99) 

)(~ 1)(
c

f NfOL −ζ , )(~ 1)(
c

S NSOL −ζ , )(~ 11)(
c

fS NfSOL κζ−−    (100) 

Based on the definition in (51), and using (99) and (100), it can be deduced that 

)(ζζ Oq f = , )( 2/1−= κζ Oq S , )( 2/1 ζκOq fS =       (101) 

 

7.2. Posterior variance 
The posterior variances of Sf ,,ζ  are given by the diagonals of the inverse of the 

corresponding 3-by-3 Hessian. Writing this Hessian in terms of the cross-sensitivity 

coefficients and taking matrix inverse gives, for the posterior variance of f , 

122221)(2 )21)(1( −−
+−−−−= fSSffSSfS

ff
f qqqqqqqL ζζζζζσ     (102) 

The variance of ζ  and S  can be obtained analogously by rotating the roles of the 

variables. This expression can be further simplified by noting that  

fSSffSfS qqqqqq ζζζζ ,, 222 >>         (103) 
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which can be deduced from (101). As a result, the followings can be obtained: 
1)(2 ~ −ff

f Lσ , 121)(2 )1(~ −−
− SqL ζ

ζζ
ζσ , 121)(2 )1(~ −−

− S
SS

S qL ζσ     (104) 

where 2
Sqζ  is given by 

1
2

11212 )
1

(tan)(tan2 −−−−

+
+=
κ
κκκκζSq       (105) 

Substituting (94), (135) (from Appendix IV) and (29) into (104), and using the definitions 

of c.o.v. (e.g., 222 / fff σδ = ) gives the posterior c.o.v.s in (15). 

 

7.3. Posterior correlation 
The posterior correlation can be obtained as the off-diagonal terms of the posterior 

covariance matrix normalized by the square root product of the corresponding diagonals. 

This gives, between f  and ζ , 

2/122/12 )1()1( SfS

SfSf
f qq

qqq

ζ

ζζ
ζρ

−−
−

=         (106) 

The expressions for Sζρ  and fSρ  can be obtained analogously by rotating the roles of the 

variables. Substituting the expressions of ζfq , Sqζ  and fSq  leads to lengthy expressions 

for the correlations, which are omitted here as they carry limited insights. Nevertheless, 

in terms of scaling order, it can be deduced that  

)(ζρ ζ Of = , )( 2/1−= κρζ OS , )( 2/1 ζκρ OfS =      (107) 

This indicates that, similar to the cross-sensitivity coefficients,  

fSfS ρρρ ζζ ,>>          (108) 

 

8. Conclusions 
Despite the lengthy mathematical derivations, the leading order behavior of the posterior 

variance of modal parameters is remarkably simple. The results are summarized in Table 

1. They are asymptotically correct for small ζ  and large fc NN , . As is common in 

asymptotic analysis, although the results are derived based on the asymptotic conditions, 

they can often give a good approximation in typical (non-asymptotic) situations. The 
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uncertainty laws have important implications on the extent to which one can reduce 

uncertainty and planning for ambient vibration tests. These shall be discussed in the 

companion paper, where the uncertainty laws shall also be verified using field data.  

 

The frequency domain identification method adopted here does not introduce any loss of 

generality in the uncertainty laws because the posterior distribution (and hence its implied 

uncertainty) is unique for given modeling assumptions and data. Non-Bayesian methods 

tend to result in higher uncertainty (in a frequentist sense) because they may not have 

made use of all information contained in the data for inference.  

 

It must be emphasized that our objective is not to use the uncertainty laws for actually 

calculating the posterior uncertainties given the data, since this can be done more 

accurately and in more general situations using the exact algorithms with little 

computational time. Rather, the scaling laws are derived to yield insights into the 

fundamental characteristics of the ambient modal identification problem. Mathematics is 

essential for a rigorous treatment, but it has never been the driving force directing this 

research. In fact the final results were conjectured qualitatively in the study of typhoon 

data [24], long before the mathematics was worked out. 
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Appendix I. Derivatives of dynamic factor 
This appendix presents the expressions for the derivatives of kD , which are recalled from 

[19]. To simplify notations we put a parenthesized variable in the superscript to denote a 

derivative with respect to it. E.g., )( ζf
kD  denotes ζ∂∂∂ fDk /2 .  

 
1−

kD  

)21(4)( 2221)(1 ζββ +−= −−
kk

f
k fD        (109) 

2)(1 8)( kkD ζβζ =−          (110) 

)213(4)( 2222)(1 ζββ +−= −−
kk

ff
k fD        (111) 

2)(1 8)( kkD βζζ =−          (112) 

21)(1 16)( k
f

k fD ζβζ −− =          (113) 

 

kDln  

)21(4)(ln 2221)( ζββ +−−= −
kkk

f
k DfD       (114) 

kkk DD 2)( 8)(ln ζβζ −=         (115) 

)213(4)21(16)(ln 2222222422)( ζββζββ +−−+−= −−
kkkkkk

ff
k DfDfD   (116) 

)18(8)(ln 222)( −= kkkkk DDD βζβζζ        (117) 

)1(16)(ln 4221)( −= −
kkk

f
k DfD ββζζ        (118) 
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Appendix II. Asymptotics of discrete sums 
This appendix investigates the asymptotic behavior of discrete sums of the form 

∑ −
k

b
k

a
kD )1(β , where a  and b  are integers and 0≥b . The strategy is to express it as a 

Riemann sum and then approximate by an integral. This will be asymptotically correct 

when the number of terms fN  in the sum is large. 

 

Recall from (7) that 1222 ])2()1[( −+−= kkkD ζββ , where kk ff /=β . Note that }{ kβ  are 

not evenly spaced, i.e., kk ββ −+1  is not a constant of k . In order to write as a Riemann 

sum we shall define and work with an evenly spaced (dimensionless) coordinate. Let  

111 −=−=
k

k
k f

fu
β

         (119) 

By construction, }{ ku  are evenly spaced at ffuuu kk /1 ∆=−=∆ + where 1−=∆ dTf  and 

dT  is the data duration. Since 1−= Tf  where T  is the natural period, we have 

111 / −−− ==∆ cd NTTu , where TTN dc /= . The lower and upper limit of ku  are κζ−  and 

κζ+ , respectively. 

 

Substituting )1/(1 kk u+=β  into (7) and rearranging gives 
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4

)1(4)2(
)1(

kkk

k
k uuu

uD
+++

+
=

ζ
       (120) 

Using this form and noting that )1/(1 kkk uu +−=−β , one obtains 
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+

−=−
−

−

k
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b
k
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b
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a
k uuu

uuD
])1()2/1([

)1(2)1()1( 2222

4
2

ζ
β     (121) 

Introducing 1−=∆ cNu  and approximating the Riemann sum by an integral, we have 

∫∑ −

−
−

+++
+

−−
κζ

κζ ζ
β du

uuu
uuND a

bba

c
ab

k

b
k

a
k ])1()2/1([

)1(2)1(~)1( 2222

4
2    (122) 

Changing integration variable from u  to ζ/u  removes the dependence of the integration 

limit on ζ : 
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∫∑ −

−
+−−

+++
+

−−
κ

κ ζζ
ζζβ du

uuu
uuND a

bba
ab

c
ab

k

b
k

a
k ])1()2/1([

)1(2)1(~)1( 222

4
122   (123) 

The asymptotic approximation of this integral for small ζ  is investigated in Appendix III. 

Based on this, asymptotic expressions for the discrete sums used in this work are derived 

and summarized in Table 3. Figure 1 compares the approximation with the exact values 

for the sums that are used in this work. It has been assumed that =f 2Hz and %1=ζ , 

although the plots for other values are similar. For each line, since ζ  and cN  are fixed, 

cf NN ζκ2=  is directly proportional to κ . For reference, fN  increases from 4 to 80 as κ  

increases from 1 to 20. 

 

Scaling order 

In terms of order of magnitude, it can be deduced that (see Appendix III) when b  is even, 
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When b  is odd, 
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ζ
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where 1−=abJ  if ba =3  and 1=abJ  otherwise. Comparing (124) and (125), when b  is 

odd the sum is one order ζ  less than its counterpart when b  is even.  
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Appendix III. Asymptotics of integral (123) 
This appendix investigates the asymptotics of the integral in (123) where a  and b  are 

integers and 0≥b . For small ζ  the absolute value of the integrand is roughly symmetric 

about the origin. When b  is even the integrals on the positive and negative side tend to 

reinforce each other; when b  is odd they tend to cancel out. The strategy is to use Taylor 

approximation with respect to ζ  to capture the difference between the positive and 

negative part. Such difference is unimportant when b  is even but it becomes the leading 

order when b  is odd. 

 

Let abI  denote the integral in (123). Separate it into two parts, one on ],0[ κ  and the other 

on ]0,[ κ− . For the latter, change integration variable from u  to u− . This gives 
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The two integrands mainly differ by terms involving ζ± . For small ζ , 
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     (127) 

When b  is even the )(ζO  terms of the two integrands in (126) cancel out, giving 

∫ +
κ

0 2 )1(
2~ du

u
uI a

b

ab          (128) 

When b  is odd, the zero-th order terms cancel out, leaving the )(ζO  terms as the leading 

order 

∫ −+−
+ +

+κ
ζ

0

2
12

1

])3()2[(
)1(

2~ duubaba
u

uI a

b

ab      (129) 

The integrals appearing in (128) and (129) can be evaluated analytically. Table 3 shows 

the resulting approximation of the discrete sum in (123) for 2,1=a  and 2,1=b  where the 

indefinite integrals that have been used are shown in the first column.  
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Scaling order 

The scaling of abI  with ζ  is trivial. To investigate the scaling with κ , first consider the 

case when 0≥b  is even. For large u , abab uuu 22 ~)1( −−+ . This means that if 

22 −≤− ab  then ∫ −+
κ

0

2 )1( duuu ab  is bounded. Otherwise, it is asymptotic to ∫ −κ

0

2 duu ab  

for large κ . Based on these, the following can be deduced when 0≥b  is even: 
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       (130) 

The behavior for abI  when 0≥b  is odd can be similarly deduced:  
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where 1−=abJ  if ba =3  and 1=abJ  otherwise. 
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Appendix IV. Asymptotics of NLLF derivatives 
This appendix derives the asymptotic expressions for those derivatives of the NLLF not 

covered in the main text. Cross sensitivities involving Φ  are also derived.  

 
)(ζζL  

Recall )(ζζL  from (28). Using (117), the first term is given by 
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k DDDDD 864~864)(ln 222242)( ζββζζζ    (132) 

Using (112), the second term in (28) is given by 
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after using (50). Combining these two terms gives 

∑
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Using Table 3 for the sum, 
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Recall )( ζfL  from (32). Using (118), the first term is given by 
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f
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Using Table 3 for the sum, 
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Using (113), the second term in (32) becomes 
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after using (50). Using Table 3 for the sum, 
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Combining (137) and (139), 
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Recall )( SL ζ  from (34). Using (110), 
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after using (50). Using Table 3 for the sum 
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Substituting (109) into (33) gives 
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after using (50). Using Table 3 for the sum, 
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In the following we also assess the order of magnitude of the cross-sensitivities involving 

Φ . The technique is similar to that used in Section 6.1. As before },...,1:{ njRn
j =∈a  

denotes an orthonormal basis with Φa =1 . 
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Since kF  and kG  are i.i.d. it is sufficient to study the term related to kF . Using (110) and 

(70), and noting SSe /=n , 
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Since kW  and kX  are uncorrelated this expression has zero mean. Its magnitude is then 

assessed by its standard deviation. Taking variance on both sides and taking 1~4
kβ , 

1=j
T
k aW  and 1][ 2 =kXE , we have 
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Using (124) with 0,1 == ba  (third case), ∑ −=
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Together with the fact that 0)(
1

)( == ΦΦ Φa ζζ LL , we obtain, for any unit vector nR∈u , 
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Combining with )(|| 1)(
cNOL −= ζζζ  (see (135)) and )(|| 11)(

c
T NOL −−ΦΦ = ζnuu  (see (85)), 

we conclude 
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)( ΦSL  and ΦSq  

Using (41), for nj ,...,2= , 
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Using (70), 
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Again, we assess the order of magnitude of this expression by its standard deviation: 
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The order of magnitude of this expression is assessed by its standard deviation: 
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Table 1. Summary of posterior uncertainty law. Variance on diagonals; correlation on off-diagonals 
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Table 2. Summary of sensitivity coefficients 
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Table 3. Summary of approximation for discrete sums 
Integral Sum 
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Figure 1. Approximation of discrete sums. f =2Hz, ζ =1%. Circle: exact; line: approximate 
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