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Abstract

Ambient vibration test has gained increasing popularity in practice as it provides an
economical means for modal identification without artificial loading. Since the signal-to-
noise ratio cannot be directly controlled, the uncertainty associated with the identified
modal parameters is a primary concern. From a scientific point of view, it is of interest to
know what factors the uncertainty depends on and what the relationship is. For planning
or specification purposes, it is desirable to have an assessment of the test configuration
required to achieve a specified accuracy in the modal parameters. E.g., what is the
minimum data duration to achieve a 30% coefficient of variation (c.0.v.) in the damping
ratio? To address these questions, this work investigates the leading order behavior of the
‘posterior uncertainties’ (i.e., given data) of the modal parameters in a Bayesian
identification framework. In the context of well-separated modes, small damping and

sufficient data, it is shown rigorously that, among other results, the posterior c.o.v. of the

natural frequency and damping ratio are asymptotically equal to (¢/22N_B,)"? and
1/(27z§NCB§)1’2, respectively; where ¢ is the damping ratio; N, is the data length as a
multiple of the natural period; B; and B, are data length factors that depend only on the

bandwidth utilized for identification, for which explicit expressions have been derived.
As the Bayesian approach allows full use of information contained in the data, the results
are fundamental characteristics of the ambient modal identification problem. This paper
develops the main theory. The companion paper investigates the implication of the results

and verification with field test data.
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1. Introduction
The modal properties of a structure primarily include the natural frequencies, damping

ratios and mode shapes. Identifying them based on measured vibration data is an
important task often performed in vibration control or structural health monitoring
[11[2][3][4]. Ambient vibration (output-only) tests have gained increasing popularity in
both theory development and practical applications [5][6][7][8]. This is to a large extent
attributed to its economy in implementation. Ambient vibration data are obtained when
the structure is under unknown working load assumed to be random with broadband
spectral characteristics. The latter assumptions are required to establish a theoretical

stochastic description of the response statistics without knowing the loading time history.

In ambient vibration tests the loading comes from the stochastic environment whose
intensity and frequency content cannot be directly controlled. In the absence of specific
loading information, the uncertainty of the identified modal parameters is often
significantly larger than that using forced vibration (known input) or free vibration tests
where the signal-to-noise (s/n) ratio can be managed to an adequate level. The identified
damping ratio, for example, exhibits large variability from one data set to another. The
observed variability may come from physical variability, e.g., as a result of thermal or
amplitude dependence, or merely statistical variability due to lack of data or modeling
error [9][10][11][12][13]. Significant variability can also exist in the mode shape at

where the value is small or when the modes are closely-spaced.

It will be useful to assess beforehand the uncertainty in the identified modal properties for
given test configuration, although this task can be challenging, recognizing the
sophistication of ambient modal identification (operational modal analysis) theories. A
Bayesian identification approach allows the ‘posterior uncertainty’ (i.e., given data) to be
calculated for given data and modeling assumptions [14][15][16][17]. However, the
expressions depend implicitly on the data and they are too generic to give any insights.



This work investigates the leading order behavior of the posterior uncertainties of modal
properties identified using ambient vibration data, with the aim to providing insights for
managing their uncertainties. A Bayesian FFT approach is adopted that rigorously
processes the information available in the data to yield information about the modal
parameters. Working in the frequency domain allows a natural extraction of information
in the data relevant to the mode and is well suited to time-invariant linear systems with
classical modes. This does not introduce any loss of generality by virtue of the one-one
correspondence between the time-domain and FFT data. The original formulation first
appeared in [18]. Fast equivalent formulations that allow practical implementations are
due to [19][8][20]. A recent review can be found in [21].

To keep the problem tractable we focus on the case of well-separated modes, where one
can select a frequency band around the natural frequency of interest so that the
contribution of response from other modes can be ignored in the identification model. We
analyze in detail the posterior covariance matrix of modal parameters and derive its
leading order behavior under asymptotic conditions applicable in typical situations,
namely, small damping and long data duration. The outcomes are “asymptotic uncertainty
laws’ that govern the achievable limits in the accuracy of modal parameters given the
modeling assumptions. This paper develops the theory. The companion paper discusses
their qualitative aspects, implications and verification with field data.

2. Bayesian modal identification theory
Let the acceleration time history measured at n degrees of freedom (dofs) of a structure

be {X, €R": j=1...,N} and abbreviated as {X,}, where N is the number of samples per
channel. In the context of Bayesian inference, it is modeled as 5A(j =X;(0)+¢;, where
X;(0) is the model (theoretical) response that depends on the set of parameters 0 to be
identified; ¢; is the prediction error that accounts for the difference between the model

response and data, due to measurement noise and modeling error. The FFT {#} of {f(l.}

is defined as:



F = J%iii exp[—2n W] 1)

where i? = -1 and At is the sampling interval. For k = 2,..., N,, % corresponds to
frequency f, =(k—1)/NAt, where N, =int[N/2]+1 (int[.] denotes the integer part) is
the index at the Nyquist frequency. In practice, only the # ’s on a selected frequency
band containing the mode(s) of interest is used for identification, which significantly
simplifies the identification model. The power spectral density (PSD) of the loading and
prediction error need only be flat within the band. This relaxes the conventional white
noise assumption, making the method more robust than time-domain methods. Other
bands with irrelevant information or which are difficult to model are legitimately ignored,

therefore avoiding modeling error. This does not require any signal pre-processing such

as filtering or averaging.

Let the structure be classically-damped, i.e., its response can be written as a sum of
modal responses that satisfy their own (uncoupled) equation of motion. Assuming a

single contributing mode in the selected band, the FFT of the acceleration response in the

band is given by &, (k) = ®F,(k) where @ < R" is the mode shape confined to the

measured dofs assumed to have unit norm, i.e., | ® |’= ®"® =1; (k) is the FFT of the
modal acceleration response 7j, which satisfies the modal equation of motion:

7(t) + 280 (t) + @*n(t) = p(t) )
Here w =2af ; f isthe natural frequency (in Hz), ¢ is the damping ratio and p(t) is
the modal force (including the modal mass in its denominator) with PSD S within the
selected band (i.e., need not be white). The set of parameters 0 to be identified is then
given by

0={f,,S,S, ®} 3)
where S, is the PSD of the prediction error within the selected band (i.e., need not be

white).



Let Z, =[F,;G,] € R*", where F, =Re® and G, = Im#, . The FFT data within the
selected band is denoted by {Z,}. Using Bayes’ Theorem, the posterior probability
density function (PDF) of the set of modal parameters 6 given the FFT data {Z,} is

given by

01{Z.3) = pz.310) P9 4
pO{Z}) = p({Z} )p({Zk}) (4)

This equation turns around the question about the likelihood of 6 given the information
of the data {Z, } into a question about the likelihood of obtaining the data for a given 0.
The term p({Z, }|0) is called the “likelihood function’. It links the measured data with
the identification model and must be constructed based on modeling assumptions. The
term p({Z,}) does not depend on @ and so it does not affect the posterior PDF. The
term p(0) is called the “prior PDF’, which reflects one’s knowledge about 6 in the

absence of data. In modal identification, prior information is of little relevance because
with sufficient data in practice the variation of the posterior PDF is dominated by that of
the likelihood function. Thus, assuming a flat (i.e., constant) prior PDF, the posterior

PDF is simply proportional to the likelihood function.

As a standard result in signal processing, for a stationary (or even some weakly non-

stationary) stochastic process (possibly vector-valued), the #, ’s at different frequencies

(i.e., k) are for large N asymptotically independent and jointly Gaussian [22]. In

addition, with a single contributing mode F, and G, are asymptotically independent. As

a result,
p®{Z,}) = p{Z,}10) = (27) "' [[ | detC, (0)]*"* exp[—%ZZECk(B)lzk] ®)

where the sum and product are over index k in the selected band with N, terms; C, (0)

is the model covariance matrix of Z, . For small At it is given by [19]

SD, |®®" 0 S
C, =—X "o+=2 6
k 2 |: O (I)(I)T:| 2 2n ()

n

where 0, € R" denotes a zero matrix and 1, € R*" denotes the identity matrix;



D (f.) =18 - +(248,)°T" (7)
resembles the dynamic amplification factor, except that the frequency ratio is defined as

S, = T 11, (ratherthan f_/ f ). For analysis purpose it is convenient to write

P(O1{Z,}) o exp[-L(B)], where

L(0) =%ZIn detCk(9)+%ZZ[Ck(9)lzk (8)

is called the ‘negative log-likelihood function” (NLLF). With sufficient data the posterior
PDF of 6 can be well-approximated by a Gaussian PDF centered at the most probable
value (MPV), which is equivalent to a second order approximation of L(0) about the
MPV [13]. Correspondingly, the posterior covariance matrix is equal to the inverse of the

Hessian of L(0) evaluated at the MPV. This Hessian is the primary target of analysis in

this work.

It should be noted that the ‘raw FFTs’” {#,} are used in the likelihood function and hence

in the Bayesian modal identification process. There is no need for averaging or any form
of signal processing (e.g., Welch averaging). This is one of the major advantages of the
Bayesian FFT method that eliminates possible distortion from signal processing artifacts.
Making inference directly based on the FFT as data instead of statistical proxies (e.g., the
spectral density) also allows full use of information contained in the data within the

selected frequency band.

2.1. Fast equivalent formulation
Due to the non-trivial dependence of the NLLF on the modal parameters, the MPV of the

modal parameters and the posterior covariance can only be computed numerically for
given data. The NLLF in (8) is not conducive to computations because it involves the

inverse of C, which is close to singular for data with large s/n ratio and whose dimension

grows with the number of measured dofs. In view of this, an alternative equivalent form

has been recently derived which allows a fast solution [19]:



O'AD

L=-nN;In2+(n-1)N, InS, + > In(SD, +S,)+S."(d ——=—) (9)
- o' OD
where
S
A=>(1+—)'D 10
Zk‘,( SDk) ’ (10)
d=> (R +G,G,) (11)
k
D, =FF +G,G/ (12)

The significance of (9) is that all terms involved are well-conditioned and the mode shape
has been isolated into a quadratic form so that its MPV can be determined analytically.
This form has allowed an extremely fast procedure for determining the posterior MPV
and covariance matrix. It also allows an analytical study of the posterior uncertainty of

modal parameters in this work.

3. Outline of results
In the remaining part of this paper, we shall investigate the leading order behavior of the

posterior covariance matrix through the Hessian of the NLLF at the MPV. As will be
seen, the mathematical derivations are quite lengthy. However, the results are remarkably
simple. For the ease of reading, here we summarize the context of the problem and

outline the results.

1. Structure: The damping ratio ¢ is assumed to be small.

2. Data length: The data duration T, is assumed to be long compared to the natural

period T =1/ f . That is,

c

N :-:_—d>>1 (13)

3. Spectral information: The selected frequency band is assumed to be symmetrically

centered about the resonance peak with a bandwidth of 2« , i.e., f(1+«¢), where « is



called the “bandwidth factor’ and isa O(1) constant (often greater than 1). This

parameterization takes into account of the fact that the resonance bandwidth is generally
0O(¢) . For example, the half-power band is f(1+¢); the band f (1+6¢) accounts for
90% of the response variance. The bandwidth factor depends on the selected frequency
band, which is a trade-off between modeling error risk and the information used for

modal identification. Since the bandwidth is 2x¢f and the frequency interval is

1/T, =1/N_T, the number of FFT ordinates in the selected band is equal to

2kt
"UUNT

2k¢N, (14)

This is assumed to be large.

In the above context, we will show that the (squared) posterior coefficient of variation

(c.o.v.=standard deviation/MPV) of modal parameters are given by, to the leading order,

P S SN S SN S S )
2NB, (k) ° 27NB (k) NiBy(x) T (n-DN,
where
-1 2
Bf(K)zg(tan_l’(_ ), B;(zc)=E tan " s+ — _2(tan”" x)
Y4 K°+1 T K°+1 K
B, (k) =1-2(tan* )2 *(tan * x + ——) (16)
Kk +1

are “‘data length factors’ that only depend on the bandwidth factor « .

Assuming that the mode shape is normalized to have unit norm, i.e., ®'® =1, its

posterior covariance matrix is given by

Y 0 _ee
Co g0 20 (17)
where
B, (x) =tan"'« (18)

is the bandwidth factor for the mode shape; and



y= ge (19)

is called the ‘noise-to-environment’ (n/e) ratio. The ‘expected Modal Assurance
Criterion’ (MAC) [23] that quantifies the overall uncertainty of the mode shape is given
by

p~@L+55)7"" (20)
where & is the sum of principle variances (i.e., eigenvalues) of C, given by

52 ~ (n-vg (21)
N.B, (x)

-1/2

Significant correlation exists only between ¢ and S, which is O(x™“) . The correlation

between any other pair among f,¢,S,S,, ® is asymptotically small, at most O(¢) .

Table 1 summarizes these results, which are asymptotically correct as £ — 0 and
N.,N; — . They depend only on the (dimensionless) scales ¢, v, k¥ and N_. These

‘uncertainty laws’ shall be proven in Sections 5 to 7 of this paper, before which the
analysis strategy shall be outlined in Section 4. Readers interested in applications may
skip to the companion paper, where the implication and verification of the uncertainty

laws will be discussed.

4. Analysis strategy and preliminaries
From first glance it seems unlikely that the posterior covariance matrix can be expressed

in a simple form because it is the inverse of the Hessian, which is a (4 + n) -square full
matrix with each entry given by a complicated expression implicitly in terms of modal
parameters and data. It turns out, however, that significant simplifications can result

under the asymptotic conditions. These are outlined logically as follows.

As will be discussed in Sections 4.1 and 4.2, we make use of the fact that the main

contribution of the sums in (9) and (10) comes from the resonance region for which



B, ~land y, =SD, /S, >>1. This allows us to obtain a simpler form for the NLLF and

its second derivatives. To study the leading order behavior, when analyzing the Hessian
of the NLLF we replace the MPV by the value corresponding to the data and model the
latter by a stochastic representation consistent with identification assumptions. This is

legitimate because the random deviatory part is of smaller order.

Critical facts have been discovered that significantly simplify analysis of the Hessian. We
will show in Section 5 that at the MPV the cross-derivatives of the NLLF with respect to

S. and the remaining parameters are asymptotically small, implying that S, is

‘decoupled’ from them. The same is also true for the mode shape ®, as will be shown in
Section 6. The Hessian then has a block diagonal structure and its inverse is simply a
block diagonal matrix containing the inverse of the individual blocks. The decoupling of

S, and @ implies that the covariance matrix of the remaining parameters (f,£,S) can

be obtained as the inverse of the corresponding 3-by-3 partition in the Hessian. This
inverse can be managed algebraically, resulting in close form expressions. This will be
shown in Section 7. The remaining part of this section introduces the mathematical

facilities that are used for developing the theory.

4.1. Asymptotics of log-likelihood function
The analysis starts with an asymptotic expression for the NLLF for small £ . Recall the

NLLF in (9). For small £ and g, ~1, one has D, >>1 and

_SD,

V= s >>1 (22)

e

Consider the following Taylor expansions for small »,* =S, /SD, :

>In(SD, +S,)~ > InSD, + >_5,57'D,* —%ZSjSZDkZ (23)

k k k k

A=Y (1+ S )"Dy ~A;—S.STY DD, +S257?) D.’D, (24)
k SDk k k

where

10



A, =YD, (25)

k
Applying up to the first order of these approximations to (9) and rearranging yields
L~-nN,In2+> InD, +S,5*> D*
k k

26)
; DA D § L®'D,® (
{(n—l)NflnseJrsel(d— (DT(;) )}+{Nfln8+slzk:Dkl cpTckp }

Without much loss of generality we assume that n>1 so that the term (n—1)N, InS, in

the first bracket of (26) does not vanish. This form leads to the asymptotic MPV for S,
S, and @ [8].

Direct differentiation of (26) and evaluating at the MPV gives the derivatives of the

NLLF as follows. For simplicity in notation, we use a variable in the superscripted

parenthesis to denote a derivative with respect to it (e.g., D) =°D, /8fo¢ ). Also, the

MPV is denoted directly by its parameter symbol. The auto-derivatives (evaluated at the
MPV) are given by:

L ~ 3 (InD,)™ +5*3 (D) (@' D, ® +,) (27)
Kk k

L€ ~ 3 (InD,)* +573 (D)) (@' D, @ +S,) (28)
Kk k

LS ~ NfS_z (29)

LGS ~ (n—1)N,S;? (30)

L™ ~ 25 (Al ~ Ag) 1

where A, is the largest eigenvalue of A;. The asymptotic nature of (27) to (31) inherits
from (26). The second derivative of the third term SeS‘lzk D," in (26) has been omitted

from (29) because it is dominated by the leader order term shown. For the same reason
the second derivative of the term ®'D,®/®"® has been omitted from (31). The cross-
derivatives (evaluated at the MPV), on the other hand, are given by:

L ~ 3" (InD) ™ + 573 (D) (@' D@ +S,) (32)
Kk k

11



L' ~-s2%" (D) (@' DD +S,) (33)
k

LS ~ 523 (D (@D ®+S,) (34)
k
L(fSe) - S—1Z(Dk—1)(f) (35)
k
L(ése) - S—lZ(Dk—l)(?) (36)
k
R I (37)
k
LG ~0 (38)
L™ ~ 257> (D) "[@'D, — (@D, ®)®"] (39)
k
L ~ 25> (DH®[®@'D, - (@'D,®)P"] (40)
k
L ~ 252> D,'[®'D, — (@D, ®)®'] (41)
k

Note that the mode shape @ is assumed to have unit norm, i.e., | ® |F=®'® =1. The
above expressions will be used later for studying their asymptotic behavior. The

derivatives of D, involved in these expressions are given in Appendix I. As the term
®'D,® appears frequently in the derivatives we analyze its leading order behavior in

the next subsection.

4.2. Asymptotics of spectral density matrix
Although the term @' D, ® depends on the measured data which is unknown prior to

testing, it is possible to assess its leading order behavior based on modeling assumptions

built in the identification process. Recall from (12) that D, =F,F] +G,G, . Since F,
and G, are independent and identically distributed (i.i.d.), it is sufficient to investigate

the behavior of F F| . Within the selected band, F, is dominated by a single mode in

combination with the prediction error. It can be represented by
F = ,/S—Skxkq) + ‘/%Wk (42)

12



where X, is a standard Gaussian random variable (i.e., zero mean, unit variance)
associated with the FFT of the modal response and W, is an n-dimensional standard
Gaussian vector with independent components associated with the prediction error; X,
and W, are independent. It can be easily checked using (42) that E[F,]=0 and
E[F.F 1= (SD,®®" +S,1,)/2. Expanding the terms,

FF :S—Skxfcqu WL%WKWKT +%1/SQSDKXK(<I)WKT +W,®") (43)

Summing (43) over k,

/S, S
> RF = cpcpTZS—gk X7 +%ZWkaT + 28 > DX (@W] + W ") (44)
k k k k
The summand in the first term is a positive scalar. The summand in the second term is a
positive definite (random) matrix. Consequently the first two terms are O(N). The third
term is a sum of uncorrelated matrices with zero mean. It is generally O(N?'?) and

therefore can be neglected compared to the first two terms. Thus, to the leading order,

ZFkaT ~q>q>TzS—'23kxf+%ZWkwkT (45)
k k

k
Writing sz and W, W, as a sum of its mean and a (zero-mean) deviatory part, the sums
in (45) can be further separated into a sum of the expectation and a sum of the deviatory

parts. The former is O(N ) while the latter is O(N7?) because the deviatory parts are
uncorrelated with zero mean. Consequently, for large N, the expression in (45) is

dominated by its expectation, i.e.,

ZFkaT ~®®T(ZS—I;)“)+%NfIn (46)
k k

As ZkaGl has the same asymptotic behavior,

A, ~ ®®" (D SD,)+S.N(l, (47)
k

13



We next investigate the eigenvalues of A, . Let {a; e R": j=1,...,n} be an orthonormal

basis with a, = ®. Substituting I, = r;:lajag into (47) gives

A, ~aa, Y (SD, +se)+seNon:aja} (48)
k j=2

This indicates that asymptotically the largest eigenvalue of A, is given by

Ao~ Zk“(SDk +8S,) (49)

and the remaining (n—1) eigenvalues of A, are all equal to S_N, . Consequently,

YO DP=0" Q. D)P=0'AD=14 ~ > (SD +S,) (50)

4.3. Decoupling
Significant simplification results by discovering that the prediction error S, and the mode

shape @ are asymptotically ‘decoupled’ from the remaining parameters. This shall be
investigated in the next section. For this purpose we introduce a working definition for
‘decoupling’. A parameter &, is ‘perfectly decoupled” from the remaining ones if (at the
MPV) L) =0 for all j #1i. In general, the coupling of a scalar-valued parameter with
the remaining ones can be considered small if |q9|6,J |<<1 forall j=i,where

L(gigj)

Qoo = (51)

i0] [L(aiai)]1/2[|_(€j€j)]1/2
is a dimensionless “cross-sensitivity coefficient’ between ¢, and ;. This idea can be

extended to assessing the decoupling of the mode shape ®, which is vector-valued. In

this case, the sensitivity coefficient is defined as

Ly
o = T g 99 52

The mathematical basis of this definition is as follows. Consider the second order Taylor
series of the NLLF subjected to small increments A@; and A® about the MPV:

14



AL=L(0; +A0,,®+A®)-L(0;,, @)~ %(Qelﬂj +2Qp0 +Quo) (53)
where the first order terms vanish due to optimality; and

Qoo =LA}, Q0 =AGL"VAD, Q,, = ADTL*"AD (54)
Writing (53) in complete-square form,

AL~ (Q +Q) - Qi Q- (55)
where q=Q, ,,/Q;; Qpg - Using (54) and writing A® =|| A®||u,, where ueR" is a unit
vector, we have =L u/[L“’1'2[u" L'"Yu]2. Thus, if |q|<<1 for any unit vector u
then the second term in (55) is approximately Q,3 Q,, and hence AL~ (Q;, +Qs,)/2,
which does not involve any cross derivative term between ¢, and ®. This condition is
equivalent to | Q.0 |<<1 defined in (52). Table 2 gives a summary of the sensitivity

coefficients in terms of their scaling order, which will be derived later in the paper.

5. Uncertainty law for prediction error PSD

5.1. Decoupling
We show here that S, is asymptotically decoupled from the remaining parameters, i.e.,

Ugs, » O, » Oss, and g, are asymptotically small compared to 1. First, consider gy, .

Substituting (109) from Appendix | into (35) gives,
LB~ a8y BB —1+24°%) =487 '{Zﬂf(ﬂk +D(B-D+ 2?2%} (56)
k k k
Taking g, ~1 and simplifying,
LB ~8SH SN + D (B —D)] (57)
k

The magnitude of the sum can be assessed using (125) from Appendix Il with a=0 and

b=1 (first case), giving > (B, —1) = O(x°¢°N,) . This implies that, since
k

¢*Ny =0(x¢°N,),

15



L™ =0(S 7 '(°¢ON,) (58)
On the other hand, from (30), L®*) =O(N,S_?n) = O(S,’x¢nN.). It is shown later (see
(94)) that L' =O(f ¢ 'N,). Combining these orders and noting v=S_/S gives

O, = O(ve®2¢*n ™) <<1 (59)

We next consider g, . Substituting (110) from Appendix I into (36) gives, taking g, ~1,

L) ~ 857 B2 ~8SIN, =165 k¢ N, = O(S )¢ ?N,) (60)
k

From (135) of Appendix 1V, L =0(¢*N,) . Combining these orders gives

qése zo(VKl/Zéon—l/Z) <<1 (61)

For g, , recall from (37) that L =-S%" D,*. Using (124) from Appendix Il with
a=-1and b=0 (first case) gives > D,* =O(x°¢°N,) and hence

L&) =0(S2x3¢3N,) . From (29), L™ ~ SN, =0(S?x¢N,) . Combining these orders
gives

Oss, =O(ve?¢n?) <<1 (62)
For L®® | the form in (26) gives L ~ 0 in (38) because asymptotically @ is the
eigenvector of A, . To determine the leading order, we need to consider the second order
term in (24) that has been omitted from (26). This gives a term of

-$,57> D®'D,®/®"® in the expression of L. Differentiating with respect to S,
and @, and evaluating at the MPV gives

L& ~-257%" D[®'D, - (®'D,®)P'] (63)
Using this form it is shown in (164) of Appendix IV that for any unit vector ue R",
L*u=0@*?S k"¢ T*NY?) (64)
Combining with L®%) = O(S*x¢nN.) (see (30)) and u" L u=0(v"¢'N,) (see (85)

later),

16



qseq) :O(V2K3§7/2n71/2Ngl/2) <<l (65)
In summary, q , Oz, dss, and g, are all asymptotically small, and so S, is

asymptotically decoupled from the remaining parameters.

5.2. Posterior variance
Since S, is decoupled from the remaining parameters, its posterior variance is simply

equal to the reciprocal of L& i.e.,

var[S,] = L% ~ $2(n—1)* N (66)
The (squared) coefficient of variation of S, is given by

s: =(n-D)7*N{ (67)
This result assumes that n >1, for otherwise the term involving InS, in (26) vanishes

and other terms will dominate.

6. Uncertainty law for mode shape

6.1. Decoupling
We show that, similarto S,, @ is also asymptotically decoupled from the remaining

parameters, i.e., 0, Uq, s @Nd s are all small compared to unity. Since ® is

vector-valued, the cross-sensitivity coefficient is defined by (52).

We first analyze the leading order behavior of q,,, which involves studying the

magnitude of L™ u for any unit vector u e R". The latter can be interpreted as the
projection of L' along the direction of u. We shall first study the projection of L
on an orthonormal basis. From this, the projection on u can be established, since any u

can be represented as a linear combination of the basis vectors.

17



Recall L™ from (39). Let {a; € R": j=1,...,n} be an orthonormal basis with a, =®.

For j=2,..,n,since (I)Taj =0 by orthogonality,

L"a; ~25™> (D) ®@'D,a; =25 (D) (@R Fa, +®'G,Ga;) (68)
k 7

Using (43) and simplifying gives

®'FFa, =%(Wgaj)(c1fwk + 72X, (69)

Note that y;'>X, =O(y;'?) . Since ® is a unit vector and W, is a standard Gaussian

vector with uncorrelated components, ®"W, is a sum of uncorrelated random variables

and it has zero mean and unit variance. This means that ®"W, = O(1) << y.'> and
therefore

1 .
®'FFa, ~Esey§’2(wgaj)xk j=2,...,n (70)

Using this result and substituting (109) from Appendix | for (D, ")) gives
2573 (D) V@TRF a; ~ 4SS Y A5 (B -1+ 28R (Wia))X, (7)
k k
This is a sum of uncorrelated random variables with zero mean, whose magnitude can be

assessed by its standard deviation. The variance of the sum is equal to the sum of the

individual variances, giving

var2S ) (D)@' F{a;1~165,Sf 2> BB —1+2(7)?D, (72)
k k

since y, =SD, /S, and

var[(Wya;) X, 1= E[(W,a;)* X(1= E[(W, a;)°JE[X(] =1 (73)

Using v=S./S and 8. (8% -1+2¢%) ~ 48, -1)°,

var[25 > (D) V@ R F{a;]~64f *v> D, (B —1)° (74)
k k

Applying (124) from Appendix Il with a=1 and b =2 (first case),

>, D (B, —1)* =O(x¢N,) and so

var[2s™> (D) V@R F,"a,]=0(f vk(N,) (75)
k
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Since G, has the same behavior as F, , we obtain

(fd) ., _ —1.1/2 112 120 1/2 -
L®a, =0(f WM YINY?) j=23..0 (76)
Note also that L'"a, = L@ = 0. Since any unit vector ue R" can be represented as a
linear combination of {a; : j=1,...,n}, we can conclude that
| L(f®)u|=0(f_1Vl/2K1/2§1/2N1/2) (77)
It is shown later that | L' |= O(f ?¢'N_) (see (94)) and |u"L“*®ul=0(v "¢ 'N,) (see

(85)). Combining these orders, we conclude

Ly 12 £312 ) ~1/2
Ot = TE%Z([L(ff)]l/z[uT L(fD(D)u]lIZ :O(VKl g Ncl )<<1 (78)
[lull=1

Similar arguments can be used to show that the cross-sensitivity of @ with £ or S is
also small, whose details can be found in Appendix IV:

O = 00N, M%) <<1 (79)
Jsp = O(vr¢¥?N;Y?) <<1 (80)

Note also that g , = O(v*x¢""*n""2N;'*) <<1, as found before in (65).

6.2. Posterior covariance matrix
Since @ is asymptotically decoupled from the remaining parameters its posterior

covariance matrix is simply equal to the inverse of L'®® in (31). Again, let

{a; eR": j=1...,n} be an orthonormal basis with a, = ® . Using the asymptotic form of

A, in (48) and 4, in (49),

Aol — A, = Aojzn;aja]. ~[4aa; +seijZn2:aja§] = (Zk“SDk)jZn;ajaTj (81)

Consequently,

L) ~ (25;12sDk)Zn‘tajaTj =(2); yk)zn:aja} (82)
k j=2 k j=2

This indicates that L‘® has a zero eigenvalue with eigenvector @ . The remaining

(n-1) eigenvalues are ZZkyk , corresponding to the eigenvectors {a; : j = 2,...,n}. This
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is consistent with the fact that the NLLF is invariant to the scaling of @. In reality the
mode shape is identified unambiguously with a norm constraint. It has been shown that
when inverting L® to obtain the covariance matrix the singularity along the direction

® can be ignored [23]. Consequently, the posterior covariance matrix of the mode shape

IS given by
Co ~ (227;()7123,-3} :(ZZVk)il(ln_(Dq)T) (83)
k j=2 k
Note that
2> 7, =25.'SD D, ~v ¢ N tan "tk (84)
k k

since > D, =(N,/2{)tan"" x from Table 3. Thus

1
oo Nt & _ gqr (85)

Vg T
Co~——"T—(, — 0D 86
o than‘lzc( n ) (86)

6.3. Expected MAC
Analogous to the deterministic case it has been shown that the posterior uncertainty of

mode shape can be assessed by the expected value of the modal assurance criterion
(MAC), i.e., cosine of the hyper-angle between the most probable mode shape and a
random mode shape with the posterior distribution [23]. It can be shown that the expected
MAC is given by

P+ 607" (87)
where {§j2 : J=1,...,n} are the eigenvalues of C, arranged in ascending order of

magnitude; o, =0 as discussed before. This expression is asymptotically correct for

0; >0 (j=2,..,n)or n—oo.Equation (86) implies that

sr- Yo j=2,..,n 88
' N tan '« J (88)

and so
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p-fraz]” (89)

where 57 is the sum of eigenvalues of C,,:

. -v¢
52 = 52 -~ —(n 90
® JZ;‘ ! than’lic ( )

Since p is often close to unity, it is more convenient to discuss based on 57 . Note that
p~1-0212~coss, forsmall 5,,andso &, can be interpreted as the equivalent mean

hyper-angle between the uncertain mode shape and its MPV. Thus, J,, is proportional to

the overall uncertainty of mode shape.

7. Uncertainty law for frequency, damping and modal
force PSD

The asymptotic decoupling of S, and @ from the remaining parameters means that the
posterior covariance matrix for f, £ and S can be obtained from the inverse of the

corresponding 3-by-3 partition of the Hessian. We shall next investigate the asymptotic

behavior of this Hessian and its cross-sensitivities.

7.1. Auto-derivatives and cross-sensitivities

We first consider L™, recalling from (27). Using (116), the first term is given by
D> (InD)™ =162 DB/ (B —1+24%)* —4f 2> DI (36 —1+247?)
k k k
91
~64f2> DB, -1)*-8f 2> D, oD
k k

On the other hand, using (111) from Appendix I, the second term in (27) is given by
s (DN (@D, @ +S,) =457 (3B -1+2,7) (@ D@ +S,)
k k

~85H 2> (®'D,®+S,) (92)
k
~8f7?> "D,
k
after using (50) and keeping the leading order terms. Combining (91) and (92) gives
L' ~ 642> DX(B, -1)° (93)
k
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Using Table 3 for the sum, we obtain

) (94)

L™ ~—4’;|° (tan' x — ch
4 K°+1

The asymptotic behavior of other derivatives L), L") L) and L™ have been

derived similarly in Appendix IV. The results are:

L - ANe (tan™ x + " +1) (95)
2

L ~ _N_f l{lOtanlx—% (96)

L ~ 4N S'tan" « (97)

L™ ~ N_S™f ¢ (4 — 5tan "k + K2K+ ) (98)

We next assess the order of magnitude of the cross-sensitivitiesamong f, £ and S. The

following can be deduced:

L™ ~O(f2¢7'N,), L2 ~0O(¢'N,), L ~0O(S?&x¢N,) (99)
L' ~O(f™N,), LY ~0O(S7'N,), L' ~O(S™f "x¢N,) (100)
Based on the definition in (51), and using (99) and (100), it can be deduced that

G =0($), g5 =0(x™?), g =0O(x"*¢) (101)

7.2. Posterior variance
The posterior variances of f,£,S are given by the diagonals of the inverse of the

corresponding 3-by-3 Hessian. Writing this Hessian in terms of the cross-sensitivity
coefficients and taking matrix inverse gives, for the posterior variance of f,

-1 —
of =L (1-0%)A-a% — a5 — 0 +20,0506) " (102)
The variance of ¢ and S can be obtained analogously by rotating the roles of the

variables. This expression can be further simplified by noting that

0% >> 07, 0%, 0 OsOs (103)
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which can be deduced from (101). As a result, the followings can be obtained:

-1 -1 _ -1 =
of ~ L' o2 ~ L9 (1-g%) " of ~ L (1-0%) ™ (104)
where g7 is given by

K

Oz =2(tan ™ k)° k7 (tan ™ x + )" (105)

K2 +1
Substituting (94), (135) (from Appendix 1V) and (29) into (104), and using the definitions

of c.o.v. (e.9., 67 =c:/ ?) gives the posterior c.0.v.s in (15).

7.3. Posterior correlation
The posterior correlation can be obtained as the off-diagonal terms of the posterior

covariance matrix normalized by the square root product of the corresponding diagonals.

This gives, between f and ¢,

oo = Oir — U5l
© o -gp)"*-gk)"?

The expressions for p and p can be obtained analogously by rotating the roles of the

(106)

variables. Substituting the expressions of q., g, and g, leads to lengthy expressions

for the correlations, which are omitted here as they carry limited insights. Nevertheless,
in terms of scaling order, it can be deduced that

P =0(¢), Pess =0(x ™), Pis =0(x"*¢) (107)
This indicates that, similar to the cross-sensitivity coefficients,

Ps 22 Pics Pss (108)

8. Conclusions
Despite the lengthy mathematical derivations, the leading order behavior of the posterior

variance of modal parameters is remarkably simple. The results are summarized in Table

1. They are asymptotically correct for small £ and large N, N, . As is common in

asymptotic analysis, although the results are derived based on the asymptotic conditions,

they can often give a good approximation in typical (non-asymptotic) situations. The
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uncertainty laws have important implications on the extent to which one can reduce
uncertainty and planning for ambient vibration tests. These shall be discussed in the

companion paper, where the uncertainty laws shall also be verified using field data.

The frequency domain identification method adopted here does not introduce any loss of
generality in the uncertainty laws because the posterior distribution (and hence its implied
uncertainty) is unique for given modeling assumptions and data. Non-Bayesian methods
tend to result in higher uncertainty (in a frequentist sense) because they may not have

made use of all information contained in the data for inference.

It must be emphasized that our objective is not to use the uncertainty laws for actually
calculating the posterior uncertainties given the data, since this can be done more
accurately and in more general situations using the exact algorithms with little
computational time. Rather, the scaling laws are derived to yield insights into the
fundamental characteristics of the ambient modal identification problem. Mathematics is
essential for a rigorous treatment, but it has never been the driving force directing this
research. In fact the final results were conjectured qualitatively in the study of typhoon

data [24], long before the mathematics was worked out.
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Appendix I. Derivatives of dynamic factor

This appendix presents the expressions for the derivatives of D,, which are recalled from

[19]. To simplify notations we put a parenthesized variable in the superscript to denote a

derivative with respect to it. E.g., D{**) denotes 6D, /ofo¢ .

D'

(D) =4f2B2(B7 -1+247)
(D)< =848,

(D' =4 2423 -1+247%)
(DN =88

(D)) =1617¢p¢

InD,

(InD)" =—4f D, B2 (B! —1+2¢7)

(InD,) =—84B,°D,

(InD)'"™ =16 *Df B (7 —1+2¢%)* 412D, BZ (37 -1+ 247%)
(InD,)"* =8B7D, (845D, -1)

(IND,)¥) =16 ¢D?B2(B; 1)

(109)
(110)
(111)
(112)

(113)

(114)
(115)
(116)
(117)

(118)
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Appendix Il. Asymptotics of discrete sums
This appendix investigates the asymptotic behavior of discrete sums of the form

Zk D? (B, —1)°, where a and b are integers and b > 0. The strategy is to express it as a

Riemann sum and then approximate by an integral. This will be asymptotically correct

when the number of terms N, in the sum is large.

Recall from (7) that D, =[(8.° -1)* + (2¢8,)%1", where S, = f / f,. Note that {3} are
not evenly spaced, i.e., S,., — f, is not a constant of k. In order to write as a Riemann

sum we shall define and work with an evenly spaced (dimensionless) coordinate. Let

U, _he oty (119)
f B

By construction, {u, } are evenly spaced at Au=u,,, —u, =Af / f where Af =T,* and
T, is the data duration. Since f =T where T is the natural period, we have
Au=T,'/T*=N_*, where N, =T, /T . The lower and upper limit of u, are —x¢ and

+ K¢ , respectively.

Substituting g, =1/(1+u,) into (7) and rearranging gives

L+u,)’
D = 120
U224+ u,)? + 4%+ u,)? (120)
Using this form and noting that g, —1=-u, /(1+u,), one obtains
. 1+u,)*up
Da _1b= _1b2 2a ( k k 121
Y T WE Ev ey “e

Introducing Au =N_* and approximating the Riemann sum by an integral, we have

J-K¢ L+u)*°u’

;oi’(ﬂk ~1)° ~ (-1)°2 %N, TPATuI 2 T AT du (122)

Changing integration variable from u to u/¢{ removes the dependence of the integration

limiton ¢ :
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(123)

a _n\b _ 7 _1\bn-2a b-2a+1 [* (1+§U)4a_bub
Zk:Dk(ﬂk Vo J."([Uz(lJré”U/Z)z+(1+§u)2]a ’

The asymptotic approximation of this integral for small £ is investigated in Appendix I11.

Based on this, asymptotic expressions for the discrete sums used in this work are derived
and summarized in Table 3. Figure 1 compares the approximation with the exact values

for the sums that are used in this work. It has been assumed that f =2Hz and ¢ =1%,
although the plots for other values are similar. For each line, since £ and N_ are fixed,
N, = 2¢xN, is directly proportional to « . For reference, N, increases from 4 to 80 as «

increases from 1 to 20.

Scaling order
In terms of order of magnitude, it can be deduced that (see Appendix I11) when b is even,

O(k" 2 #N,) if b-2a+1>0
> DB -1)° =10[(logx)¢*?***N,] if b-2a+1=0 (124)
“ O(*%"N,) if b-2a+1<0

When b is odd,

O(xP 2 wb222N ) if hb-2a+1+J, >0
> DB -1° =1 O[(logx)¢*?***N,] if b-2a+1+J,=0 (125)
“ O(¢*%**2N,) if b—2a+1+J,, <0

where J,, =-1if 3a=Db and J, =1 otherwise. Comparing (124) and (125), when b is

odd the sum is one order £ less than its counterpart when b is even.
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Appendix Ill. Asymptotics of integral (123)

This appendix investigates the asymptotics of the integral in (123) where a and b are

integers and b > 0. For small £ the absolute value of the integrand is roughly symmetric

about the origin. When b is even the integrals on the positive and negative side tend to
reinforce each other; when b is odd they tend to cancel out. The strategy is to use Taylor

approximation with respect to ¢ to capture the difference between the positive and

negative part. Such difference is unimportant when b is even but it becomes the leading

order when b is odd.

Let 1, denote the integral in (123). Separate it into two parts, one on [0, x] and the other

on [-«,0]. For the latter, change integration variable from u to —u. This gives

I =IK (1+é/u)4afbub (1 é/u)4a b b( 1) du (126)
® o [u2(1+g“u/2)2+(1+§u)2]a [U*(-cu/2)® +@1- <)’

The two integrands mainly differ by terms involving + ¢ . For small £,

L+ u)* P
[U?(L£cu/2) + 1+ )T

X (127)
~__u { 4 _[(2a—b) +(3a—b)u ]}
(L+u®)? 1+
When b is even the O(¢) terms of the two integrands in (126) cancel out, giving
K ub
o ~2[ 2 du (128)

0 (L+u?)?
When b is odd, the zero-th order terms cancel out, leaving the O(£) terms as the leading
order

gj a+1[(2a b) + (3a - b)u?]du (129)

The integrals appearing in (128) and (129) can be evaluated analytically. Table 3 shows

the resulting approximation of the discrete sum in (123) for a=1,2 and b=1,2 where the

indefinite integrals that have been used are shown in the first column.
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Scaling order

The scaling of 1, with ¢ istrivial. To investigate the scaling with «, first consider the

case when b >0 is even. For large u, u®(L+u?) ~ u®**. This means that if
b—2a<-2 then _[OKub(lJr u?)~*du is bounded. Otherwise, it is asymptotic to J‘Okub‘zadu

for large x . Based on these, the following can be deduced when b >0 is even:

o™ ") if b-2a+1>0
I, =1 O(logx) if b-2a+1=0 (130)
0@ if b-2a+1<0

The behavior for I,, when b >0 is odd can be similarly deduced:

O(¢k® 2 =) if b-2a+1+J,>0
l,=1 O(Slogx) if b-2a+1+J, =0 (131)
0(<) if b-2a+1+J, <0

where J,, =-1if 3a=Db and J, =1 otherwise.
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Appendix IV. Asymptotics of NLLF derivatives

This appendix derives the asymptotic expressions for those derivatives of the NLLF not

covered in the main text. Cross sensitivities involving @ are also derived.

L(lé“)

Recall L) from (28). Using (117), the first term is given by
> (InD)“) =64¢*>" B/D; 8> BID, ~64¢*> Di -8 D, (132)
k k k k k

Using (112), the second term in (28) is given by
S (D) (@' D,®+S,)=85"> B (@ D®+S,)
k k

~85 (@'D,®+S,) (133)
k
~8) D,
k
after using (50). Combining these two terms gives
L) ~ 64(22 Dk2 (134)
k

Using Table 3 for the sum,

Lo - ANe (tan™ x +

= +1) (135)

L7

Recall L") from (32). Using (118), the first term is given by

> (nD)™ =161y DIBZ(B —1) ~64F ¢ D (B, -1 (136)
k k k
Using Table 3 for the sum,
2
3 (IND,) ~ -N, 18tan’1x—w (137)
” (x°+1)

Using (113), the second term in (32) becomes
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s> (D) (@'D,® +8,)
k
=165 D BH(@D D +S,)
k
~16Sf D (@D, @ +S,)
k
~16f7> D,
k
after using (50). Using Table 3 for the sum,

S (DH (@D D +S,)~8N, ftan "k
k

Combining (137) and (139),

 Kk(22x° +18)

L' ~-N_f*/10tan* & —
(x°+1)

LS

Recall L® from (34). Using (110),

LS =850 B (@D, ®+S,)
k

~ -85 (®'D,®+S,)
k

~ 857> D,
k

after using (50). Using Table 3 for the sum

L) =—4N_ S tan " &

L(1S)

Substituting (109) into (33) gives
L™ = _4S7%f ‘1Zﬁk2 (B2 —1+2L%)(@'D, @ +S,)
k

~-852f > (B, -)(@'D®+S,)
~-857f 1Y D (B -1

after using (50). Using Table 3 for the sum,

(138)

(139)

(140)

(141)

(142)

(143)
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L™ ~ 2N S ¢ (4x —5tan " k + —

K’ +1) (144)

In the following we also assess the order of magnitude of the cross-sensitivities involving

® . The technique is similar to that used in Section 6.1. As before {a; e R": j=1,...,n}

denotes an orthonormal basis with a, =®.

L“ and q,,

Using (40), for j=2,...,n, since ®'a; =0,

L“a; =25 (DHP®@'Da; =25 (D) (®'FFa; +®'G,Gja;)  (145)
K k

Since F, and G, arei.i.d. it is sufficient to study the term related to F, . Using (110) and
(70), and noting v=S,_/S,
25" (DM ®FFa; ~8v > Blri (W a;) X, (146)

k k
Since W, and X, are uncorrelated this expression has zero mean. Its magnitude is then
assessed by its standard deviation. Taking variance on both sides and taking A3, ~1,
W/a; =1 and E[X/]=1, we have

var[25 > (D) ®TF Fla;]1~64v¢2> D, (147)
k k

Using (124) with a=1,b =0 (third case), Zk D, =0(£™*N,) and so

var[2s™> (D) Y ®'FFa,]=0(KN,) (148)
k
This means,
(@) _ / / / .
LM, =0(v2¢ V2N "?) j=2,..,n (149)

Together with the fact that L“™a, = L“*’® =0, we obtain, for any unit vector ueR",
L@y = 02 V2N Y2 (150)
Combining with | L’ |=0(¢™N,) (see (135)) and |u'L“*®u|=0(v*¢'N,) (see (85)),

we conclude
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Qo = r”nl?T LT LDy O(v¢¥N;?) <<1 (151)

L*" and q,

Using (41), for j=2,...,n,

L®a, ~-257?> D,'"®'D,a; =-257°> D (®'FFa, +®'G,Gia;) (152)

k k

Using (70),

282y DJ®'FF'a, ~v'’S™Y DMA(Wia,)X, (153)
" ”

Again, we assess the order of magnitude of this expression by its standard deviation:

var[2S > D, '®'F F/a;]1~572> D (154)
k k

Using (124) with a=-1,b=0 (first case), )", D,* =O(x°¢°N,) and so

var[2s?Y DJ@'FF,"a,]=005 "k N,) (155)
k

(D)~ _ /2c-1_.3/ / / s
LPa, =028 x*2¢ 2N "?) j=23..,n (156)

Thus, for any unit vector ue R",
L(S(D)u :O(Vl/ZSflKS/Zé/?)/ZNl/Z) (157)

Combining with | L |= O(S?&x¢N,) (see (29)) and [u'L“"”ul=0(v"'¢*N,) (see (85)),

s = O ¥*N V%) <<1 (158)
L and g,

Recall L®® from (63). For j=2,...,n,

L®%a, ~-252> D ’®'D,a; =-252> DZ(®'FFa, +®'G,G;a;) (159)

7 2
Using (70),
—2S7Y DR a; ~-S,S7Y D v (W a,) X, (160)
2 .

The order of magnitude of this expression is assessed by its standard deviation:
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var[-25 2> D ®'F,Fla;]~v’S;?> D (161)
k

k

Using (124) with a=-3,b=0 (first case), > D,° =O(x'¢"N,) and so

var[2S?> D, ®'F Fla;]=0(»°S;*c"¢N,) (162)
k

(Se®)q  _ l2q-1 7/ /
L maj — 07 kTN 2) (163)
Thus, for any unit vector ue R",
L(SECD)U :O(V3/2871K7/2§7/2N1/2) (164)
Combining with | L®) |= O(S;*x¢hN, ) (see (30)) and |u" L™ ul=0(v "¢ *N,) (see

(85)),
U5 = O(W2 KL 7PN 2N;Y?) << 1 (165)
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Table 1. Summary of posterior uncertainty law. Variance on diagonals; correlation on off-diagonals

f 4 S Se 0]
f? A K o\
e
¢ a K _2(tan’1 x)? N
0(¢) 4Nitéln T« } Sym.
izl_ 2(tan " x)?
O(x"?¢) O(x %) Nel etanns 5 )
K*+1
SZ
O(VKS/Zé'Sn—l/Z) O(VK_3/2412n—1/2) O(VKzé,zn_llz) (n_]e:')N
f
O(VK”Z 3/2N;1/2) O(VKllz 3/2n71/2NC71/2) O(VK{SIZNglIZ) O3k P 12N Y2) . t:iflK(I”_q)q)T)
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Table 2. Summary of sensitivity coefficients

f e S Se
f 1
g 0(<) 1 Sym.
S o(x"?¢) o(x'?) 1
Se O(VK_SIZé/Sn—l/Z) O(VKllzézZn—l/Z) O(VKzéxzn—l/Z) 1
(I) O(VKllzé/SIZNC—l/Z) O(VézS/Zn—l/ZNC—UZ) O(VKé/S/ZNgl/Z) O(V2K3§7/2n—1/2Nc—1/2)
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Table 3. Summary of approximation for discrete sums

Integral Sum
dU _ -1 ~& -1
ju2+1—tan u ZDk 2gtan K
Id—u 1(tan U+ —o) > Di ~ N, —(tan 'k + Ky
(u*+17° 2 u’+1 ” 16£° K +1
udu 1 . u K
———=—(tan " u— DX (B, -1)> ~—<(tan' x —
I (u2+1)2 2( u2+1) Z By 164”( K* +1)

N.& 4 K
D -1)~—(4x -5Stan" xk +
(u? +1) "2 YL ; (A1) 4 ( K2 +1

J oy

.[(u +1)3:§{ tan~u + L(Jlfu;l)l)} (11x2 1 9)
F(B ) ~ e otan e S 1Y }

j u*du 1[3t _u(5u? +3)} Zk: U 32{[ an -« (x° +1)?

(u*+1° 8

(2u 3tantu +

)

(u?+1)°
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Figure 1. Approximation of discrete sums. f =2Hz, { =1%. Circle: exact; line: approximate
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