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Ga(In)SbBi alloys grown by molecular-beam epitaxy on GaSb substrates with up

to 5.5% In and 1.8% Bi were studied by temperature- and power-dependent pho-

toluminescence (PL) and compared to previous photoreflectance (PR) results. High

energy (HE) and low energy (LE) PL peaks were observed and attributed respectively

to Ga(In)SbBi bandgap-related emission and native acceptor-related emission. For

GaSbBi below 100 K, the HE peak is at slightly lower energy than the bandgap de-

termined from PR, indicating carrier localization. This phenomenon is significantly

weaker in PL of GaInSbBi alloys, suggesting that the presence of indium improves

the optical quality over that of GaSbBi.
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Dilute III-V bismides are a very important class of highly mismatch alloys (HMAs) which

have attracted a great interest in recent years due to their unusual fundamental properties

(including strong bandgap bowing, carrier localization at low temperatures, etc.), and their

potential in the development of various optoelectronic devices operating in the mid-infrared

spectral region.1–4 It has been shown that a small quantity of Bi added to host GaSb material

reduces the bandgap with a rate of∼30-36 meV/%Bi or 210 meV per 0.01/Å change in lattice

parameter.5–8 Such bandgap reduction is caused by the downward shift of the conduction

band due to Bi 6s states and the valence band anticrossing effect (VBAC)9, in which Bi

6p states interact with GaSb valence bands, shifting the valence band maximum (VBM)

upward.8

Among dilute bismides grown on GaSb substrate, GaSbBi alloys were investigated rela-

tively intensively for recent years.5–8,10–13 However, only sporadic reports of GaInSbBi can

be found in the literature.14–16 Because the valence band offset between InSb and GaSb is

negligible17, In and Bi elements both reduce the bandgap of GaSb; In downward shifts the

conduction band minimum (CBM) and enhances the electron confinement, while Bi lowers

the CBM and simultaneously shifts the VBM up in energy5,8, enhancing both electron and

hole confinement. Apart from reducing the bandgap energy, diluted amounts of In and Bi

in GaSb increase the lattice parameter because InSb and GaBi have lattice constant greater

than that of GaSb5,17. In this context GaInSbBi quaternary alloys offer flexibility in the

bandgap and band offset tuning in the mid-infrared in addition to what is already available

from conventional III-V semiconductor alloys and dilute nitride antimonides.18–22 Especially,

GaSb-based dilute bismide alloys may offer means of overcoming the limitations of GaInAsSb

alloys for achieving high continuous wave output power laser diodes at wavelengths beyond

2.7 µm at room temperature by improving quantum confinement potential for both electrons

and holes, and hence improving a material gain in laser quantum wells.23,24

In this Letter, the temperature dependence and power dependence of emission studies

of GaInSbBi quaternary alloys grown by molecular beam epitaxy (MBE) are shown. The

optical properties of the alloys are studied using photoluminescence spectroscopy. Inves-

tigations are performed for GaInSbBi alloys with similar Bi content and In concentration

ranging from 0 to 5.5%. It is clearly shown that incorporation of In into GaSbBi improves

optical properties.

The GaInSbBi epilayers used for these studies were grown by solid-source MBE on un-
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doped (001) GaSb substrates at a nominal growth rate of 1.0 µm h−1. The sources and

substrate preparation procedures are described elsewhere.25 A GaSb buffer layer of 100 nm

thickness was grown at 500 ◦C and substrates were cooled to 275 ◦C. A determination of

Ga:In ratio was done by growing a calibration layer of GaInSb with a thickness of ∼100 nm.

This layer was grown before the growth of GaInSbBi. Each GaInSbBi layer was grown using

the same Ga and In fluxes as for the GaInSb layer, and the thickness of each GaInSbBi layer

was ∼300 nm. More details about the growth and composition determination using x-ray

diffraction of the GaInSbBi samples can be found in Ref. 16.

The temperature dependent and laser power dependent photoluminescence (PL) was

performed using a single grating 0.3 m focal length monochromator, along with a thermo-

electrically cooled, InGaAs pin photodiode. A semiconductor laser (532 nm line and 80

mW) was used as an excitation source. The laser beam was focused onto the sample to

a diameter of ∼ 0.1 mm, and the power of laser beam was tuned using a neutral density

filter. Samples were mounted on a cold finger in a helium closed-cycle refrigerator coupled

with a programmable temperature controller, allowing measurements in the 15 to 290 K

temperature range.
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FIG. 1. Temperature dependence of PL spectra for (a) GaSb0.984Bi0.016, (b)

Ga0.967In0.033Sb0.982Bi0.018, and (c) Ga0.945In0.055Sb0.987Bi0.013
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Figure 1 shows temperature dependent PL spectra of GaSb0.984Bi0.016, Ga0.967In0.033Sb0.982Bi0.018,

and Ga0.945In0.055Sb0.987Bi0.013 samples, taken in the temperature range from 15K to 290K

and plotted with temperature increments of 20 K. The PL peak, observed at 0.79 eV at

temperatures below 100 K is associated with a bound-exciton recombination in the GaSb

buffer and/or substrate.26,27 Below this peak, strong emission from GaSbBi (Fig. 1 (a)) or

GaInSbBi (Figs. 1 (b) and (c)) is observed.

The epilayer-related emission consists of two PL peaks: a low-energy (LE) and a high-

energy (HE) peak. The LE peak is observed in low temperatures below 90 K in the case

of GaInSbBi and below 150 K in the case of GaSbBi alloys. The spectral position of the

LE peak indicates that it is a defect-related emission in the epilayer and such localized

emission is usually observed in narrow gap HMAs.7,28,29 The second PL peak observed in

the studied samples is the HE peak. At 15K temperature this peak is attributed to an

exciton localization, however at temperatures above 100 K the HE peak is attributed to a

band-to-band recombination in the epilayers, i.e. a recombination between delocalized states.

The character of the HE peak is deduced from the comparison of the PL peak position

with the bandgap determined from photoreflectance (PR) measurements in our previous

studies on GaInSbBi layers (Ref. 16). Additionally, the HE peak has an asymmetric shape,

which is typical for narrow gap semiconductors with significantly different effective masses

for electrons and heavy holes. This can be attributed to a contribution of a free carrier

emission. Similar behavior of the PL peak shape was observed InNAsSb layers.30 Because of

the narrow energy gap of GaInSbBi alloys, the free carrier emission starts to be important

above 100 K and cannot be neglected.

Figure 2 shows the analysis of the spectral position of PL peaks for the GaSb0.984Bi0.016,

Ga0.967In0.033Sb0.982Bi0.018, and Ga0.945In0.055Sb0.987Bi0.013 samples with the bandgap deter-

mined through PR measurements.16 The overlap of the closed squares and open circles above

100K confirms that the HE peak is associated with the bandgap-related emission. At 15K

the HE peak is attributed to an exciton localization. For the sample with In=0% the differ-

ence in energy between the bandgap value and spectral position of the HE peak is ∼ 0.014

eV (see Fig 2 (a)). After incorporation of In atoms it is clearly visible that the localization

is weaker or even negligible (see Fig 2 (b) and (c)). All the studied samples have a similar

Bi content. Therefore, it can be determined that the energy difference between LE and HE

peaks decreases in the presence of In.
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FIG. 2. Energies of LE and HE PL peaks (open circles) and the bandgap determined

from PR measurements (closed squares) (a) GaSb0.984Bi0.016 (results taken from Ref. 7), (b)

Ga0.967In0.033Sb0.982Bi0.018, and (c) Ga0.945In0.055Sb0.987Bi0.013. PR results are adopted from Ref.

16.

In order to determine the character of the PL emission, we performed PL measurements at

various excitation powers and temperatures. Figure 3 shows example PL spectra collected

from Ga0.945In0.055Sb0.987Bi0.013 layer in the excitation power range of 2.5–80mW at three

different temperatures. At 15 K the position of the LE peak shifts toward lower energies

with changing the excitation power, indicating the localized nature of this peak (Fig. 3(a)).

At temperatures higher than 100 K the LE peak disappeared, only HE peak was visible and

a lack of spectral shift of this peak with changing the excitation power confirms the bandgap-

related nature of this emission (Fig. 3(b) and (c)). A similar behavior of PL spectra with

increasing excitation power was observed in ternary GaSbBi alloys.7

It is well established that the PL intensity IPL increases with the excitation power Iex,

and the relation can be expressed as

IPL ∝ Iα
ex
, (1)

where the exponent α represents the type of recombination mechanism. For excitation laser

light with energy exceeding the bandgap energy, the exponent α is generally between 1 and
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FIG. 3. PL spectra for a Ga0.945In0.055Sb0.987Bi0.013 layer at various excitation power at (a) 15 K,

(b) 110 K and (c) 290 K

2. α = 1 is for the purely excitonic emission (free- and bound-exciton emission), and α is

less than 1 for free-to-bound and donor-acceptor pair recombination. α equals 2 indicates

a free carrier recombination.31 Analysis of the Ga0.967In0.033Sb0.982Bi0.018(Fig. 4(a)) yields a

PL intensity versus pump power α coefficient of 1.5 at 290 K and α of 0.7 at 15 K. Similarly,

analysis of the Ga0.945In0.055Sb0.987Bi0.013 (Fig. 4 (b)) yields α of 1.6 at 290 K and α of

0.87 at 15 K. At low temperature the α is less than 1, suggesting a free-to-bound and/or

donor-acceptor pair recombination. The excitons tend to be localized and cannot reach

nonradiative recombination centers. In this case free excitons can be efficiently trapped by

local potentials related to fluctuations of Bi and In.32,33 As temperature is increased up to

room temperature, the character of the PL changes substantially (the α coefficient is bigger

than 1.5). At this temperature limit, the excitons are free due to a thermal activation

and coexist with free carriers. These can now reach nonradiative recombination centers.

Consequently a nonradiative recombination dominates and reduces the number of excitons

which could recombine radiatively. As a result, the PL intensity becomes weaker at the same

level of excitation. However, an observation of quite strong PL up to room temperatures

means that the concentration of native defects (non-radiative centers) is acceptable for these

alloys.
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FIG. 4. PL intensity of GaInSbBi samples measured at 15 K, 110 K and 290K with dif-

ferent excitation power. Lines show fits to equation 1. (a) Ga0.967In0.033Sb0.982Bi0.018, (b)

Ga0.945In0.055Sb0.987Bi0.013.

To explain the nature of LE emission the electronic band structure has been calculated

within the 14-band k·p model24 with the Bi-related shift of conduction and VBAC pa-

rameters tuned to obtain agreement with experimental data34. The compressive strain in

Ga(In)SbBi layers is taken into account according to the Bir-Pikus theory as shown in de-

tails in Ref. 23. Figure 5 shows the dispersion of conduction and valence band for the three

Ga(In)SbBi samples near the center of Brillouin zone (thick solid lines) together with the

conduction and valence band dispersions in Ga(In)Sb as the reference (grey dashed lines).

First it is clearly visible that the incorporation of Bi atoms into Ga(In)Sb host leads to type

7



CB GaSb

1.0 0.5 0.0

-0.8

-0.6

-0.4

-0.2

0.0

0.7

0.8

0.9

0.0 0.5 1.0

[1,1,0]

Wavevector, k (1/nm) 

Ga0.967In0.033Sb0.982Bi0.018

E
ne

rg
y 

(e
V

)

(b)

[0,0,1]

 

1.0 0.5 0.0

-0.8

-0.6

-0.4

-0.2

0.0

0.7

0.8

0.9

0.0 0.5 1.0

[1,1,0]

Wavevector, k (1/nm) 

E
ne

rg
y 

(e
V

)

(c)

 Bi-free
 Bi-cont.

[0,0,1]

Ga0.945In0.055Sb0.987Bi0.013

1.0 0.5 0.0

-0.8

-0.6

-0.4

-0.2

0.0

0.7

0.8

0.9

0.0 0.5 1.0

[1,1,0]

GaSb0.984Bi0.016

E
ne

rg
y 

(e
V

)

Wavevector, k (1/nm) 

LE HE

 

[0,0,1]

(a)

VB GaSb

FIG. 5. Electronic band structure of (a) GaSb0.984Bi0.016, (b) Ga0.967In0.033Sb0.982Bi0.018, and (c)

Ga0.945In0.055Sb0.987Bi0.013 near the center of Brillouin zone (thick solid lines) together with the

electronic band structure of Bi-free host as the reference (grey dashed lines). The position of deep

acceptor level is established on the basis of LE peak position in PL spectra.

I bandgap alignment between GaSb and Ga(In)SbBi which is very important for applica-

tions of this alloy in GaSb-based quantum wells dedicated for light emitters. Second it is

observed that the bandgap calculated for the three alloys is very consistent with the spectral

position of HE peak in PL spectra while the spectral position of LE peak can be explained

by the radiative recombination between the conduction band and an acceptor level which is

observed at very similar energy in an absolute scale. In general such situation is expected

for deep levels and therefore the LE emission is attributed to free-to-bound(deep acceptor)

recombination, which is consistent with the power dependent PL measurements and the

analysis of the α parameter for LE peak. This conclusion is also very consistent with our

previous studies for GaSbBi alloys of various Bi concentrations7.

Comparing PL spectra for In-free and In-containing samples we concluded that indium

improves optical properties in this material system: the contribution of LE peak to PL

spectrum is smaller, the thermal quenching of HE peak is weaker, and the broadening of HE

peak is smaller for In-containing samples. Therefore we are fully convinced that this alloy

is very promising for applications in light emitters.

In summary, LE and HE emissions from GaInSbBi layers have been identified in PL
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spectra. The comparison of the HE peak position with the results obtained from photore-

flectance measurements, and the asymmetric shape of the HE peak indicates it is due to

bandgap-related emission. At low temperatures, the LE peak occurs and it is attributed to

the defect-related emission. The energy separation between HE and LE peak decreases with

increasing In concentration. Additionally, at low temperatures the HE peak for GaSbBi is

up to 0.014 eV below the bandgap determined by PR as a result of carrier localization. The

localization energy is significantly reduced for the GaInSbBi alloys, suggesting the presence

of indium improves the optical quality over that of GaSbBi alloys.
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