Psychopharmacology

Electronic Supplementary Material 1

Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users

Yann Chye¹, Nadia Solowij², Chao Suo¹, Albert Batalla^{3,4}, Janna Cousijn⁵, Anna E Goudriaan^{6,7}, Rocio Martin-Santos⁴, Sarah Whittle⁸, Valentina Lorenzetti^{1,9}*, Murat Yücel¹*

¹Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia

²School of Psychology and Illawarra Health and Medical Research Institute, Wollongong, Australia

³Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands

⁴Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain

⁵Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands

⁶Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands

⁷Arkin Mental Health Care, Amsterdam, The Netherlands

⁸Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia

⁹Department of Psychological Sciences, Institute of Psychology, Health and Society, the University of Liverpool, Liverpool, UK

*Joint last author

Corresponding authors

Murat Yücel, murat.yucel@monash.edu; +613 9902 9765; Valentina Lorenzetti, vlor@liv.ac.uk; +44 0151 794 5657

Assessment instrument by imaging site

Differences in assessment instruments by imaging site are presented in Supplementary Table 1 below. Participants from each site were scanned on different scanners. Particularly, all participants except those from Barcelona were scanned on 3T scanners (Barcelona = 1.5T), which may have resulted in the observed site difference wherein ROI volumes from participants in Barcelona are significantly smaller (see Supplementary Tables 2 and 3). While cannabis use across the sites were quantified in either of joints, grams, or cones, units were converted to cones prior to analysis (https://ncpic.org.au/static/pdfs/ assessment-tools/timeline-followback.pdf).

Supplementary Table 1 Assessment instruments by imaging site

Participants		Amsterdam	Barcelona	Wollongong	Melbourne
		<i>N</i> = 76	N = 55	N = 30	N = 100
Inclusion	CB group	>/= 10 days/mth, >/= 240 days	First use age < 16, 14-28	>/= 3-4 times/wk	>/= 2 days/mth for at least 2 yrs
criteria		over last 2 yrs	joints/week over last 2 yrs		
	HC group	< 50 joints/lifetime, did not use in	< 15 times/lifetime, did not use in	No lifetime history of regular CB	= 10 times/lifetime, did not use</th
		last yr	last mth	use, did not use in last yr	in last yr
Exclusion	IQ	< 80	= 90</th <th>-</th> <th>< 80</th>	-	< 80
criteria	Axis I psychiatric	Assessed via MINI, medical	Assessed via PRISM, medical	SCID (psychotic screening),	SCID (depression and psychotic
	disorders	history	history	medical history	screening), medical history
	Illicit substance	> 25 times/lifetime	> 5 times/lifetime	-	> 50 times/past 10 yrs
	use except CB				
	Urine test	Positive for alcohol and other	Positive for other illicit drugs	Positive for other illicit drugs	Positive for other illicit drugs
		illicit drugs except CB	except CB	except CB	except CB
	Others	General MRI contraindication,	Left-handed, female, general	Left-handed, general MRI	General MRI contraindication,
		use of psychoactive medication	MRI contraindication, use of	contraindication, use of	use of psychoactive medication
			psychoactive medication	psychoactive medication	

Scanner Model		Phillips Intera	General Electic Signa Excite	Phillips Intera	Siemens Team Trio
	Strength	3T	1.5T	3T	3T
Measures		Amsterdam	Barcelona	Wollongong	Melbourne
IQ		Dutch version of NART (DART)	WAIS-III vocabulary subscore ^a	NART	WASI
Alcohol use		StDr/mth, AUDIT	Age first drink, StDr/wk	StDr/wk	Age first drink, Age regular
					drink, StDr/mth, AUDIT
Tobacco use		Age regular use, cig/day, cig/mth	Age first use, age regular use,	Age regular use, cig/day, cig/mth	Age first use, age regular use,
			cig/day, cig/mth	(extrapolated from cig/day)	cig/day, cig/mth
Cannabis use		Amsterdam	Barcelona	Wollongong	Melbourne
		<i>N</i> = 33	N=29	<i>N</i> = 15	<i>N</i> = <i>63</i>
Onset first use)	Yes	Yes	Yes	Yes
Onset regular	use (criteria)	> weekly use	>/= 4 times/wk	>/= 2 times/mth	>/= 2 times/mth
Frequency		Days/wk	-	Days/mth	Days/mth
Quantity b	Current use	Grams/wk	Joints/mth	Cones/mth	Cones/mth
	Lifetime use	Self report estimate	Extrapolated from onset age and	Self report estimate, including	Self report estimate, including
			use	any heavier or lighter use period	any heavier or lighter use period
Dependence		MINI – score >/= 3 as dependent	SDS – score >/= 4 as dependent	-	SDS – score >/= 4 as dependent

^a WAIS-III vocabulary subscale converted to an estimated full scale IQ by standardizing to the average IQ of CB users and HC respectively of the three other sites.

^b CB use quantity (joints or grams) was converted to cones (https://ncpic.org.au/static/pdfs/ assessment-tools/timeline-followback.pdf).

^{*}CB = cannabis, HC = healthy controls; wk = week, mth = month, yrs = years, MINI = Mini Neuropsychiatry International Interview (Lecrubier et al. 1997; Sheehan et al. 1997; Swift et al. 1998), PRISM = Psychiatric Research Interview for Substance and Mental Disorders (http://www.columbia.edu/~dsh2/prism/, Hasin et al. 1996), SCID = Structured Clinical Interview for DSM Disorders (Spitzer et al. 1994; First et al. 2001), DART = Dutch version of the National Adult Reading Test (Schmand et al. 1991), WAIS-III = Wechsler Adult Intelligence Scale – Third Edition (Wechsler 1997), NART = National Adult Reading Test (Nelson 1982), WASI = Wechsler Abbreviated Scale of Intelligence (Wechsler 1999), StDr = standard drinks, AUDIT = Alcohol Use Disorder Identification Test (Saunders et al. 1993), cig = cigarette, SDS = Severity of Dependence Scale (Gossop et al. 1995; van der Pol et al. 2013).

Demographic and ROI volumes for HC and CB by imaging site

Demographic and substance use characteristics of participants by imaging site, along with any significant site effects, are presented in Supplementary Table 2. Amsterdam and Barcelona had the youngest samples (all male in Barcelona) and used significantly less cannabis (monthly and lifetime), followed by Melbourne, and then Wollongong. Participants from Wollongong meanwhile have the highest IQ, and used the most alcohol and cigarettes of all sites. CB users from Melbourne started using CB at a significantly younger age than those from Amsterdam and Wollongong. The only significant site by group effects in terms of demographic were found for IQ (p = .023) and monthly cigarette uss (p = .002). CB users had a significantly lower IQ than HC in Barcelona (p = .023) and Melbourne (p < .001) samples only. Meanwhile, HC from all four sites used fewer cigarettes than CB users, but did not differ between each other in monthly cigarette use; while CB users from Wollongong smoked the most cigarettes, followed by CB users from Melbourne and Amsterdam, and finally Barcelona.

Site effect for the ROI comparisons from the main analysis are reported in Supplementary Table 2 as well. Participants from Barcelona had the smallest OFC (both medial and lateral), while participants from Amsterdam had the largest caudate. The larger ROI volume in Amsterdam likely reflects the younger age of participants (Walhovd et al. 2005), while the smaller ROI volume in Barcelona may represent differences in scanner field strength (higher scanner field strength is associated with larger volume (Han et al. 2006)). However, no site by group interaction effect was found, suggesting that site effect did not skew or mask any HC vs. CB effects.

Supplementary Table 2 Demographic, substance use characteristics, and ROI volumes of healthy controls (HC) and cannabis (CB) users by imaging site (Mean (SD); ROI volumes in mm³)

	НС				СВ				Site Effect		
	Amsterdam Barcelona		Wollongong	Melbourne	Amsterdam	Barcelona	Wollongong	Melbourne	E/x2		
	N = 43	<i>N</i> = 26	<i>N</i> = <i>15</i>	N = 37	<i>N</i> = <i>33</i>	N = 29	<i>N</i> = <i>15</i>	<i>N</i> = <i>63</i>	F/X^2	p	
Age	21.98	22.57	35.00	29.95	21.32	21.03	38.99 (9.24)	32.67	49.88	<.001; Amst < Melb***, Amst <	
	(2.46)	(3.36)	(10.08)	(11.29)	(2.39)	(2.34)		(11.07)		Woll***, Barc < Melb***, Barc < Woll***, Melb < Woll***	
Gender	62.79 /	100 / 0	93.33 / 6.67	48.65 /	66.67 /	100 / 0	93.33 / 6.67	46.03 /	55.94	<.001	
(% M / F)	37.21			51.35	33.33			53.97			

IQ		104.86	109.26	113.45	112.32	104.18	103.58	109.37 (6.16)	101.83	3.22	.023; Amst < Woll**, Barc < Woll*,
		(7.25)	(10.47)	(8.07)	(12.72)	(5.44)	(10.71)		(12.96)		Melb < Woll**
Alcohol		21.44	12.43	21.79 (5.63)	26.72	23.64	21.14	26.37 (6.81)	28.06	3.28	.022; Amst < Woll*, Barc < Woll**,
(StDr/mth	$n)^a$	(26.76)	(10.52)		(4.39)	(23.85)	(15.38)		(3.51)		Melb < Woll*
Tobacco		41.73	24.22	100.20	77.77	211.99	168.41	274.73	233.14	4.34	.005; Amst < Woll**, Barc < Woll**,
(Cig/mth)) ^a	(106.41)	(103.97)	(23.62)	(12.79)	(218.91)	(152.35)	(68.68)	(29.14)		Barc < Melb*
Cannabis	Use										
Onset R	Regular	-	-	-	-	18.85	18.12	20.14 (5.25)	16.72	5.81	.001; Melb < Amst**, Melb < Woll**
Use (yea	ears)					(2.26)	(2.05)		(3.27)		
Current	Use	-	-	-	-	158.51	224.13	634.13	404.97	12.33	<.001; Amst < Melb***, Amst <
(cones/r	month)					(115.95)	(138.20)	(545.45)	(308.94)		Woll***, Barc < Melb*, Barc <
											Woll***, Melb < Woll**
Lifetime	e Use	-	-	-	-	4,738.64	15,611.28	177,772.50	74,579.21	26.53	<.001; Amst < Melb***, Amst <
(cones)						(4,275.06)	(12,577.01)	(205,672.08)	(75,833.71)		Woll***, Barc < Melb**, Barc <
											Woll***, Melb < Woll***
Intracrania		1.44 (0.22)	1.62 (0.12)	1.72 (0.15)	1.56 (0.15)	1.36 (0.18)	1.59 (0.13)	1.65 (0.10)	1.54 (0.14)		
Cavity (10										h	
Lateral	Left	8238.56	7691.00	8771.20	7858.86	8273.09	7728.59	8031.00	7644.71	12.44 ^b	<.001; Barc < Amst***, Barc <
OFC		(905.83)	(819.29)	(882.19)	(871.29)	(1012.49)	(877.69)	(905.51)	(844.76)		Woll*, Barc < Melb**, Melb <
	Diaht	7191.09	8031.69	8751.33	7757.41	6839.64	7706.69	7926.07	7518.59		Amst*
	Right										
Madial	Ι - Δ	(902.04)	(731.90)	(1083.36)	(815.22)	(978.39)	(925.15)	(849.01)	(921.74)	5.85 ^b	001. Dara / Amat**: Dara / Malla*
Medial	Left	4712.93	5502.23	5921.67	5375.95	4570.42	5496.90	5700.47	5106.84	3.03	.001; Barc < Amst**; Barc < Melb*
OFC		(611.28)	(604.62)	(803.90)	(607.90)	(692.96)	(777.61)	(594.56)	(744.48)		

	Right	5782.37	5295.23	6091.73	5397.16	5364.55	5385.93	5504.80	5132.95		
		(600.14)	(535.52)	(797.08)	(518.76)	(687.07)	(751.12)	(725.33)	(652.93)		
Caudate	Left	3977.13	3868.95 4303.71 3817.29 3793.47 3893.28 3880.48	3676.41	18.68 ^b	<.001; Barc < Amst***, Melb <					
		(405.45)	(502.19)	(569.12)	(488.19)	(473.73)	(558.45)	(608.80)	(577.91)		Amst***, Woll < Amst**
	Right	4332.80	4077.08	4237.88	3720.92	4135.25	4087.04	3781.87	3588.19		
		(459.78)	(547.87)	(634.89)	(469.49)	(503.70)	(613.56)	(565.86)	(611.47)		

^a StDr/mth = standard drinks per month, Cig/mth = cigarettes smoked per month, Amst = Amsterdam, Barc = Barcelona, Melb = Melbourne, Woll = Wollongong

Demographic and ROI volumes for CB-nondep and CB-dep by imaging site

Demographic, substance use characteristics, and ROI volumes of CB-nondep and CB-dep group by imaging site, along with any significant site effects, are presented in Supplementary Table 3. Similar to the previous table, Amsterdam and Barcelona had younger participants who used significantly less cannabis (monthly and lifetime) than Melbourne. CB users from Melbourne also started using cannabis at a significantly younger age than CB users from Amsterdam. The only significant site by dependence group interaction effect was found for monthly CB use (p = .009), whereby CB-nondep users from all sites, and CB-dep users from Amsterdam and Barcelona did not differ in monthly CB use, but CB-dep users from Melbourne used significantly more cannabis per month than all other groups and sites.

Site effect for the ROI comparisons from the main analysis are reported in Supplementary Table 3 as well. Participants from Barcelona had a smaller lateral OFC than participants from Amsterdam. While the primarily larger volume of CB-nondep users from Amsterdam (compared to every other group) may have driven the dependence-related effect on lateral OFC volume, there was no site by dependence interaction effect. There was no significant site, or site by dependence interaction effect on medial OFC volume. The trend of CB-dep users having smaller medial OFC than CB-nondep users was present in all sites (when analysed separately), suggesting that the smaller medial OFC in CB-dep users in the main analysis is robust across sites. Finally, participants from Amsterdam had a larger caudate than participants from Barcelona and Melbourne. There is also a site by dependence interaction effect for caudate volume (p = .047), with CB-nondep Amsterdam users having the largest caudate.

^b repeated-measures analysis of covariance (ANCOVA) – hemisphere = within subjects measure, imaging site, gender, group = between-subject factors, age, IQ, monthly alcohol and tobacco use = covariates – as per main analysis.

^{*} *p* < .05, ** *p* < .01, *** *p* < .001

Supplementary Table 3 Demographic, substance use characteristics, and ROI volumes of non-dependent (CB-nondep) and dependent (CB-dep) cannabis users by imaging site (Mean (SD); ROI volumes in mm³)

		CB-nondep			CB-dep	Site effect			
	Amsterdam	Barcelona	Melbourne	Amsterdam Barcelona Melbourne			F/X^2		
	N = 21	N = 7	N = 22	N = 12	N = 18	N = 40	Γ/Λ	p	
Age	20.87 (2.16)	20.14 (1.35)	36.04 (11.51)	22.10 (2.66)	20.78 (2.16)	30.83 (10.25)	31.58	<.001; Amst < Melb***, Barc <	
								Melb***	
Gender (% M / F)	61.90 / 38.10	100 / 0	45.45 / 54.55	75.00 / 25.00	100 / 0	45.00 / 55.00	23.20	<.001	
IQ	103.10 (4.70)	98.95 (10.33)	104.48 (14.86)	106.08 (6.30)	104.21 (10.79)	100.00 (11.63)	0.64	.528	
Alcohol	21.05 (24.48)	27.14 (26.28)	20.22 (26.10)	28.17 (23.02)	17.94 (9.85)	21.76 (26.59)	0.15	.859	
(StDr/mth) ^a									
Tobacco	202.05 (207.92)	131.43 (82.55)	298.43 (299.15)	229.39 (245.52)	158.56 (178.88)	244.34 (189.20)	2.58	.080	
(Cig/mth) ^a									
Cannabis Use									
Onset Regular	18.54 (1.96)	17.43 (1.99)	17.26 (3.22)	19.39 (2.72)	18.33 (2.06)	16.53 (3.42)	6.06	.003; Melb < Amst**	
Use (years)									
Current Use	177.03 (125.56)	286.00 (220.90)	255.87 (244.34)	126.10 (92.96)	201.91 (98.25)	479.20 (312.64)	12.32	<.001; Amst < Melb***, Barc <	
(cones/month)								Melb**	
Lifetime Use	4350.00	12,534.00	69,214.13	5418.75	18,004.17	78,527.13	20.23	<.001; Amst < Melb***, Barc <	
(cones)	(4038.32)	(8,406.45)	(58,145.03)	(4766.87)	(14,755.26)	(85,791.12)		Melb***	
Intracranial	1.35 (0.20)	1.62 (0.13)	1.51 (0.14)	1.38 (0.16)	1.58 (0.14)	1.56 (0.13)			
Cavity (10^6)									
Lateral Left	8426.19	7687.43	7568.86	8005.17	7699.33	7633.20	7.96 ^b	.001; Barc < Amst**	

OFC	(11	115.85)	(848.72)	(758.93)	(771.57)	(916.47)	(839.46)		
Ri	Right 698	80.86	7884.43	7365.27	6592.50	7615.39	7570.43		
	(10	006.88)	(855.05)	(744.94)	(975.15)	(991.34)	(996.26)		
Medial Le	Left 466	60.05	5602.86	5174.09	4413.58	5367.22	5052.63	1.32^{b}	.271
OFC	(72	20.33)	(563.20)	(816.76)	(641.39)	(901.95)	(695.87)		
Ri	Right 543	35.10	5479.14	5321.32	5241.08	5266.39	5013.23		
	(79	91.09)	(704.24)	(718.69)	(457.49)	(767.34)	(595.17)		
Caudate Le	Left 385	54.74	3883.84	3519.06	3686.24	3842.11	3771.25	6.31 ^b	.003; Barc < Amst*, Melb <
	(47	78.93)	(459.47)	(526.95)	(464.87)	(570.97)	(596.16)		Amst**
Ri	Right 420	05.93	4049.37	3360.55	4011.54	4064.21	3728.42		
	(52	23.80)	(576.73)	(565.50)	(461.51)	(632.87)	(602.94)		


a StDr/mth = standard drinks per month, Cig/mth = cigarettes smoked per month, Amst = Amsterdam, Barc = Barcelona, Melb = Melbourne

Correlation of ROI against IQ, monthly tobacco use

Preliminary correlations between ROI (lateral OFC, medial OFC, caudate) volumes and IQ in all sites combined (range of r = .09 - 13, $p \ge .04$, Supplementary Fig. 1) suggest they were not associated after correcting for multiple comparison (critical value = .027, Benjamini and Yekutieli's modified FDR method (Benjamini and Yekutieli 2001). Similarly, when correlations were split across individual sites, IQ was not correlated with any of the ROI volumes (range of r = -.13 - 29, $p \ge .08$). Monthly cigarette use was also not correlated with ROI volumes, whether in all sites combined (range of r = -.07 - -.01, $p \ge .29$, Supplementary Fig. 1), or in individual sites (range of r = -.26 - .03, $p \ge .14$).

^b repeated-measures analysis of covariance (ANCOVA) – hemisphere = within subjects measure, imaging site, gender, group = between-subject factors, age, IQ, monthly alcohol and tobacco use = covariates – as per main analysis.

^{*} *p* < .05, ** *p* < .01, *** *p* < .001

Supplementary Fig. 1. Scatterplot of correlation of regions of interest, ROI volumes (lateral orbitofrontal cortex (OFC), medial OFC, caudate) against IQ and monthly cigarette use (cig/mth). Volumes are averaged across hemispheres, adjusted for intracranial volume and age. Critical value after FDR correction = .027 (Benjamini and Yekutieli 2001).

Reference

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188.

First MB, Spitzer RL, Gibbon M, Williams JBW (2001) Structured clinical interview for axis I DSM-IV disorders. New York State Psychiatric Interview, New York

Gossop M, Darke S, Griffiths P, et al (1995) The severity of dependence scale (SDS): Psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction 90:607–614.

Han X, Jovicich J, Salat D, et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194.

Hasin D, Trautman K, Endicott J (1996) Psychiatric research interview for substance and mental disorders: Phenomeno ... Am J Psyquiatry 163:1195–1201.

Lecrubier Y, Sheehan D V., Weiller E, et al (1997) The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: Reliability and validity according to the CIDI. Eur Psychiatry 12:224–231.

Nelson HE (1982) National adult reading test. NFER-Nelson, Windsor, UK

Saunders JB, Aasland OG, Babor TF, et al (1993) Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction 88:791–804.

Schmand B, Bakker D, Saan R, Louman J (1991) The Dutch Reading Test for Adults: a measure of premorbid intelligence level. Tijdschr Gerontol Geriatr 22:15–19.

Sheehan D V., Lecrubier Y, Sheehan KH, et al (1997) The validity of the Mini International Neuropsychiatric Interview (MINI) according to the SCID-P and its reliability. Eur Psychiatry 12:232–241.

Spitzer RL, Williams JBW, Guibbon M, First MG (1994) Structured clinical interview for DSM-IV (SCID). American Psychiatry Press, Washington, DC

Swift W, Copeland J, Hall W (1998) Choosing a diagnostic cut-off for cannabis dependence. Addiction 93:1681–1692.

van der Pol P, Liebregts N, de Graaf R, et al (2013) Reliability and validity of the severity of dependence scale for detecting cannabis dependence in frequent cannabis users. Int J Methods Psychiatr Res 22:138–143.

Walhovd KB, Fjell AM, Reinvang I, et al (2005) Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26:1261–1270.

Wechsler D (1997) WAIS-III administration and scoring manual. The Psychological Corporation, San Antonio, TX

Wechsler D (1999) Wechsler abbreviated scale of intelligence (WASI) manual. Psychological Corporation, San Antonio, TX