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Abstract 

With the development of computing technologies, computer-based simulation methods have 

gained increasing attention in reliability analysis of engineering systems, among which Subset 

Simulation (SS) provides a robust yet efficient tool for exploring system rare failure events 

and evaluating system reliability. However, the component limit state functions (LSFs) of a 

system can be formulated in different forms (e.g., linear, exponential, and scaled), depending 

on mathematical modelling of the engineering systems concerned. This affects the system 

LSF and the performance of SS, and may lead to inconsistent system reliability analysis 

results. This study systematically explores effects of the functional form of component LSFs 

on the performance of SS in system reliability analysis and accounts for such effects from the 

perspective of sampling procedures. It is found that the efficient generation of conditional 

samples during SS, which is pivotal to the success of SS, is affected by the functional form of 

component LSFs in the system concerned. The performance of SS can be sensitive to the 

functional form of component LSFs. Normalizing component LSFs eliminates the effects of 

scaled LSFs on the performance of SS, but it does not improve the robustness (insensitivity) 

of SS in system reliability analysis involving exponential LSFs that are nonlinear. 

Understanding the effects of component LSFs on the performance of SS, a generalized Subset 

Simulation (GSS) algorithm is proposed for system reliability analysis, which is robust to 

different functional forms of component LSFs provided that the functional transformation of 

component LSFs does not change their monotonicity and failure domains. Numerical 

examples and a real engineering example showed that the proposed algorithm is more robust 

to the functional form of component LSFs in system reliability analysis than standard SS.  

Index Terms: System reliability analysis, Limit state functions, Subset Simulation, 

Robustness, Generalized Subset Simulation 
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I. INTRODUCTION 

Uncertainties are inevitable in engineering systems, of which multiple component failure 

modes are often involved [1]. Their effects shall be rationally incorporated into evaluation of 

safety and reliability of engineering systems. With the rapid development of modern 

computing technology, simulation-based reliability analysis methods have gained increasing 

attention for system reliability analysis, such as direct Monte Carlo simulation (MCS) [2], 

importance sampling [3], line sampling [4], Subset Simulation (SS) [5], [6] and other variants 

of MCS [7], [8]. Among these methods, SS is considered as a recent advance of reliability 

analysis methods in the past two decades exhibiting a trade-off between computational 

efficiency and application robustness regardless of the number of uncertain parameters [9]. 

SS has been applied in a number of disciplines, including, e.g., civil engineering [5], [6], 

[10]–[14], nuclear engineering [15]–[17], aerospace engineering [18]–[20] and electronic 

engineering [21]. It provides a robust yet efficient tool for exploring rare failure events and 

calculating their probabilities.  

SS stems from the idea that a rare failure event E with a small probability can be 

expressed as the product of the conditional probabilities of a sequence of intermediate failure 

events {E(j), j = 1, 2, …, m} with larger probabilities [5], [10], [22], [23]. The intermediate 

failure events are usually determined adaptively during SS based on the system performance 

function (or limit state function (LSF)). For a given system, definition of LSF is pivotal to the 

implementation of SS and it can affect the accuracy and efficiency of SS [24], [25]. The 

formulation of component LSFs depends on mathematical modeling of component 

performance [26], which can be expressed in various functional forms (e.g., linear, 

exponential, and scaled) with the same failure domain. For example, the LSF (e.g., f(X)) of a 

component can be defined as a linear function (e.g., f(X) = X1 + C, where X1 is an unknown 

parameter and C is a constant value) or, equivalently, a nonlinear function (e.g., f(X) = 



4 

exp(X1+C)-1) without changing its failure domain (e.g., f(X) < 0 or X1 < -C). In addition, it is 

not uncommon that geotechnical structure systems may contain various forms of LSFs of 

component performance, such as tunnel engineering system [26] and slope engineering 

system [27], [28]. This subsequently affects the definition of the system LSF and the 

performance of SS [29]. How the functional form of component LSFs affects the performance 

of SS in system reliability analysis is non-trivial and has not been adequately explored. 

Understanding this will help improve the robustness (i.e., insensitivity) of SS to the 

functional form of component LSFs in system reliability analysis.  

This paper investigates the effects of the functional form of component LSFs on the 

performance of SS in system reliability analysis from the perspective of sampling procedures 

during SS. A generalized algorithm of SS, so-called Generalized Subset Simulation (GSS) 

[30], is modified to improve the robustness of SS to the functional form of component LSFs 

in system reliability analysis. GSS was originally developed to, simultaneously, estimate the 

failure probabilities of multiple components by a single simulation run [30]. The modified 

GSS in this study makes it feasible to system reliability analysis, which was not possible in 

the original version. The modification makes the algorithm more robust to the functional form 

of component LSFs in system reliability analysis than standard SS.  

This paper starts with the definition of series and parallel systems, followed by explaining 

the effects of the functional form of component LSFs on the performance of SS in system 

reliability analysis in the context of SS. The modified GSS algorithm is then described for 

system reliability analysis. Finally, numerical examples and a real engineering example are 

used to illustrate the effects of the functional form of component LSFs on the performance of 

SS in system reliability analysis and the robustness of the modified GSS algorithm.  
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II. DEFINITION OF ENGINEERING SYSTEMS 

Engineering systems can be broadly classified into three categories: series systems, parallel 

systems and combined systems, depending on how components are correlated with each other 

and affect system response [31], [32]. Since a combined system can be represented by a 

combination of sub-series systems and sub-parallel systems, this study focuses on exploring 

the performance of SS in reliability analyses of series and parallel systems. Fig. 1 illustrates a 

series system and a parallel system, each comprising n components. Let Gi, i = 1, 2, …, n 

denote the LSFs of the n components with corresponding failure events Ei = {Gi < 0}. For a 

series system, the failure of any one of the components leads to system failure Es = {Gs < 0}, 

where Gs denotes the LSF of the series system. Without much loss of generality, Gs can be 

defined as 

 

Gs = min {Gi, i = 1, 2, …, n}         (1) 

 

where “min” indicates that Gs is taken as the minimum value among Gi , i = 1, 2, …, n in the 

series system. The failure domain of a series system is the union of failure domains of all the 

components, i.e., Es = {E1 E2 … En}. That is, the occurrence of any event among Ei, i = 1, 

2, …, n results in the occurrence of Es.  

On the other hand, for a parallel system as shown in Fig. 1(b), the system failure Ep = 

{Gp < 0} occurs when all the components simultaneously reach their respective limit states. 

Here, Gp denotes the LSF of the parallel system and it can be expressed as  

 

Gp = max {Gi, i = 1, 2, …, n }        (2) 
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where “max” indicates that Gp is taken as the maximum value among Gi , i = 1, 2, …, n in the 

parallel system. The failure domain of a parallel system is the intersection of failure domains 

of all the components, i.e., Es = {E1∩E2∩…∩En}. As indicated in Eqs. (1) and (2), the system 

LSF relies on component LSFs. For a given random sample, the values of the component 

LSFs vary as their functional forms change. This affects the value of system LSF during 

Monte Carlo sampling and hence the performance of SS in system reliability analysis. The 

latter is discussed in the next section.  

III. SUBSET SIMULATION 

A. Algorithm of Subset Simulation 

SS expresses a rare failure event E with a small probability as a sequence of intermediate 

failure events {E(j), j = 1, 2, …, m} with larger conditional failure probabilities [5], [6], [22]. 

Let G be the critical response of interest. Without loss of generality, define the rare failure 

event E as E = {G < b}, where b is a given threshold value (e.g., 0). The rare failure event E 

can be defined as component failure (i.e., E = Ei), series system failure (i.e., E = Es) or 

parallel system failure (i.e., E = Ep). The corresponding responses are their respective values 

of LSFs, i.e., G = Gi for E = Ei, G = Gs for E = Es or G= Gp for E = Ep. Let b(1) > b(2) > … > 

b(m) = b be a decreasing sequence of intermediate threshold values. The intermediate failure 

events {E(j), j = 1, 2, …, m} are then defined as E(j)= {G < b(j), j =1, 2, … , m}. By 

sequentially conditioning on these intermediate events, the failure probability Pf of E is 

written as [22] :  

 

( ) ( ) ( ) ( 1)

2

( ) ( ) ( | )
m

m j j j

f

k

P P E P E P E E 



          (3) 
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where P(E(1)) is equal to P(G < b(1)), and P(E(j)| E(j-1)) is equal to {P(G < b(j)| G < b(j-1)), j = 2, 

3, …, m}. In implementations, b(1), b2), …, b(m) are generated adaptively using information 

from simulated samples so that the sample estimates of P(E(1)) and {P(E(j)| E(j-1)), j = 2, 3, …, 

m} always correspond to a specified value of conditional probability p
0
. The implementation 

procedures of SS are described below. 

SS starts with direct MCS with N samples generated from their probability density 

functions specified in the problem. Their G values are then calculated and ranked in a 

descending order. The (1-p
0
)N-th value in the descending list of G values is chosen as b(1), 

and hence, the sample estimate for P(E(1)) = P(G < b(1)) is always p
0
. In other words, there are 

p
0
N samples with E(1) = {G < b(1)} among the samples generated by direct MCS. Starting 

from these p
0
N “seed” samples, Markov Chain Monte Carlo Simulation (MCMCS) [22] is 

used to simulate additional (1-p
0
)N conditional samples given E(1) = {G < b1)} so that there 

are a total of N samples with E(1) = {G < b(1)}. The G values of the N samples with E(1) = {G 

< b(1)} are ranked again in a descending order, and the (1-p0)N-th value in the descending list 

of G values is chosen as b(2), which defines the E(2) = {G < b(2)}. The sample estimate for 

P(E(2)|E(1)) = P(G < b(2)| G < b(1)) is also equal to p
0
. Similarly, there are p

0
N samples with E(2) 

= {G < b(2)} and these samples provide “seeds” for the application of MCMCS to simulate 

additional (1-p
0
)N conditional samples with E(2) = {G < b(2)} so that there are N conditional 

samples with E(2) = {G < b(2)}. The procedure is repeated m times until the probability space 

of interest (i.e., the failure domain with G < b(m), where b(m) = b) is achieved. Finally, a total of 

m+1 levels of simulations (including one direct MCS level and m levels of MCMCS) are 

performed in this study, resulting in N+m(1-p0)N SS samples. Based on these SS samples, the 

Pf is estimated using Eq. (3). 
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 Note that the efficient generation of conditional failure samples is pivotal to the 

success of SS, and it is made possible through the machinery of MCMCS. The MCMCS 

generates a sequence of samples of random variables or a random vector (e.g., uncertain 

parameters X=[X1, X2, …, XNd] involved in the system reliability analysis) as states of 

Markov Chain with the probability density function (PDF) of random variables as the limiting 

stationary distribution of Markov Chain [33], [34]. During SS, a candidate sample for next 

state in the Markov Chain is first generated from a proposal PDF defined using the current 

Markov Chain state, and it is accepted or rejected to be the next state based on the acceptance 

ratio and the occurrence of intermediate failure events. However, the acceptance ratio often 

decreases exponentially in some original MCMCS algorithms (e.g., Metropolis algorithm) as 

the dimension (e.g., Nd) of uncertain parameters space increases, leading to many repeated 

samples and reduction of computational efficiency and accuracy in high dimensional 

problems [35]. To address this issue, a modified Metropolis algorithm (MMA) is developed 

to simulate conditional samples in SS [5], [22], [36], [37], which generates the candidate 

sample of a high dimensional random vector component by component. For example, using 

MMA to generate the candidate sample of X contains Nd steps. In each step, the candidate 

sample of Xj, j = 1, 2,…, Nd, is generated. After the candidate samples of all the components 

are obtained, they are collectively taken as the candidate sample of X. If the X’s candidate 

sample belongs to the intermediate failure event concerned, it is taken as the next state of X in 

the Markov Chain. Using MMA reduces the correlation among conditional samples generated 

by SS in high-dimensional space and, therefore, makes SS feasible in high-dimensional 

problems. 
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B. Revisiting performance of Subset Simulation in system reliability analysis 

As described in the preceding subsection, selection of “seed” samples in each simulation level 

depends on the G values of simulated samples. Consider, for example, a system comprised of 

two components with LSFs G1(X) and G2(X) shown in Fig. 2, where X indicates the uncertain 

parameters in the system. For illustration, suppose that ten conditional samples (i.e., x1-x10) of 

X at the j-th simulation level are generated and p0 is taken as 0.4. For a series system, its LSF 

is given by Eq. (1), which is taken as the minimum value of component LSFs. In the example 

shown in Fig.2(a), the LSF of the series system is taken as equal to G2 when X > 0, based on 

which the selected “seed” samples at the j-th simulation level are X1, X2, X3, and X5. On the 

other hand, for the parallel system, its LSF is given by Eq. (2), which is taken as the 

maximum value of component LSFs. In the example shown in Fig.2(a), the LSF of the 

parallel system is taken as equal to G1 when X > 0, based on which the selected “seed” 

samples at the j-th simulation level are X1, X2, X3, and X4.  

Note that determination of the minimum or maximum value of component LSFs relies 

on the functional form of each LSF. For a given component LSF, its magnitude can be 

changed significantly as it is formulated as different functional forms even though its 

corresponding failure domain remain unchanged. This, subsequently, affects the value of 

system LSF and the sampling procedure of SS. For example, G1 shown in Fig. 2(a) can be 

scaled by dividing a positive constant C due to some reason in formulation, leading a variant 

of G1, namely G1 = G1/C, with the same failure domain (e.g., G1 or G1 < 0). As shown in Fig. 

2(b), using G1 and G2 as component LSFs in the series system selects X1, X2, X3, and X4 as 

“seed” samples at the j-th simulation level while X1, X2, X3, and X5 are chosen as “seed” 

samples for the parallel system, which are different from those obtained according to G1 and 

G2. It is obvious that the functional form of component LSFs affect the system LSF and hence 
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the sampling procedure of SS. This explains why the performance of SS depends on the 

functional form of component LSFs, which is reflected by the variation of Pf values estimated 

SS. Intuitively, effects of scaled LSFs (e.g., G1) on the performance of SS can be eliminated 

through normalizing the component LSFs by their corresponding values evaluated at the 

mean value ( X ) of X. This may not be the case for other functional forms (e.g., exponential 

LSFs). Effects of the functional form of component LSFs and normalizing the component 

LSFs on the performance of SS in system reliability analysis will be further illustrated using 

numerical examples later. The next section proposes a modified GSS algorithm for system 

reliability analysis that is robust (insensitive) to the functional form of component LSFs.  

IV. GENERALIZED SUBSET SIMULATION FOR SYSTEM RELIABILITY 

ANALYSIS 

A. Original algorithm of Generalized Subset Simulation 

GSS is originally developed by Li et al. [30] to efficiently estimate the respective failure 

probabilities of multiple components, which successfully avoids repeated simulation runs for 

each component required in original SS. Although the performance of GSS on simultaneous 

estimation of failure probabilities of multiple components has been investigated in [30], its 

performance on system reliability analysis remains unexplored. 

The major difference between GSS and SS lies in determining intermediate failure 

events and selecting conditional “seed” samples during simulation. Using different 

component LSFs in SS, samples progressively populate different failure domains, yielding 

their corresponding failure probabilities. On the other hand, GSS simultaneously drives 

samples to failure domains of multiple components through unified intermediate failure 

events for them. Consider, for example, n component failure events Ei, i = 1, 2, …, n. Let U(j), 

j =1, 2, … , M denote the unified intermediate failure event at the j-th simulation level of 
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GSS, where M is the number of simulation levels in GSS. In the context of GSS, U(j) is 

defined as the union of intermediate failure events of E
i
, i = 1, 2, …, n, which is written as:  

 

     ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 1 2 2

j j j j j j j

n n nU E E E G b G b G b           (4) 

 

where ( )j

iE  =  ( )j

i iE b , i = 1, 2, …, n, are intermediate failure events of E
i
, respectively, 

at the j-th simulation level of GSS, and are defined by their respective intermediate threshold 

values 
( )j

ib . Similar to SS, 
( )j

ib , i = 1, 2, …, n, are determined adaptively using information 

from simulated samples during GSS.  

The failure probabilities of different component failure events (e.g., E
i
, i = 1, 2, …, n) 

concerned might be different, and their failure domains are, therefore, reached at different 

simulation levels during GSS. As the number of simulation levels increases, the component 

failure domains with relatively large failure probabilities are first arrived. Once some 

components reach their failure domains in the preceding simulation level, the unified 

intermediate failure event is redefined by dropping these components. The “seed” samples are 

then selected according to the newly-defined intermediate failure events in the current 

simulation level. As simulation level j increases, the component failure events (e.g., Ei) reach 

their respective target failure domains progressively, and the number of component failure 

events considered in the unified intermediate failure event decreases. Although the original 

GSS algorithm is able to provide occurrence probabilities of multiple component failure 

events by a single run of simulation, it fails to explore failure events (Es and Ep) of series and 

parallel systems comprised of the n components due to the dropping machinery during GSS. 

The next section modifies the GSS algorithm to make it feasible to system reliability analysis.  



12 

B. A modified algorithm of Generalized Subset Simulation 

As shown in Figure 3, the modified GSS algorithm also starts with direct MCS, in which N 

direct MCS samples are generated. The Gi, i = 1, 2, …, n, values of the N samples are 

calculated. For a given component, the N values of Gi are then ranked in a descending order. 

The (1-p
0
)N-th value in the descending list of Gi values is chosen as 

(1)

ib  so that the sample 

estimate for P( (1)

iE ) = P(Gi < 
(1)

ib ) is p
0
. There are p

0
N samples with (1)

iE  = {Gi < 
(1)

ib } 

among the samples generated by direct MCS. Such procedure is repeatedly performed for 

each component to determine their respective threshold values 
(1)

ib  and to select p
0
N “seeds” 

samples with (1)

iE  = {Gi < 
(1)

ib }. 

After the determination of 
(1)

ib , i = 1, 2, …, n, the union of (1)

iE  is defined as the 

intermediate failure event (1)

sU  of a series system, i.e., (1) (1) (1) (1)

1 2s nU E E E   . In other 

words, the samples in (1)

sU  are those satisfying (1)

iE  = {Gi < 
(1)

ib } for any i = 1, 2, …, n. 

The definition of intermediate failure event of the series system is similar to that in original 

GSS algorithm (see Eq. (4)). However, the component intermediate failure event is not 

dropped during the simulation through the modified algorithm even though failure domains of 

some components have been arrived. Hence, the intermediate failure events of all the 

components are kept for construction of the system intermediate failure events before the 

system failure domain is reached. This benefits the exploration of system failure domain, 

particularly for parallel systems, as discussed below. 

For parallel systems, the intermediate failure event 
(1)

pU  is determined as the 

intersection of (1)

iE , i.e., (1) (1) (1) (1)

1 2p nU E E E    . The samples in 
(1)

pU  belong to every 

(1)

iE  = {Gi < 
(1)

iy }. The proposed intermediate failure event of parallel systems is different 

from that defined in original GSS algorithm (see Eq. (4)). Note that the failure probability of 
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a parallel system is, in theory, smaller than any component failure probabilities since Ep is 

defined the intersection of E
i
, i = 1, 2, …, n. Hence, the failure domain of Ep is not 

sufficiently explored until all the component failure domains have been reached. This requires 

not to drop any component intermediate failure events during the simulation so that the 

failure domain of parallel systems can be progressively approached.  

Let N1 denote the number of samples of (1)U  (i.e., (1)

sU  for series systems and 
(1)

pU  

for parallel systems). The probability P( (1)U ) of (1)U  is estimated as P( (1)U ) ≈ N1/N. The N1 

samples in (1)U  are used as “seed” samples for MCMCS to simulate additional N-N1 

conditional samples in (1)U . This results in N conditional samples in (1)U , based on which 

(2)

ib , i = 1, 2, …, n, are determined so that the sample estimates of (2) (1)( | )iP E U  are equal to 

p
0
. Next, (2)U (i.e., (2) (2) (2)

1 2 nE E E    for series systems and (2) (2) (2)

1 2 nE E E    for 

parallel systems) is constructed, and N2 samples in (2)U  are identified as “seed” samples for 

MCMCS to generate conditional samples in the next simulation level. This procedure is 

repeatedly performed until system failure domains concerned are reached. The samples 

provide estimates of system failure probability: 

 

1
( 1) ( 2) ( 1)(1) (2) (1)

1

( ) ( | ) ( | ) ( | )
F

F F F

M
M M M k F

f

k

N N
P P U P U U P U U P E U

N N


  



      (5)  

 

where M
F
 denote the number of simulation levels needed to reach the failure domain of E 

(i.e., Es for series systems or Ep for parallel systems); P(U(j)| U(j-1)), j = 2, 3…, M
F
-1, is 

conditional probability of U(j) given sampling in U(j-1), and is calculated as the ratio of the 

number Nj of “seed” samples selected at the j-th MCMCS level among N samples with U(j-1) 
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over N; P(E|U(MF-1)) is the conditional probability of system failure event E given sampling in 

U(MF-1), and is estimated as the ratio of the number NF of system failure samples among N 

samples generated in U(MF-1) over N. 

 Note that the main difference among SS, GSS and the modified GSS is the definition 

of intermediate failure event U(j). SS uses the system event Es or Ep to directly define 

intermediate failure event (i.e., U(j) = {Gs < b(j)} for series systems and U(j) = {Gp < b(j)} for 

parallel systems) in the system reliability analysis while the modified GSS defines the 

intermediate failure events by the unified and intersected event of component failure events 

for series systems and parallel systems, respectively. The original GSS defined the 

intermediate failure event as the unified event of multiple component events and these 

component events contained in the unified event change as the simulation level increases. As 

a result, the original GSS is not feasible to parallel systems.  However, the number of 

component intermediate failure events contained in the intermediate failure event defined for 

the series system and parallel system in modified GSS do not change with the simulation 

level. This allows the modified GSS to efficiently explore failure domains of both series and 

parallel systems.  

C. Robustness of the modified GSS algorithm to the functional form of component LSFs 

As described above, selection of system “seed” samples in the modified GSS algorithm is 

achieved through determination of “seed” samples for each component, which only depends 

on the Gi values for each component and is irrespective of relative magnitudes of Gi for 

different components. This allows the selected system “seed” samples in the modified GSS 

algorithm to be insensitive to the functional form of component LSFs assuming that the 

functional transformation of component LSFs does not change their monotonicity and failure 

domains. This assumption is reasonable in engineering system analysis since each component 
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shall have the same actual behaviors (e.g., monotonicity and plausibility of failure) without 

regard to the mathematical modeling (i.e., LSFs) of its performance. Reasonable LSFs of a 

component shall reflect the same behavior of the component no matter in which functional 

forms they are formulated as.  

Consider, again, the illustrative example shown in Fig. 2. Using the modified GSS 

algorithm, the selected “seed” samples for a series system comprised of G1 and G2 shown in 

Fig. 2 (a) at the j-th simulation level are X1, X2, X3, X4 and X5. The “seed” samples remain 

the same for a series system comprised of G1and G2 shown in Fig. 2 (b). Similarly, using the 

modified GSS algorithm, the selected “seed” samples for a parallel system comprised of G1 

and G2 shown in Fig. 2 (a) at the j-th simulation level are X1, X2, and X3, which also remain 

the same after G1 is scaled to G1. The sampling procedure of the modified GSS algorithm is 

generally not affected by the functional form of component LSFs if the functional 

transformation of component LSFs does not change their monotonicity and corresponding 

failure domains. Compared with SS, the modified GSS algorithm improves the robustness of 

system reliability analysis to the functional form of component LSFs. This is illustrated using 

numerical examples in the following sections.  

V. COMPONENT LIMIT STATE FUNCTIONS USED IN INVESTIGATION 

This section presents two component LSFs f(X) and g(X) used to explore effects of the 

functional form of component LSFs on the performance of SS in system reliability analysis 

and to illustrate the robustness of the modified GSS algorithm to the functional form of 

component LSFs. For the purposes, f(X) and g(X) are assumed to have three different 

functional forms [29]: 
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L 1

E 1

S 1

( ) X 80

( ) exp X 80 1

( ) 1000 X 80

f

f
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X

X

X

         (6) 

 

 

 

L 1 2

E 1 2

S 1 2

( ) X X 80

( ) exp X X 80 1

( ) X X 80 1000

g

g

g

  


   
   

X

X

X

        (7) 

 

where both X1 and X2 are normally distributed random variables with a mean of 120 and a 

standard deviation of 60; and the subscripts “L”, “E”, and “S” indicate “Linear”, “Exponential 

(or Nonlinear)”, and “Scaled”, respectively. Figs. 4 and 5 show different functional forms of 

f(X) and g(X), respectively. It shall be noted that although f(X) and g(X) can be linear, 

exponential, and scaled functions, their respective monotonicity and failure domains remain 

unchanged. For example, the failure domain for f(X) is X1 < -80 no matter which functional 

form is adopted in reliability analysis. Fig. 6 shows failure domains (i.e., f(X) < 0 and g(X) 

<0) corresponding to f(X) and g(X) by areas with horizontal and vertical lines, respectively. 

Their union and intersection are the respective failure domains of series and parallel systems 

comprised of the two components with f(X) and g(X) as LSFs. Based on f(X) and g(X), the 

performance of SS in system reliability analysis is revisited in Section VI, and the robustness 

of the modified GSS algorithm to the functional form of component LSFs is illustrated in 

Section VII.    

VI. PERFORMANCE OF SUBESET SIMULATION IN SYSTEM RELIABILITY 

ANALYSIS 

To explore effects of the functional form of component LSFs on system reliability analysis, 

SS runs with p0 = 0.1 and N = 1000 are performed to evaluate Pf values of 9 series systems 

and 9 parallel systems comprised of the two components with different functional forms of 
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LSFs given by Eqs. (6) and (7). The LSFs of the 9 series systems and 9 parallel systems are 

taken as min{f (X), g(X)} and max{f (X), g(X)}, respectively, where f (X) and g(X) have three 

different functional forms. For each system, 100 SS runs are performed to evaluate the mean 

value and coefficient of variation COVp of Pf. The Pf estimates from SS in the following 

discussions are referring to its mean value obtained from 100 SS runs. In addition, a direct 

MCS run with 107 samples is also performed to validate SS results, and its corresponding 

COVp is estimated as (1 ) /f MCS fP N P , where NMCS is the number of random samples 

generated by direct MCS. For comparison, the Pf and COVp corresponding to each 

component LSF are also calculated using SS and direct MCS. The system and component 

reliability analysis results are provided below.  

A. Effects of the functional form of LSFs on component reliability analysis 

Table I summarizes reliability analysis results for different component LSFs obtained from 

direct MCS and SS. For all the component LSF, the COVp values of Pf obtained from direct 

MCS are less than 0.1, which indicates using 107 random samples in direct MCS gives 

sufficiently accurate Pf estimates (i.e., 4.37×10-4 for f(X) and 7.93×10-5 for g(X)) for 

component LSFs. The Pf estimates from direct MCS are favorably comparable with those 

obtained from SS. This validates the Pf values estimated from SS. For different functional 

forms of each component LSF, the Pf and COVp obtained SS remain almost unchanged. 

Hence, the functional form of LSFs has minimal effects on the performance of SS in 

component reliability analysis. This is attributed to the fact the functional transformation of 

component LSFs in Eqs. (6) and (7) does not affect the monotonicity and failure domains of 

component LSFs and the sampling procedure of SS in component reliability analysis. For 

example, as shown in Fig. 7, failure samples generated by SS for two variants fL(X) and fE(X) 
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of f(X) are distributed similarly. It is hence not surprising to see that the Pf estimates from SS 

and their accuracy (quantified by COVp) for fL(X) and fE(X) are similar.  

 Compared with SS, the Pf and its COV value obtained from direct MCS for 

components with various functional forms are almost unchanged, which indicates the 

performance of MCS is not affected by the functional form of LSFs. This can be attributed to 

the fact that the components associated with different forms of a LSF have the same failure 

domain. Hence, random samples that fall into the failure domain of a component also fall into 

the failure domain of other components with different functional forms of the same LSF in 

this study. In addition, the number (i.e., 107) of samples used in MCS in this study is large 

enough to obtain a quite small COV value (i.e., 0.015) of Pf estimates, as shown in Tables I. It 

is, hence, not surprise to see that the Pf estimates from MCS of components with different 

functional forms remain almost unchanged. Similar observation can be also obtained from 

reliability analyses of series and parallel systems in the next two subsections. 

B. Effects of the functional form of component LSFs on series system reliability analysis 

Table II summarizes reliability analysis results obtained from direct MCS and SS for the 9 

series systems with different combinations of component LSFs given by Eqs.(6) and(7). 

Again, the Pf estimates from SS are validated against that (i.e., 4.97×10-4) obtained from 

direct MCS. It is shown that Pf estimates from SS vary slightly around that from direct MCS, 

but their corresponding COVp values vary considerably from 0.523 to 0.704 as the functional 

form of component LSFs in series systems changes. This indicates that the accuracy of Pf 

estimates of series systems from SS is sensitive to the functional form of component LSFs. As 

discussed in Subsection IV.C, the functional transformation of component LSFs leads to 

variation of LSF of series systems given by Eq. (1), which changes the selection of “seed” 

samples and the subsequent sampling procedure of SS. This affects the accuracy of Pf 
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estimates of series systems from SS. For example, Fig. 8 shows random samples generated in 

different simulation levels of SS for reliability analysis of series systems with component 

LSFs {fL(X), gL(X)} and {fL(X), gS(X)} by circles and squares, respectively. For the series 

system with component LSFs fL(X) and gL(X), fL(X) dominates the sampling in early 

simulation levels of SS; however, for the series system with component LSFs fL(X) and 

gS(X), gS(X) dominates the sampling in early simulation levels of SS. Although the two series 

systems have, in theory, the same value of Pf, their sampling procedures in SS are different. 

This leads to different numbers of failure samples in the last simulation level of SS (see Fig. 

8(e)), which affects the accuracy of Pf estimates of series systems from SS.  

As shown by the simplified example provided in the Subsection III. B, the performance 

of SS in system reliability analysis is affected by the scale effects among different LSFs of 

components. Normalization is an effective and straightforward way to reduce these scale 

effects [29], [38]. Therefore, normalizing the component LSFs by their corresponding values 

evaluated at the mean value ( X ) of X is used to improve the robustness of SS to different 

functional forms of component LSFs in system reliability analysis, by which the component 

LSFs of the 9 series systems are re-written as L L( ) ( )f fX X , E E( ) ( )f fX X , S S( ) ( )f fX X , 

L L( ) ( )g gX X , E E( ) ( )g gX X  and S S( ) ( )g gX X . Using the normalized LSFs, the Pf and 

COVp values for each series system are re-evaluated using 100 SS runs. The results are also 

included in Table II. It is shown that the series systems with linear and scaled LSFs (i.e., 

{fL(X), gL(X)}, {fL(X), gS(X)}, {fS(X), gL(X)}, and {fS(X), gS(X)}) have the same values of Pf 

and COVp. Normalizing LSFs eliminates effects of scaled LSFs on the performance of SS in 

series system reliability analysis because the scaling constant C is canceled by normalization. 

However, such an observation is not the case for the series systems with exponential LSFs, 

whose COVp values vary from 0.598 to 0.698 and are greater than that (i.e., 0.433) of series 
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systems with linear and scaled LSFs. Normalizing LSFs does not improve the robustness of 

SS in series system reliability analysis involving exponential LSFs.  

C. Effects of the functional form of component LSFs on parallel system reliability analysis 

Table III summarizes reliability analysis results obtained from direct MCS and SS for the 9 

parallel systems with different combinations of component LSFs given by Eqs.(6) and(7). 

Similar to series systems, the Pf estimates of parallel systems from SS are generally favorably 

comparable with that (i.e., 1.97×10-5) from direct MCS. The variation of the Pf estimates of 

parallel systems is, again, quantified by their corresponding COVp values, which range from 

0.832 to 0.978. The accuracy of Pf estimates of parallel systems from SS also depends on the 

functional form of component LSFs. This is attributed to effects of the functional form of 

component LSFs on parallel system LSFs given by Eq. (2), which affects the selection of 

“seed” samples and the subsequent sampling procedure of SS. Fig. 9 shows random samples 

generated in different simulation levels of SS for reliability analysis of parallel systems with 

component LSFs {fL(X), gL(X)} and {fL(X), gS(X)} by circles and squares, respectively. In 

contrast to series systems, gL(X) dominates the sampling in early simulation levels of SS for 

the parallel system with component LSFs fL(X) and gL(X), but fL(X) dominates the sampling 

in early simulation levels of SS for the parallel system with component LSFs fL(X) and gS(X). 

Different sampling procedures of SS for the two parallel systems lead to different numbers of 

failure samples in the last simulation level of SS (see Fig. 9(f)) and, then, affects the accuracy 

of Pf estimates of parallel systems from SS.  

 To explore effects of normalizing component LSFs on the performance of SS in 

parallel system reliability analysis, the Pf and COVp values for each parallel system are re-

evaluated based on normalized component LSFs using 100 SS runs. The results are also 

included in Table III. Compared with the reliability analysis results of series systems using 
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normalized component LSFs, similar observations are obtained for parallel systems. 

Normalizing LSFs eliminates effects of scaled LSFs on the performance of SS in parallel 

system reliability analysis, but this does not work well for parallel systems involving 

exponential LSFs that are nonlinear. 

VII. SYSTEM RELIABILITY ANALYSIS RESULTS FROM THE MODIFIED GSS 

ALGORITHM 

This section re-evaluates the Pf and COVp values of the 9 series systems and 9 parallel 

systems with different combinations of component LSFs given by Eqs. (6) and (7) using the 

modified GSS algorithm. For each system, 100 GSS runs with p0 = 0.1 and N = 1000 are 

performed to evaluate the mean value and COVp of Pf values using the proposed algorithm. 

The Pf estimates from the modified GSS in the following discussions are, again, referring to 

its mean value obtained from 100 GSS runs.  

Table IV summarizes reliability analysis results obtained from the modified GSS 

algorithm for the 9 series systems and 9 parallel systems. The Pf estimates of the series and 

parallel systems obtained from GSS are 4.92×10-4 and 1.19×10-5, respectively, and remain 

the same no matter which functional forms of component LSFs are adopted in the system. In 

general, these values are favorably comparable with those (i.e., 4.97×10-4 and 1.97×10-5) 

estimated from direct MCS with 107 samples (see Tables II and III). This validates the 

modified GSS algorithm. In addition, it is also observed that COVp values of Pf estimates of 

series and parallel systems from the modified GSS algorithm remains almost unchanged at 

around 0.544 and 1.000, respectively, without regard to the functional form of component 

LSFs. The COVp reflects the performance of the probabilistic analysis algorithm [29]. 

Unchanged COVp shown in Table IV indicates that the performance of modified GSS 

algorithm is not insensitive to different functional forms of component LSFs in reliability 
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analyses of series and parallel systems compared with SS. Such an improvement is attributed 

to the fact that selection of “seed” samples in the modified GSS algorithm only relies on the 

magnitude of each component LSF and is irrespective of relative magnitudes of LSFs of 

different components, as discussed in Subsection IV.C. The functional transformation of 

component LSFs does not affect the sampling procedure of conditional samples during GSS 

provided that it does not change the monotonicity and failure domains of component LSFs. 

For example, Fig. 10 shows random samples generated in different simulation levels of the 

modified GSS algorithm for reliability analysis of series systems with component LSFs 

{fL(X), gL(X)} and {fL(X), gS(X)} by circles and squares, respectively. The two sets of 

random samples are distributed similarly in each simulation level of GSS using the proposed 

algorithm. Similar observations are also obtained for parallel systems with component LSFs 

{fL(X), gL(X)} and {fL(X), gS(X)}, as shown in Fig. 11.  

VIII. APPLICATION OF THE MODIFIED GSS TO SYSTEM RELIABILITY 

ANALYSIS OF CONGRESS STREET CUT 

This section uses a real engineering example, namely Congress Street cut in Chicago, to 

further demonstrate the performance of the modified GSS. The cut slope has been adopted to 

investigate the slope system reliability analysis problem by numerous researchers [39]–[42] 

and its geometry is shown in Fig. 12. As shown in Fig. 12, the cut slope contains one fill layer 

and three clay layers. The internal friction angle of the fill  is characterized as a deterministic 

parameter with a value of 30° and the undrained shear strength for the three clay layers cu1, 

cu2, and cu3 are taken as random parameters with mean values of 136, 80, and 102 kPa and 

standard deviations of 50, 15 and 24 kPa, respectively. Previous studies [42] indicated that the 

slope system can be effectively represented by three representative failure modes (RFMs) 

shown in Fig. 12. This study uses these RFMs to estimate the slope system reliability. 

Generally, the limit state function of the slope sliding along a slip surface can be defined as f 
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= R – S or f = (R/S) – 1, where the resistance force R and sliding force S are estimated by 

Bishop’s simplified method. In other words, each of these three RFMs has two different forms 

of LSF, i.e. f1, and f2 for the first RFM, g1 and g2 for the second RFM and h1 and h2 for the 

third RFM. Although other forms might exist in the slope system reliability problem, these 

forms shown in Table V are considered for illustration in this section.  

Table V summarizes reliability analysis results obtained from the MCS, SS and the 

modified GSS for the cut slope system where eight forms of the system LSF are considered. 

The settings of MCS, SS and modified GSS are the same as that used in the numerical 

example. The Pf estimated by MCS is 1.18×10-2, which agrees well with that of 1.19×10-2 

calculated by the modified GSS. SS also gives favorably comparable estimates of Pf, 

however, the COVp value of Pf estimates for SS varies with the forms of LSFs contained in 

the slope system. In contrast, the COVp value of Pf estimates for modified GSS remains 

almost unchanged at the value of 0.202. This further indicates that the proposed algorithm is 

insensitive to the functional form of component LFSs in the system reliability analysis. 

IX. SUMMARY AND CONCLUDING REMARKS 

This paper revisited the performance of Subset Simulation (SS) in system reliability analysis 

and revealed effects of the functional form of component limit state functions (LSFs) on the 

performance of SS from the perspective of sampling procedures. It was shown that the 

functional transformation of component LSFs results in the variation of system LSF given by 

Eqs. (1) and (2), which affects the selection of conditional “seed” samples during SS and the 

subsequent sampling procedure. This makes the performance (or accuracy) of SS sensitive to 

the functional form of component LSFs in system reliability analysis. Normalizing 

component LSFs eliminates effects of scaled LSFs on the performance of SS in system 
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reliability analysis, but it does not improve the robustness (or insensitivity) of SS in system 

reliability analysis involving exponential LSFs that are nonlinear.  

 With the understanding of effects of the functional form of component LSFs on the 

performance of SS in system reliability analysis, a modified GSS algorithm was proposed for 

system reliability analysis, which is robust (or insensitive) to different functional forms of 

component LSFs provided that the functional transformation of component LSFs does not 

change their monotonicity and failure domains. The modification of GSS in this study lies in 

construction of intermediate failure events during the simulation. In contrast to the original 

GSS algorithm, the modified algorithm uses all the component intermediate failure events to 

construct the system intermediate failure events without dropping any one during the whole 

simulation, and it adopts the union and intersection of component intermediate failure events 

as respective intermediate failure events of series and parallel systems. This allows sufficient 

exploration of system failure domains using the modified algorithm and makes GSS feasible 

in reliability analyses of both series and parallel systems. The modified GSS algorithm was 

illustrated using numerical examples used to explore the performance of SS in system 

reliability analysis. In addition, a practical engineering slope system, namely Congress Street 

cut in Chicago, is also employed to demonstrate the performance of the modified GSS 

algorithm. Results showed that the performance of proposed algorithm is insensitive to the 

functional form of component LSFs in system reliability analysis. It is more robust to the 

functional form of component LSFs in system reliability analysis than SS.  

It is worthwhile to point out that, although only the performance of the proposed 

approach on series system and parallel system is demonstrated in this study, it is generally 

applicable to more sophisticated systems, such as combined systems. Further research on 

performance of the proposed approach on combined systems is warranted. 
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TABLE I COMPONENT RELIABILITY ANALYSIS RESULTS FROM SUBSET 

SIMULATION  

Component LSF 
 MCS  SS* 

Pf COVp  Pf COVp 

fL(X)  4.37×10-4 0.015  4.02×10-4 0.623 

fE(X)  4.37×10-4 0.015  4.02×10-4 0.625 

fS(X)  4.37×10-4 0.015  4.02×10-4 0.623 

gL(X)  7.93×10-5 0.035  8.45×10-5 0.508 

gE(X)  7.93×10-5 0.035  8.45×10-5 0.500 

gS(X)  7.93×10-5 0.035  8.45×10-5 0.508 

*：Based on 100 SS runs 
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TABLE II RELIABILITY ANALYSIS RESULTS FROM SUBSET SIMULATION FOR SERIES SYSTEMS  

LSFs of Series System 

 Based on original form of LSFs  Based on the normalized form of LSFs 

MCS  SS*  MCS  SS* 

Pf COVp  Pf COVp Pf COVp  Pf COVp 

min{fL, gL}  4.97×10-4 0.014  4.75×10-4 0.523  4.97×10-4 0.014  4.98×10-4 0.433 

min{fL, gE}  4.97×10-4 0.014  4.57×10-4 0.587  4.97×10-4 0.014  5.09×10-4 0.698 

min{fL, gS}  4.97×10-4 0.014  5.09×10-4 0.704  4.97×10-4 0.014  4.98×10-4 0.433 

min{fE, gL}  4.97×10-4 0.014  4.99×10-4 0.630  4.97×10-4 0.014  4.58×10-4 0.598 

min {fE, gE}  4.97×10-4 0.014  4.75×10-4 0.523  4.97×10-4 0.014  5.02×10-4 0.614 

min {fE, gS}  4.97×10-4 0.014  5.09×10-4 0.703  4.97×10-4 0.014  4.58×10-4 0.598 

min {fS, gL}  4.97×10-4 0.014  5.09×10-4 0.704  4.97×10-4 0.014  4.98×10-4 0.433 

min {fS, gE}  4.97×10-4 0.014  4.60×10-4 0.563  4.97×10-4 0.014  5.09×10-4 0.698 

min {fS, gS}  4.97×10-4 0.014  5.09×10-4 0.699  4.97×10-4 0.014  4.98×10-4 0.433 

*：Based on 100 SS runs 
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TABLE III RELIABILITY ANALYSIS RESULTS FROM SUBSET SIMULATION FOR PARALLEL SYSTEMS  

LSFs of Parallel System 

 Based on original form of LSFs  Based on the normalized form of LSFs 

MCS  SS*  MCS  SS* 

Pf COVp  Pf COVp Pf COVp  Pf COVp 

max {fL, gL}  1.97×10-5 0.071  2.06×10-5 0.978  1.97×10-5 0.071  1.88×10-5 0.827 

max {fL, gE}  1.97×10-5 0.071  2.17×10-5 0.929  1.97×10-5 0.071  1.68×10-5 0.812 

max {fL, gS}  1.97×10-5 0.071  1.64×10-5 0.843  1.97×10-5 0.071  1.88×10-5 0.827 

max {fE, gL}  1.97×10-5 0.071  1.67×10-5 0.844  1.97×10-5 0.071  2.06×10-5 0.887 

max {fE, gE}  1.97×10-5 0.071  2.06×10-5 0.972  1.97×10-5 0.071  1.72×10-5 0.990 

max {fE, gS}  1.97×10-5 0.071  1.64×10-5 0.842  1.97×10-5 0.071  2.06×10-5 0.887 

max {fS, gL}  1.97×10-5 0.071  1.64×10-5 0.843  1.97×10-5 0.071  1.88×10-5 0.827 

max {fS, gE}  1.97×10-5 0.071  2.18×10-5 0.922  1.97×10-5 0.071  1.68×10-5 0.813 

max {fS, gS}  1.97×10-5 0.071  1.64×10-5 0.832  1.97×10-5 0.071  1.88×10-5 0.827 

*：Based on 100 SS runs 
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TABLE IV SYSTEM RELIABILITY ANALYSIS RESULTS FROM GENERALIZED 

SUBSET SIMULATION 

Component LSFs  

 
Series Systems*  Parallel Systems* 

Pf COVp  Pf  COVp 

{fL, gL}  4.92×10-4 0.544  1.19×10-5 0.999 

{fL, gE}  4.92×10-4 0.544  1.19×10-5 0.999 

{fL, gS}  4.92×10-4 0.544  1.19×10-5 0.999 

{fE, gL}  4.92×10-4 0.544  1.19×10-5 1.006 

{fE, gE}  4.92×10-4 0.544  1.19×10-5 1.006 

{fE, gS}  4.92×10-4 0.544  1.19×10-5 1.006 

{fS, gL}  4.92×10-4 0.544  1.19×10-5 0.999 

{fS, gE}  4.92×10-4 0.544  1.19×10-5 0.999 

{fS, gS}  4.92×10-4 0.544  1.19×10-5 0.999 

*：Based on 100 GSS runs 
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TABLE V COMPARISON OF SYSTEM RELIABILITY ANALYSIS RESULTS FOR THE 

CONGRESS STREET CUT EXAMPLE  

 

Component LSFs 
MCS  SS  GSS 

Pf COVp  Pf COVp  Pf COVp 

min{f1, g1, h1} 1.18×10-2 0.003  1.17×10-2 0.225  1.19×10-2 0.202 

min{f1, g1, h2} 1.18×10-2 0.003  1.19×10-2 0.248  1.19×10-2 0.202 

min{f1, g2, h1} 1.18×10-2 0.003  1.21×10-2 0.224  1.19×10-2 0.202 

min{f1, g2, h2} 1.18×10-2 0.003  1.19×10-2 0.235  1.19×10-2 0.202 

min{f2, g1, h1} 1.18×10-2 0.003  1.20×10-2 0.223  1.19×10-2 0.202 

min{f2, g1, h2} 1.18×10-2 0.003  1.20×10-2 0.264  1.19×10-2 0.202 

min{f2, g2, h1} 1.18×10-2 0.003  1.19×10-2 0.246  1.19×10-2 0.202 

min{f2, g2, h2} 1.18×10-2 0.003  1.19×10-2 0.207  1.19×10-2 0.202 
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Fig. 2. Effects of the functional form of component LSFs on system LSF and selection of 

“seed” samples during SS
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Fig. 3. Implementation procedures of the modified GSS algorithm for system reliability 

analysis 
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Fig. 4. Three different functional forms of the limit state function f(X)  
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Fig. 5. Contours of limit state function g(X) for its three different functional forms 
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Fig. 6. Failure domains of two limit state functions f(X) and g(X) 
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Fig. 7. Failure samples generated by SS for component limit state functions fL(X) and fE(X) 
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Fig. 8. Random samples generated by SS for series systems with component limit state functions {fL(X), gL(X)} and {fL(X), gS(X)} 
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Fig. 9. Random samples generated by SS for parallel systems with component limit state functions {fL(X), gL(X)} and {fL(X), gS(X)} 
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Fig. 10. Random samples generated by the modified GSS algorithm for series systems with component limit state functions {fL(X), gL(X)} and 

{fL(X), gS(X)} 
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Fig. 11. Random samples generated by the modified GSS algorithm for parallel systems with component limit state functions {fL(X), gL(X)} and 

{fL(X), gS(X)}
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Fig. 12 Geometry of congress cut slope 

 


