
The Undecidability of Arbitrary Arrow Update Logic

Hans van Ditmarscha, Wiebe van der Hoekb, Louwe B. Kuijerb,a,∗

aLORIA, Campus scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
bDepartment of Computer Science, University of Liverpool, Ashton Building, Ashton Street,

Liverpool L69 3BX, United Kingdom

Abstract

Arbitrary Arrow Update Logic is a dynamic modal logic with a modality to
quantify over arrow updates. Some properties of this logic have already been
established, but until now it remained an open question whether the logic’s
satisfiability problem is decidable. Here, we show by a reduction of the tiling
problem that the satisfiability problem of Arbitrary Arrow Update Logic is co-
RE hard, and therefore undecidable.

Keywords: Modal Logic, Dynamic Epistemic Logic, Update Logics,
Undecidability, Satisfiability

1. Introduction

Update Logics are logics that provide an object language in which one can
reason about the effect of changes to a model for that language. Such an un-
derlying model is usually a Kripke model, equipped with a set of states and
some relations between them. One of the most prominent examples of updates
relate to the incorporation of new information. This field of studies has be-
come popular as Dynamic Epistemic Logic (DEL) [7] in the past decades. In
epistemic logic, states in a Kripke model represent a description of the world,
and the relations represent ‘possibility’ (for belief) or ‘indistinguishability’ (for
knowledge) relations. We say that �ϕ is true in state s in model M, written
M, s |= �ϕ, if for all t, if (s, t) ∈ R(a) then M, t |= ϕ; that is, if in all states
that are indistinguishable for agent a, formula ϕ holds.

Keeping this epistemic setting in mind for the moment, Public Announce-
ment Logic (PAL) [12, 4], studies updates in which certain states of M are
removed: [ϕ]ψ means that after the announcement ϕ (which is interpreted as
the operation in which only the ϕ-states are retained in the model), ψ holds.
For example, if ϕ means “the door is locked” and ψ means “agent a believes

∗Corresponding author
Email addresses: hans.van-ditmarsch@loria.fr (Hans van Ditmarsch),

wiebe.van-der-hoek@liverpool.ac.uk (Wiebe van der Hoek),
Louwe.Kuijer@liverpool.ac.uk (Louwe B. Kuijer)

Preprint submitted to Elsevier July 7, 2017

she cannot access the room”, then [ϕ]ψ means “after it is announced that the
door is locked, agent a will believe that she cannot access the room.”

In Arrow Update Logic (AUL) [11], updates take the form of removing some
access between states: [(ϕ, a, χ)]ψ denotes that if we only keep connections
between two states if they are labelled a and go from a ϕ state to a χ state, ψ
will hold. For example, for the same meaning of ϕ and ψ as above, [(ϕ, a, ϕ)]ψ
means “if whenever the door is locked (ϕ) agent a is told so (ϕ = χ), then she
(correctly) believes that she cannot access the room (ψ)”.

Arrow updates are more powerful than public announcements; unlike public
announcements, arrow updates can be used to model situations where different
agents gain different information. For example, a might be told whether the
door is locked while b is left in the dark on the matter. However, arrow updates
can only remove arrows, they cannot add them. As a result, arrow updates can
only be used to model situations where the amount of uncertainty decreases. If
we want to model situations where the amount of uncertainty increases we will
need to use an even more powerful kind of update. Among these more powerful
kinds of updates, the most commonly used are action models [4]. Action models
can, for example, be used to model the event where, from agent b’s perspective,
it is possible that a is told about whether the door is locked but it is also possible
that a is not told.

The logics using public announcements, arrow updates and action models
are called Public Announcement Logic (PAL), Arrow Update Logic (AUL) and
Action Model Logic (AML)1, respectively.

For each of these logics there is also an “arbitrary” version: for PAL there is
Arbitrary Public Announcement Logic (APAL) [3], for AUL there is Arbitrary
Arrow Update Logic (AAUL) [8] and for AML there is Arbitrary Action Model
Logic (AAML) [10]. These “arbitrary” logics contain an operator that quantifies
over their non-arbitrary counterpart. So in APAL we have [!]ψ if and only if
[ϕ]ψ holds for every PAL formula ϕ, in AAUL we have [l]ψ if and only if [U]ψ
for every AUL update U and in AAML we have [×]ψ if and only if [M]ψ for
every AML action model M .

The logics PAL, AUL, and AML are equally expressive [4, 11]. The arbitrary
versions of the logics are not equally expressive, however. Under reasonable
assumptions about the number of agents, the logics APAL and AAUL are in-
comparable in expressivity [8], and they are both strictly more expressive than
AAML [3, 8], since the latter logic is no more expressive than basic modal logic
[10].

Two other logics that are similar to these “arbitrary” logics are Group An-
nouncement Logic (GAL) [1] which allows quantification over a specific type
of public announcements that are made by a group of agents, and Coalition
Announcement Logic (CAL) [2] which allows us to ask whether there is some
announcement for a group G such that ψ becomes true regardless of what all

1AML is also sometimes referred to as Dynamic Epistemic Logic (DEL), but here we reserve
that name for the family of update logics of which AML is one.

2

agents outside of G announce.
It is important to realise that the relevance of this kind of updates goes

beyond the realm of epistemic interpretations. In normative reasoning for in-
stance, eliminating (bad) states enables one to reason about deontically ‘better’
situations, and eliminating (bad) transitions enforces ‘better’ behaviour. For
more on the epistemic and normative interpretations of updates, see [8, Section
2].

In this paper, we focus on AAUL. So we consider the operator [l] that
quantifies over all arrow updates.

Several technical results regarding AAUL were established in [8]. Specif-
ically, the following results were proven. Expressivity: [8] shows that, under
some mild assumptions, APAL and AAUL are incomparable over the class of
all Kripke models. A case in which AAUL is more expressive than APAL is
also identified. Successively, AAUL is compared to a number of other logics:
it is established that AAUL is incomparable to epistemic logic with common
knowledge, but more expressive than PAL. It is known that basic epistemic
logic, public announcement logic PAL, arbitrary action model logic AAML, and
refinement modal logic [6] are all equally expressive. As a corollary of this result
we therefore also have that AAUL is more expressive than AAML. Model Check-
ing: [8] shows that the model checking problem for AAUL is PSPACE-complete.
Axiomatisation: An (infinitary) proof system for AAUL is introduced in [8] and
its soundness and correctness (with respect to the set of intended models) is
proven.

The question we address for AAUL in this paper regards its decidability. For
some of the ‘arbitrary’ logics mentioned above, namely APAL, GAL, and CAL,
the satisfiability problem is undecidable [9, 2]. The satisfiability problem of
AAML, on the other hand, is decidable [10]. For AAUL, it remained unknown
whether the satisfiability problem is decidable. Here, we show that it is not
decidable, by demonstrating that AAUL’s satisfiability problem can encode the
tiling problem [14]. Because the tiling problem is known to be co-RE complete
[5], this shows that the satisfiability problem of AAUL is co-RE hard.

The undecidability result is not surprising, but also not obvious. In APAL,
GAL, and CAL the undecidability seems to originate in the semantic restric-
tion of quantification: the quantification is only over quantifier-free formulas,
not over all formulas; the resulting gaps in the quantification make these logics
more expressive than epistemic logic, and this also seems to affect decidability.
However, in AAML it does not matter if we so restrict the semantics of quan-
tifiers: either way, we can eliminate quantifiers from the language by rewriting
procedures, and epistemic logic is decidable. As AAUL seems half-way between
APAL and AAML, the scales could have tilted both towards decidability and
undecidability.

The undecidability proof presented here is similar to those in [9] and [2] in
that they all use the “arbitrary” operators to encode a grid and then reduce the
tiling problem to a satisfiability problem on that grid. The similarities between
the proofs do not go far beyond that, however.

The structure of this paper is as follows. First, in Section 2 we introduce

3

the syntax and semantics of AAUL. Then, in Section 3 we provide a brief defi-
nition of the tiling problem and show that it can be encoded in the satisfiability
problem of AAUL.

2. AAUL Syntax and Semantics

Let P be a countable set of propositional variables and A a finite set of
agents. We assume that |A| ≥ 6.

Definition 1. The language LAAUL of AAUL is given by the following normal
forms:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �aϕ | [U]ϕ | [l]ϕ
U ::= (ϕ, a, ϕ) | U, (ϕ, a, ϕ)

where p ∈ P and a ∈ A. The language LAUL is the fragment of LAAUL that
does not contain [l].

We use ∨,→,↔,♦, 〈U〉, 〈l〉,
∨

and
∧

in the usual way as abbreviations. Fur-
thermore, we slightly abuse notation by identifying the list U = (ϕ1, a1, ψ1), · · · ,
(ϕk, ak, ψk) with the set U = {(ϕ1, a1, ψ1), · · · , (ϕk, ak, ψk)}. Finally, for B ⊆ A
we use (ϕ,B, ψ) as an abbreviation for {(ϕ, a, ψ) | a ∈ B}.

AAUL is evaluated on standard multi-agent Kripke models.

Definition 2. A modelM is a tripleM = (W,R, V) where W is a set of states,
R : A → 2W×W assigns to each agent an accessibility relation and V : P → 2W

is a valuation.

Note that we are using the class of all Kripke models. This is unlike APAL
and GAL, which are typically considered on the class of S5 models.

Now, let us consider the semantics of AAUL. We start by giving the formal
definition, after the definition we briefly discuss the intuition behind some of
the operators.

Definition 3. LetM = (W,R, V) be a model and let w ∈W . The satisfaction
relation |= is given by

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= (ϕ ∧ ψ) iff M, w |= ϕ and M, w |= ψ
M, w |= �aϕ iff M, v |= ϕ for each v such that (w, v) ∈ R(a)
M, w |= [U]ϕ iff (M∗ U), w |= ϕ
M, w |= [l]ϕ iff M, w |= [U]ϕ for each U ∈ LAUL

where (M∗ U) is given by:

M∗ U = (W,RU , V)
RU (a) = {(v, v′) ∈ R(a) | ∃(ϕ, a, ϕ′) ∈ U :

(M, v |= ϕ and M, v′ |= ϕ′)}

4

A full discussion of the applications of AAUL and of the intuitions behind
the semantics of arrow updates and arbitrary arrow updates is outside the scope
of this paper. For such a discussion, see [11] and [8]. However, in order to
understand the undecidability proof it is important to grasp the semantics of
AAUL. We therefore do provide a very brief explanation of the intuition behind
and the semantics of AAUL.

Although our goal is to understand AAUL, is is useful to start by consider-
ing public announcements. We assume that the reader is familiar with public
announcement logic, if not see for example [4]. A public announcement [ψ] in-
forms all agents that ψ is true. As a result, every possible world that the agents
previously considered possible that does not satisfy ψ is rejected after the an-
nouncement, since it is incompatible with the new information. Semantically,
this corresponds to a model M being transformed into a model M∗ ψ where
all ¬ψ states of M have been removed.

Like public announcements, arrow updates provide agents with new informa-
tion. Unlike with public announcements, however, the new information provided
by an arrow update can (i) differ per agent and (ii) differs per state. A typical
example is a card game, where cards have been dealt face down. Now, agent a
picks up her hand of cards and looks at it. Obviously, the information that a
gains from this action is different than the information the other agents gain: a
learns what her cards are whereas the other agents only learn that a now knows
what her cards are. It is perhaps less obvious that the information that a gains
also differs per state. Suppose that a has been dealt the 7 of Hearts. Then by
looking at her cards a learns that she has the 7 of Hearts. If, on the other hand,
a has been dealt the 8 of Clubs, then she learns that she has the 8 of Clubs.
Learning that you have the 7 of Hearts is different from learning that you have
the 8 of Clubs, so the information given to a depends on the state of the world.

With arrow updates we formalize the information that the agents gain in
such a situation. In principle, we could do this in two ways: we could specify
the things that are incompatible with the new information, or the things that
are compatible. We choose to follow public announcements in this aspect, so
just like [ψ] says that the new information is compatible with ψ, we use an
arrow update U to specify the information that is compatible with U . Since
the information gained in an arrow update can depend on the agent and on the
current state, we use triples (ϕ, a, ψ). We call such triples clauses; they can be
read as “if the current state satisfies ϕ, then the information provided to agent
a is compatible with ψ.” Semantically, the effect of a triple (ϕ, a, ψ) is that
every transition that is labeled a and that goes from a ϕ state to a ψ state is
retained.

An arrow update is a finite set of clauses, U = {(ϕ1, a1, ψ1), · · · , (ϕk, ak, ψk)}
(where it is possible that ϕi = ϕj , ai = aj or ψi = ψj for i 6= j). This still
leaves the decision of what to do if a state matches multiple clauses. Suppose,
for example, that (ϕ1, a, ψ1), (ϕ2, a, ψ2) ∈ U and that a state satisfies both ϕ1

and ϕ2. There are several options for how to interpret this situation, we choose
to interpret it disjunctively: if a state satisfies ϕ1 and ϕ2, then any state that
satisfies ψ1 or ψ2 is consistent with the new information.

5

On the semantical level, this means that M ∗ U should contain exactly
those arrows of M that match at least one clause of U , where we say that
(w1, w2) ∈ R(a) matches (ϕ1, a1, ψ1) if and only if M, w1 |= ϕ1, a = a1 and
M, w2 |= ψ1.

Arbitrary arrow updates then quantify over such arrow updates. However, in
order to avoid circularity we restrict this quantification to those arrow updates
that do not themselves contain an arbitrary arrow update [l]. So M, w |= [l]ϕ
if and only if M, w |= [U]ϕ for all U ∈ LAUL.

3. Reducing the Tiling Problem

3.1. The Tiling Problem

We will prove the undecidability of AAUL by a reduction of the tiling prob-
lem. The tiling problem was introduced in [14] and can be defined as follows.

Definition 4. Let C be a finite set of colors. A tile type is a function i :
{north, south, east ,west} → C.

An instance of the tiling problem is a finite set types of tile types. A solution
to an instance of the tiling problem is a function tiling : Z × Z → types such
that, for every (z1, z2) ∈ Z× Z,

tiling(z1, z2)(north) = tiling(z1, z2 + 1)(south)

tiling(z1, z2)(east) = tiling(z1 + 1, z2)(west).

The tiling problem was shown to be undecidable in [5]. In fact, the tiling
problem is co-RE complete. Therefore, by reducing the tiling problem to the
satisfiability problem of AAUL, we show that the latter problem is co-RE hard.
Whether AAUL’s satisfiability problem is co-RE is not currently known.

3.2. Encoding the Tiling Problem in AAUL

We want to encode the tiling problem in AAUL. So for every instance types
of the tiling problem we define a formula χtypes of AAUL that is satisfiable if
and only if types can tile the plane. The strategy for doing this is as follows.

We represent each point of Z × Z by a state (n,m). For every i ∈ types
we then use a propositional variable pi to represent “the current state contains
a tile of type i.” For every c ∈ C we use propositional variables northc (resp.
southc, eastc,westc) to represent the northern (resp. southern, eastern, western)
edge of the current tile having color c. Finally, we use relations up, down, left
and right to represent one tile being above, below, to the left and to the right,
respectively, of the current tile.

In addition to the states (n,m) that correspond to points in Z× Z, we also
use an auxiliary state s0. This state s0 is not part of the grid, and does not
contain any tile. Instead, it is the state where χtypes will be evaluated. We
therefore also refer to s0 as the origin state. In order to distinguish s0 from the
states that are part of the grid we use the propositional variable p, which holds
on s0 but not on any (n,m).

6

Now, given any state (n,m), it is relatively easy to check whether the con-
straints of a tiling are satisfied locally. For example,

∨
i∈types pi∧

∧
i 6=j∈types ¬(pi∧

pj) holds if and only if the current state has exactly one type of tile, and∧
c∈C(northc → �upsouthc) holds if and only if the northern color of the current

tile matches the southern color of the tile above.
Making sure that the global constraints of a tiling are satisfied is harder,

though. We do this in the following way. Firstly, we take a relation R(b), and
force it to connect between the auxiliary state s0 and every state (n,m).2 So
while

∨
i∈types pi ∧

∧
i 6=j∈types ¬(pi ∧ pj) says that the current state has exactly

one tile type, the formula �b

∨
i∈types pi∧

∧
i 6=j∈types ¬(pi∧pj) says that all grid

states have exactly one tile type. Secondly, we enforce a grid-like structure onto
the domain.

We also use another relation R(a) in order to simulate a Boolean variable:
every state will have an a-arrow to itself (or at least, to a modally indistinguish-
able state). If an arrow update retains the a-arrow departing from a state s we
can see this as the variable being true on s, and if an arrow update removes the
a-arrow departing from s we can see this as the variable being false on s.

With the above in mind, let us define the formula χtypes .

Definition 5. Let types be an instance of the tiling problem. The formula
χtypes is given by

χtypes := ψgrid ∧ [Ugrid]ψgrid ∧ ψtypes

where

ψgrid := ψ1 ∧
∧
x∈D

(ψ2,x ∧ ψ3,x ∧ propdx ∧ returnx) ∧ inverse ∧ commute

Ugrid := (p→ ψgrid , a,>), (>,A \ {a},>)

ψtypes := one tile ∧ one color ∧ tile colors ∧ tile match

and

D := {up, down, left , right}
ψ1 := ♦a> ∧ [l](♦a> → �b�b♦a>)

ψ2,x := p ∧ ♦b> ∧�b(¬p ∧ ♦bp ∧ ♦x(¬p ∧ ♦bp) ∧�x¬p)
ψ3,x := �b(ref ∧�xref ∧ [l](♦x♦a> → �x♦a>))

ref := ♦a> ∧ [l]�a♦a>
propdx := �b[l]((�a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧�b♦a>)∧

〈l〉(♦x♦a> ∧ ♦b♦b�a⊥))→ [Ux]〈l〉(♦x♦a> ∧ ♦b♦b�a⊥))

Ux := (p ∨�a⊥, b,>), (>, a,>), (�a⊥, x,>)

2This is far easier said then done, we will spend several pages proving that R(b) connects
to every relevant state.

7

returnx := �b〈l〉(�a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
[l](♦x♦a> → �b�b♦a>))

inverse := �b[l](�a⊥ → (�up�down�a⊥ ∧�down�up�a⊥∧
�left�right�a⊥ ∧�right�left�a⊥))

commute := �b[l]
∧

(x,y)∈E

(♦x♦y�a⊥ → �y�x�a⊥)

E := {(up, left), (up, right), (down, left), (down, right),

(left , up), (left , down), (right , up), (right , down)}

one tile := �b(
∨

i∈tiles

pi ∧
∧

i 6=j∈tiles

¬(pi ∧ pj))

one color := �b

∧
c∈C

(northc →
∧

d∈C\{c}

¬northd)∧

�b

∧
c∈C

(southc →
∧

d∈C\{c}

¬southd)∧

�b

∧
c∈C

(eastc →
∧

d∈C\{c}

¬eastd)∧

�b

∧
c∈C

(westc →
∧

d∈C\{c}

¬westd)

tile colors := �b

∧
i∈tiles

(pi → (northi(north)∧

southi(south) ∧ east i(east) ∧ west i(west)))

tile match := �b

∧
c∈C

((northc → �upsouthc) ∧ (westc → �lefteastc))

Note that the formulas ψ2,x, ψ3,x, propdx and returnx and the update Ux con-
tain a parameter x, which ranges over the four directionsD = {up, down, left , right}.

The formula ψgrid , together with [Ugrid]ψgrid , encodes a grid. The formula
ψtypes then ensures that the grid is tiled with tiles from types. The formula
χgrid may look rather intimidating, but we will discuss the various subformulas
in detail and explain what they do.

We want to show that χtypes is satisfiable if and only if types can tile Z×Z.
We start by showing that if such a tiling exists, then χtypes is satisfiable.

Lemma 1. Suppose types can tile Z× Z. Then χtypes is satisfiable.

Proof. Let tiling be the tiling, let pn,m ∈ P for every n,m ∈ Z and let M =
(S,R, V) be the following, quite straightforward, encoding of tiling :

• S = (Z× Z) ∪ s0

• R(a) = {(s, s) | s ∈ S}

8

b b

b

b

s0

...
...

· · · (0, 1) (1, 1) · · ·

· · · (0, 0) (1, 0) · · ·

...
...

downup

downup

downup

downup

downup

downup

right

left

right

left

right

left

right

left

right

left

right

left

a

a

a

a

a

Figure 1: The model used in Lemma 1.

• R(b) = {(s0, (n,m)) | n,m ∈ Z} ∪ {((n,m), s0) | n,m ∈ Z}

• R(up) = {((n,m), (n,m+ 1)) | n,m ∈ Z}

• R(down) = {((n,m), (n,m− 1)) | n,m ∈ Z}

• R(left) = {((n,m), (n− 1,m)) | n,m ∈ Z}

• R(right) = {((n,m), (n+ 1,m)) | n,m ∈ Z}

• V (p) = {s0}

• V (pi) = {(n,m) | tiling(n,m) = i} for i ∈ tiles

• V (northc) = {(n,m) | ((tiling)(n,m))(north) = c} for c ∈ C

• V (southc) = {(n,m) | ((tiling)(n,m))(south) = c} for c ∈ C

• V (eastc) = {(n,m) | ((tiling)(n,m))(east) = c} for c ∈ C

• V (westc) = {(n,m) | ((tiling)(n,m))(west) = c} for c ∈ C

• V (pn,m) = {(n,m)}

The frame of this model (i.e. the model without the valuation) is also drawn in
Figure 1.

As mentioned above, the state s0 is special: it is the origin state, and the only
state that does not have a tile type associated with it. The propositional variable
p is used to identify this special state. First, we will show that M, s0 |= ψgrid .

9

There is an a-arrow from s0 to itself, so M, s0 |= ♦a>. Furthermore, the
only b-b-successor of s0 is s0 itself. It follows that every arrow update that
retains the a-arrow from s0 also retains the a-arrow from every b-b-successor of
s0. So M, s0 |= [l](♦a> → �b�b♦a>). We have shown that s0 satisfies both
conjuncts of ψ1, so M, s0 |= ψ1.

The state s0 satisfies p and it has at least one b-successor, soM, s0 |= p∧♦b>.
Every state (n,m) satisfies ¬p and has a b-arrow to the p-state s0. Furthermore,
for every x ∈ D the state (n,m) has exactly one x-successor (n′,m′), that also
satisfies ¬p ∧ ♦bp. Since every b-successor of s0 is a state (n,m), it follows that
s0 satisfies p ∧ ♦b>∧�b(¬p ∧ ♦bp ∧ ♦x(¬p ∧ ♦bp) ∧�x¬p) for every x,∈ D, so
M, s0 |= ψ2,x.

Now, consider the formula ref . Every state s ofM has exactly one outgoing
a-arrow, and that a-arrow goes to s itself. It is therefore impossible to have
an arrow update that retains the a-arrow from s to one of its a-successors s′

while removing all a-arrows from s′. It follows that every state of M satisfies
♦a> ∧ [l]�a♦a>, so all states satisfy ref .

Now, take any direction x ∈ D. From the fact that every state ofM satisfies
ref , it follows that every state (n,m) satisfies ref ∧�xref . Furthermore, every
state (n,m) has exactly one x-successor, so every arrow update that retains
the a-arrow on one of the x-successors of (n,m) retains the arrow on every
x-successor of (n,m). In other words, we have M, (n,m) |= [l](♦x♦a> →
�x♦a>). Together with the fact that (n,m) satisfies ref ∧�xref , as discussed
earlier, this implies that M, (n,m) |= (ref ∧ �xref ∧ [l](♦x♦a> → �x♦a>)).
The above holds for every state (n,m) and every x ∈ D, so M, s0 |= ψ3,x for
every x ∈ D.

Let us then consider propdx. For ease of notation we show only that propdright

holds; the other directions can be proven in the same way. The initial �b oper-
ator of propdright takes us to any state (n,m). To show is that

M, (n,m) |= [l]((�a⊥ ∧ ♦right♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
〈l〉(♦right♦a> ∧ ♦b♦b�a⊥))→ [Uright]〈l〉(♦right♦a> ∧ ♦b♦b�a⊥))

Let U1 be any arrow update such that the antecedent in the above formula is
true, i.e. any arrow update such that

M∗ U1, (n,m) |= (�a⊥ ∧ ♦right♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
〈l〉(♦right♦a> ∧ ♦b♦b�a⊥).

By �a⊥ the a-arrow on (n,m) was removed by U1. By ♦right♦a> the right-arrow
to (n+ 1,m) and the a-arrow on (n+ 1,m) are retained. By ♦b(♦b>∧�b♦a>),
the arrow from (n,m) to s0 is retained, as well as a b-arrow from s0 to at least
one state (n′,m′). Furthermore, every b-arrow from s0 that is retained, points
to a state that still has its a-arrow.

The formula 〈l〉(♦right♦a>∧♦b♦b�a⊥) then states that there is some update
U2 such that (M∗ U1) ∗ U2, (n,m) |= ♦right♦a> ∧ ♦b♦b�a⊥. Note that this is
impossible if (n+ 1,m) is the only b-b-successor of (n,m) inM∗U1, since then

10

(n + 1,m) would need to satisfy ♦a> (due to (n,m) satisfying ♦right♦a>) as
well as �a⊥ (due to (n,m) satisfying ♦b♦b�a⊥) in (M∗ U1) ∗ U2.

To show is that for every such U1, we have

M∗ U1, (n,m) |= [Uright]〈l〉(♦right♦a> ∧ ♦b♦b�a⊥),

where Uright = (p ∨ �a⊥, b,>), (>, a,>), (�a⊥, right ,>). Note that Uright re-
tains all a-arrows, the right-arrow from (n,m) to (n + 1,m) and the b-arrow
from (n,m) to s0 (because M∗ U1, (n,m) |= �a⊥) as well as all b-arrows from
s0 (because M∗ U1, s0 |= p).

Now, let U2 := (pn+1,m, a,>), (>, {b, right},>). This update retains all
b- and right-arrows as well as the a-arrow on (n + 1,m) while removing all
other a-arrows. Since (n,m) had at least one b-b-successor (n′,m′) 6= (n,m) in
(M∗U1)∗Uright , it follows that, in ((M∗U1)∗Uright)∗U2the state s0 has a right-
successor that satisfies ♦a> (namely (n,m)) and a b-b-successor that satisfies
�a⊥ (namely (n′,m′)). We therefore have ((M ∗ U1) ∗ Uright) ∗ U2, (n,m) |=
♦right♦a> ∧ ♦b♦b�a⊥ and therefore M∗ U1, (n,m) |= [Uright]〈l〉(♦right♦a> ∧
♦b♦b�a⊥). We have now shown that M, s0 |= propdright .

We continue with returnx. Once again, we consider the case x = right ,
the other directions can be proven in a similar way. The formula returnright

starts with a �b operator, so take any b-successor (n,m) of s0. Furthermore,
let U1 := (pn+1,m, a,>), (>, b, p ∨ pn+1,m), (>, right ,>). So in M∗U1 the state
(n+ 1,m) is the only one to still have its a-arrow, and it is also the only right-
and b-b-successor of (n,m). HenceM∗U1, (n,m) |= �a⊥∧♦right♦a>∧♦b(♦b>∧
�b♦a>). Furthermore, any arrow update that removes the a-arrow from the
right-successor of (n,m) also removes the a-arrow from the b-b-successor of
(n,m), since those successors are the same state (n + 1,m). Therefore, M ∗
U1, (n,m) |= [l](♦right♦a> → �b�b♦a>). Putting these things together, we
obtain

M, (n,m) |= [U1](�a⊥ ∧ ♦right♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
[l](♦right♦a> → �b�b♦a>))

and therefore

M, (n,m) |= 〈l〉(�a⊥ ∧ ♦right♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
[l](♦right♦a> → �b�b♦a>)).

Since this holds for any b-successor (n,m) of s0, it follows that returnright holds
in s0.

We continue with inverse. In M, the relations up and down are each
others inverses, as are left and right . Furthermore, all four direction rela-
tions are functions. It follows immediately that, for every (n,m), we have
M, (n,m) |= [l](�a⊥ → �right�left�a⊥), and similarly for the other combina-
tions of directions. So we have M, s0 |= inverse.

Similarly, inM we have R(right) ◦R(up) = R(up) ◦R(right), and the same
for the other directions. It follows that M, s0 |= �b[l]

∧
(x,y)∈E(♦x♦y�a⊥ →

�y�x�a⊥).

11

We have now considered all the conjuncts of ψgrid , so we have shown that
M, s0 |= ψgrid . Furthermore, the only p state in M is the state s0, and s0
satisfies ψgrid . The update Ugrid = (p → ψgrid , a,>), (>,A \ {a},>) therefore
retains all arrows. So ψgrid remains true after this update, which gives us
M, s0 |= [Ugrid]ψgrid .

This only leaves the formula ψtypes . This formula simply encodes that tiling
is a tiling on Z× Z, so it is straightforward to verify that M, s0 |= ψtypes .

We have now shown that all the conjuncts of χtypes are satisfied in M, s0,
so M, s0 |= χtypes , which was to be shown.

We have shown that if types can tile the plane, then χtypes is satisfiable.
Left to show is that if χtypes is satisfiable, then types can tile the plane. The
main strategy that we use in this proof is to show that the subformulas ψgrid

and [Ugrid]ψgrid of χtypes only hold in models that resemble the grid-like model
shown in Figure 1. The subformula ψtypes of χtypes then only holds if the grid
can be tiled with types.

Unfortunately, there is one significant complication. The language of AAUL
is not expressive enough to guarantee uniqueness of states. So, for example, a
state (n,m) may have two (or more) different right-successors, (n + 1,m) and
(n+1,m)′. We can, however, use ψgrid to show that if (n+1,m) and (n+1,m)′

are both right-successors of (n,m), then (n+ 1,m) and (n+ 1,m)′ are modally
indistinguishable. So a pointed model where χtypes is satisfied resembles the
model from Figure 1 modulo modal indistinguishability. This suffices to show
that χtypes is only satisfiable if types can tile Z× Z.

In Lemma 5 we will prove that satisfiability of χtypes implies that types can
tile the plane. Before doing so, however, it is useful to consider a few auxiliary
definitions and lemmas.

Definition 6. Fix a state s0, and let M = (S,R, V) be any model that has s0
as one of its states. The set [s0]M is the smallest set of states of M such that

• s0 ∈ [s0]M and

• if s ∈ [s0]M and (s, s′) ∈ Rb ◦Rb then s′ ∈ [s0]M.

Lemma 2. Suppose M, s0 |= ψgrid , and let s be any b-b-successor of s0. Then
s0 and s are modally indistinguishable.

Proof. Suppose towards a contradiction that there is a modal formula δ such
that M, s0 |= δ and M, s 6|= δ.

FromM, s0 |= ψgrid it follows that, in particular,M, s0 |= ψ1 and therefore
(by definition) M, s0 |= ♦a> ∧ [l](♦a> → �b�b♦a>). The ♦a> subformula
implies that s0 has at least one a-successor s′0.

Consider the update U = (δ, a,>), (>, b,>). This U retains all b-arrows, so
s is still a b-b-successor of s0 in the updated modelM∗U . Furthermore, since U
retains exactly those a-arrows that depart from a δ-world, we haveM∗U, s0 |=
♦a> and M ∗ U, s 6|= ♦a>. It follows that M, s0 |= ¬[U](♦a> → �b�b♦a>),
contradicting M, s0 |= [l](♦a> → �b�b♦a>).

12

Our assumption that a distinguishing modal formula δ exists must therefore
have been false, so s0 and s are modally indistinguishable.

Lemma 3. If M, s0 |= ψgrid , then all elements of [s0]M are modally indistin-
guishable from s0.

Proof. Let M, s0 be any pointed model such that M, s0 |= ψgrid , and let s be
any element of [s0]M. Then there is a sequence s0, s1, · · · , sn of states such that
s = sn and, for every 0 ≤ i < n, the state si+1 is a b-b-successor of si.

We show that s is modally indistinguishable from s0, by induction on n. As
base case, suppose n = 1. Then it follows immediately from Lemma 2 that
s and s0 are modally indistinguishable. Assume then as induction hypothesis
that n > 1 and that s0, s1, · · · , sn−1 are modally indistinguishable from s0.

If s is modally distinguishable from s0, then there is some modal formula δ
that holds on s0 but not on s. Since s0 is modally indistinguishable from its
b-b-successors, we also haveM, s0 |= �b�bδ. However, since s is a b-b-successor
of sn−1 and δ does not hold on s, we haveM, sn−1 6|= �b�bδ. This implies that
there is a modal formula that distinguishes between s0 and sn−1, contradicting
the induction hypothesis.

It follows that there can be no modal δ that holds on s0 but not on s. This
completes the induction step and thereby the proof.

Lemma 4. If M, s0 |= ψgrid ∧ [Ugrid]ψgrid , then all elements of [s0]M satisfy
ψgrid .

Proof. First, note thatM, s0 |= p, becauseM, s0 |= ψgrid and thereforeM, s0 |=
ψ2,x. By Lemma 3, all elements of [s0]M are modally indistinguishable, so all
of them satisfy p.

Now, take any s ∈ [s0]M. Then there is a finite sequence s0, s1, · · · , sn of
states such that s = sn and for every 0 ≤ i < n the state si+1 is a, b-b-successor
of si.

Recall that Ugrid = (p → ψgrid , a,>), (>,A \ {a},>). The b-arrows on the
path from s0 to s are retained by Ugrid since that update retains all b-arrows.
This implies that s ∈ [s0]M∗Ugrid

. Furthermore, M∗ Ugrid , s0 |= ψgrid because,
by the assumptions of the lemma, M, s0 |= [Ugrid]ψgrid . Lemma 3 therefore
implies that s0 and s are modally indistinguishable in M∗ Ugrid .

By the assumptions of the lemma, M, s0 |= ψgrid . This implies that s0 has
at least one a-successor inM, and that the a-arrow to this successor is retained
by the update. So M∗ Ugrid , s0 |= ♦a>.

Suppose towards a contradiction that M, s 6|= ψgrid . Then M, s 6|= p →
ψgrid , so the update Ugrid would remove all a-arrows from s and we would have
M ∗ Ugrid , s 6|= ♦a>. This would contradict the modal indistinguishability of
s0 and s in M∗ Ugrid . It follows that M, s |= ψgrid , which is what was to be
shown.

Having dealt with these preliminaries, we can show that satisfiability of
χtypes implies that types can tile Z× Z.

13

Lemma 5. If χtypes is satisfiable, then types can tile Z× Z.

Proof. Let M, s0 be any pointed model such that M, s0 |= χtypes . Then, in
particular, M, s0 |= ψgrid ∧ [Ugrid]ψgrid and therefore all elements of [s0]M
satisfy ψgrid and are modally indistinguishable from each other.

We will now explain that the fact that ψgrid holds on all of [s0]M implies
thatM is “grid-like.” During this explanation, it is useful to draw diagrams of
the model M. Because M may be infinitely large, it is not very practical to
draw the entire model, so we will only draw the parts that are relevant to the
part of the proof they are intended to illustrate.

Take any s ∈ [s0]M. We start by considering the formula ψ2,x, that holds in
s for every x ∈ D. So, by the definition of ψ2,x, we have

M, s |= p ∧ ♦b> ∧�b(¬p ∧ ♦bp ∧ ♦x(¬p ∧ ♦bp) ∧�x¬p).

This implies that s satisfies p, that s has at least one b-successor and that every
b-successor s1 of s satisfies ¬p. So far, this can be drawn as follows.

s : p

s1 : ¬p

b

Furthermore, this s1 has at least one b-successor s′ that satisfies p, and one
x-successor s2 that satisfies ¬p ∧ ♦bp. Our diagram becomes the following.

s′ : p

s1 : ¬p

s : p

s′′ : p

s2 : ¬p

b

b

x

b

Now, consider ψ3,x, which is also one of the conjuncts of ψgrid and therefore
holds on s. It states that

M, s |= �b(ref ∧�xref ∧ [l](♦x♦a> → �x♦a>))

So s1 and s2 both satisfy ref . This implies that s1 and s2 both have at least
one outgoing a-arrow. Suppose now, towards a contradiction, that s1 has an
a-successor s′1 that is modally distinguishable from s1. Then there is some
modal formula δ that holds on s1 but not on s′1, so we would have M, s1 |=

14

[(δ, a,>)]¬�a♦a>, contradicting the [l]�a♦a> part of ref . It follows that s1 is
modally indistinguishable from all its a-successors. The same reasoning shows
that s2 is also modally indistinguishable from its a-successors.

Additionally, s1 satisfies [l](♦x♦a> → �x♦a>). This implies that all x-
successors of s1 are modally indistinguishable from one another, since otherwise
there would be some arrow update that retains the a-arrow from s2 while re-
moving all a-arrows from at least one of the other x-successors of s1.

Now we should consider the two most complex conjuncts of ψgrid : propdx

and returnx. The formula propdx states that

M, s |= �b[l]((�a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
〈l〉(♦x♦a> ∧ ♦b♦b�a⊥))→ [Ux]〈l〉(♦x♦a> ∧ ♦b♦b�a⊥)),

where
Ux = (p ∨�a⊥, b,>), (>, a,>), (�a⊥, x,>)

The initial �b of propdx takes us to any b-successor of s, so to s1 in the above
diagram. The remainder of propdx now has the form [l](ϕ1 → ϕ2). So for any
arrow update U1 ∈ LAUL, if the antecedent ϕ1 holds in M ∗ U1, s1 then the
consequent ϕ2 should hold there as well. Let us take a closer look at what it
means for ϕ1 to hold in M∗ U1, s1.

We have ϕ1 = (�a⊥∧♦x♦a>∧♦b(♦b>∧�b♦a>)∧〈l〉(♦x♦a>∧♦b♦b�a⊥).
So s1 satisfies �a⊥. Furthermore, at least one x-successor of s1 satisfies ♦a>.
Since the x-successors of s1 are modally indistinguishable (inM, and therefore
also in M∗ U1) this implies that all x-successors of s1 retain their a-arrow.

The b-successor s′ of s1 (which is also unique up to modal indistinguisha-
bility) satisfies ♦b>∧�b♦a>. So the situation we are in can be represented by
the diagram drawn below.

s′ : p

s1 : ¬p ∧�a⊥

s′2 : ¬p ∧ ♦a>

s2 : ¬p ∧ ♦a>

b

b

x

Note that s′2 is a b-successor of a state s′ ∈ [s0]M. Above we concluded that any
b-successor s1 of any state s ∈ [s0]M must be modally indistinguishable from
all its a-successors, so s′2 is also modally indistinguishable from its a-successors.

The final conjunct of the antecedent ϕ1 now states that there is some arrow
update U2 that retains the a-arrow from s2, while removing the a-arrow from
s′2. This is the case if and only if s2 and s′2 are modally distinguishable.

The consequent ϕ2 then states that 〈l〉(♦x♦a>∧♦b♦b�a⊥) still holds after
the application of Ux, so (M ∗ U1) ∗ Ux, s1 |= 〈l〉(♦x♦a> ∧ ♦b♦b�a⊥). This
implies that, in (M∗U1)∗Ux, the states s2 and s′2 are still modally distinguish-
able.

15

The update Ux removes all A\{a}-arrows from s2 and s′2. Furthermore, the
a-arrows go from s2 to a state modally indistinguishable from s2 and from s′2 to
a state modally indistinguishable from s′2. This implies that, after the update
Ux, the states s2 and s′2 can only be modally distinguishable from each other if
they are propositionally distinguishable.

In summary: propdx guarantees that if M∗ U1 matches the above diagram
(i.e. M ∗ U1, s1 |= �a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧ �b♦a>)) and s′2 is modally
distinguishable from s2 (in M ∗ U1) then s′2 is propositionally distinguishable
from s2.

Furthermore, we can show that s2 and s′2 also have to be propositionally
distinguishable if they are modally distinguishable in M (as opposed to M ∗
U1). Suppose that M∗ U1 matches the above diagram, and that s2 is modally
distinguishable from s′2 in M. Let δ be a modal formula that distinguishes
between s2 and s′2 (in M), and assume without loss of generality that δ holds
on s1. Note that we previously concluded that M, s2 |= ♦b> and that, since s′2
is a b-successor of a state s′ ∈ [s0]M, also M, s′2 |= ♦b>.

We now distinguish between 3 cases.

• Suppose M ∗ U1, s2 |= �b⊥ and M ∗ U1, s
′
2 |= �b⊥. Then let U ′1 :=

U1 ∪ {χ ∧ ¬p, b,>}.

• Suppose one of s2 and s′2 satisfies �b⊥ while the other satisfies ♦b>. Then
let U ′1 := U1.

• Suppose M∗ U1, s2 |= ♦b> and M∗ U1, s
′
2 |= ♦b>. Then let U ′1 be the

update obtained by replacing every clause (ϕ, b, ψ) ∈ U1 by (ϕ ∧ (p ∨
δ), b, ψ).

In any of the three cases, M∗ U ′1 matches the diagram, and s2 is distinguish-
able from s′2 in M∗ U ′1 by the formula ♦b>. So s2 and s′2 are propositionally
distinguishable.

Summarizing again: propdx guarantees that if M ∗ U1 matches the above
diagram (i.e. M∗U1, s1 |= �a⊥∧♦x♦a>∧♦b(♦b>∧�b♦a>)) and s2 is modally
distinguishable from s′2 (inM), then s2 is propositionally indistinguishable from
s′2.

Now, consider the formula returnx. It states that

M, s |= �b〈l〉(�a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
[l](♦x♦a> → �b�b♦a>))

Once again, the initial �b operator takes us to any b-successor s1 of s. Then,
there is some update U1 such that

M∗ U1, s1 |= �a⊥ ∧ ♦x♦a> ∧ ♦b(♦b> ∧�b♦a>)∧
[l](♦x♦a> → �b�b♦a>)

The first four conjuncts state thatM∗U1 matches the diagram drawn above. So
if s2 is modally distinguishable from some b-b-successor s′2 of s1 in the modelM,

16

then those two worlds are propositionally distinguishable. The final conjunct
states that every arrow update U2 that retains the x-arrow from s1 to s2 and
the a-arrow from s2 either removes one of the b-arrows between s1 and s′2 or
retains the a-arrow on s′2.

An update U2 that removes the b-arrows between s1 and s′2 can be modified
to an update U ′2 := U2∪{(>, b,>)} that retains the same a- and x-arrows as U2,
but retains all b-arrows. It follows that every U2 that retains the x-arrow from
s1 to s2 and the a-arrow from s2 must also retain the a-arrow on s′2. The state s2
and s′2 must therefore be modally indistinguishable (in M∗ U1). In particular,
this implies that s2 and s′2 are propositionally indistinguishable. If s2 and s′2
had been modally distinguishable in M they would have been propositionally
distinguishable, so it follows that s2 and s′2 are modally indistinguishable inM.

In summary: returnx guarantees that (in M) there is a b-b-successor s′2 of
s1 that is modally indistinguishable from s2.

The state s′ is a member of [s0]M, so s′2 a b-successor of a state that satisfies
ψgrid . All the conclusions that we drew about s1 therefore also apply to s′2:
there is a unique, up to modal indistinguishability (utmi), x-successor s′3 of s′2,
and this s′3 is modally indistinguishable from a state s′′3 that is b-b-accessible
from s′2. The same procedure can be used on s′′3 , and so on.

All in all, we get the following diagram,

s

s′

s1

s′′

s′2

s2

s(3)

s′′3

s′3

s
(3)
4

s′′4

...

. . .

b

b

b

x

b

b

x

b

b

x

where states with the same subscript are modally indistinguishable from one
another.

Now, because s2 is modally indistinguishable from s′2, and s′2 has a unique
(utmi) x-successor s′3, it follows that s2 must have a unique (utmi) x-successor
s3 that is modally indistinguishable from s′3, and therefore also from s′′3 . Fur-
thermore, s′′3 has a unique (utmi) x-successor s′′4 , so s′3 and s3 have unique (utmi)
x-successors s4 and s′4, respectively, that are modally indistinguishable from s′′4 .
The diagram can therefore be completed to the following:

17

s

s′

s1

s′′

s′2

s2

s(3)

s′′3

s′3

s3

s
(3)
4

s′′4

s′4

s4

...

. . .

. . .

. . .

. . .b

b

b

x

b

b

x

x

b

b

x

x

x

The important thing to note is that s1, s2, s3, · · · form an infinite sequence
of states that each have a unique (utmi) x-successor and that each of them is
modeally indistinguishable from a b-successor of a state that is a member of
[s0]M.

Furthermore, this holds for any direction x. So s1 has of four such successor
sequences, one for each direction. Every state in these successor sequences is
modally indistinguishable from a b-successor of some state s(n) ∈ [s0]M, so every
such state has four successor sequences of its own.

Now, consider inverse and commute. The formula inverse guarantees that,
for opposite directions x and y, the x-y-successor of sn is indistinguishable
from sn. The formula commute, guarantees that, for perpendicular directions x
and y, the x-y-successor of sn is indistinguishable from its y-x-successor. The
successor sequences of s1 therefore form a Z× Z grid.

Now, finally, consider ψtypes . This is a purely modal formula and it holds
on s0, so it holds on every s ∈ [s0]M. The formula ψtypes guarantees that the
conditions of a tiling are locally satisfied on the immediate b-successors of s.
Let s1 be any b-successor of s ∈ [s0]M. Then one tile guarantees that s1 has
exactly one tile type, one color guarantees that that every side of s1 has at
most one color, tile colors guarantees that every side of s1 has the appropriate
color for a tile of its type and tile match guarantees that the tile edges match,;
i.e. that the north side of the current tile is the same as the south side of its
up-successor, and similarly for the other directions.

Since every state in the grid is modally indistinguishable from a b-successor
of some [s0]M state, the conditions of a tiling are locally satisfied in every world
of the grid, so they are globally satisfied. So if M, s0 |= χtypes , then Z× Z can
be tiled using types.

Theorem 1. The satisfiability problem of AAUL is co-RE hard.

Proof. Given an instance types of the tiling problem, the formula χtypes is com-
putable. Furthermore, Lemmas 1 and 5 show that χtypes is satisfiable if and only

18

if types can tile the plane. The tiling problem is known to be co-RE complete
[5], therefore the satisfiability problem of AAUL is co-RE hard.

4. Conclusion

We have shown that the satisfiability of AAUL is uncomputable, like that
of similar logics such as APAL [9], GAL and CAL [2]. It is not currently
known whether the satisfiability problems of AAUL, APAL and GAL are co-RE.
Typically, one would show that a satisfiability problem is co-RE by providing an
axiomatization for the logic, thereby showing the validities of the logic to be RE.
However, while there are known axiomatizations for AAUL, APAL and GAL,
these axiomatizations are infinitary and therefore cannot be used to enumerate
the valid formulas of the logics in question.3

One interesting direction for future research is therefore to determine whether
the satisfiability problems of AAUL, APAL and GAL are co-RE complete, and
whether these logics admit finitary axiomatizations.

In principle, the proof that we gave for the undecidability of AAUL applies
only to the satisfiability problem when considered over the class of all Kripke
models. We consider this to be the most important version of the satisfiability
problem for AAUL, since the class of all Kripke models is the “natural habitat”
of AAUL, see [8] for details. Still, the satisfiability problem for AAUL with
respect to smaller classes of models could be formulated. We believe that, with
only minor modifications, the proof presented in this paper would also show
that satisfiability of AAUL is undecidable with respect to other common classes
of models such as KD45 and S5.

Acknowledgements

We acknowledge support from ERC project EPS 313360. Hans van Dit-
marsch is also affiliated to IMSc, Chennai, as research associate. Furthermore,
we would like to thank an anonymous reviewer for providing several precise and
helpful comments.

[1] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch, and Pablo Se-
ban. Group announcement logic. Journal of Applied Logic, 8(1):62 – 81,
2010.

[2] Thomas Ågotnes, Hans van Ditmarsch, and Tim French. The undecidabil-
ity of quantified announcements. Studia Logica, 104(4):597–640, 2016.

[3] Philippe Balbiani, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig,
Tomohiro Hoshi, and Tiago de Lima. ‘Knowable’ as ‘known after an an-
nouncement’. Review of Symbolic Logic, 1(3):205–334, 2008.

3Finitary axiomatizations for APAL and GAL were proposed, in [3] and [1] respectively,
but these were later shown to be unsound.

19

[4] Alexandru Baltag, Lawrence Moss, and S lawomir Solecki. The logic of
public announcements, common knowledge, and private suspicions. In
I. Gilboa, editor, Proceedings of the 7th conference on Theoretical aspects
of rationality and knowledge, pages 43–56. Morgan Kaufmann Publishers
Inc., 1998.

[5] Robert Berger. The Undecidability of the Domino Problem. Number 66 in
Memoirs of the American Mathematical Society. 1966.

[6] Laura Bozzelli, Hans van Ditmarsch, Tim French, James Hales, and So-
phie Pinchinat. Refinement modal logic. Information and Computation,
239:303–339, 2014.

[7] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic
Epistemic Logic. Springer, Berlin, 2007.

[8] Hans van Ditmarsch, Wiebe van der Hoek, Barteld Kooi, and Louwe B.
Kuijer. Arbitrary arrow update logic. Artificial Intelligence, 242:80–106,
2017.

[9] Tim French and Hans van Ditmarsch. Undecidability for arbitrary public
announcement logic. In C. Areces and R. Goldblatt, editors, Advances in
Modal Logic, volume 7, pages 23–42, 2008.

[10] James Hales. Arbitrary action model logic and action model synthesis. In
2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 253–262, 2013.

[11] Barteld Kooi and Brian Renne. Arrow update logic. Review of Symbolic
Logic, 4(4):536–559, 2011.

[12] Jan Plaza. Logics of public communication. In M.L. Emrich, M.S. Phifer,
M. Hadzikadic, and Z.W. Ras, editors, Proceedings of the Fourth Interna-
tional Symposium on Methodologies for Intelligent Systems, Poster Session
Program, pages 201–216, 1989. Reprinted as [13].

[13] Jan Plaza. Logics of public communication. Synthese, 158:165–179, 2007.

[14] Hao Wang. Proving theorems by pattern recognition – II. Bell System
Technical Journal, 40(1):1–41, 1961.

20

