

The Challenge of Developing Objective and Subjective Metrics for Rotorcraft Flight Simulators

Dr Mark D White mdw@liverpool.ac.uk

Overview

- Quantifying Fidelity
- Challenge Areas for Rotorcraft Simulation
- Flight and Simulator Facilities
- Predictive Fidelity
- Perceptual Fidelity
- Simulator Motion
- Ongoing Research Activities

Quantifying Fidelity

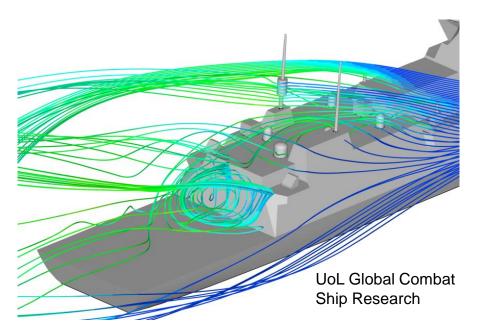
• Not all airplanes are "equal"...

...so we assess their handling qualities.

• Not all simulators are "equal"...

O F

IVERSITY


...so we assess their fidelity.

Not all simulation tasks are equal...

Flight simulation is becoming increasingly important in the support of rotorcraft operations

- Training
- Design & Development
- Certification
- Research & Teaching

Wise words – someone else's...

"Don't confuse complexity with fidelity"

Fidelity: Definitions..

- Fidelity: "the physical and functional similarity of the training device to the actual equipment for which training is undertaken"
 - Typically centers on the *device*
 - Problems: (1) measuring it, and (2) relating the measurement to the simulator's utility.
- Fidelity:
 - (1) the degree to which a simulator imparts correct behaviours upon a trainee, or
 - (2) the extent of positive training transfer.

Rotorcraft Simulation Fidelity Standards

- Current simulation qualification standards, such as CS-FSTD H and FAA AC 120-63 provide requirements for component level fidelity.
 - There is no quantitative test of the fidelity of the overall simulation
 - A subjective test is required, but is limited in scope
 - "For the highest level of qualification, fidelity should be very close to the aircraft"

Challenges for Rotorcraft Simulation Fidelity

GARTEUR HC Action Group AG-12: Validation Criteria for Helicopter Real-Time Simulation Models¹

- Appropriateness of some CS-FSTD H criteria should be questioned
- Required tolerances for high fidelity sensitive to nature of manoeuvre flown
- A model that satisfies CS tolerances may give different HQs compared to flight test
- Use of ADS-33E-PRF (Handling Qualities Requirements for Military Rotorcraft) HQ metrics as a supplement for CS-FSTD H
- Need to bridge the gap between pilot subjective opinion and formal metrics
- Determine an objective means for assessing overall fidelity of a simulator

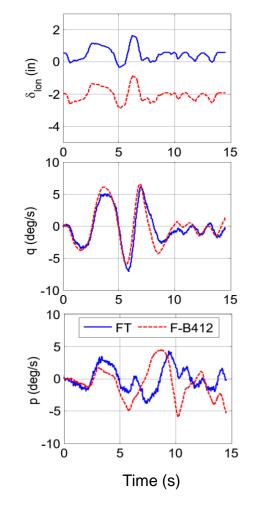
Other Challenges:

- Correct trend & magnitude, Inflow, Aerodynamic/Elastic, Interactional Aero
- <u>Access to reliable datasets</u>
- <u>Simulator Motion.....</u>

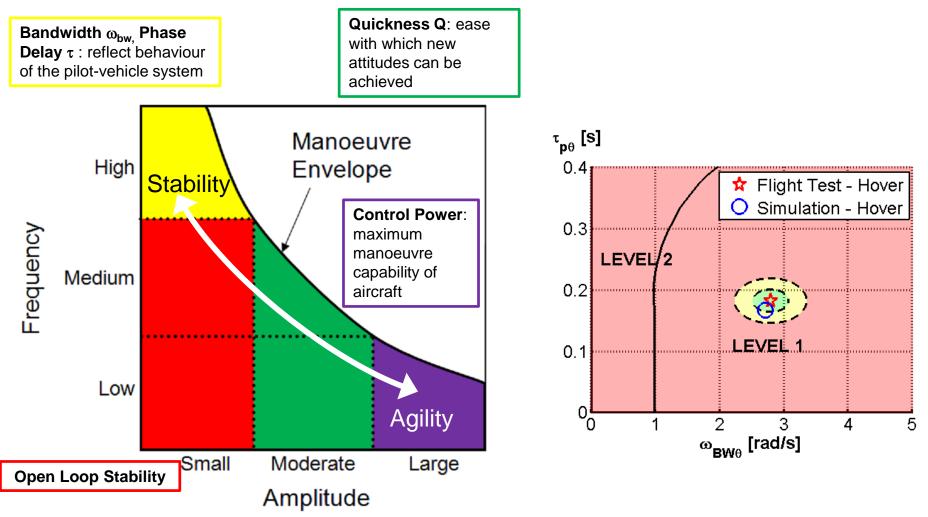
¹Pavel MD, White MD, Padfield MD, Roth G, Hamers M, and Taghizad A, "Validation of mathematical models for helicopter flight simulators current and future challenges ", *The Aeronautical Journal*, RAeS, Volume 117, Number 1190, pp. 343 – 388 April 2013

Flight and Simulation Facilities

- Full authority, simplex Fly By Wire research system
- Handling qualities and control systems research, airborne simulation
 - 2 flight campaigns:
 - Gathering of flight test data for JAR FSTD H model validation
 - Assessment of new fidelity rating scale
 - Development of simulation manoeuvres
 - 2 seat, interchangeable crew station
 - 4 axis control loading
 - Moog electric motion system
 - Reconfigurable instruments
 - 12 ft. diameter dome, 3 HD projectors 220x70 deg. FOV


White MD et al, "Acceptance testing and commissioning of a flight simulator for rotorcraft simulation fidelity research" in *Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering*, Volume 227 Issue 4, pp. 663 – 686, April 2013

PREDICTIVE FIDELITY


Flight Model Tolerances, Manoeuvres – One Size fits All?

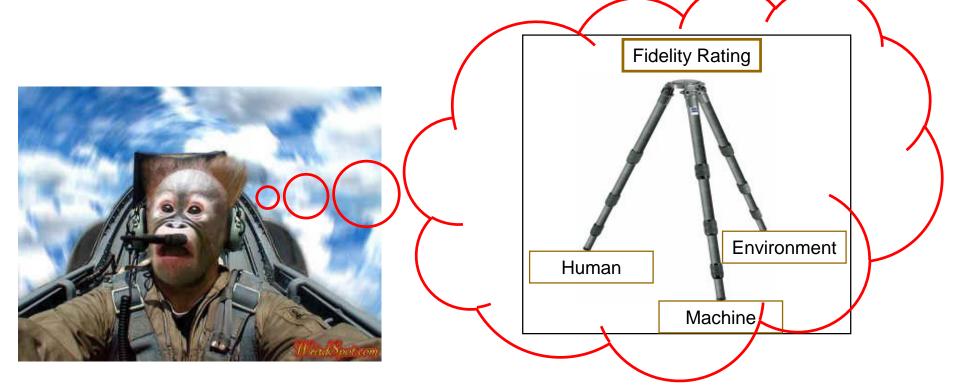
What manoeuvres & metrics should be used for fidelity assessments?

Predictive Fidelity – Dynamic Response Criteria

- ADS-33E-PRF Handling Qualities criteria employed
- Cross-coupling effects are also considered

Flight Model Updating

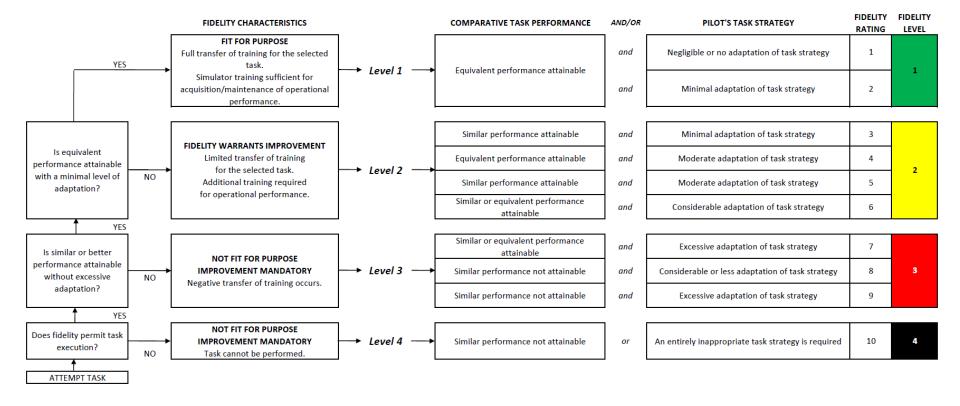
- Need to rationalise the 'tuning' process required to match CS-FSTD H criteria
- Model Renovation*
 - The process of improving the structure and performance of a nonlinear vehicle simulation model based on comparison with flight test data
- Use of System Identification to create linear representations of both flight test vehicle and nonlinear simulation model
- NATO STO AVT-296 RTG3 "Rotorcraft Flight Simulation Model Fidelity Improvement and Assessment"


*Lu L, Padfield GD, White, MD, Perfect, P "Fidelity Enhancement of a Rotorcraft Simulation Model Through System Identification", *The Aeronautical Journal*, Volume 115, No. 1170, pp. 453-470 August 2011

PERCEPTUAL FIDELITY

Practical Considerations in Fidelity Assessment

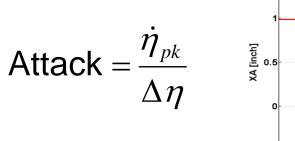
- 1. Pilot must be proficient in vehicle and task
- 2. Pilot must have recency of experience
- 3. Vehicle must be similarly configured
- 4. Test conditions must be comparable
- 5. Methodology for measuring perceptual fidelity subjective, objective

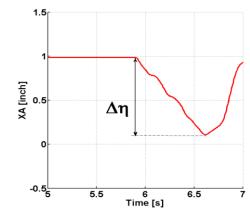

Subjective Fidelity Assessment – Simulation Fidelity Rating (SFR) Scale

- A number of concepts are considered to be essential to measurement of simulator utility:
 - Comparative Task Performance
 - Task Strategy Adaptation
 - Transfer of Training
- Performance and Adaptation combine into a 'matrix' to define the Levels of fidelity:

Comparative Performance				
Equivalent	Similar	Not Similar		

The SFR Scale

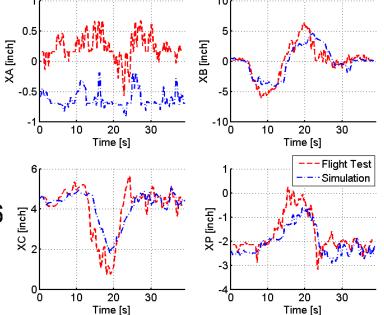

- Similar Performance
- Moderate Adaptation



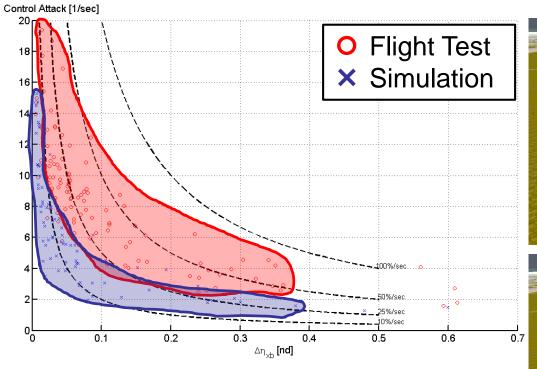
Objective Perceptual Metrics

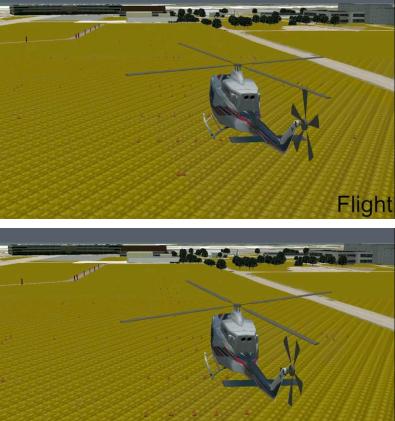
The performance and compensation metrics are methods of assessing what the pilot perceived during the flight:

- Performance
 - Task time total, in desired, adequate, beyond
 - Closed-loop quickness
- Adaptation
 - Time Domain
 - Control attack

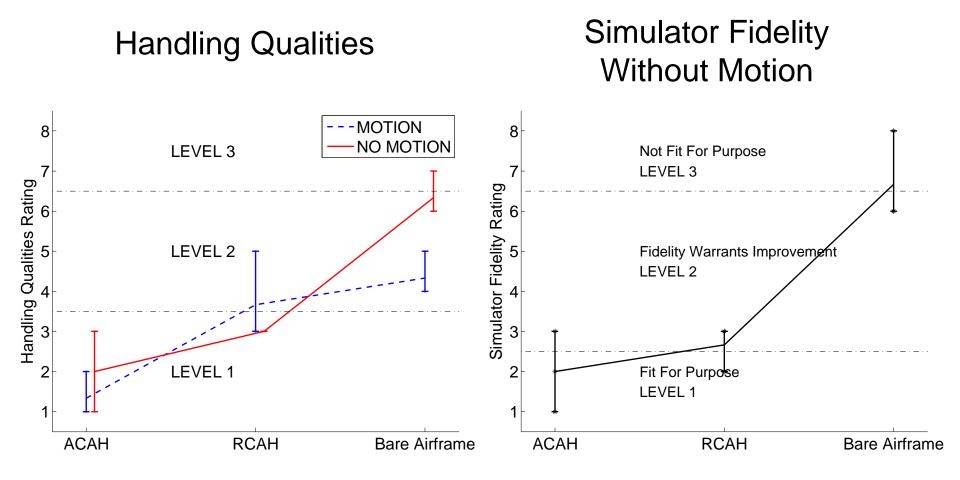

- Frequency Domain
 - RMS value calculated from PSD of control activity
 - Cut-off frequency

Example – Acceleration-Deceleration MTE


- Accelerate from 0kts to 40kts; return to 0kts
- Performance targets for:
 - Lateral position (± 10 ft, ± 20 ft)
 - Height (<70ft, <100ft)
 - Heading $(\pm 10^\circ, \pm 20^\circ)$
- Perceived performance & workload:
 - Flight HQR = 4
 - Simulation HQR = 5
- Generally good match between predicted fidelity and HQR
- Significant differences in the control techniques required to fly the MTE – SFR 6



Acceleration-Deceleration – Longitudinal


	Flight	Simulator	%∆
No of attack points (1/sec)	3.07	1.97	-36
Mean attack rate (% per sec)	28.8	13.0	-55
Mean control displacement (%)	10.6	7.8	-26
PSD RMS	0.088	0.058	-34
Cut-off Frequency [Hz]	0.97	0.81	-16

Perfect P, White, MD, Padfield GD, Gubbels AW, "Rotorcraft Simulation Fidelity: New Methods for Quantification and Assessment", *The Aeronautical Journal*, Vol. 117, Issue 1189 pp. 235-282 March 2013

Simulation

Motion.... Precision Hover Task

Manso S, White MD, and Hodge S, "An Investigation of Task Specific Motion Cues for Rotorcraft Simulators", Paper AIAA-2016-2138, AIAA Science and Technology Forum and Exposition (SciTech) San Diego 2016

Rate Command -

← Attitude Command

– Bare Airframe

Task and HQ specific motion?

Ongoing Research Challenges & Activities

- Goal
 - Develop practical measures of predictive and perceptual fidelity
- Draft first step
 - Define the standard test manoeuvres for which predictive and perceptual measures will be evaluated
- New EPSRC Project: Rotorcraft Simulation Fidelity Enhancement (EP/P031277/1)
 - Develop a novel toolset for flight simulation fidelity enhancement examining both predictive fidelity (metrics and tolerances) and perceptual fidelity (adaptation metrics and pilot opinion) elements of flight simulation.
 - Develop simulation fidelity manoeuvres
 - Development of flight test and flight simulation databases
 - Task specific motion cueing requirements
- NATO STO AVT-296 RTG3 entitled "Rotorcraft Flight Simulation Model Fidelity Improvement and Assessment"

Acknowledgments

- EPSRC Grants EP/G002932/1, EP/P031277/1
- National Research Council of Canada, Flight Research Laboratory
- Dstl, DSTG (Australia)
- US Army
- Test pilot community

Thank you for attention

