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10 Conversational speech produced in noise can be characterised by increases in intelligibility relative
11 to such speech produced in quiet. Listening difficulty (LD) is a metric that can be used to evaluate
12 speech transmission performance more sensitively than intelligibility scores in situations in which
13 performance is likely to be high. The objectives of the present study were to evaluate the LD of
14 speech produced in different noise and style conditions, to evaluate the spectral and durational
15 speech modifications associated with these conditions, and to determine whether any of the spectral
16 and durational parameters predicted LD. Nineteen subjects were instructed to speak at normal and
17 loud volumes in the presence of background noise at 40.5 dB(A) and babble noise at 61 dB(A). The
18 speech signals were amplitude-normalised, combined with pink noise to obtain a signal-to-noise
19 ratio of �6 dB, and presented to twenty raters who judged their LD. Vowel duration, fundamental
20 frequency and the proportion of the spectral energy in high vs low frequencies increased with the
21 noise level within both styles. LD was lowest when the speech was produced in the presence of
22 high level noise and at a loud volume, indicating improved intelligibility. Spectrum balance was
23 observed to predict LD. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4997906]
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24 I. INTRODUCTION

25 Talkers modify their speech in the presence of noise to
26 maintain a level that is sufficient for communication. The
27 Lombard effect (Lombard, 1911) is the involuntary tendency
28 to increase the level of speech in the presence of noise. In
29 noisy environments, speakers commonly increase not only
30 their vocal intensity but also their fundamental frequency (fo;
31 e.g., Junqua, 1993; Van Summers et al., 1988), their first
32 vowel formant (F1; e.g., Boril and Pollak, 2005; Kadiri,
33 1998), and the energy in the spectrum between 1 and 4 kHz
34 relative to the energy below 1 kHz, resulting in an increase
35 in the spectrum balance (hereafter SB; e.g., Stanton et al.,
36 1988; Ternstr€om et al., 2006; Krause and Braida, 2004,
37 2009; Lu and Cooke, 2009). As the speech level and, there-
38 fore, the vocal effort level increases, the spectrum flattens
39 (e.g., Nordenberg and Sundberg, 2004; Ternstr€om et al.,
40 2006). When this level increase co-occurs with an increase
41 in glottal flow and, hence, subglottal pressure, fo typically
42 rises, while F1 rises with more jaw opening (Fant, 1997).
43 Speech produced in noise can also demonstrate changes in
44 segment (especially vowel) duration and/or a slowing of the
45 speech rate (e.g., Fonagy and Fonagy, 1966; Junqua, 1993;
46 Krause and Braida, 2004).
47 So-called Lombard speech is more intelligible than
48 speech produced in quiet environments when presented at
49 equal signal-to-noise (SN) ratios (e.g., Dreher and O’Neill,

501957; Summers et al., 1988; Pittman and Wiley, 2001; Lu

51and Cooke, 2009). However, it has not yet been resolved

52which of the speech modifications contribute most strongly

53or are necessary, either in combination or in isolation, to a

54gain in intelligibility (whether linguistic or non-linguistic

55parameters; cf. Cooke and Garc�ıa Lecumberri, 2012). See

56Cooke et al. (2014a) for a review. Relatedly, it has not yet

57been determined which of these speech modifications predict

58perceived listening difficulty (LD; e.g., Morimoto et al.,
592004). However, an upward shift in the overall spectral

60“centre of gravity” (CoG) does appear to contribute more to

61intelligibility than does an fo increase (e.g., Hazan and

62Markham, 2004; Lu and Cooke, 2009; Mayo et al., 2012) or

63the sorts of durational changes that occur in Lombard speech
64(Cooke et al., 2014b).
65Under some conditions, noise-induced speech modifi-

66cations may be harmful to intelligibility in quiet conditions.

67Findings for both shouted speech (e.g., Pickett, 1956;

68Junqua, 1993) and non-native listeners (Cooke and Garc�ıa
69Lecumberri, 2012) indicate that the speech level may be

70increased to preserve audibility to the detriment of phonetic

71information (Rostolland and Parant, 1975). Junqua (1993)

72observed variation in the intelligibility of Lombard speech

73relative to speech produced in quiet, depending on the

74vocabulary, noise type (white Gaussian or multi-talker) and

75talker gender. For non-native vs native listeners, Cooke and

76Garc�ıa Lecumberri (2012) found that Lombard speech may

77be slightly less intelligible than conversational speech

78when presented in quiet. However, Lombard speech may

79provide benefits to both native and non-native listeners by
80placing important speech information outside of the range

PROOF COPY [JASA-00455] 039708JAS

a)An earlier version of this study was presented at the 45th Annual

Symposium of the Voice Foundation, Philadelphia, PA, June 2016.
b)Electronic mail: s.graetzer@liverpool.ac.uk

J_ID: JASMAN DOI: 10.1121/1.4997906 Date: 10-August-17 Stage: Page: 1 Total Pages: 10

ID: aipepub3b2server Time: 22:47 I Path: D:/AIP/Support/XML_Signal_Tmp/AI-JAS#170555

J. Acoust. Soc. Am. 142 (2), August 2017 VC 2017 Acoustical Society of America 10001-4966/2017/142(2)/1/10/$30.00

http://dx.doi.org/10.1121/1.4997906
mailto:s.graetzer@liverpool.ac.uk


PROOF COPY [JASA-00455] 039708JAS

81 of the energetic masker (see discussion in Garc�ıa
82 Lecumberri et al., 2010; Cooke et al., 2014a; Godoy et al.,
83 2014; ISO 226, 2003).
84 Previous research has shown that there are differences
85 in speech intelligibility between Lombard and “clear” speech
86 or interlocutor-directed speech, such as speech directed
87 toward infants, hearing-impaired persons, and non-native
88 speakers (e.g., Picheny et al., 1985, 1986; Skowronski and
89 Harris, 2006; Wassink et al., 2007; Godoy et al., 2014;
90 Cooke et al., 2014a). Some clear speech modifications are
91 enhancements that are dependent on linguistic knowledge,
92 and therefore favour the native speaker (e.g., Picheny et al.,
93 1986; Bond and Moore, 1994; Bradlow and Bent, 2002;
94 Hazan and Markham, 2004).
95 The acoustic and durational differences between Lombard
96 and loud or shouted speech have been considered by Stanton
97 and colleagues (e.g., Stanton, 1988; Stanton et al., 1988), and
98 Bond and Moore (1990), but much remains to be investigated.
99 Stanton (1988) compared the speech modifications associated

100 with the change from normal speech to speech produced at
101 “nominally 10 dB above normal,” to the modifications associ-
102 ated with the change from normal to Lombard speech (involv-
103 ing 90 dB of pink noise being emitted into the talker’s ears via
104 headphones) in the fighter cockpit environment. He noted a
105 smaller shift in the spectral CoG and F1 and, typically, a
106 smaller increase in vowel duration between normal and
107 Lombard speech than between normal and loud speech,
108 although there was large inter-speaker variation. Bond and
109 Moore (1990) concluded, based on a single speaker’s produc-
110 tion, that Lombard speech and deliberately loud speech
111 (involving an instruction concerning imagined speaker-listener
112 distance) result from the same speech production mechanisms.
113 Intelligibility assessment in speech communication can
114 be performed by means of objective and subjective methods,
115 such as by calculating the Speech Transmission Index (STI)
116 of a transmission channel (IEC 60268-16, 2011), or by test-
117 ing with real listeners the percentage of words correctly
118 understood within a given space (intelligibility scores, or
119 IS). However, sentence scores of 100% are associated in the
120 ISO 9921 (2003) standard with a large range of STI values
121 (0.45–1). A sentence intelligibility score of 100% does not
122 imply that each word is clearly understood, and there are
123 many situations in which the speech transmission perfor-
124 mance cannot be regarded as satisfactory (ISO 9921, 2003;
125 Morimoto et al., 2004, p. 1609). Additionally, for the same
126 communication channel, scores can be high while predict-
127 ability and/or word familiarity are high, but reduce when
128 words are unpredictable or unfamiliar (e.g., Kalikow et al.,
129 1977). These issues of metric sensitivity in the context of
130 high performance and highly familiar and/or predictable
131 speech material can be resolved with the use of a rating scale
132 concerning how difficult a given listening situation is (e.g.,
133 ITU-T P.85, 1994; IEC 60268-16, 2011). LD is a subjective
134 perception metric developed by Morimoto, Sato and col-
135 leagues for use with highly familiar words that can be used
136 to evaluate speech transmission performance more accu-
137 rately and sensitively than IS in situations in which the per-
138 formance is likely to be high (Morimoto et al., 2004). It is
139 designed to minimise the potential confounding effects of

140word familiarity and predictability and the extent of higher
141cognitive processing. LD ratings using the 0–3 rating system
142described by Sato and colleagues (Sato et al., 2005) are
143mapped to IS and STI values in IEC 60268-16E (2011). LD
144has been used as a complement to IS or the STI in several
145publications concerning the transmission of Japanese or
146Korean speech (e.g., Morimoto et al., 2004; Sato et al.,
1472005; Lee and Jeon, 2011).
148While the listening effort scale has been expanded from
1495 to up to 13 or more levels in order to avoid floor or ceiling
150saturation effects (ITU-T P.85, 1994), the LD traditionally
151has only 4 levels (from not difficult to extremely difficult),
152and is defined as the percentage of the total number of
153responses that indicates some level of difficulty. The use of
154only four levels can lead to an accumulation of values at the
155upper bound (Morimoto et al., 2004; Genta et al., 2013),
156while averaging over the total number of responses means
157that variability associated with the individual listener’s
158responses cannot be modeled. This variability, which can be
159high (see, e.g., Lee and Jeon, 2011; Genta et al., 2013), may
160be due to individual differences in cognitive ability or prefer-
161ence. Studies of category scale design have indicated that
162data quality (e.g., reliability, sensitivity) tends to improve as
163the number of answer categories increases (e.g., Alwin,
1641992). An alternative seven-point scale for rating LD was pro-
165posed by Gover and Bradley (2007), and a five-point scale
166attempting to address the saturation issue but not the variation
167issue was proposed by Genta et al. (2013), who suggested on
168the basis of their results that there was a need for alternative
169implementations of the method. A ten-point scale LD metric
170and statistical approach designed to address both issues of sat-
171uration and listener variation is presented in this paper. An
172additional contribution of the paper is the use of LD ratings
173with first language English speakers and listeners who have
174been audiometrically tested for normal hearing.
175The consideration of LD independently from speech intelli-
176gibility is particularly important for hearing aid users, young
177children, and older listeners. This is because even under condi-
178tions of perfect speech intelligibility, adverse conditions such as
179background noise can impair memory of spoken items and lis-
180tening comprehension (e.g., Pichora-Fuller, 2003). The literature
181indicates that there are many acoustical modifications of speech
182associated with ease of listening that may or may not co-occur
183with improved intelligibility such as modifications of speech rate
184fo, formant frequencies, and fo modulation (Bond and Moore,
1851994; Lu and Cooke, 2009; Cooke et al., 2014a). Decreased LD
186is likely to reduce listener fatigue, which may lead to intelligibil-
187ity improvements in extended listening tasks (Lim and
188Oppenheim, 1979). In contexts in which listening is difficult,
189acoustic treatments or signal enhancement may be used to
190reduce fatigue and improve recall (Lim and Oppenheim, 1979).
191In summary, there has been much work contributing to
192the understanding of speech in noise, and features of clear
193speech and interlocutor-directed speech. However, the ques-
194tion of which speech modifications inherently improve intel-
195ligibility and reduce LD for the normal hearing native
196English speaker has not yet been fully resolved. Moreover,
197there is a need for further investigation and modification of
198the LD metric.
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199 In the present study, the principal aim was to evaluate

200 acoustic and durational modifications that occur in non-

201 communicative laboratory speech in noisy environments in two

202 different speech styles and to relate them to perceived LD.

203 Based on this aim, the primary research question was as fol-

204 lows, where speech was produced in babble noise at 61 dB(A)

205 or in background noise at 40.5 dB(A): Do any of the spectral or

206 durational measures considered—fo (in semitones), fo modula-

207 tion, SB, or vowel duration—predict LD ratings when SN-

208 ratio¼�6 dB? A further aim was to extend previous results

209 (Morimoto et al., 2004; Sato et al., 2005) that indicated that

210 LD may be a useful measure of rating speech transmission

211 when word recognition performance would be high. This new

212 work extends the previous work by using first-language normal

213 hearing English talkers and listeners and also by including an

214 evaluation of which spectral or durational changes predict LD

215 ratings for continuous speech produced in noise. In this way,

216 the current paper responds to a call for studies examining the

217 relationship between the intonational, spectral, and durational

218 features of Lombard speech and speech intelligibility (Cooke

219 et al., 2014b). Furthermore, while Lu and Cooke (2009) con-

220 sidered the relevant contributions of only fo and spectrum flat-

221 tening parameters, and suggested that durational increases

222 might, like spectrum flattening, contribute to intelligibility, in

223 the current study, fo, spectrum flattening, and a durational

224 parameter are considered. It is worth considering whether the

225 acoustical parameters that predict speech intelligibility also pre-

226 dict listening difficulty. The findings have implications for the
227 improvement of communication in noisy environments.

228 II. EXPERIMENTAL PROCEDURES

229 This study was conducted with approval from and in

230 accordance with the policies of Michigan State University’s

231 Human Research Protection Program (IRB No. 13-1149).

232 Participants were not compensated. MATLAB v2014b and Praat

233 v5.4.01 (Boersma and Weenink, 2015) were used for signal

234 processing. Post-processing and statistical analysis were con-
235 ducted in R v3.1.2 (R Development Core Team, 2016).

236 A. Experiment one: Speech assessment

237 1. Subjects and instructions

238 Nineteen native American English speaking subjects

239 (nine males, ten females) of between 18 and 29 years of age

240 with a mean of 21 years of age and with self-reported normal

241 speech and hearing were recruited. The subjects were

242 recorded while reading the “Rainbow” passage text in a

243 semi-reverberant room (a classroom) in two different styles,

244 corresponding to normal and loud voice levels. In the envi-

245 ronment of the talker was multi-talker children’s babble

246 (classroom babble; high level) noise and/or (naturally occur-

247 ring) background (low level) noise, which was primarily

248 associated with the heating, ventilation, and air conditioning

249 system. The instructions given for the styles were as follows:

250 normal: “Speak in your normal voice” and loud: “Imagine

251 you are in a classroom and you want to be heard by all of the

252 children.” Investigators were present in the room, observing
253 the talker.

2542. Room acoustic measurements and pre-processing

255The recording took place in a classroom of dimensions
2565.8 m � 6 m � 2.7 m. The floor and ceiling were covered by

257absorbent material (carpet and absorbent tiles). Room acous-

258tic parameters were measured in an unoccupied state without

259furniture from the impulse responses (IRs) generated by bal-

260loon pops (according to ISO 3382-2, 2008). T30 was derived

261by means of the AURORA software suite (Farina, 2010).

262The mid-frequency reverberation time was 0.53 s (standard
263deviation¼ 0.04; see Bottalico et al., 2015).
264The background noise was measured in the unoccupied

265room using a Head and Torso Simulator (HATS) Kemar

26645BB-1 (G.R.A.S., Denmark). The primary noise source

267contributing to the level of 40.5 dB(A) in the talker position

268was the ventilation system. Given that the level was below

26943 dB(A), the level of speech production in the background

270noise condition was not affected by the noise (Lazarus,
2711986; Bottalico et al., 2017).
272The multi-talker noise was emitted by a directional loud

273speaker (Yamaha studio monitor model HS5, Yamaha, Japan)

274at a level of 61 dB(A) in the talker position. This level repre-
275sents a common noise level (hereafter, Lnoise) generated by

276children in a classroom engaged in quiet group work or individ-

277ual work with some movement (Shield and Dockrell, 2004).
278The spectral maxima in the babble occurred in the 500 Hz and

2791 kHz octave bands. Babble noise was emitted by the loud

280speaker rather than by headphones to avoid the perturbation of

281the talkers’ self-monitoring of auditory feedback. Arguably, if

282noise is delivered via headphones, the headphones can alter the

283talker’s perception of their own voice (due to the effects on

284both internal and external hearing), and therefore the talker’s

285voice production (e.g., Garnier and Henrich, 2014). The babble

286signal had deep amplitude fluctuations, while the background

287noise was stationary. The mean fo of the babble was 256 Hz,

288which is within the normal range for children (Titze, 2000). In

289the babble noise condition, the SN-ratio of the speech signal

290(represented by the concatenated voiced segments) and corre-
291sponding noise signal as acquired by the head-mounted micro-

292phone was estimated at þ24 dB on average in the loud style,
293and þ22 dB on average in the normal style.
294The speech signal was acquired by an omnidirectional

295head-mounted microphone (Glottal Enterprises M-80,

296Syracuse, NY) placed at a distance of 5 cm from the mouth
297(much less than the critical distance; hence, the signal was

298associated only with the direct sound of the talker). The

299microphone has a fairly flat frequency response <4 kHz,

300with a rising frequency response between 4 and 6 kHz, and a

301sensitivity of �65 dB 6 3 dB. The signal was acquired by a

302Roland R-05 digital recorder (Hamamatsu, Japan) in 16 bit/

30344.1 kHz WAV format. The microphone line out was con-

304nected to a personal computer (PC) via an external sound

305board (Scarlett 2i4 Focusrite, High Wycombe, UK). The sig-

306nal was recorded with Audacity v2.0.6 with a sampling rate

307of 44.1 kHz. Recordings varied in length between 25 and
30845 s, depending on the talker.
309Words were manually segmented in Praat. For the vowel

310duration analysis, individual vowels were segmented in
311Python v3.4 by means of the FAVE-align and HTK toolkits
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312 and visually inspected for errors. The FAVE-align toolkit is

313 an adaptation of the Penn Forced Aligner, which relies on

314 hidden Markov modeling (Rosenfelder et al., 2014). Vowels

315 were labeled according to the Carnegie Mellon University

316 (CMU) Pronouncing Dictionary representations of the rele-
317 vant Rainbow passage words.

318 3. Vowel duration

319 Normalised vowel duration was calculated by dividing

320 each vowel duration in seconds associated with a given sub-

321 ject by that subject’s mean in the low Lnoise and normal

322 style (a presumed baseline value). Due to heteroscedasticity,

323 durations were analysed by means of Welch-corrected one-

324 way tests for equal means. Speech rate was considered dur-

325 ing testing, but was found not to change in a reliable way
326 with the level of noise and so is excluded from the analyses.

327 4. Fundamental frequency

328 fo was extracted from the recordings by means of Praat

329 at 10 ms intervals. An autocorrelation-based method was

330 used with Hanning windows with a length of 0.043 s, a pitch

331 floor of 70 Hz, and a pitch ceiling of 400 Hz. fo was then con-

332 verted to semitones in R with bases for males and females

333 equal to their mean fo (Hz): 128 Hz for males and 203 Hz for

334 females in this case. These base values are representative of

335 typical adult males and females, the difference relating pri-

336 marily to differences in membranous vocal fold length
337 (Titze, 2000, 2011).

338 5. Spectrum balance

339 Sound pressure level (SPL) data concerning the same

340 talkers and experimental conditions as in the present study

341 have been reported in a previous publication (Bottalico

342 et al., 2015). In this previous study, concerning a set of

343 speech production data of which the present data are a sub-

344 set, it was confirmed that SPL increased in speech produced

345 in noisy conditions, specifically, unintelligible children’s

346 babble at 61 dB(A), relative to speech produced in relatively

347 quiet conditions [ambient noise at 40.5 dB(A)]. As in

348 Bottalico et al. (2015), in the present study, MATLAB version

349 2014b was used to obtain a time history of overall SPL eval-

350 uated at 0.125 s intervals for each reading of the Rainbow

351 passage. The average among all the SPL values was com-

352 puted per subject and this mean was subtracted from each

353 time history value for that subject (termed DSPL). This

354 within-subject centering was performed in order to evaluate

355 the variation in the subject’s vocal behaviour in the different

356 conditions from their typical vocal behaviour. For each sub-

357 ject, the relative amplitudes in each octave band were calcu-

358 lated in dB, where each data point corresponded to a

359 difference between each level measured in dB for a subject

360 and the maximum amplitude calculated for that subject
361 across noise and style conditions.
362 Spectral analysis was conducted in order to determine

363 whether an increase in the SB occurred in high relative to

364 low Lnoise. SB, named after the measure of Ternstr€om et al.
365 (2006; but modified in form), was defined as the energy

366difference between the 1–4 kHz and 0–1 kHz regions or

367bands (i.e., the mean energy computed for the upper band

368minus the mean computed for the lower band, in dB). The

369upper band limits were chosen on the basis of previous stud-

370ies (e.g., Krause and Braida, 2004, 2009; Garnier and

371Henrich, 2014). The SB value will usually be negative, as

372the low frequency region tends to dominate the voice spec-

373trum. The SB increases when it goes from more to less nega-

374tive and, thus, becomes less steep (or in other words, the

375spectrum becomes more flat). The claim is that in intelligible

376speech produced by normal talkers, the energy difference

377between the lower and the upper bands becomes smaller,

378resulting in an increase in the SB. However, as discussed

379previously, this difference can also be affected by the speech

380level and fo. SB as here defined relates to the a ratio measure

381(but with the negative rather than the positive sign and an

382upper limit of 4 kHz rather than 5 kHz; see, e.g., Sundberg

383and Nordenberg, 2006).

384In order to measure possible measurement bias due to

385any babble noise in the signal acquired by the head-mounted

386microphone, the difference in SB with and without the artifi-

387cial babble noise for the same speech material was evaluated

388with a HATS. The same speech material recorded in the

389same experimental conditions was emitted from the mouth

390simulator, with and without babble noise being emitted by

391the loud speaker. The average difference in the SB with and

392without the babble noise was equal to 0.12 6 1.14 dB. A

393paired sample t-test indicated that this difference was negli-

394gible [t¼�0.67, degrees of freedom (df)¼ 49, p¼ 0.51].

395The concatenated words (i.e., the sentences with silen-

396ces between words removed) produced by each talker in

397each condition were subjected to long term average spectrum

398(LTAS) analysis, also performed in Praat. After fast Fourier

399analysis, each LTAS was calculated and the SB was derived

400via the “get slope” function with the lower band limits of 0

401and 1 kHz, and the upper band limits of 1 and 4 kHz, where

402the energy is averaged over the concatenated signal in dB,

403based on the mean power of the signal. When the results

404were compared with those produced with a lower band of

40550 Hz–1 kHz, the difference was negligible.

406An evaluation of the effects of noise, style, and interac-

407tions of noise and style, noise and gender, and style and gen-

408der on the response variable, SB, was conducted by means

409of a linear mixed effects or LME model (lme4 and lmerTest
410R packages) fitted by restricted maximum likelihood

411(REML) with the random effects term of talker. The LME

412model output includes the estimates of the fixed effects coef-

413ficients, the standard error (SE) associated with the estimate,

414the df, the test statistic, t, and the p value. The Satterthwaite

415method is used to approximate df and calculate p values.

416B. Experiment two: LD assessment

417Prior to the LD assessment, 20 native American English

418speaking listeners (10 males, 10 females), who were aged

419between 18 and 23 years, with a mean age of 21 years, were

420audiometrically assessed to ensure normal hearing at

421�20 dB hearing level (HL) between 250 Hz and 6 kHz using
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422 an Orbiter 922 v. 2 audiometer (Madsen Kft., Budapest,
423 Hungary) audiometer in a sound-attenuated booth.

424 1. Room acoustic measurements and pre-processing

425 There were 152 test stimuli per listener (19 talkers � 2

426 speaking styles � 2 noise conditions � 2 external auditory

427 feedback conditions, which are not considered here). The

428 stimuli were prepared as follows. A short extract of the

429 Rainbow passage (two sentences in length, which did not

430 include the first or the last phrases in the passage) produced

431 by each talker in each condition was linearly amplitude nor-

432 malised and combined with pink noise in MATLAB to obtain a

433 SN-ratio of �6 dB. This value is the lowest considered by

434 Sato et al. (2005). The onset of noise preceded the onset of

435 the signal by 500 ms. The background Lnoise in the listener

436 position in the booth was 25.1 dB(A), as measured using an

437 NTi Measurements microphone M2211 (class 1 frequency

438 response) and analysed by means of NTi XL2 Audio and

439 Acoustic Analyzer (Schaan, Liechtenstein). LD ratings have

440 been used previously with a specific short speech pattern
441 (Kurisu et al., 2013).

442 2. Testing procedures

443 The stimuli were presented binaurally via Sennheiser

444 HD205 headphones (Wedemark, Germany) in a pseudo-

445 random order to 20 listeners seated in a sound-attenuated

446 booth. Randomisation on the order of presentation and the

447 recording of LD ratings was obtained via a custom Praat script.

448 The instruction was “rate the level of LD for these sentences

449 on a scale of 1 (not difficult, no effort required) to 10 (very dif-

450 ficult, considerable effort required).” Testing was divided into

451 a training phase (8 stimuli) and a testing phase (152 stimuli),

452 and subjects were able to rest between the 2 halves of the test-

453 ing phase, to reduce any effects of fatigue. The training phase

454 was included and exposure of all listeners to all conditions was

455 specified, in part, to minimise possible context effects (see

456 Sato et al., 2005). The LD assessment took �45 min. Subjects
457 were required to respond to every stimulus.
458 In the current study, the discrete subjective LD scale

459 was changed from 1 to 4 (as in the original 2004 version of

460 the metric), in which the percentage of values >1 are taken

461 to represent the LD associated with a given experimental

462 condition (Morimoto et al., 2004) to 1 to 10, for reasons out-
463 lined in Sec. II B 1.

464 3. Statistical procedures

465 A cumulative link mixed model (Laplace approxima-

466 tion; ordinal R package) was run with LD as the response

467 variable and Lnoise, style, their interaction, and interactions

468 of both Lnoise and style with talker gender, with both the lis-

469 tener and the talker as random effects terms. To determine

470 which, if any, of the acoustic and durational parameters pre-

471 dicted LD, a LME model fitted by REML was run with LD

472 as the response variable and SB, fo (semitones), fo (semi-

473 tones) standard deviation, and normalised vowel duration as

474 independent variables, with an interaction of fo (semitones)
475 and gender, and with talker as the random effects term. In

476the case of this model, LD was averaged across listeners per

477signal. Given that the resolution of 1/10 and the SN-ratio of

478�6 dB led to the LD metric having good coverage of the

479measurand range, this response variable could be treated as
480continuous.

481III. RESULTS

482First, the effects of Lnoise and style on spectral and

483durational speech parameters will be reported. Second, the

484extent to which any of these parameters predict LD will be
485discussed.

486A. Experiment one: Speech assessment

4871. Vowel duration

488Welch-corrected one way tests for equal means indicated

489that there was an effect of Lnoise [F(1,18649)¼ 134.44,

490p< 0.0001], and gender [F(1,18985)¼ 15.75, p< 0.0001] but

491not style (p> 0.1) on normalised vowel duration. This effect

492of Lnoise held per style and per vowel quality [/i/,

493F(1,1062)¼ 7.25, p< 0.01; /a/, F(1,149)¼ 4.83, p< 0.05; /u/,

494F(1,528)¼ 6.60, p< 0.05]. As shown in Fig. 1, vowel dura-

495tions were longer when the speech was produced in high level
496than low Lnoise, for both males and females.

4972. Fundamental frequency

498The mean fo increased from 200 to 207 Hz from low to

499high Lnoise for females, and from 125 to 131 Hz from low

500to high Lnoise for males. Not only the males’ but also the

501females’ mean fo remained distant from the mean fo of the
502babble signal (256 Hz).
503A LME model was built with fo (semitones) as the

504response variable, and as predictors: Lnoise, style, and interac-

505tions of Lnoise and style and noise and gender. Talker was

506included as a random factor. The low Lnoise, the normal style,

507and the male gender were chosen as the reference levels. As is
508shown in Fig. 2, fo (in semitones) was higher when speech was

FIG. 1. Normalised vowel durations by Lnoise (x axis) and gender (symbol)

condition. Means are shown with 95% confidence intervals.
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509 produced in the presence of high Lnoise than low Lnoise
510 (b̂¼ 0.76, SE¼ 0.03, df¼ 254566, t¼ 29.70, p< 0.0001). Fo

511 was higher in the loud style than in the normal style (b̂¼ 2.09,
512 SE¼ 0.03, df¼ 254566, t¼ 81.83, p< 0.0001). There was an
513 interaction between noise and style (b̂¼ 0.33, SE¼ 0.03,
514 df¼ 25466, t¼ 11.52, p< 0.0001) such that the effect of noise
515 was stronger in the loud style. There was also an interaction
516 between style and gender (b̂¼�0.11, SE¼ 0.03, df¼ 25466,
517 t¼�3.85, p< 0.001), such that males increased their fo more
518 than females in the loud relative to the normal style.

519In the normal style, variation in fo (semitones) in the
520form of standard deviations was slightly increased when
521speech was produced in the presence of high Lnoise than
522low Lnoise (b̂¼ 0.33, SE¼ 0.14, df¼ 129, t¼ 2.32,
523p< 0.05). In the loud style, fo variation did not appear to be
524reliably associated with noise conditions. Variation tended to
525be lower in the loud style than in the normal style
526(b̂¼�0.22, SE¼ 0.11, df¼ 129, t¼�1.96, p¼ 0.05). Very
527similar results were found when the fo values were subjected
528to outlier detection and removal using the Bonferroni
529method before analysis, indicating that these results were not
530due to fo artefacts.

5313. SB

532With regard to within-subject normalised overall SPL
533(DSPL), in the normal style, DSPL increased by approximately
5349 dB from �11.74 dB in low Lnoise to �2.70 dB in high
535Lnoise. In the loud style, DSPL increased by approximately
5364.70 dB from 5.03 dB in low Lnoise to 9.71 dB in high Lnoise.
537The relative magnitude of spectral energy in the higher frequen-
538cies was increased in the high Lnoise, as indicated by the relative
539amplitudes (dB) in each of the seven octave bands (Fig. 3). For
540males, there tended to be a smaller difference between Lnoise
541conditions in the loud style than in the normal style, as in the
542case of the overall DSPL.
543Amplitude variation, measured in terms of the range of
544the relative amplitude, increased from the low to the high
545Lnoise in the normal style by 3 dB, and in the loud style for
546the females by 2 dB, but did not increase in the loud style for
547males, possibly due to a ceiling effect.
548The effects of noise, style, and gender on SB are reported
549in Table I and shown in Fig. 4. Recall that SB will typically

FIG. 2. Fo in semitones per style (x axis), Lnoise (symbol) and gender [(left)

male, (right) female] condition. Means are shown with 95% confidence

intervals.

FIG. 3. Relative amplitude (dB) by fre-

quency (Hz), style [(left) loud, (right)

normal] and noise level (dashed line,

low; solid line, high) for males (upper)

and females (lower) with 6 1 SE.
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550 increase (become less negative) as SPL increases. The LME

551 model included Lnoise and style and interactions of Lnoise

552 and style, Lnoise and gender, and style and gender, with talker

553 as a random effect. Reference levels were low Lnoise, normal

554 style, and male gender. When the speech was produced in high

555 vs low Lnoise in the normal and in the loud styles, there was

556 an increase in SB. In addition, when the speech was produced

557 in the loud style vs the normal style in the presence of low

558 Lnoise, there was an increase in SB. In the normal style, there

559 was a greater difference between Lnoise conditions than in the

560 loud style. This result suggests the achievement of an upper

561 limit in the high Lnoise, loud style condition. There was also

562 an interaction between style and gender: For males there was a

563 much smaller difference between the style conditions than for

564 the females (Fig. 4). For females, fo was moderately positively

565 correlated with SB (r¼ 0.52, p< 0.0001). No reliable correla-

566 tion was observed for males (r¼ 0.24, p< 0.05).

567 B. Experiment two: LD assessment

568 1. Effects of noise, style, and talker gender on LD

569 In the speech perception study, 20 listeners evaluated

570 their difficulty in listening to the speech produced by the

571talkers in the 2 noise and 2 style conditions. A cumulative
572link mixed model was fit to LD with the following predic-
573tors: Lnoise and style and interactions of Lnoise and style,
574Lnoise and gender, and style and gender. The model incor-
575porated random effects for talker and listener and for the
576talker listener interaction. The reference levels were low
577Lnoise, normal style, and male gender. As reported in Table
578II and shown in Fig. 5, there was a decrease in LD when the
579speech was produced in high vs low Lnoise in the normal
580style, and when the speech was produced in the loud style vs
581normal style in low Lnoise. There was an interaction of noise
582and style such that the difference in LD between the styles
583was greater in low Lnoise than in high Lnoise. The lowest
584LD scores occurred when speech was produced in high
585Lnoise in the loud style condition.
586When LD was converted by quartile to a four-point
587scale (as in the original method), the effects of noise and
588style were very similar to those observed in the ten-point
589scale model. In the four-point scale model, the arcsine trans-
590formed proportion of values higher than one (averaged over
591the listeners) was evaluated as the response variable of a
592LME model with noise and style and their interaction as
593independent variables, and talker as a random factor.

TABLE I. LME model with the response variable SB and independent vari-

ables Lnoise, and style and interaction terms with gender (reference levels:

Lnoise, low; style, normal; gender male). Significance codes: *** < 0.001,

** < 0.01, * < 0.05, “.” < 0.1.

Term Estimate SE df t

(Intercept) �17.60 0.55 21 �31.26***

Lnoise high 1.75 0.27 129 6.46***

Style loud 3.31 0.27 129 8.88***

Lnoise high: Style loud �0.72 0.31 129 �2.34*

Lnoise low: Gender female 0.76 0.75 20 1.02

Lnoise high: Gender female 1.30 0.75 20 1.74

Style loud: Gender female 1.73 0.31 128 5.62***

FIG. 4. SB in dB per style (x axis), noise (symbol), and gender [(left) male,

(right) female] condition, with means and 95% confidence intervals.

TABLE II. Cumulative link mixed model (Laplace) output for LD by

Lnoise and style and interactions with talker gender (reference levels are

Lnoise, low; style, Normal; gender male). Significance codes: *** < 0.001,

** < 0.01, * < 0.05, “.” < 0.1.

Term Estimate SE z

Lnoise high �0.86 0.12 �7.40***

Style loud �1.17 0.12 �10.02***

Lnoise high: Style loud 0.57 0.13 4.37***

Lnoise low: Gender female �0.61 0.35 �1.74.

Lnoise high: Gender female �0.61 0.35 �1.73.

Style loud: Gender female �0.16 0.13 �1.20

FIG. 5. LD (1, lowest; 10, highest) by Lnoise (x axis) and style (symbol)

condition, with means and 95% confidence intervals.

J_ID: JASMAN DOI: 10.1121/1.4997906 Date: 10-August-17 Stage: Page: 7 Total Pages: 10

ID: aipepub3b2server Time: 22:47 I Path: D:/AIP/Support/XML_Signal_Tmp/AI-JAS#170555

J. Acoust. Soc. Am. 142 (2), August 2017 Graetzer et al. 7



PROOF COPY [JASA-00455] 039708JAS

594 2. Relationships between speech parameters and LD

595 Models were fitted to determine which of the acoustic

596 and durational parameters predicted LD. The distribution of

597 the LD ratings was near normal, with no saturation at the

598 upper and lower bounds. The results are reported in Table

599 III. A LME model was run with LD as the response variable

600 and the acoustical and durational parameters as independent

601 variables: SB, fo modulation (semitones), normalised vowel

602 duration, and an interaction of fo and talker gender. Of the

603 parameters, only SB reliably predicted LD (p< 0.0001).

604 However, there was a difference in the slope fo (semitones)-

605 LD between females and males such that for females there

606 was a decrease in LD as fo increased (p< 0.05). The slope
607 can be derived from a simple linear regression:

y ¼ 4:27–0:15fo þ �: (1)

608 IV. DISCUSSION

609 This paper reports the use of LD ratings for an identifi-

610 cation of the speech modifications that predict the transmis-

611 sion performance of speech produced in noise by first-

612 language, normal hearing English speakers. In the assess-

613 ment of the speech parameters in this study, the increase in

614 vocal intensity in speech produced in noise was found to

615 co-occur with increases in fo and SB, as predicted on the

616 basis of previous studies (e.g., Van Summers et al., 1988;

617 Stanton et al., 1988; Junqua, 1993). Arguably, these spec-

618 tral modifications, which occurred in a non-communicative

619 context, are primarily associated with the increase in vocal

620 intensity in the presence of babble noise, but could also

621 reflect other modifications made to improve audibility for

622 the talker at his/her own ear (see, e.g., Garnier and Henrich,
623 2014; Cooke et al., 2014a).
624 In the present study, it was possible to identify effects

625 of noise within both speech styles. First, for normalised

626 vowel duration, there was an effect of Lnoise but no

627 observable effect of style. Additionally, for fo, SB, and LD,

628 there was an additive effect of Lnoise and style. In full, the

629 effects of noise in the environment of the talker were an

630 increase in vowel duration, an increase in fo, an increase in

631 the SB, and, in the perception assessment, a decrease in rat-
632 ings of LD.
633 The results concerning the relationship between dura-
634 tional changes and LD ratings suggest that while vowel

635elongation can increase the amount of acoustic information
636available about vowel quality and neighbouring segment
637identity (see, e.g., Fonagy and Fonagy, 1966), the extent to
638which these changes can improve the intelligibility of speech
639masked by broadband noise appears to depend on other fac-
640tors (Cooke et al., 2014b; Lu and Cooke, 2009). The magni-
641tude of the vowel duration results may reflect the fact that
642the high Lnoise present during speech production was multi-
643talker noise, which is said to degrade the perception of vow-
644els more than consonants (Junqua, 1993). It is interesting
645that there was no reliable effect of style on vowel duration
646for these speakers, despite the observed increase in speech
647level from normal to loud style (cf., e.g., Traunm€uller and
648Eriksson, 2000).
649Shifts in the spectral energy distribution toward frequen-
650cies between 1 and 4 kHz, i.e., increases in SB, were
651observed to predict LD when the signals were presented to
652listeners at the same SN-ratio. The reported effects of these
653shifts on LD ratings are consistent with the results of Krause
654and Braida (2004), who found that high frequency spectral
655emphasis contributes to the increased intelligibility of clear
656relative to conversational speech when produced in noise. In
657the present study, it was found that while changes in both fo
658and spectral energy distribution occur when speech is pro-
659duced in noise, only the latter appears to contribute in a sig-
660nificant way to intelligibility (Lu and Cooke, 2009; Hazan
661and Markham, 2004; Cooke et al., 2014b). The fo increase
662may under most conditions merely accompany the increase
663in vocal intensity (Gramming et al., 1988). Lu and Cooke
664(2009) have argued that SB, unlike an upward shift in fo, reli-
665ably increases the amount of information available to the lis-
666tener, i.e., the amount of speech information that is out of
667the range of the masker energy. In Cooke’s (2006) glimpsing
668model of speech perception in noise, there are more glimpses
669(defined as connected regions in the spectro-temporal repre-
670sentation of the speech time-frequency plane) within which
671speech information is audible. In other words, in the current
672study, an increase in SB provides some release from ener-
673getic masking. In singers, an increase in energy in the
674region of 3 kHz allows the voice to be heard well above an
675orchestra or background noise (Sundberg, 1994) and results
676in an increase in phons and sones (Hunter et al., 2006), due
677to the human ear being particularly sensitive to frequencies
678in this region (see Cooke et al., 2014a; ISO 226, 2003). As
679mentioned previously, Cooke and Garc�ıa Lecumberri
680(2012) have argued that while some linguistic enhance-
681ments may exist in Lombard speech, such as greater vowel
682space dispersion (Cooke and Lu, 2010), these may be out-
683weighed by other changes that in fact reduce intelligibility;
684linguistic enhancements, therefore, appear to have a limited
685role.
686With regard to fo, in the normal style, a small but reli-
687able increase was observed in fo modulation (in semitones)
688in high vs low Lnoise, which has previously been interpreted
689as evidence of an active strategy to improve audibility in
690noise (Garnier and Henrich, 2014). For females, the increase
691in fo (semitones) with the increase in Lnoise was larger in
692the loud than in the normal style, despite the effect of noise
693on speech level being larger in the normal style, which may

TABLE III. LME model with the response variable LD (averaged over

talker) and scaled independent variables: SB, fo modulation (semitones),

vowel duration, and an interaction of fo and talker gender. Significance

codes: *** < 0.001, ** < 0.01, * < 0.05, “.” < 0.1.

Term Estimate SE df t

(Intercept) 0.05 0.77 135 0.07

SB �2.9 0.03 82 �10.87***

Fo standard deviation (semitones) 0.11 0.08 50 1.46

Vowel duration �0.14 0.52 146 0.27

Fo (semitones): Gender male �0.01 0.04 56 �0.27

Fo (semitones): Gender female 0.13 0.06 71 2.38*
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694 also suggest an active strategy to optimise masker release.
695 Further, for the female speakers, a possible explanation of the
696 finding for the slope fo (semitones)-LD may be that within the
697 fo range of the females (�160–270 Hz), when fo increases
698 there may be some additional release from energetic masking.
699 This is due to the migration of spectral energy into higher
700 parts of the spectrum (given the wider spacing of harmonics
701 at high fo frequencies). This release may be associated with
702 the presence of a high level of noise and/or the raised intensity
703 of the loud style (see, e.g., Cooke et al., 2014a). Such a rela-
704 tionship between fo and speech intelligibility for female talk-
705 ers may only occur at low SN-ratios (Barker and Cooke,
706 2007). Indeed, in the current study, for females but not males,
707 fo was moderately positively correlated with SB.
708 The increase in amplitude variation in high Lnoise rela-
709 tive to low Lnoise for some speakers may not be entirely
710 related to the increase in vocal intensity, but may also reflect
711 the intention of these speakers to improve their intelligibility
712 once the SN-ratio can no longer be improved (e.g., Picheny
713 et al., 1985, 1986; Ternstr€om et al., 2006).
714 On the basis of the results presented, it can be argued
715 that LD ratings are sensitive to changes in the audibility or
716 intelligibility of speech in contexts in which the performance
717 would be high due, in part, to the predictability of the speech
718 material rather than strictly to the SN-ratio or the character-
719 istics of the masker. The results are consistent with the find-
720 ings of Morimoto et al. (2004) that “LD is not always high
721 when background noise is present.” (p. 1611) This research
722 suggests that an artificial increase in the SB, for example,
723 generated by a filter that amplifies frequencies > 1 kHz,
724 may reduce LD. Such processing is feasible to implement in
725 real-time (Skowronski and Harris, 2006). Thus, signals may
726 be enhanced to improve comprehension and recall for young
727 children and older listeners. In this paper, a revised LD
728 method has been presented that addresses the issues of satu-
729 ration at ceiling performance and high listener variability
730 that have been reported in the literature.

731 V. CONCLUSIONS

732 The objectives of the present study were to evaluate the
733 LD of speech produced in different noise and style condi-
734 tions, evaluate the spectral and durational speech modifica-
735 tions associated with these conditions, and determine
736 whether any of the spectral and durational parameters pre-
737 dicted LD. It was confirmed that speech produced in high
738 level babble noise relative to low level background noise
739 was associated with an increased fo, increased spectral
740 energy between 1 and 4 kHz relative to energy below 1 kHz,
741 and increased vowel duration. However, only the proportion
742 of high to low spectral energy reliably predicted LD for
743 normal-hearing listeners.
744 It should be noted that the speech was acquired in the
745 high Lnoise condition in the presence of babble noise; how-
746 ever, the effects of noise in the acquired signal on SB itself,
747 being the difference between the mean energy of the 1–4 kHz
748 band and of the <1 kHz band, were negligible. In this study,
749 the ecological validity of tests in terms of proprioception and
750 internal and external auditory feedback was prioritised, as was

751unconstrained head movement in the loud style (see, e.g.,
752Lagier et al., 2010; Garnier and Henrich, 2014).
753Further studies are required to evaluate the ten-point scale
754form of the LD measure. In a future study, the properties of
755the original form, the revised form, and IS will be compared
756both for repeated and unique speech material. Moreover, not
757only the level but also the type of noise in the talker’s environ-
758ment will be manipulated during communicative tasks, for
759example, among broadband, speech-shaped, and babble noise,
760to allow a clear separation of the effects on speech audibility
761and intelligibility of the level from the type of noise. The type
762of additive noise used in the listening experiment will also be
763varied to evaluate how LD ratings and word recognition scores
764are affected by the properties of the noise masker.
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