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Abstract

To learn a function for measuring similarity or relevance between objects is an im-

portant machine learning task, referred to as similarity learning. Conventional meth-

ods are usually insufficient for processing complex patterns, while more sophisticated

methods produce results supported by parameters and mathematical operations that are

hard to interpret. To improve both model robustness and interpretability, we propose

a novel attention driven multi-modal algorithm, which learns a distributed similarity

score over different relation modalities and develops an interaction-oriented dynamic

attention mechanism to selectively focus on salient patches of objects of interest. Neu-

ral networks are used to generate a set of high-level representation vectors for both

the entire object and its segmented patches. Multi-view local neighboring structures

between objects are encoded in the high-level object representation through an unsu-

pervised pre-training procedure. By initializing the relation embeddings with object

cluster centers, each relation modality can be reasonably interpreted as a semantic

topic. A layer-wise training scheme based on a mixture of unsupervised and super-

vised training is proposed to improve generalization. The effectiveness of the proposed

method and its superior performance compared against state-of-the-art algorithms are

demonstrated through evaluations based on different image retrieval tasks.

Keywords: Multi-modal similarity, attention mechanism, representation learning,

multi-view, neural network.

1School of Computer and Information, Hefei University of Technology, China.
2School of Computer Science, University of Manchester, Manchester, M1 7DN, United Kingdom.
3Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, United Kingdom.

Preprint submitted to Journal of LATEX Templates July 24, 2017



1. Introduction

To learn a function that accurately calculates the similarity or relevance between

objects is one of the most significant machine learning tasks, and is known as simi-

larity learning. It is closely related to other fundamental machine learning paradigms,

including clustering, ranking, classification and regression, and plays an important role5

in many real-world applications, such as image annotation and retrieval [48], intelligent

recommendation systems [37] and knowledge graph completion [20]. Conventional

similarity learning methods often learn a distance metric (e.g., Mahalanobis distance)

[41] or use a kernel function [12] to measure the (dis)similarity between objects, where

the metric (or kernel) formulation is adjusted by function parameters. These methods10

are mostly based on single modality. Although they are capable of measuring relevance

in a standard environment, they may not be able to deal with tasks of more complex

nature. For example, to retrieve images relevant to the query image of an apple fruit,

images of apple juice (or the company Apple), which are related to the query in other

relation types, can also be of interest. Therefore, this requires more sophisticated sim-15

ilarity learning models to encode multiple relation types.

Multi-modal similarity learning takes into account multiple types of relevance pat-

terns between objects. For example, image relevance reflected by their shape and

colour appearance. Multi-modal extensions have been developed for conventional sim-

ilarity learning based on distance metrics and kernel functions. For instance, multiple20

kernel similarity learning [39] is proposed to facilitate image ranking, where the mul-

tiple modalities of image connections are realized by multiple kernel functions and the

overall similarity is computed as a weighted sum of these functions. Transfer distance

metric learning [24] is developed to overcome the lack of available information in the

target task and discovers multiple alternative connections between objects in relevant25

source tasks. These correspond to multiple modalities characterized by different base

metrics combined to form the final metric. In general, the intermediate results of these

methods, such as the parameters or learned relation types, are hard to interpret and

the whole learning procedure is usually treated as a black box. Intelligent similarity

learning methods that exhibit not only excellent performance but also good model in-30

2



terpretability are in demand.

To extract information from visual objects, primate visual systems employ attention

mechanisms to dynamically focus on important information that is relevant to the cur-

rent behavior or visual tasks [32]. Using the image retrieval task as an example, if the

query is the image of a beach, the users could move their focus from the whole scene,35

to certain parts of the image, e.g., boat, people who swim, or sea. Recent advances

in attention mechanisms use a set of dynamic attention weights to control the contri-

bution of different parts [1]. Such techniques have been successful in tasks, such as

machine translation [1] and image caption generation [42]. Taking the attention based

image caption generation model [42] as an example, it works with high-level represen-40

tations extracted from image patches using a convolutional neural network (CNN). The

model learns the attention weights for each patch to construct a weighted context vec-

tor that represents relevant parts of an image based on which a long short-term memory

(LSTM) network is used to generate text captions. Inspired by the recent success of

attention learning in language and vision, we propose an interaction-oriented atten-45

tion mechanism to improve the accuracy of similarity learning, and meanwhile show

that the attention weights returned by the mechanism are able to improve the model

interpretability.

In addition to multi-modal similarity analysis and attention mechanisms that can

potentially improve the robustness and interpretability of a learning model, it is also50

important to improve the model performance. When dealing with complex real-world

tasks, features that exhibit heterogeneous properties should be considered. For ex-

ample, in image retrieval, shape feature is more important for measuring similarity

between a brown bear and a polar bear, while the color feature is more important for

examining brown bears in different poses. One representative work that deals with55

this problem is [6], which leverages shared knowledge from multiple related tasks to

improve the performance of feature selection. Another commonly used technique for

combining multi-view information is multi-view embedding. It aims at mixing and

refining information provided by different types of features within a low-dimensional

embedding space [28, 36, 43, 50]. Recent developments on multi-view learning have60

shown that complementary information across different views has the potential of im-
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proving the performance of many machine learning tasks [10]. To further improve

similarity learning, we take into account multi-view local structures in similarity for-

mulation.

In summary, this work proposes a powerful similarity measure by exploring mul-65

tiple hidden relationships between image objects that suit the multi-modal nature of

real-world tasks. To improve model robustness and interpretability, dynamic attentions

are incorporated to selectively capture salient parts that contribute to the object interac-

tions. To deal with heterogeneous object properties, we encode multi-view information

that improves the object representation. These result in proposing a novel attention-70

driven multi-modal similarity (AMoS) model possessing a multi-layered architecture.

Neural networks are used to compute representation vectors of a given object and its

corresponding patches. Different relation modalities are encoded as different hidden

neurons in the relation layer. Dynamic attention weights are modeled as functions

receiving the entire image for their patch representation, and multi-view information75

provided by different feature extraction methods are used to enhance the image repre-

sentation in pre-training. The effectiveness of the proposed model is compared with

various state-of-the-art methods evaluated through image retrieval tasks. The remain-

ing paper is organized as follows. Section 2 briefly introduces related works. Section

3 delivers the proposed algorithm, while Section 4 contains experimental results and80

comparative analyses. Finally, Section 5 concludes the work.

2. Related Works

2.1. Multi-modal Similarity Learning

Multi-modal similarity learning is a type of learning that relies on measuring the

relevance between objects from multiple aspects. It has been shown to be effective in85

many real-world applications. One example is person identification over camera net-

works, using multiple Mahalanobis distance metrics designed to characterize different

cameras that contain different types of noise [26]. These metrics are connected by en-

forcing joint regularization that reduce overfitting. Another work mines complemen-

tary information among features that exhibit heterogeneous properties by optimizing90
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different distance metrics in different feature spaces [38] . To facilitate tasks such as

inter-modal label transfer and zero-shot learning, multi-modal models are developed

to formulate the relations between text and image features [31]. In social media net-

work analysis, a latent semantic space is computed to encode multi-modal links, e.g.,

context and content links between the multimedia and context objects [30]. Another95

example work in data retrieval [19], develops multi-modal algorithms to achieve cross-

modal hashing. For instance, linear subspace ranking hashing maps data from differ-

ent modalities into a common binary space, so that the cross-modal similarity can be

measured using Hamming distance, where different modalities are modeled as groups

of linear subspaces. Multi-modal deep hashing [21] has also been proposed, where100

the data modalities are encoded by multiple hierarchical nonlinear transformations and

constraints are incorporated at the top layer of the network to exploit nonlinear relations

between samples. However, its intermediate results, e.g., the meaning of the learned

relation types and their controlling parameters, are difficult to interpret.

2.2. Attention Learning105

Attention learning constitutes a recent kind of machine learning, where the core

idea is to assign different weights to different components or parts of an object ac-

cording to different requirements in learning. The technique has been successful in

neural machine translation [1], which can automatically translate sentences to a target

language by first encoding the source sentence into a fixed-length vector and then gen-110

erating a translation from the vector through a decoder. Unlike conventional translation

algorithms, the attention based neural translation extends the encoder-decoder model

by introducing a dynamic context vector to focus on salient information that is relevant

to the generation of the next target word. This yields good results in translating long

sentences [1]. Another attention based translation work [25] explores better the archi-115

tecture of attention mechanisms. It proposes two simple and effective mechanisms, one

of which is a global approach that takes into account all source positions and the other

a local approach that pays attention to just a subset of source positions at a time. At-

tention mechanisms have also been successful in speech recognition. To deal with long

and noisy speech input, an attention learning model is developed to combine both con-120
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tent and location information, so that the most relevant position in a sequence can be

selected for further decoding [9]. Another application is video description generation

[45]. Unlike images, video description requires the consideration of dynamic temporal

structure to produce descriptions. The temporal attention mechanism developed in [45]

selectively focuses on a small set of salient frames and lets the generator describe only125

objects and activities in this set. This mechanism not only improves the quality of the

generated descriptions, but also effectively eliminates redundant information through

the use of salient frames. To improve image segmentation, the work in [8] proposes an

attention mechanism that softly weights the multi-scale features at each pixel location.

For image captioning, the work in [46] learns to selectively attend to a semantically130

important concept (or a region of interest in an image) by weighting the relative atten-

tion strengths. Additionally, the proposed attention mechanism is able to dynamically

switch attention between concepts according to task status.

2.3. Representation Learning

Representation learning refines the input raw data by highlighting useful informa-135

tion and eliminating redundant information and noise. It is one of the most important

techniques in computer vision and multimedia [5, 7], and so far deep learning is the

most successful representation learning technique [16, 3, 34]. One of the most com-

monly used deep representation learning methods is the convolutional neural network

(CNN) [17], which is widely used [29, 13, 44, 18]. For instance, a CNN-based map-140

ping function is learned to transfer mid-level representations obtained from large source

datasets to a target image recognition task with limited training data in [29]. Robust un-

supervised representation is computed by first automatically generating surrogate tasks

through data augmentation and then training a CNN-based classifier over these tasks in

[13]. In video surveillance, it is assumed that two video patches connected by the same145

track should share similar representations in a high-level space. An unsupervised CNN

is trained to draw frames from the same track to be closer to each other than to random

frames from other tracks [44]. To compute visual saliency from multi-scale features,

the input image is first decomposed into non-overlapping regions, then features are ex-

tracted from these regions by a CNN and fed into a fully connected neural network to150
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generate saliency map [18]. Apart from CNN, auto-encoder is another commonly used

algorithm for unsupervised representation learning [3]. In speech emotion recognition,

different scales of kernels are learned by auto-encoder to extract local features from

entire spectrogram fragments [27]. To develop 3D shape feature descriptors, the Fisher

criterion is employed as an extra constraint added to the conventional auto-encoder,155

so that the learned hidden features can be discriminative and insensitive to geometric

structure variations [40].

3. Proposed Method

The information carried by a color image is stored as matrices of pixel values each

corresponding to a color (e.g., R, G, B channel). The semantic content of an image160

is characterized by its high-level representation learned from the entire image using,

for instance, a CNN [3]. In addition to collecting information from the entire image,

the human visual system is able to pay attention to different parts of the image under

different circumstances. To simulate such attention function, models have been de-

veloped to partition an image into different patches and dynamically allow each patch165

to come to the forefront as needed [42]. Motivated by these, given a collection of n

images {xi}ni=1, we represent each image using not only its k-dimensional high-level

representation vector computed from the entire image by a CNN network, denoted as

φi = φ(xi,w), but also a set of k-dimensional patch representation vectors {p(j)i }dj=1.

These patch vectors are computed by first partitioning the entire image to a set of d im-170

age patches4 and then converting each patch x(j)i to a k-dimensional vector by another

neural network, denoted as p(j)i = φp(x
(j)
i ,wp). The vector w and wp store the

network weights for computing the entire image representation and the patch represen-

tation, respectively.

4One way to obtain image patches is to apply the k-means clustering algorithm to group the pixels of a

given image, so that the image is segmented according to its color (or grayscale) distribution. The cluster

centers can be used as the central points of different image patches and each patch can be set to contain for

example l× l pixels. Both the cluster number d and the patch size l can be adjusted by the user. The obtained

patches are denoted by {x(j)
i }

d
j=1 for the i-th image.
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Figure 1: Overall architecture of the proposed similarity learning model AMoS.

We propose a robust similarity model to evaluate the relevance between each i-th

and j-th image, based not only on their entire image representations but also their patch

representations. This is defined as

Sij = f

(
φ(xi,w),

{
φp(x

(s)
i ,wp)

}d

s=1
,φ(xj ,w),

{
φp(x

(h)
j ,wp)

}d

h=1
,θ

)
, (1)

where θ stores the collection of similarity parameters to be learned. The architecture of175

the proposed model is illustrated in Figure 1. Other than working with a static image

representation and simulating single-modal relations as most existing works do, the

proposed model dynamically pays attention to interactions between different image

parts (entire image and image patches) and accentuate the influence of individual parts

when computing similarities over different relation modalities. The robustness of the180

proposed similarity is supported by its unique way of encoding multi-modal relations

and dynamic attention. In the following, we explain the proposed attention-driven

multi-modal similarity model, referred to as AMoS, in detail.
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3.1. Model Construction

3.1.1. Multi-modal Similarity185

We formulate the similarity measure so that it reflects the validities of multiple

hidden relations (relation multi-modality). In image retrieval, the query image can be

related to the searched imagery under different relation types, e.g., the query of an

apple image of fruit can be related to images of apple juice or the company’s logo.

In order to measure similarity under different aspects of relations, we employ a set of190

hidden neurons, each representing a hidden relationship between the two input objects.

Letting c denote the neuron cardinality, a c-dimensional multi-modal similarity vector

sij = [s
(1)
ij , . . . , s

(c)
ij ] is learned.

We first consider the formulation of each similarity dimension based only on the

image representation vector φi. This leads to

s
(t)
ij =

(
φT

i et
) (
φT

j et
)

+αTφi + βTφj , (2)

for t = 1, . . . , c, where et, α and β are column vectors of the same dimensionality as

φi. The relation embedding vector et is used to parameterize the unique character of

the relation type t. The operation
(
φT

i et
) (
φT

j et
)

constructs a bilinear interaction of

the image pair that is φT
i Wtφj based on the rank-1 interaction matrix Wt = ete

T
t , and

the use of vector et instead of an arbitrary matrix Wt reduces the number of variables

used to parameterize the bilinear mixing. The linear weights α and β incorporate the

properties of individual images to further enrich the similarity formulation. To compute

the final similarity, the following accumulated scalar score is used

Sij =
1

c

c∑
t=1

sig
(
s
(t)
ij

)
, (3)

where the sigmoid function sig(·) acts as an activation function, rescaling the similarity

value within the range of [0, 1].195

3.1.2. Attention Incorporation

Building upon Eq. (2), we further incorporate attention into the model. Our core

idea is that, instead of characterizing interactions between images with static represen-

tations, attention can be modeled via dynamic weights to allow different image parts to

selectively contribute to different relation modalities given different input image pairs.200

9



Firstly, we formulate a similarity model that pays equal attention to different im-

age parts and the entire image based on Eq. (2). This can be achieved by simply

accumulating similarities between image patches and adding the accumulated sim-

ilarity to the previously computed similarity score s(t)ij . Letting the d × k matrix

Zi = [p
(1)
i , . . . ,p

(d)
i ]T denote the local context feature matrix for the i-th image, the

modified model becomes

s̄
(t)
ij =

∣∣∣s(t)ij

∣∣∣+
∥∥Ziete

T
t ZT

j

∥∥
1

+ ‖Ziα‖1 + ‖Zjβ‖1,

=
∣∣∣s(t)ij

∣∣∣+

d∑
s=1

d∑
h=1

∣∣∣p(s)Ti ete
T
t p

(h)
j

∣∣∣+

d∑
s=1

∣∣∣αTp
(s)
i

∣∣∣+

d∑
h=1

∣∣∣βTp
(h)
j

∣∣∣ , (4)

where ‖ · ‖1 = ‖vec(·)‖ is the entrywise p-norm in the case of p = 1.

To identify the salient features that contribute more to the similarity score under a

relation modality, we add dynamic attention weights to Eq. (4). For an input image

pair, these attention weights distinguish contributions of their different image parts to

the target relation type t. Introducing the new notation p(d+1)
i = φi to treat the entire

image as the (d + 1)-th patch, we construct the following attention-driven similarity

function over the t-th relation modality:

s̃
(t)
ij =

d+1∑
s=1

d+1∑
h=1

e
(t)
ij (s, h)

∣∣∣p(s)Ti ete
T
t p

(h)
j

∣∣∣+d+1∑
s=1

a
(t)
i (s)

∣∣∣αTp
(s)
i

∣∣∣+d+1∑
h=1

a
(t)
j (h)

∣∣∣βTp
(h)
j

∣∣∣ .
(5)

The non-negative attention weights {e(t)ij (s, h)}d+1
s,h=1 control the degree of importance

of image patch pairs, and the non-negative attention weights {a(t)i (s)}d+1
s=1 control the

importance of image patches that contribute to the similarity computation. These

weights are dynamically renewed given different input images, guided by the following

weighting functions:

e
(t)
ij (s, h) =

exp
(
γ
(t)
ij (s, h)

)
∑d+1

s=1

∑d+1
h=1 exp

(
γ
(t)
ij (s, h)

) , (6)

a
(t)
i (s) =

exp
(
µ
(t)
i (s)

)
∑d+1

s=1 exp
(
µ
(t)
i (s)

) , (7)
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where

γ
(t)
ij (s, h) = sig

(
ηT
t p

(s)
i + ηT

t p
(h)
j

)
, (8)

µ
(t)
i (s) = sig

(
τT
t p

(s)
i

)
. (9)

The column vectors ηt and τt store the attention parameters and contribute to the t-th

relation type, and they possess the same dimensionality k as the high-level representa-

tion of an image patch. In Eqs. (6,7), the softmax function is used to generate positive

attention weights that sum to 1. Finally, by restricting each weighted similarity quantity

in Eq. (5) within [0, 1] through the smooth sigmoid function, the following attention-

driven similarity function is proposed, given as

s̃
(t)
ij =

d+1∑
s=1

d+1∑
h=1

sig
(
e
(t)
ij (s, h)p

(s)T
i ete

T
t p

(h)
j

)
+

d+1∑
s=1

sig
(
a
(t)
i (s)αTp

(s)
i

)
+

d+1∑
h=1

sig
(
a
(t)
j (h)βTp

(h)
j

)
. (10)

3.2. Modal Training

Taking the computed attention-driven similarities
{
s̃
(t)
ij

}c

t=1
over different rela-

tion modalities as input, we obtain the final similarity score between two images by

Sij =
∑c

t=1 s̃
(t)
ij . Model variables that participate in the similarity computation include205

weights w and wp of the two neural networks for processing the entire image and im-

age patches, and those involved in the relation formulation θ = {{et,ηt, τt}ct=1,α,β, }.

The parameter vector θ includes the relation embeddings {et}ct=1 and the weights α

and β for formulating the multi-modal relations, as well as {ηt, τt}ct=1 for computing

the dynamic attention weights under different relation modalities. The proposed model210

contains a substantial amount of variables to be optimized. The optimization objective

function is non-convex and it is difficult to obtain a good local optimal solution with

the traditional training approach. We thus adapt a stage-wise training scheme that first

performs the representation training and the relation training separately, and then fine-

tunes all the pre-trained parameters. This aims to obtain a more robust model solution215

with improved generalization ability.
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3.2.1. Unsupervised Pre-training of Image and Patch Representation

The image representation is computed by a CNN receiving the entire image as

input. Its network weights w are first pre-trained in an unsupervised manner. We set

the pre-training objective function as a penalized distance error sum between images,

given by

min
w

O =
∑
ij

sig
(
σ
(w)
ij ‖φ(xi,w)− φ(xj ,w)‖22

)
, (11)

where ‖ · ‖2 denotes the l2-norm and the sigmoid function is used to smoothen and

bound the error. The weight σ(w)
ij quantifies the similarity and neighboring informa-

tion between two images. By minimizing Eq. (11), the CNN weights w support the220

generation of high-level features that preserve a desired neighborhood structure cap-

tured by
{
σ
(w)
ij

}n

i,j=1
.

To compute the neighborhood weights
{
σ
(w)
ij

}n

i,j=1
so that they reflect more ac-

curate proximity structure between images, we utilize multi-view information offered

by different feature extraction methods, such as color histogram, color correlogram,

edge direction histogram, wavelet texture, block-wise colour moments and bag of

words based on the scale-invariant feature transform (SIFT) descriptions. Letting

Ωs =
[
ω
(s)
ij

]
denote the local proximity matrix computed based on the sth feature view,

its nonzero elements indicate the similarities between neighboring objects computed

under the sth feature view, whereas its zero elements indicate the non-neighboring

pairs. The penalty weights
{
σ
(w)
ij

}n

i,j=1
are computed as the averaged local proximi-

ties such that σ(w)
ij = 1

m

∑m
s=1 ω

(s)
ij , where m denotes the total number of used feature

views. This assumes that when there are more views agreeing on the neighborhood

relation between two objects, then that object pair is considered to be more reliable

and it is awarded a higher weight [10]. This is because these averaged weights can be

written as σ(w)
ij = ma

m σ̄
(w)
ij (ma), where

σ̄
(w)
ij (ma) =

 0, if I(ma)
ij = ∅,∑

s∈I(ma)
ij

1
ma
ω
(s)
ij , otherwise.

(12)

Here, ma denotes the number of the views in agreement and the set I(ma)
ij records the

indices of the ma views agreeing that the ith and the jth objects are neighbors through
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proximity comparison using the features of the corresponding views. In this way, ma

m225

can be viewed as the confidence degree for weighting the voted similarity σ̄(w)
ij (ma).

Let the i-th row of the n × k matrix Φ store the k-dimensional high-level feature

vector φ(xi,w), the ij-th element of the n × n matrix W store the penalty weight

σ
(w)
ij , and the diagonal elements of the n×n diagonal matrix D(W) store the row sum

of W. We compute the Laplacian matrix of W as L = D(W)−W [2]. The derivate

of the CNN output is then given by

∂O

∂Φ
= γΦ

(
L + LT

)
, (13)

where

γ = sig
(
tr
(
ΦLΦT

)) [
1− sig

(
tr
(
ΦLΦT

))]
.

The CNN weights are updated through backpropagation and gradient descent.

Different from the entire image, image patches are segmented parts and contain

less rich local structural information. Instead of using convolutional kernels, we com-

pute the patch representation using a fully connected neural network, and pre-train the230

network weightswp in an unsupervised manner by following the auto-encoder training

scheme. Specifically, the network weights wp are computed by minimizing the recon-

struction error between the input patch x(s)i and the decoded output computed from the

patch representation p(s)i [35].

3.2.2. Supervised Training of Relation Parameters235

By fixing the pre-trained weights w and wp, we further optimize the relation em-

beddings {et}ct=1, attention parameters {ηt, τt}ct=1 and linear weights α,β in a su-

pervised manner. The following ranking loss based on the stochastic margin error [4]

is minimized

L({et,ηt, τt}ct=1,α,β) =
∑

i,j+∈I+

∑
i,j−∈I−

max(Sij− − Sij+ + 1, 0), (14)

where the index set I+ contains the truly related object pairs in the training set referred

to as the positive training pairs, while I− the truly unrelated object pairs referred to

as the negative training pairs. The cost function evaluates the difference between the
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similarity scores of the positive and negative pairs. The optimization drives the positive

pairs to have higher similarity scores than the negative pairs.240

To optimize the relation embeddings {et}ct=1, we propose to initialize each et with

the center vector ct of an image cluster instead of random initialization. For an image

retrieval task, these image clusters can be manually defined according to the training

data. For instance, a collection of real animal (or toy, or logo) bear images can be

defined as a cluster. In this case, relevance between a bear animal image (φi) and a245

bear logo image (φj) is increased over the two neurons initialized by the bear ani-

mal cluster center (e1) and the bear logo cluster center (e2) because of the increased

values of φT
i e1 and φT

j e2. Another way to obtain the image clusters is to perform

k-means clustering over the training images based on their high-level image represen-

tations {φi}ni=1. This procedure automatically discovers c different clusters represent-250

ing the semantic topic structure of the images, and uses these topics to drive different

relation modalities when formulating the similarity measure.

To minimize Eq. (14), the stochastic gradient descent algorithm is used. The three

quantities ofD(i,j)
1 (s, h),D(i)

2 (s) andD(j)
3 (h) are used to simplify the gradient formu-

las, given as:

D
(i,j)
1 (s, h) = sig

(
e
(t)
ij (s, h)p

(s)T
i ete

T
t p

(h)
j

)(
1− sig

(
e
(t)
ij (s, h)p

(s)T
i ete

T
t p

(h)
j

))
,

(15)

D
(i)
2 (s) = sig

(
a
(t)
i (s)αTp

(s)
i

)(
1− sig

(
a
(t)
i (s)αTp

(s)
i

))
, (16)

D
(j)
3 (h) = sig

(
a
(t)
j (h)βTp

(h)
j

)(
1− sig

(
a
(t)
j (h)βTp

(h)
j

))
. (17)

In the following, we list the related differentiations with respect to the relation param-
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eters:

∂s̃
(t)
ij

∂α
=

d+1∑
s=1

D
(i)
2 (s)a

(t)
i (s)p

(s)
i , (18)

∂s̃
(t)
ij

∂β
=

d+1∑
h=1

D
(j)
3 (h)a

(t)
j (h)p

(h)
j , (19)

∂s̃
(t)
ij

∂et
=

d+1∑
s=1

d+1∑
h=1

D
(i,j)
1 (s, h)e

(t)
ij (s, h)

(
p
(s)
i

(
eTt p

(h)
j

)
+
(
p
(s)T
i et

)
p
(h)
j

)
, (20)

∂s̃
(t)
ij

∂ηt
=

∂s̃
(t)
ij

∂e
(t)
ij (s, h)

de
(t)
ij (s, h)

dγ
(t)
ij (s, h)

dγ
(t)
ij (s, h)

dηt
, (21)

∂s̃
(t)
ij

∂e
(t)
ij (s, h)

= D
(i,j)
1 (s, h)p

(s)T
i ete

T
t p

(h)
j , (22)

de
(t)
ij (s, h)

dγ
(t)
ij (s, h)

= e
(t)
ij (s, h)

(
1− e(t)ij (s, h)

)
, (23)

de
(q)
ij (s, h)

dγ
(t)
ij (s, h)

= −e(q)ij (s, h)e
(t)
ij (s, h), for q 6= t, (24)

dγ
(t)
ij (s, h)

dηt
=
(
p
(s)
i + p

(h)
j

)
γ
(t)
ij (s, h)

(
1− γ(t)ij (s, h)

)
, (25)

∂s̃
(t)
ij
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(t)
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(t)
i (s)

da
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dµ
(t)
i (s)
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(t)
ij
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(t)
i (s)

= D
(i)
2 (s)αTp

(s)
i , (27)
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(t)
ij
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j (h)
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)
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i (s)

= −a(q)i (s)a
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)
, (31)
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j (h)
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3.2.3. Supervised Model Fine-tuning

So far, we first perform unsupervised pre-training of the network weightsw andwp

to generate high-level features for entire images and image patches, respectively. After

that, by fixing these weights, we continue to perform supervised training of the relation

parameters. This divides the model into two independent networks: (1) unsupervised

representation learning and (2) supervised relational learning. In order to connect these

two components and seek a better solution for the entire model, a supervised fine-tuning

procedure that optimizes all the model variables based on the ranking loss in Eq. (14)

is carried out. Gradient formulations for updatingw andwp based on the ranking loss

are realized as

∂L

∂w
=

∂L

∂Sij

∂Sij

∂s̃
(t)
ij

∂s̃
(t)
ij

∂Φ

dΦ

dw
, (35)

∂L

∂wp
=

∂L

∂Sij

∂Sij

∂s̃
(t)
ij

∂s̃
(t)
ij

∂Φ

dΦ

dwp
. (36)

4. Experimental Analysis and Results

4.1. Datasets and Experimental Settings255

The proposed work is evaluated and compared with state-of-the-art methods using

four challenging image datasets of CIFAR-105, NUS-WIDE6, Places27 and ImageNet8

for image retrieval tasks. In more detail, CIFAR-10 is a large collection of color images

collected from Flicker, containing 60,000 images from to 10 object classes, such as

airplane, truck, bird, cat, deer, horse, etc. We randomly select 1,000 images per class260

as query images, 1000 as training images, and the remaining ones as testing images.

NUS-WIDE is a larger collection of Flicker web images containing 269,648 images

belonging to 81 concepts, such as garden, street, tower, dancing, tree, etc. We randomly

select 2,000 images as queries, 8,000 as training images and the remaining as the testing

5The CIFAR-10 dataset is available on: https://www.cs.toronto.edu/ kriz/cifar.html
6The NUS-WIDE dataset is available on: http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
7The Places2 dataset is available on: http://places2.csail.mit.edu
8The ImageNet dataset is available on: http://www.image-net.org/
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ones. Places2 is a large image collection containing more than 10 million images265

belonging to over 400 unique scene categories, such as underwater, park, museum,

mountain, etc. We randomly select 500 images per class as query, 1,000 images per

class for training, and 1,500 images per class for testing, and report the performance

for 10 randomly chosen classes. ImageNet is a large image dataset that includes 14

million images organized according to WordNet hierarchy and representing concepts,270

such as dog, cat, swimming, vehicle, etc. We randomly select 200 images per concept

as query, 300 images per concept for training and 1,000 images per concept for testing,

and report the performance for 10 randomly chosen concepts.

For the proposed method AMoS, to compute the multi-view neighboring weights

of
{
σ
(w)
ij

}n

i,j=1
, different feature extraction methods are used. These include 900-D275

local binary pattern (LBP), 256-D color histogram (CH), 324-D histogram of gradient

(HoG) and 1024-D wavelet texture (WT) features for CIFAR-10, Places2 and Ima-

geNet. Specifically, to generate the LBP features, the center pixel is compared with

its 8 neighboring pixels in each cell. To generate the CH features, RGB images are

first transformed to HSV images, and then 16 bins for the hue space, 4 bins for the280

saturation space and 4 bins for the value space are used, resulting in features of pixel

counts in 16 × 4 × 4 = 256 bins. To generate the HoG features, the input image is

divided into 8 cells, and then gradients from 36 angles within 180 degrees are com-

puted in each cell with 9 bins used for each angle. This results in feature of gradient

counts in 9× 36 = 324 bins. To generate the WT features, the 20× 20 Gaussian filter285

is used on the input image. For NUS-WIDE, six types of low-level features are readily

provided by the dataset, including 64-D CH,144-D color correlogram (CORR) , 73-D

edge direction histogram (EDH), 128-D WT, 225-D block-wise color moments (CM)

and the 500-D bag-of-word model based on SIFT descriptions.

To compute the high-level representation for entire images, a CNN network with290

an architecture of C-S-C-S-F is used, where C stands for convolutional layer, S for

subsampling layer, and F for fully connected layer. A total of 20 convolutional kernels

of size 5 × 5 are used in each of the two convolutional layers. To compute the image

patch representation, its auto-encoder training includes three layers (input, encode, de-

code) with 300, 100 and 300 neurons. To implement the attention scheme, we extract295
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(a) High-level representation (X) (b) Multi-modal relation mechanism (X) (c) Attention mechanism (X) (d) Fine-tuning (X)

(1) Concatenated multi-view feature (×) (3) Single-modal relation via LSH [14] (×) (4) No attention (×) (5) No fine-tuning (×)

(2) Caffe features (�)

Setting 1 × × × ×

Setting 2 X × × ×

Setting 3 X X × ×

Setting 4 X X X ×

Setting 5 � X X X

Setting 6 X X X X

Table 1: List of settings alternative to the proposed model design.

d = 1, 2, 3, 4 patches for each input image and the size of each patch is set as 11× 11.

For the multi-modal scheme, we initialize the relation embeddings using cluster centers

estimated by k-means clustering, for which the setting of c = 5, 10, 15, 20 is experi-

mented with. To optimize the network, batch based stochastic gradient descent is used

with the setting of Batchsize = 15 and Learning rate = 0.1. The precision of top 500300

retrieved images (500AP) and mean average precision (mAP) are used to assess the

retrieval performance.

4.2. Empirical Analysis of AMoS

The robustness of the proposed AMoS model is supported by the four design com-

ponents: (a) high-level image and patch representation, (b) multi-modal relation mech-305

anism, (c) dynamic attention mechanism, and (d) supervised model fine tuning. To

illustrate the importance and consequent necessity of each design, we compare vari-

ous alternative design options: (1) Replacing (a) with a long vector concatenating all

the features extracted by different feature extraction methods. (2) Replacing (a) with

features extracted from raw image pixels by a pre-trained Caffe network [15]. (3) Re-310

placing (b) with a commonly used single-modal similarity learning method based on

local sensitive hash (LSH) [14]. (4) Removing (c) from the model. (5) Removing (d)

from the model. Table 1 lists these different examined settings, where (X) indicates

the use of the proposed design options as in AMoS, while (×) or (�) indicates the use

of the alternative options.315

The performance of different settings is compared in Table 2 using the NUS-WIDE

and CIFAR-10 datasets, where c = 5 relation modalities and d = 3 image patches are
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Settings
NUS-WIDE NUS-WIDE CIFAR-10 CIFAR-10

500AP (%) mAP (%) 500AP (%) mAP (%)

Setting 1 0.05 0.06 0.09 0.11

Setting 2 0.22 0.23 0.16 0.18

Setting 3 (c = 5) 0.65 0.63 0.56 0.58

Setting 4 (c = 5, d = 3) 0.70 0.72 0.62 0.65

Setting 5 (c = 5, d = 3) 0.67 0.66 0.63 0.65

Setting 6 (c = 5, d = 3) 0.71 0.72 0.67 0.67

Table 2: Performance comparison of different model settings.

used in the evaluation. Performance differences between settings 4 and 6, between set-

tings 3 and 4, and between settings 2 and 3 demonstrate the effectiveness of fine-tuning,

the attention mechanism, and the multi-modal mechanism, respectively. The high-level320

image and patch representation obtained after the unsupervised pre-training is able to

offer significantly better retrieval performance than the concatenated multi-view fea-

tures. Although the Caffe network is trained in a supervised way with a large amount

of training examples, it is trained to solve a different task from image retrieval and of-

fers lower retrieval performance than the proposed representation learning method (see325

the performance difference between settings 5 and 6).

4.3. Comparison with State-of-the-art Methods

We now compare the proposed AMoS with seven state-of-the-art algorithms and

report the performance in Table 3. The competing methods include a multi-modal sim-

ilarity learning algorithm of online multiple kernel similarity learning (OMKS) [39],330

a deep multi-modal similarity learning algorithm of deep semantic ranking hashing

(DSRH) [49], a deep similarity learning algorithm of deep regularized similarity com-

parison hashing (DRSCH) [47], several hashing based algorithms, such as the kernel

based supervised hashing (KSH-CNN) [23], mutliview alignment hashing (MAH) [22]

and neighborhood discriminant hashing (NDH) [33], as well as a conventional image335

retrieval approach of iterative quantization (ITQ) [11]. For these competing meth-

ods, the parameter settings recommended in their corresponding published works are

adopted in our experiments. It can be seen from Table 3 that AMoS outperforms all
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Methods
NUS-WIDE NUS-WIDE CIFAR-10 CIFAR-10 PLACES2 PLACES2 ImageNet ImageNet

500AP (%) mAP (%) 500AP (%) mAP (%) 500AP (%) mAP (%) 500AP (%) mAP (%)

AMoS (c = 5, d = 3) 0.71 0.72 0.67 0.67 0.60 0.63 0.92 0.88

AMoS (c = 10, d = 3) 0.70 0.71 0.65 0.66 0.58 0.60 0.87 0.87

AMoS (c = 15, d = 3) 0.70 0.67 0.65 0.66 0.58 0.57 0.86 0.87

AMoS (c = 20, d = 3) 0.68 0.67 0.62 0.62 0.56 0.55 0.85 0.87

AMoS (c = 5, d = 1) 0.66 0.65 0.60 0.62 0.52 0.50 0.83 0.80

AMoS (c = 5, d = 2) 0.70 0.66 0.63 0.64 0.56 0.60 0.88 0.90

AMoS (c = 5, d = 3) 0.71 0.72 0.67 0.67 0.60 0.63 0.92 0.88

AMoS (c = 5, d = 4) 0.68 0.69 0.65 0.66 0.58 0.62 0.86 0.87

OMKS [39] 0.60 0.62 0.58 0.55 0.47 0.50 0.70 0.73

DSRH [49] 0.62 0.63 0.64 0.63 0.53 0.51 0.85 0.84

DRSCH [47] 0.63 0.64 0.65 0.63 0.55 0.56 0.88 0.87

NDH [33] 0.30 0.32 0.26 0.32 0.26 0.22 0.50 0.47

ITQ [11] 0.28 0.28 0.22 0.25 0.18 0.17 0.42 0.33

MAH [22] 0.35 0.32 0.38 0.40 0.28 0.37 0.53 0.48

KSH-CNN [23] 0.62 0.62 0.52 0.47 0.44 0.40 0.64 0.70

Table 3: Performance comparison of different methods for different datasets.

the competing methods satisfactorily and for all the studied datasets in terms of both

performance measures 500AP and mAP.340

4.4. Output Demonstration

In this section, we provide several examples to illustrate the learning output pro-

duced by AMoS. In Figure 2, we illustrate multiple pairs of related images. Within each

image pair, two pairs of patches possessing the highest attention weight (s∗t , h
∗
t ) =

arg maxd
s,h=1 e

(t)
ij (s, h) for the top two relation modalities (with the highest similarity345

scores) are highlighted. To generate the second example, an AMoS model supporting

c = 5 relation modalities is trained. Figure 3 highlights the salient patch pair possess-

ing the highest attention weight for each relation modality, where three example pairs

of related images are illustrated. From the left to the right side of the figure, the su-

perimposed boxes in each column represents the relation modalities ranked in order of350

descending similarity scores; specifically, the red (yellow) box indicates the patch pair

with the highest attention weight under the (second) most dominating relation modal-

ity. It can be seen, from Figures 2 and 3, that the proposed model can successfully

learn salient patches that contribute significantly to the relevance between two related
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Figure 2: Illustration of the learned salient patch pairs possessing the highest attention weights for the top

two relation modalities (red for top one and yellow for top two) with the highest similarity scores.

images. It is also interesting to observe that the way AMoS pays attention to image355

matching is quite similar to humans.

5. Conclusion

We have proposed the novel similarity learning model AMoS, capable of process-

ing complex relevance patterns exhibiting multi-modal properties. AMoS possesses

very good model interpretability and its unique attention mechanism enables the model360

to dynamically capture salient patches contributing to image relevance. Each of the
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Figure 3: Examples of salient patch pairs highlighted in boxes with different colours for c = 5 relation

modalities. From left to right, the superimposed patch pair corresponds to relation modalities ranked in

descending order based on the corresponding similarity scores.
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learned relation modalities, according to its relation embedding initialization scheme,

can be viewed as either a semantic topic contained by the training images or a user-

identified relation type. Properties of the learned relation modalities can be visualized

by its signature salient patch pair possessing the highest attention weight over the tar-365

geted modality. Model robustness is enhanced by its layer-wise training containing

a mixture of unsupervised and supervised training schemes. Quantitative evaluation

with the image retrieval task demonstrates the effectiveness of the learned similarity

function. Demonstration of output examples from salient patch pairs and relation types

indicate some relation between machine intelligence and human vision understanding.370

Currently, AMoS learns similarity functions distributed on flat networks (e.g., flat

relation modalities encoded as neurons in a flat layer) and it focuses on image objects.

In many real-word tasks, objects are connected by hierarchical relations. A potential

future direction is to pursue ways of formulating hierarchical multi-modalities to ex-

plore more complex relation patterns. Additionally, it is interesting to explore object375

relations in a cross-modal manner, where different modalities correspond to types of

information resources, such as image, text and knowledge graphs, to suit the increasing

needs of jointly analyzing multi-media and network data.
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