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Maintenance Strategy Optimization for Complex
Power Systems Susceptible to Maintenance Delays

and Operational Dynamics
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Hindolo George-Williams and Edoardo Patelli4

Abstract—Maintenance is a necessity for most multicomponent5
systems, but its benefits are often accompanied by considerable6
costs. However, with the appropriate number of maintenance teams7
and a sufficiently tuned maintenance strategy, optimal system per-8
formance is attainable. Given system complexities and operational9
uncertainties, identifying the optimal maintenance strategy is a10
challenge. A robust computational framework, therefore, is pro-11
posed to alleviate these difficulties. The framework is particularly12
suited to systems with uncertainties in the use of spares during13
maintenance interventions, and where these spares are character-14
ized by delayed availability. It is provided with a series of generally15
applicable multistate models that adequately define component be-16
havior under various maintenance strategies. System operation is17
reconstructed from these models using an efficient hybrid load-flow18
and event-driven Monte Carlo simulation. The simulation’s novelty19
stems from its ability to intuitively implement complex strategies20
involving multiple contrasting maintenance regimes. This frame-21
work is used to identify the optimal maintenance strategies for a22
hydroelectric power plant and the IEEE-24 RTS. In each case, the23
sensitivity of the optimal solution to cost level variations is inves-24
tigated via a procedure requiring a single reliability evaluation,25
thereby reducing the computational costs significantly. The results26
show the usefulness of the framework as a rational decision-support27
tool in the maintenance of multicomponent multistate systems.28

Index Terms—Complex system, maintenance optimization,29
Monte Carlo simulation, multistate system, uncertainty.30

NOTATIONS31

A − B Elements in A but not in B.32

�a� Smallest integer greater than a.33

min (A) Least element of set/vector A.34

min (A, b) Least element of A greater than b.35

Exp (a) Exponential distribution with rate 1/a.36

U (a, b) Uniform distribution with bounds on a, b.37

LogN (a, b) Log-normal distribution with mean a, std. b.38

Wb (a, c) Weibull distribution with scale parameter a and39

shape parameter, c.40
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Gu (a, b) Gumbel distribution with mean a, std. b. 41

G (a, b) Gamma distribution with shape parameter a and 42

scale parameter, b. 43

u ∼ [0, 1] Uniform random number between 0 and 1. 44

[a, b] Maint. strategy based on regimes a and b. 45

numel (A) Number of elements in set/vector A. 46

ABBREVIATIONS 47

APM Awaiting preventive maintenance state. 48

CM Corrective maintenance state. 49

EENS Expected energy not supplied. 50

(EENS)eff total EENS. 51

D Diagnosis state. 52

F Failed state. 53

I Idle state. 54

PF Partial failure state. 55

PM Preventive maintenance state. 56

S Shutdown state. 57

W Working state. 58

NOMENCLATURE 59

pi Probability of spares for CM of component i. 60

qi Probability of spares for PM of component i. 61

tpm Preventive maintenance duration. 62

ki Proportion of tpm spent before spares request. 63

Λi Minimum threshold load for component i. 64

ω Number of maintenance groups. 65

ntj
Total number of teams in group j. 66

n1j
Number of CM teams in group j. 67

n2j
Number of PM teams in group j. 68

n∗ Combination of maintenance teams 69

mj Total number of components in group j. 70

M Total number of maintainable components. 71

M ′ Total number of system nodes. 72

Tm Mission time. 73

T i Transition matrix for component i. 74

N Number of Monte Carlo samples. 75

N Set of possible maintenance team combinations 76

N
{cm}
i Number of CM actions on component i. 77

N
{pm}
i Number of PM actions on component i. 78

t
{cm}
i Time spent by component i in CM. 79

t
{pm}
i Time spent by component i in PM. 80

s
{cm}
i Number of CM spares used for component i. 81
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s
{pm}
i Number of spares used in PM of component i.82

μ
{cm}
i CM suspension indicator for component i.83

μ
{pm}
i PM suspension indicator for component i.84

ts Current simulation time.85

x Current state.86

ynext Next transition state.87

tnext Next transition time.88

ym Next maintenance state.89

y′ Next failure state of a component in APM.90

t′ Maximum lifetime of a component in APM.91

tspent Time spent in PM before maint. suspension.92

tspare Spares delay time.93

trem Remaining lifetime of a component.94

θ
{cm}
j Set of components repaired by group j.95

θ
{pm}
j Set of components assigned to group j for PM.96

θj

(
θ
{cm}
j ∪ θ

{pm}
j

)
.97

λ
{cm}
j Number of busy CM teams from group j.98

λ
{pm}
j Number of busy PM teams from group j.99

Π Matrix defining the number of maint. teams.100

ϕ Shared/dedicated maintenance indicator.101

h1 Set of components in CM queue.102

h2 Set of components in PM queue.103

h1f Final content of h1 after normalization.104

h2f Final content of h2 after normalization.105

I. INTRODUCTION106

OWING to the rapid growth in human population and the107

proliferation of new electrical-energy-driven technolo-108

gies, the demand for sustainable electricity is on a steady rise.109

Coupled with a competitive market, the electrical power oper-110

ator is under increasing pressure to deliver an adequate, safe,111

affordable, and uninterrupted supply. They, however, are con-112

strained by the impossibility to continuously operate the system113

without outages, consequent of component failure, and mainte-114

nance. To minimize the impact of these outages on consumer115

satisfaction, the maintenance strategy adopted should be robust,116

meet operator expectation, extend the life of the system, and117

be carefully executed [1], [2]. From an operator perspective, a118

robust strategy is one that ensures the maximum system through-119

put and keeps the operating cost to a minimum. In addition to120

its impact on system performance, maintenance accounts for a121

significant proportion of the total operating cost of power sys-122

tems. It, therefore, to a significant extent, defines the revenue123

generated and the overall investment sustainability. In summary,124

the principles of modern maintenance engineering do not only125

require meeting technical and operational goals, but achieving126

them through the most cost effective means. This constraint dic-127

tates, maintenance follow a strategy imposing minimum system128

output loss and at the least possible cost.129

A. Maintenance Strategy Optimization130

In the most general sense, maintenance can be optimized131

against various reliability and performance indices. The indices132

used depend on the application and the goal of the analyst. For 133

instance, in nuclear and other safety-critical systems, failure 134

probability and recovery likelihood are the most frequently used 135

indices. However, regardless of the application and the indices 136

used, the goal is finding the optimum balance between costs and 137

benefits, while not ignoring any important system constraints 138

[2]. This process involves comparing the monetary equivalent 139

of the benefits to the costs incurred in their attainment. A lim- 140

iting factor, therefore, would be the convertibility to monetary 141

gains of these benefits. Consequently, cost minimization has 142

been the subject of many maintenance optimization models [1], 143

[3]–[12]. While some of these models consider the system as 144

a single unit (for instance, [1], [6], [13]), many are enhanced 145

for multicomponent systems. With respect to implementation 146

effort, multicomponent models are more demanding, due to the 147

presence of multiple system dynamics and structural complex- 148

ities. Notwithstanding, various researchers have successfully 149

implemented maintenance optimization models on multicom- 150

ponent systems [3]–[5], [8]–[11]. A comprehensive review and 151

historical overview can be found in [14]–[16]. 152

The cost of maintaining a system constitutes various param- 153

eters, varying according to the external dynamics surrounding 154

the system and the intrinsic properties of its building block. 155

Prominent among these are the reliability and maintainability 156

of components, cost of spares, labor cost, and the frequency 157

and duration of PM actions. An accurate model, therefore, ac- 158

counts for all of these parameters. With a few exceptions focus- 159

ing on reliability-centered maintenance [5], [8] or maintenance 160

contract assessment [17], most of the models are dedicated to 161

determining either the optimal PM schedule, inspection, or com- 162

ponent replacement intervals. Often, they are hinged on the 163

assumption that there are sufficient maintenance teams to ac- 164

complish maintenance functions [4]–[9], [11], [17] and delays 165

imposed by logistic and administrative constraints are usually 166

ignored [3]–[9], [11], [17]. Instantaneous PM or inspection is 167

another assumption frequently invoked [3], [4], [9], [11], [13]. 168

While these assumptions are reasonable for some systems, they 169

may be completely unrealistic for many, a notable instance be- 170

ing a system with large maintenance durations and operated 171

under limited maintenance team conditions. These large dura- 172

tions, normally due to logistic or human resource constraints, 173

affect system performance negatively. They also render the cost 174

and number of spares used worth considering, a factor many 175

maintenance optimization models have ignored. 176

When the possibility of maintenance interruptions exists, 177

constraints on the states of components during periods of 178

maintenance suspension become important. A component’s 179

maintenance is suspended if it requires spares which availability 180

is delayed or if the maintenance team is reassigned to a more 181

critical component. During suspensions, the component may 182

either be put back into operation (assuming it is only partially 183

failed or under PM) or kept out of operation until maintenance 184

is completed. The careful scheduling of these maintenance 185

actions may also mitigate their effect on throughput losses. 186

This is the case especially for planned PM and CM of partially 187

failed components. Hence, there is the need for an optimiza- 188

tion framework that derives the combination of procedures 189
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(maintenance strategy) minimizing system losses, as well as190

the maintenance cost. Maintenance strategy here refers to a set191

of procedures specifying the following.192

1) The number of maintenance teams employed and how193

they are assigned to components.194

2) Whether or not PM and CM should be carried out by the195

same team.196

3) Whether PM interventions and CM of partially failed com-197

ponents should consider the state of the system or a rele-198

vant subsystem.199

4) What happens to a component when its maintenance is200

suspended.201

Significant strides have already been made toward mainte-202

nance strategy optimization in the presence of some of these,203

including other dynamic considerations like ageing, imperfect,204

and condition-based maintenance [3], [4], [18], [19]. However,205

the techniques proposed in these works are suited mainly to206

binary-state systems. An approach considering all the con-207

straints in question and in a multistate multicomponent envi-208

ronment is yet to emerge. In this work, a simulation framework209

that can be used to identify the optimal maintenance strategy for210

a multistate system prone to the range of possible operational211

dynamics listed is proposed. A detailed account of its theoretical212

and modeling principles is provided, thereby setting the tone for213

its wide applicability.214

B. Advantages of the Proposed Approach215

The dependability of the optimal solution obtained from any216

maintenance strategy optimization scheme is determined by the217

accuracy of its system performance measures. This, in turn, is218

influenced by the suitability to the system of the reliability mod-219

eling technique employed. These modeling techniques fall into220

one of two broad categories: analytical and dynamic reliability221

models. The former are inapplicable to certain reliability prob-222

lems, especially those involving complex maintenance strategies223

and other dynamic considerations. When forced to suit such224

problems, the resulting models are often oversimplified to an225

extent that compromises the credibility of the outcome. In fact,226

most of the limitations of the existing maintenance optimization227

models discussed in the preceding section are associated with228

analytical models.229

Dynamic reliability models, on the other hand, possess suf-230

ficient flexibility to model the dynamic considerations and un-231

certainties that normally characterize the operation of realistic232

systems. Stochastic Petri Nets [20], stochastic hybrid systems233

[21], and Monte Carlo simulation [3], [22]–[24] are the most234

popular in this category. Stochastic Petri Nets, however, require235

the enumeration of the entire state space of the system, which236

makes them infeasible for complex multistate systems, even of237

moderate size. They also suffer a serious setback when the sys-238

tem can undergo non-Markovian transitions, in which case Tuf-239

fin et al. [25] recommend simulation. Stochastic hybrid systems240

are an emerging modeling formalism with promising prospects241

for dynamic reliability modeling. They are built around the242

Markov reward model of the system when solicited for243

problems involving performance optimization or system operat- 244

ing cost minimization [21]. Consequently, like stochastic Petri 245

Nets, they are intractable for complex multistate systems, due 246

to their susceptibility to the state explosion conundrum. In addi- 247

tion, they proceed by translating the dynamic reliability problem 248

into a set of differential equations, which closed-form solution, 249

in some cases, may be difficult to obtain analytically. Some 250

researchers [26] have even had to resort to a Monte Carlo sim- 251

ulation approach to solving these differential equations. Given 252

the structural complexity of most of the power systems and 253

their multistate attributes, Monte Carlo simulation, therefore, 254

remains the most feasible approach, regardless of its higher 255

computational intensity. 256

However, most of the Monte Carlo simulation algorithms 257

[23], [27], [28] require prior knowledge of the system’s struc- 258

ture function or its path or cut set, which for complex multistate 259

systems is tedious. In [22], a simple load-flow-based simulation 260

approach, applicable to any system configuration, was intro- 261

duced. It allows the simulation of a multistate system without 262

the need to define its structure function, path, or cut sets. Notably, 263

it enables the replication of realistic system operating principles, 264

like shutdown and restart of components. These shutdown events 265

can be as a result of the unavailability of another component or 266

loading restrictions imposed on the components themselves. 267

When dealing with maintainable systems, it is vital to consider 268

this form of functional interdependence between components, 269

as the failure and PM of most of components depend on the 270

effective time spent in operation. Most of the reliability and 271

performance analysis approaches disregard this feature because 272

it is either impossible or difficult to determine the actual flow 273

through system components. We adapt this modeling approach 274

to systems with limited maintenance teams, prone to mainte- 275

nance delays and other operational uncertainties. The modified 276

approach is a credible pathway via which system performance 277

indices relevant to the maintenance model are derived, without 278

making unrealistic assumptions. 279

Appreciating that most of the power systems exhibit 280

multistate characteristics, each system component is modeled 281

as a semi-Markov stochastic process. The multistate model 282

is modified to incorporate additional stochasticity induced 283

by the operational dynamics surrounding the system. Thus, 284

the resultant component model is also a translation of system 285

dynamics from the system to the component level. This model 286

simplifies the simulation procedure, rendering it more intuitive 287

and generally applicable. Most importantly, the simulation 288

procedure supports the complex scenario where various 289

components follow different maintenance strategies, another 290

limitation of the existing models. 291

The remainder of this work is organized as follows: Section II 292

is dedicated to defining key terms, presenting a general overview 293

of the problem under consideration, the proposed cost model, 294

and a description of the solution procedure. In Section III, a 295

background to the component and system models is presented. 296

The simulation algorithm and details on how components are 297

modeled to account for various system dynamics are also de- 298

scribed here. Section IV presents two case studies, illustrating 299
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the application of the models developed to realistic systems.300

Finally, in Section V, a conclusion is drawn on the proposed301

framework, with insights on its applicability.302

II. PROBLEM FORMULATION303

Consider a multicomponent system of an arbitrary structure,304

composed of either binary-state components, multistate com-305

ponents, or both. These components can undergo CM when in306

a degraded state and PM, which interval is determined by the307

effective time spent in operation since the last maintenance ac-308

tion (i.e., periods when the component is unavailable do not309

count). State transition times of components may be constant310

or follow any probability distribution. On entering a degraded311

state, a component is added to the maintenance queue and its312

repair process follows two stages: a diagnosis stage and a stage313

dedicated to actual repairs. At the end of diagnosis, the mainte-314

nance team may proceed to the second stage or initiate a spares315

request, if spares are required. The probability of the latter hap-316

pening is pi , where i, a positive integer arbitrarily assigned, is317

the index of the component in the system. There is a delay be-318

tween initiation of spares request and their delivery, which may319

vary from component to component and may again follow any320

probability distribution. Like CM, PM is prone to interruptions321

at a probability qi . This is normally realized after an average322

time kitpm | 0 < ki < 1, tpm being the component’s expected323

PM duration, and ki being the proportion of this time to elapse324

before the need for spares is realized. While the crew awaits the325

spares, they can be assigned to another job, if there are no other326

idle maintenance teams.327

At the system level, components are arranged into ω main-328

tenance groups, and each group maintained by ntj
| j =329

1, 2, . . . , ω maintenance teams. Under dedicated maintenance,330

ntj
is expressed in the form

(
n1j

, n2j

) | n1j
+ n2j

= ntj
,331

where n1j
is the number of teams dedicated to CM, and n2j

332

is the number of teams dedicated to PM. It is assumed that333

each of these ntj
teams has the expertise to maintain any of334

the mj components in group j. Maintenance is outsourced, and335

its cost constitutes three parts: a fixed cost per unit time per336

maintenance team, a fixed cost per maintenance call, and a fixed337

cost per unit time of actual maintenance service. There are no338

penalty costs on the system operator for failing to meet demand,339

but consumers only pay for the quantity of output supplied. The340

lost revenue accrued, with the total maintenance cost over a pe-341

riod, provides a measure of the performance of the system for342

that period. It is desired to find the maintenance strategy and343

the value of ntj
∀j ∈ {1, 2, . . . , ω}, ensuring optimum system344

performance. The objective of the optimization procedure is the345

minimization of system maintenance cost, as well as the cost346

incurred from unmet demand. A given strategy, therefore, is347

optimal if it minimizes the total cost.348

There are a few attributes of the system described that pose349

some challenges. From a modeling point of view, the fact that350

the system could be multistate and of any architecture disquali-351

fies most of the existing system reliability evaluation techniques352

(see Section I-B). Similarly, the limited number of maintenance353

teams, the uncertainties associated with the need for spares to 354

complete a maintenance action, and the delays in the availabil- 355

ity of these spares present a serious planning and scheduling 356

dilemma. For instance, if the maintenance crew knew that ev- 357

ery PM action would require spares, they would place a spares 358

request in advance. Conversely, they could carry with them a 359

few spares in anticipation, but this would be applicable only to 360

nonbulky components, since there is a limit to how much could 361

be carried. The need, therefore, for an optimal maintenance 362

strategy cannot be overemphasized. 363

A. Definition of Key Terms 364

1) Expected Output-Not-Supplied: A measure of the ex- 365

pected amount by which the actual system output deviates 366

from its expected level, within a given period, Tm . This 367

quantity, in power systems, is known as the EENS, and 368

it accounts for the periods the system performance curve 369

is below the load curve. If Y (t) and Yd(t), respectively, 370

denote the instantaneous system output and demand, then, 371

for a demand-driven system (i.e., Y (t) ≤ Yd(t)) 372

EENS =
∫ Tm

0
(Yd(t) − Y (t)) dt. (1)

For a given system reliability problem, Yd(t) is normally 373

known, and Y (t) is computed from the system reliability 374

analysis outcome. When obtained via Monte Carlo simu- 375

lation, Y (t) is defined by a collection of discrete sets of 376

system performance levels as a function of time. There- 377

fore, the discrete form of (1) should be used to compute 378

the system EENS. Given that Y (t) is random, the EENS is 379

computed as the average of the performance deficiencies 380

of all the samples of Y (t). For N Monte Carlo samples 381

of Y (t), let the ith sample contain ni performance-level 382

transitions, yij = Yd(t) − Y (t) at the jth transition, and 383

t = tij | 0 ≤ tij ≤ Tm , the corresponding transition time; 384

then 385

EENS =
Y0

N

Y0 =
N∑

i=1

(yini
(Tm − tini

) + Y1)

Y1 =
ni∑

j=2

yi(j−1)
(
tij − ti(j−1)

)
(2)

where yini
and tini

are, respectively, the final performance 386

level and last transition time of sample i. Alternatively, 387

if instead of Y (t) and Yd(t), only the possible system 388

performance and demand levels with their corresponding 389

occurrence probabilities are known, the EENS is com- 390

puted through a different approach. Let the system exist 391

in n distinct output levels as defined by vector C, with 392

probability of occurrence within the period, Tm , defined 393

by vector P. The expected performance deviation per unit 394
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time, β, and EENS are395

β =
α∑

j=1

(j,Pd) β
{j}
0

β
{j}
0 =

n∑
i=1

max ((j,Cd) − (i,C) , 0) (i,P)

EENS = Tm β (3)

where α is the number of possible demand levels, Cd is396

the vector defining these levels, and Pd is the vector speci-397

fying their corresponding probabilities of occurrence. For398

systems like power distribution networks with multiple399

load points, the effective EENS, (EENS)eff, is given by400

the sum of the EENS at all the load points.401

2) Shared Maintenance: In this maintenance strategy, the402

same team is assigned to perform both PM and CM on a403

component or a group of components.404

3) Dedicated Maintenance: Unlike shared maintenance, sep-405

arate teams carry out PM and CM on the same group of406

components. This implies that a failed or a component407

due for preventive maintenance remains unattended if its408

dedicated maintenance team is unavailable.409

B. Cost Model410

The resultant effect of component failure, maintenance strat-411

egy, and operational dynamics on the system is expressed in412

terms of the expected total loss, L, incurred. Assuming zero413

inflation, its components are expressed as follows:414

1) Loss, L1 , due to lost output, which in turn is due to sys-415

tem outages, consequent of component failure, and main-416

tenance. If C0 is the cost of a unit output, L1 is expressed417

as418

L1 = C0 (EENS)eff . (4)

For commercial power systems, EENS is in kWh and C0419

is the cost of a kWh (e.g., in £/kWh).420

2) Fixed maintenance cost, L2 , emanating from fixed wages421

for maintenance personnel. If each team of group j is paid422

rj units of currency per unit time, L2 is given by423

L2 = Tm

ω∑
j=1

rjntj
. (5)

3) Total cost, L3 , associated with the fixed cost per mainte-424

nance action. This cost is normally associated with trans-425

portation of crew, contribution to offset purchasing cost426

of tools, or both. If mc is the cost per maintenance action427

and N
{cm}
i and N

{pm}
i are, respectively, the number of428

successful CM and PM actions for component i, L3 is429

given by 430

L3 =
M∑
i=1

mc

(
N

{cm}
i + N

{pm}
i

)

M =
ω∑

j=1

mj (6)

where M is the number of maintainable components of 431

the system. When expressed in closed form, (6) takes the 432

form 433

L3 = {mc}1×M {N {cm}
i , N

{pm}
i }M ×2{1}2×1

| i = 1, 2, . . . ,M. (7)

4) Cost, L4 , of maintaining system components, a function 434

of the time spent by each component in maintenance and 435

the cost per unit time of maintenance. If C
{cm}
i and C

{pm}
i 436

are, respectively, the costs of CM and PM of component i 437

per unit time, t
{cm}
i and t

{pm}
i , its total time spent in CM 438

and PM, L4 is expressed as 439

L4 =
M∑
i=1

(
C

{cm}
i t

{cm}
i + C

{pm}
i t

{pm}
i

)
. (8)

In closed form, (8) is given by 440

L4 = {1}1×M l{1}2×1

l =
({

C
{cm}
i , C

{pm}
i

}
M ×2

◦
{

t
{cm}
i , t

{pm}
i

}
M ×2

)
.

(9)

The “◦” operator denotes elementwise multiplication of 441

two matrices. 442

5) Cost, L5 , of spares used in maintaining system compo- 443

nents. For most of the systems, on average, the spares 444

used during PM are minor and cheaper when compared to 445

those used in CM. Let s
{cm}
i and s

{pm}
i be the number of 446

spares used in CM and PM of component i, respectively. 447

If their corresponding unit costs are C
{cm}
si and C

{pm}
si , 448

respectively, then L5 is expressed as 449

L5 =
M∑
i=1

(
C{cm}

si
s
{cm}
i + C{pm}

si
s
{pm}
i

)
(10)

which in closed form condenses to 450

L5 = {1}1×M l{1}2×1

l =
({

C{cm}
si

, C{pm}
si

}
M ×2

◦
{
s
{cm}
i , s

{pm}
i

}
M ×2

)
.

(11)

The overall system lost revenue, L, is given by 451

L =
5∑

i=1

Li. (12)

Normally, the nominal system output and the various costs 452

are known. Determination of L, therefore, effectively reduces 453
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to the task of estimating (EENS)eff, {N {cm}
i , N

{pm}
i }M ×2 ,454

{t{cm}
i , t

{pm}
i }M ×2 , and {s{cm}

i , s
{pm}
i }M ×2 via reliability eval-455

uation. These parameters are a function of the failure and main-456

tenance events of the system components and are, therefore,457

random. As a consequence, their mean/expected values are used458

in calculating the system lost revenue, L.459

If the system reliability and performance indices, for strategy460

k, are represented by the function R (n∗, k), and the set of costs461

by C, then the system loss function can be expressed in the462

form L (C,R (n∗, k)). With R (n∗, k) known for all possible463

strategies, the optimal maintenance strategy can be identified464

and its sensitivity to variations in cost levels investigated without465

the need for multiple simulations.466

C. Proposed Maintenance Regimes467

Depending on the type of maintenance strategy in use, dif-468

ferent system performance outcomes are possible, even with469

the same number of maintenance teams. For instance, in a470

series-connected system, it may seem reasonable to postpone471

PM until system failure. In such a scenario, PM and CM ac-472

tions are performed concurrently. Ideally, this should result in473

reduced system downtime and subsequent improvements in per-474

formance. This is normally the case if PM actions are frequent475

and require large times, or if some components are not eas-476

ily accessible, such that their maintenance inflicts significant477

throughput losses on the system. However, postponing a com-478

ponent’s PM may increase its likelihood of failure and bring479

with it additional costs. These costs are incurred from spares480

used, longer system down times, and higher maintenance inter-481

vention costs, as CM durations normally are longer. In addition,482

more than one maintenance team may be required for efficient483

implementation of this strategy, since there may be multiple484

components requiring maintenance intervention when the sys-485

tem fails. On the downside, the teams are idle while the system is486

in operation but continue to receive salaries as the maintenance487

contract demands. A similar argument can be proffered for CM488

of partially failed components, if, in spite of the failure, system489

performance remains above a certain threshold. This procedure,490

however, may be counterproductive if component interdepen-491

dencies exist in the system, such that a degraded component492

affects the operation of healthy ones. Therefore, even for a sys-493

tem, it is difficult to determine whether the procedure yields the494

most cost effective solution without a detailed reliability anal-495

ysis. In summary, the optimality of a given strategy depends,496

among other factors (cost levels, for instance), on the topology497

of the system and the nontopological functional relationships498

between its components.499

Generally, the following regimes may be considered when500

deciding the promptness of PM and major CM of partially failed501

components.502

1) Maintenance can be carried out at any time. The time of503

intervention depends only on the availability of mainte-504

nance teams.505

2) Maintenance is carried out only when system output is506

nominal.507

3) Maintenance is carried out only when a component is not 508

in operation. This may coincide with the unavailability of 509

the entire system or the unavailability of the subsystem to 510

which it belongs. 511

When the maintenance of a component is interrupted due to 512

delays in the availability of spares, two possible scenarios ensue. 513

4) The component remains shutdown until spares are made 514

available. In this case, there are no risks of incurring addi- 515

tional costs from failures. However, the maintenance team 516

may be assigned to another task during the wait, and there 517

will be revenue losses as the system operates below its 518

nominal performance level. 519

5) The component is put back into operation, in which case 520

it continues to perform its normal function. This results in 521

no loss of system output, provided that it does not fail. 522

D. Solution Sequence 523

The regimes highlighted in Section II-C can be arranged into 524

two groups. Regimes 1–3 define the promptness of maintenance 525

actions, and regimes 4 and 5 define the status of a component 526

during maintenance interruptions. Each system component may 527

be subjected to a combination of regimes, one from each group, 528

giving rise to six possible maintenance strategies. Depending 529

on the dynamics surrounding the operation of the system, ad- 530

ditional strategies are applicable. For instance, on the basis of 531

division of labor, PM and CM interventions could be shared or 532

dedicated. This would lead to a total of 12 possible strategies, if 533

considered. The corresponding component and system models 534

are then derived for each of these strategies in preparation for 535

system optimization. 536

The optimization procedure follows a two-stage approach. In 537

the first stage, the optimal maintenance strategy is identified by 538

analyzing each system model, with no restriction on the number 539

of maintenance teams. For each case, the performance function, 540

L, is determined, and the optimal strategy is identified as the 541

one yielding the least value of L. The second stage searches 542

for the optimal number of maintenance teams using this strat- 543

egy. Here, the system is reanalyzed for various values of ntj
in 544

shared policies and various combinations of n1j
and n2j

in ded- 545

icated policies. Given that a component can undergo only one 546

maintenance intervention at any instance, each ntj
is bounded 547

by (0,mj ) and
∑ω

j=1 ntj
≤ M . In dedicated policies, both n1j

548

and n2j
are bounded by (0,mj ), with the additional condi- 549

tion n1j
+ n2j

≤ mj . Additional constraints may be imposed 550

on the number of maintenance teams in each group, depend- 551

ing on the maintenance strategy and certain requirements set 552

by the operator. For example, if two maintenance groups i and 553

j have at least one component in common, then nti
+ ntj

≤ 554

| θi ∪ θj |. The operator, under economic constraints, may also 555

impose bounds that are less than the limits already defined on 556

the maintenance team size. Let n∗ | n∗ = {nt1 , nt2 , . . . , ntω
} 557

represent a combination of maintenance teams and N | N = 558

{n∗
1 ,n

∗
2 , . . . ,n

∗
φ} the set of all possible maintenance team com- 559

binations, with φ denoting their total. Deriving N entails ob- 560

taining, first, the set defined by the number of components in 561

each group, such that N = {1, 2, . . . ,m1} × {1, 2, . . . ,m2} × 562
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. . . × {1, 2, . . . ,mω} and φ =
∏w

j=1 mj . Any combinations not563

satisfying the operator and maintenance-strategy-imposed con-564

straints are removed565

(Lmax , kopt) = min
({L (C,R (∞, k))}�

)

k = 1, 2, . . . , � kopt ≤ � (13)
(
Lmin ,n∗

opt

)
=min

({L (
C,R

(
n∗

j , kopt
))}φ

)

j =1, 2, . . . , φ n∗
opt ∈ N Lmin ≤ Lmax . (14)

The optimal solution, therefore, is defined by the triplet566 (
Lmin ,n∗

opt, kopt
)
, where Lmin , n∗

opt, and kopt are, respectively,567

the minimum system loss, the optimal maintenance team size568

combination, and the optimal strategy. If R (∞, k) represents the569

reliability/performance indices of the system under maintenance570

strategy k with no restrictions on the number of maintenance571

teams, and � the number of strategies, (13) and (14) summarize572

the optimization procedure. R (∞, k) is obtained by setting the573

number of teams in each maintenance group to the number of574

components in that group. For this, components belonging to575

multiple groups are assumed to belong to the group with the576

least cost per maintenance team.577

Large systems often result in a large number of candidate so-578

lutions. In such cases, it is advised to exploit smart optimization579

techniques such as genetic algorithm [3], [4], [9] and particle580

swarm optimization [5]. These, however, have not been consid-581

ered, as the objective here is to provide a clear insight on the582

component and system modeling procedures.583

III. SYSTEM RELIABILITY AND PERFORMANCE ANALYSIS584

In this section, a brief description of the component and sys-585

tem modeling procedures is presented, with details on the algo-586

rithms invoked in the reliability evaluation process. To ensure587

simplicity and maintain focus on the modeling procedures, a588

perfect maintenance situation is assumed. It is, however, worth-589

while noting that this is in no way limiting, as the framework590

can easily be extended to imperfect maintenance scenarios.591

A. Component and System Representation592

The multistate model introduced in [22] is adopted to de-593

fine the behavior of each system component. This model takes594

cognizance of the various parameters required for the complete595

representation of attributes of a component. It accounts for the596

component’s possible state transitions, their associated proba-597

bility distributions, the performance level associated with each598

state, and any load restrictions imposed on the component.599

The system is modeled as a graph, in which nodes represent600

the components and demand points of the system, and edges601

represent their physical links. Define the connectivity of the602

graph to be a square adjacency matrix, conditioned to incor-603

porate the efficiency of the physical links. Efficient algorithms604

were proposed in [22] to deduce the system flow equations from605

this matrix. These equations, a function of the flow properties606

of the components, are in a format suitable for direct computa-607

tion with the interior-point algorithm [29]. Given a system state608

vector, the actual flow through every node can be determined by609

Fig. 1. State-space representation of a binary-state component under various
maintenance scenarios.

updating the flow equation matrices and applying the interior- 610

point algorithm. In addition to the advantages already outlined in 611

Section I-B, the matrix representation of the system structure 612

makes the procedure easily implementable on a digital com- 613

puter. Readers are referred to [22] for the details on the multi- 614

state component model and the flow equations. 615

B. Maintenance Modeling of Components 616

Consider a hypothetical series system, composed of binary- 617

state components (components naturally existing in only two 618

states) with capacity, c, equal to 1 when working, and 0 other- 619

wise. The effects of repairs and PM on the state space of each 620

system component, without maintenance delays, uncertainties, 621

and maintenance suspensions, are first presented. The resulting 622

models are later modified and generalized for multistate com- 623

ponents in systems prone to maintenance delays and operational 624

dynamics. 625

The following maintenance scenarios are considered. 626

1) Each component of the system is nonrepairable [see 627

Fig. 1(a)]. 628

2) A component can be repaired when failed [see Fig. 1(b)]. 629

3) A component can undergo preventive, as well as CM [see 630

Fig. 1(c)]. 631

Unlike the nonrepairable case, a failed component is subject to 632

repairs in scenarios 2 and 3. This is indicated by a transition from 633

state F to state W in Fig. 1(b) and (c). While the component is in 634

operation, other components of the system may fail. Given that a 635

series system is unavailable with the unavailability of at least one 636

of its components, available components are unavoidably taken 637

out of operation during repairs of failed components. A third 638

state, S, is, therefore, introduced to account for this dependent 639

unavailability of the operating component, as shown in Fig. 1(b) 640

and (c). The component remains in this state until all failed 641

components are repaired, following which, it is restarted and 642

restored. A fourth state, PM, is incorporated in Fig. 1(c) to 643

represent the period the component is in PM. 644

One can easily deduce that the transitions from W to F and W 645

to PM are competing, which is due to the perfect maintenance 646

assumption used. Since PM and repairs make the component 647
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Fig. 2. Repairable binary-state component under maintenance delays and
operational uncertainties. (a) Kept out of operation during spares delays.
(b) Returned into operation during spares delays.

as good as new, any pending failures are eliminated after PM,648

and any scheduled PM is reset after repairs. An as good or bad649

as old assumption would have been implemented by replacing650

the transition from W to PM with a forced transition. This,651

however, is outside the scope of this work. It is also clear that652

none of the three scenarios discussed considers the effects of653

external factors on component state transitions. For instance,654

there are no delays in the commencement of maintenance, and655

the maintenance process once initiated suffers no obstructions656

or suspensions. This, however, is not the case for many practical657

systems.658

Suppose the series system is replaced with the system de-659

scribed in Section II, such that there are more components than660

maintenance teams. To model such a case, four additional states661

are introduced in the state-space diagram in Fig. 1(c), as shown662

in Fig. 2. A description of the state designations and a summary663

of the transitions depicted are presented in Tables I and II, re-664

spectively. Fig. 2 also reveals that component state transitions665

can be classified as either natural (normal), forced, or condi-666

tional. Natural transitions occur randomly and depend only on667

their associated distributions. Forced transitions occur purely as668

a consequence of events outside the component boundary, and669

TABLE I
COMPONENT STATE ASSIGNMENT

State Designation Description

1 Working Component operates at required capacity level.
2 Failed Component is failed and CM is yet to commence;

c = 0.
3 CM Component is under repairs; c = 0.
4 APM Component is due for PM but maintenance is yet to

commence; c > 0.
5 PM PM in progress; c = 0.
6 Shutdown Component not failed but taken out of operation;

c = 0.
7 Diagnosis Failure is being diagnosed by maintenance team;

c = 0.
8 Idle Diagnosis is complete but the maintenance team is

waiting for spares, to resume maintenance. Required
only if delays in availability of spares is modeled;
c = 0.

TABLE II
DESCRIPTION OF STATE TRANSITIONS

Transition Description Transition Description

1-2 Component Failure 7-3 Fault Diagnosis Duration
1-4 PM Interval 5-1 PM Duration
3-1 CM Duration 4-2 Failure of component

whilst awaiting PM team
2-7 Forcing Diagnosis;

determined by availability
of maintenance team

5-8 spares needed during PM;
determined by probability
of spares being used

8-5 spares are available and
PM resumes; determined
by availability of PM
team

8-3 spares are available and
PM resumes; determined
by availability of CM
team

7-8 Spares needed during
CM; determined by
probability of spares
being used

1-6 Shutdown event like
failure of system or
another component

6-1,6-4 Component Restart;
suggests correction of
event leading to shutdown

6-5 PM during shutdown;
determined by availability
of maintenance team and
whether previous state of
component was APM
(state 4)

4-6 Shutdown event whilst
component is due for PM

4-5 Forcing PM; determined
by availability of
maintenance team and
spares

5-4 PM interruption due to
spares delay

their distributions are unknown. Conditional transitions, on the 670

other hand, have a known distribution, but are assigned a lower 671

priority and only occur on fulfillment of a predefined condition 672

or a set of conditions. In the transition matrix, Ti , of the com- 673

ponent, conditional and forced transitions are indicated by ∞ in 674

their relevant positions (see [22]). Unlike natural transitions in 675

which the next state of a component depends only on its current 676

state, the next state of a component under a forced transition 677

may also depend on its previous state. For this reason, a set of 678

special procedures are defined to execute them during system 679

simulation. 680
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Fig. 3. Repairable binary-state component under the assumption “maintenance only when component is unavailable.” (a) Kept out of operation during spares
delays. (b) Returned into operation during spares delays.

The component models presented in Fig. 2 are based on the681

assumption that PM can be carried out at any time or only when682

system performance is nominal. However, if PM is carried out683

only when a component is out of service, the models are as684

presented in Fig. 3. The difference between the two sets of685

models is the absence of the transition from state 4 to state 5 in686

Fig. 3. They share the same modeling principles, as well as the687

designations in Tables I and II.688

Multistate component modeling under maintenance delays689

follows a similar approach. The models in Figs. 2 and 3 can690

easily be generalized for multistate components by defining691

one idle state (if components are kept out of operation during692

spares delay), a “Diagnosis” state (where necessary), and one693

CM state for each repairable failure mode, as shown in Fig. 4. In694

Fig. 4, states 4 and 5 are a PF mode and its corresponding CM695

state, respectively. States 9 and 10 are additional “Diagnosis”696

and “Idle” states, respectively, for the PF mode. All the other697

states and transitions retain their designations and meanings, as698

defined in Tables I and II.699

C. Determining Component Transition Parameters700

A system’s reliability analysis by Monte Carlo simulation en-701

tails the sequential generation of the transition states and times702

of its components, with a view to replicating its actual opera-703

tion. In a multistate environment, a component’s next transition704

state, ynext, and time, tnext, are determined by which of the pos-705

sible transitions from its current state, x, occurs first. Given706

its transition matrix, all the possible transitions from state x707

are sampled, and the sampled times are stored in a register,708

T times. The transition corresponding to the least element of709

this register gives the next state of the component, while the710

next transition time is given by the sum of the least element711

and the current simulation time, ts . In the event of multiple712

transitions satisfying this condition, one of them is randomly713

selected.714

The sampling procedure described is pretty straightforward 715

and directly applicable to most of the multistate models. How- 716

ever, when PM is modeled as a competing transition with fail- 717

ures, and in the presence of limited maintenance teams, a slight 718

modification to the procedure is required. For instance, if a 719

working component is due for PM (state 4 in Figs. 2 and 3), 720

and for some reason, there is a significant delay, it may fail 721

(transition from state 4 to state 2) before the commencement 722

of maintenance. The elapsed time depends on what the failure 723

time would be assuming the component was not subject to PM. 724

Therefore, if on application of the procedure, the component is 725

found to survive till PM is due (i.e., its next state is APM), its 726

next failure state y′ and the maximum period t′ it will survive be- 727

fore failure are also determined. This procedure is summarized 728

by Algorithm 1 (see Fig. 5). 729

1) Accounting for Non-Markovian Transitions: Algorithm 1 730

(see Fig. 5) is only applicable to Markovian transitions (i.e., the 731

next state of a component depends only on its current state). 732

A second procedure, therefore, is required to implement the 733

forced and conditional transitions. The transitions to and from 734

shutdown, except those from shutdown to CM, PM, or Diag- 735

nosis (see Figs. 2–4), can be implemented by the shutdown 736

and restart procedure described in [22]. The remaining condi- 737

tional and forced transitions are dependent on the availability 738

of maintenance teams or spares, where required. For these, a 739

maintenance-forcing procedure, hinged on the assumption that 740

the component is already assigned to an available maintenance 741

team, is proposed. 742

When a component makes a transition to a new state, its 743

next transition parameters are automatically derived, using 744

Algorithm 1. However, for the reasons already stated, this algo- 745

rithm cannot derive forced maintenance transition parameters. 746

The component’s next maintenance state, ym , from the new 747

state is, therefore, manually determined from its transition ma- 748

trix. With correct modeling according to the models proposed in 749

Section III-B, each failure mode will have at most one 750
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Fig. 4. Repairable multistate component under maintenance delays and operational uncertainties. (a) Kept out of operation during spares delays. (b) Returned
into operation during spares delays.

Fig. 5. Algorithm 1: Sampling procedure for transition parameters of a mul-
tistate component with PM, under a limited maintenance team scenario.

maintenance state (CM or Diagnosis) associated with it. The751

component is added to the CM queue if ym exists. If, on the752

other hand, the new state is APM, the transition parameters of753

the component are not obtained by another application of Algo-754

rithm 1. They are determined from y′ and t′, obtained when the755

algorithm was applied when the component entered the Work-756

ing state (state W). In this case, ym is the only PM state, and the 757

component is added to the PM queue. 758

In the most general case, ym could either be Diagnosis, CM, 759

or PM. To force maintenance, ym is made the current state of 760

the component, and Algorithm 1 is applied to determine its 761

next transition parameters. It is deducible from the component 762

models presented in Figs. 2–4 that a component in Diagnosis 763

(state 7) can either undergo a normal transition to CM (state 3) 764

or a conditional transition to the Idle state (state 8). However, the 765

sampling algorithm always yields the normal transition. Given 766

that the conditional transition to Idle state occurs only if spares 767

are required, a uniform random number, u, between 0 and 1 is 768

generated and compared to the probability, pi , of spares being 769

needed to complete the maintenance. The Idle state (state 8) is 770

made the next transition state if u ≤ pi , and the transition time 771

yielded by the sampling algorithm is retained. In the case of 772

repair from a PF mode, such that the component is returned into 773

operation during spares delay [see states 4 and 9 in Fig. 4(b)], 774

the PF mode is made the next state, and μ
{cm}
i is assigned the 775

value 1. μ
{cm}
i is an indicator function that takes the value 1 776

when CM is suspended, and 0 otherwise. The component is 777

removed from the maintenance queue until the spares requested 778

are made available 779

tspent = kitpm

tnext = ts + (1 − ki) tpm

= ts +
(

1
ki

− 1
)

tspent. (15)

Similarly, a component in PM (state 5 in Figs. 2 and 3) can 780

either return to the Working state (state 1), go to the Idle state 781

(state 8), or return to its previous state if it should be kept in 782

operation while awaiting spares. Like CM, any of the last two 783

outcomes is determined by the probability, qi , of spares being 784

needed to complete PM. The next transition time if spares are 785
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Fig. 6. Algorithm 2: Procedure for forcing maintenance.

required is given by ts + kitpm , where tpm is the PM duration786

yielded by Algorithm 1, and ki is its proportion spent before the787

maintenance team realizes that spares are required. When PM788

is suspended, the component is removed from the maintenance789

queue, and μ
{pm}
i , its indicator function for PM suspension, set790

to value 1. On PM resumption, the expected duration of the re-791

mainder of the maintenance exercise is (1 − ki) tpm . To avoid792

storing too many variables during simulation, this period is ex-793

pressed in terms of tspent, the time spent by the component in794

PM before maintenance suspension. tspent is computed from the795

saved transition history of the component, and the next transi-796

tion time, tnext, is derived as in (15). The maintenance-forcing797

procedure described above is summarized by Algorithm 2 (see798

Fig. 6).799

D. Maintenance Strategy Implementation800

Algorithm 2 assumes that the component has already been as-801

signed an available maintenance team. However, with multiple802

components requiring maintenance intervention, maintenance 803

team assignment follows the maintenance strategy in use. Let 804

h1 and h2 be the sets of components requiring CM and PM, re- 805

spectively, Π = {n1j
, n2j

}ω×2 | j = 1, 2, . . . , ω be the matrix 806

defining the number of CM and PM teams in each maintenance 807

group, and ϕ = {ϕj}ω×1 be an indicator vector, in which ele- 808

ments are matched to the rows of Π 809

ϕj =
{

1, If maintenance group j is shared
0, Otherwise.

(16)

Each indicator element specifies whether its corresponding 810

maintenance group practices shared or dedicated maintenance, 811

as defined by (16). 812

Given the assumption of a component being as good as new 813

after PM or CM and the additional constraint that the former 814

is carried out only on the perfect component, the condition 815

h1 ∩ h2 = ∅ is imposed. Therefore, prior to maintenance team 816

assignment, all the elements of h1 ∩ h2 are removed from h2 817

(i.e., h2 = h2 − (h1 ∩ h2) or simply h2 = h2 − h1). Depend- 818

ing on the maintenance strategy, additional components may be 819

removed from h1 and h2 . For instance, if Ω is the set of compo- 820

nents in the Shutdown state, η1 , the set of components repairable 821

only while in the Shutdown state, and η2 , the set of compo- 822

nents which PM is initiated only when in Shutdown, then h1 = 823

(h1 − η1) ∪ (Ω ∩ η1) and h2 = (h2 − η2) ∪ (Ω ∩ η2). Simi- 824

larly, let δ1 be the set of components repairable only while 825

system performance is nominal, and δ2 be the set for which PM 826

is initiated only at nominal system performance. If system per- 827

formance is below nominal at maintenance team assignment, 828

h1 = h1 − δ1 and h2 = h2 − δ2 . Note that η1 applies to par- 829

tially failed components only. 830

With h1f and h2f representing the final contents of h1 and 831

h2 , respectively, the first maintenance group is considered. Its 832

assigned components in the maintenance queue are ranked ac- 833

cording to the predefined priority rule, and the top-ranked com- 834

ponent is assigned to the first available team in the group. As 835

a consequence, the number of available teams and the number 836

of ranked components reduce by 1 each. The procedure is re- 837

peated until all the ranked components have been assigned or 838

until there are no available maintenance teams in the group. At 839

this stage, h1f and h2f are updated accordingly, and the next 840

maintenance group considered if h1f ∪ h2f �= ∅. This recursive 841

procedure continues until all the maintenance groups have been 842

covered. 843

Let θ
{cm}
j be the set of components assigned to maintenance 844

group j for CM and θ
{pm}
j be the set assigned for PM. If λ

{cm}
j 845

and λ
{pm}
j are the numbers of unavailable teams from group j for 846

CM and PM, respectively, Algorithm 3 (see Fig. 7) summarizes 847

the maintenance strategy implementation procedure. Line 10 848

accounts for the case when components maintained only while 849

system performance is nominal are removed from the queue 850

following the deviation from nominal performance. This nor- 851

mally is a consequence of either PM or CM of a partially failed 852

component of a higher rank in the queue. 853
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Fig. 7. Algorithm 3: Procedure for maintenance strategy implementation dur-
ing simulation.

E. Simulation Procedure854

A discrete-event simulation model is proposed to replicate the855

behavior of the system. Starting with components in their initial856

states, the initial performance level of the system is computed857

and recorded, following which the next transition parameters of858

each component are sampled, and the simulation progresses to859

the earliest transition time. At this time, the current state of the860

appropriate component making the transition is updated, its new861

state is recorded as a function of time, its next transition param-862

eters are sampled, and the next simulation time is determined.863

This procedure is repeated for subsequent transitions until the864

mission time is exceeded. For every transition resulting in a865

change in the flow properties of a component, the output of the866

system is computed and recorded as a function of time. The rel-867

evant reliability and performance indices are determined from868

the saved component transition and system output histories.869

Let τ be the vector of next transition times of nodes (com-870

ponents and output points) and τ spare be the vector holding the871

availability times of component spares. If M ′ is the total num-872

ber of system nodes, the simulation procedure is summarized as873

follows.874

1) Initialize the system in preparation for simulation. This875

involves the following:876

a) initialization of registers to save the current flow 877

properties of nodes, transition history of com- 878

ponents, and the performance histories of output 879

nodes; 880

b) setting the required number of simulations, 881

Nsamples, and mission time, Tm . 882

2) Set ts = 0, s
{cm}
i = s

{pm}
i = μ

{cm}
i = μ

{pm}
i = 0∀i ∈ 883

{1, 2, . . . ,M ′}, h1 = h2 = ∅, τ = τ spare = {∞}M ′
. 884

3) Save the initial states of components. 885

4) Compute the initial performance level of all the output 886

nodes and save as a function of ts . 887

5) Sample the next transition parameters (ynext and tnext) of 888

nodes, update τ , and set ts = min (τ ). 889

6) Check for nodes with next transition time equal to ts . 890

For each node, i, 891

a) effect the required transition; 892

b) with the exception of the case when the new state 893

is APM, Idle, or PF given its previous state is 894

Diagnosis, sample its next transition parameters 895

and determine ym , where applicable. Update h1 or 896

h2 if ym exists, set μ
{cm}
i and μ

{pm}
i to 0, and go 897

to Step (g); 898

c) if the new state is APM, ynext = y′, tnext = t′ + 899

ts , ym is set to the PM state, and h2 is updated. 900

However, h2 is not updated if the node is returning 901

from PM, as the transition depicts a maintenance 902

suspension. In this case, tnext = trem + ts , where 903

trem is the remaining life of the component prior to 904

its maintenance being forced. Go to Step (f); 905

d) if the new state is PF and previous state Diagnosis, 906

tnext = trem + ts , the expected failure state before 907

the transition to Diagnosis is made ynext, and ym is 908

set to Diagnosis. Go to Step (f); 909

e) if the new state is Idle, tnext = ∞. ym is set to 910

PM if the node is from PM, and CM if it is from 911

Diagnosis. Go to Step (f); 912

f) steps (d) and (e) involve maintenance suspensions. 913

For these and the case involving PM suspension in 914

Step (c), the time, tspare, the spares will be delayed 915

by is sampled from the appropriate distribution. 916

Update τ spare, such that (i, τ spare) = tspare + ts ; 917

g) update the node’s state history, the flow property 918

vectors, and τ , such that (i, τ ) = tnext. 919

7) Identify nodes for which spares have been made avail- 920

able, that is, (i, τ spare) = ts . For each node, i, update 921

τ spare, such that (i, τ spare) = ∞, h1 if ym is CM or Di- 922

agnosis, and h2 otherwise. 923

8) Compute h1f and h2f and call Algorithm 3 (see Fig. 7). 924

9) If the current and previous flow property vectors differ: 925

a) restart nodes in shutdown, compute system flow, 926

and shutdown nodes, as proposed in [22]; 927

b) for each output node, update its performance his- 928

tory if its current and previous performances differ. 929

10) Save the current node flow property vectors. 930

11) Compute h1f = h1 ∩ Ω ∩ η1 and h2f = h2 ∩ Ω ∩ η2 931

and call Algorithm 3 for the second time. This step 932
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accounts for those components maintainable only while933

in Shutdown.934

12) Set the next simulation time, ts = min(min(τ ),935

min(τ spare)).936

13) Repeat Steps 6–12 until ts > Tm , updating τ , the flow937

property vectors, node state histories, and output perfor-938

mance histories at every transition.939

14) Repeat Steps 2–13, Nsamples times, saving the final940

node histories at every trial.941

15) Determine the system performance indices.942

The desired performance indices are (EENS)eff, {N {cm}
i ,943

N
{pm}
i }M ×2 , {t{cm}

i , t
{pm}
i }M ×2 , and {s{cm}

i , s
{pm}
i }M ×2 . The944

latter is yielded directly by the simulation algorithm, (EENS)eff945

is computed from the performance histories of output nodes, and946

the remainder from the state transition histories of components.947

t
{pm}
i is given by the average time spent by component i in the948

PM state (e.g., state 5 in Figs. 2 and 3), t
{cm}
i is given by the949

average time spent in Diagnosis and CM (e.g., states 7 and 3950

in Figs. 2 and 3, and states 3, 5, 7, and 9 in Fig. 4), N
{cm}
i is951

given by the average number of transitions from all CM states952

to the Working state (e.g., transition 3-1 in Figs. 2 and 3, and953

transitions 3-1 and 5-1 in Fig. 4), and N
{pm}
i is given by the954

average number of transitions from the PM state to the Work-955

ing state (e.g., transition 5-1 in Figs. 2 and 3). These indices are956

substituted in the equations proposed in Section II-B to compute957

the system loss function.958

The simulation procedure, with its associated algorithms, ac-959

counts for most of the forced and conditional transitions. As960

a result, an appreciable number of these transitions could be961

omitted from the component model with no adverse effects on962

the simulation outcome. For instance, the Shutdown state and its963

related transitions could be omitted altogether. This, however,964

does not mean shutdown and restart are not accounted for during965

simulation. Of the remaining forced and conditional transitions,966

only those to and from the Diagnosis state, from PM to Idle967

state, and from PM to APM state (if applicable) are required;968

the rest could be omitted. Applying this new information to the969

component models presented in Figs. 2 to 4, for instance, would970

result in much simpler models.971

IV. CASE STUDIES972

The proposed framework is implemented in the open-source973

MATLAB-based toolbox, OpenCOSSAN [30], [31], and used974

to identify the optimal maintenance strategies for two power975

systems.976

A. Case Study 1: A 50-MW Hydroelectric Power Plant977

In this case study, a two-unit hydroelectric power plant is978

analyzed. It is a slightly modified model of the Bumbuna hy-979

droelectric power plant, a 50-MW plant in Sierra Leone. Its980

two units are similar, and each, rated 25 MW, consists a butter-981

fly valve, a turbine, a generator, and a circuit breaker. Their982

generated power is synchronized in the synchronizing unit983

and fed to the step-up transformers for onward transmission.984

These transformers are also rated 25 MW, and when one is985

Fig. 8. Schematic of a two-unit hydroelectric power plant.

unavailable, the plant is reconfigured such that only one unit op- 986

erates. The plant’s schematic representation is shown in Fig. 8, 987

and its reliability data are shown in Table III. All failure and re- 988

pair times are in hours, and costs are in British Pounds (£). The 989

unit cost of electricity is £ 0.5, the fixed wage per maintenance 990

team is £ 7 per hour, and a negligible cost is per maintenance 991

call. It is worthwhile noting that the data presented in Table III 992

are assumed and are, therefore, for illustrative purposes only. 993

Ideally, such data are based on actual field data extracted from 994

component maintenance history. 995

1) Modeling the Plant and Its Components: The following 996

assumptions are considered. 997

1) All components operate at only two distinct performance 998

levels. 999

2) Components are ranked for maintenance in their order of 1000

arrival in the maintenance queue. 1001

3) There is only one maintenance group. 1002

4) The load on the plant is fixed at 50 MW, and there is 1003

sufficient water in the reservoir to meet this demand. 1004

5) The failure rates of the control gate and penstock are 1005

negligible. 1006

Fig. 9 shows the network model of the plant. The components 1007

of unit 1, i.e., valve-1, turbine 1, generator-1, and breaker-1, are, 1008

respectively, represented by nodes 1–4, and their counterpart 1009

in unit 2 are represented by nodes 5–8. Nodes 9–14, respec- 1010

tively, represent the synchronizer, breaker-3, transformer-1, 1011

transformer-2, dam, and the external load. Assuming perfect 1012

links between components, the parameters of the network are 1013

obtained as proposed in [22]. For this system, the number of 1014

nodes, M ′, is 14, while the number of maintainable components, 1015

M , is 12. The state-space diagrams of the components, without 1016

maintenance delays, are shown in Fig. 10. Under the range 1017

of possible maintenance regimes proposed in Section II-C, 1018

these state-space diagrams can be transformed into those in 1019

Figs. 2 and 3. Since the demand and source (dam) capacity are 1020

fixed at 50 MW, nodes 13 and 14 have a single state of capacity 1021

50 units. 1022
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TABLE III
COMPONENT AND SYSTEM DATA FOR THE HYDROELECTRIC POWER PLANT

Component Valves Turbines Gens. Breakers Synch. Xfmr.

Failure time distribution Wb(1000, 1.5) Wb(4125, 2.1) Wb(2000, 2) Exp(3750) Exp(3250) Exp(2500)
Repair time distribution Exp(40) LogN(106, 5) Exp(150) Exp(36) Exp(96) Exp(80)
PM interval U(500, 625) U(1125, 1250) U(1125, 1250) U(2125, 2175) U(2125, 2175) U(2125, 2175)
PM duration Exp(8) Exp(21.2) Exp(30) Exp(7.2) Exp(19.2) Exp(16)
Diagnosis duration Exp(5) Exp(14) Gu(20, 3.24) G(5, 2) Exp(16) LogN(16, 2)
Spares cost(CM) 1624 2100 1944 1006 2245 2700
Spares cost(PM) 1055.6 1365 1263.6 653.9 1459.25 1755
PM cost/hr 162.5 243.75 203.13 101.56 243.75 264.06
CM cost/hr 250 375 312.5 156.25 375 406.25
Spares delay Exp (24)

Probability of Component Replacement During Maintenance

CM (pi ) 0.5 0.55 0.8 0.9 0.7 0.6
PM (qi ) 0.8 0.9 0.96 0.42 0.4 0.45

Mean Fraction of PM Duration Before Component Replacement Becomes Eminent

Fraction (ki ) 0.25 0.25 0.25 0.25 0.25 0.25

Fig. 9. Plant’s network model.

Fig. 10. State-space diagrams of components. (a) Nodes 9 and 10. (b) Other
nodes but 13 and 14.

The reconfiguration procedure used in the simulation shuts 1023

down nodes when their load flow drops below a threshold. To 1024

enable plant reconfiguration when only one transformer is avail- 1025

able, a minimum load restriction is imposed on the turbines. The 1026

choice of the turbines, however, is arbitrary, as any of the unit 1027

nodes would do, due to their being connected in series. With 1028

only node 11 or 12 available, the load flow from node 13 drops 1029

to 25 MW, which is divided equally between the two units if 1030

they both are in operation. The threshold flow for each turbine, 1031

therefore, is set to a value slightly greater than 12.5 units (say 1032

12.52), and 0 for all the other nodes. 1033

2) Effects of Maintenance on System Performance and Reli- 1034

ability: The plant is analyzed separately under the assumptions 1035

that its components are nonrepairable, subject to PM only, CM 1036

only, and both maintenance types. With the exception of the 1037

nonrepairable case, there is no restriction on the number of par- 1038

allel maintenance actions that can take place. The maintenance 1039

team size in each case, therefore, is expressed as (0 0), (0 12), 1040

(12 0), and (12 0), respectively. Dedicated maintenance is used 1041

in the second and third cases to ensure that only the intended 1042

maintenance type is carried out (e.g., no CM during a PM only 1043

policy). This stage of the optimization is aimed at investigat- 1044

ing the relative effects of the various maintenance strategies on 1045

the plant’s reliability, performance, and loss function. It iden- 1046

tifies the candidates for the optimal maintenance strategy and 1047

determines whether or not to proceed with the search for the 1048

optimal maintenance team size. This prevents searching in un- 1049

likely regions or strategies, thereby reducing the computational 1050

cost. 1051

Figs. 11 and 12, respectively, show the reliability and instan- 1052

taneous performance of the plant as a fraction of its nominal 1053

output, for a mission time of 104 hours and 5 × 103 Monte 1054

Carlo samples. Plant reliability is defined with respect to com- 1055

plete outages, however, excluding those due to PM (scheduled 1056

outages). The objective is to study the survivability of the plant, 1057

which scheduled outages would underestimate. For instance, 1058
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Fig. 11. Plant output performance.

Fig. 12. Plant reliability.

more frequent outages may be experienced under a mainte-1059

nance strategy incorporating both PM and CM than one with1060

CM only. In practice, scheduled outages do not count toward a1061

systems’s survivability, since they are out of choice rather than1062

failure, hence the need for their disregard in its survivability1063

analysis. In summary, plant reliability at time t is the nonoccur-1064

rence probability of complete-outage-inducing failures in the1065

interval [0, t].1066

The reliabilities and instantaneous performances defined by1067

Figs. 11 and 12 depict the upper bounds for the various mainte-1068

nance strategies. As expected, both types of maintenance (PM1069

and CM) action indeed improve the reliability and performance1070

of the plant. The impact of PM, however, is only slight, given that1071

50% of the components exhibit an exponential failure character-1072

istic. For such components, PM only reduces their availability1073

without an improvement in reliability [23]. PM, therefore, is1074

the most effective in systems with ageing components. Table IV1075

presents the upper bound of the expected plant output and the1076

corresponding loss for each maintenance strategy. The notation1077

[a, b] denotes a strategy made up of a combination of regimes1078

a and b, as described in Section II-C. A review of the trend1079

TABLE IV
PLANT EXPECTED OUTPUT AND LOSS

Strategy Output (GWh) L (£106 )

None 23.6646 238.17
PM only 26.0639 237.82
CM only 382.2114 60.98
PM+CM [1,4] 370.9891 66.38

[1,5] 384.2075 59.91
[2,4] 369.1798 67.51
[2,5] 383.5723 61.42
[3,4] 396.2899 53.63
[3,5] 388.2218 58.07

TABLE V
OPTIMAL PLANT LOSS AS A FUNCTION OF MAINTENANCE STRATEGY

Strategy L (£106 ) Number of teams

[1,4] 65.6617 2
[1,5] 59.2353 2
[2,4] 66.8779 3
[2,5] 59.6466 3
[3,4] 52.8917 5
[3,5] 57.3184 4
CM only 60.1399 4

Fig. 13. Optimal maintenance team size sensitivity to costs.

portrayed in Figs. 11, 12, and Table IV suggests that a main- 1080

tenance strategy incorporating both PM and CM is desirable. 1081

The losses in Table IV are yielded by the maximum number 1082

of maintenance teams; the optimal loss in each case, therefore, 1083

will be provided by fewer maintenance teams. These teams are 1084

determined by the procedure proposed in Section II-D. 1085

3) Optimal Maintenance Strategy Identification: It is clear 1086

that the nonrepairable and “PM only” strategies are very ineffi- 1087

cient. The plant, therefore, is analyzed for the other strategies, 1088

using the same mission time and the number of samples as in 1089

the preceding section. The optimal solution for each strategy is 1090

identified and recorded, as shown in Table V. 1091

From these, the best maintenance strategy and the optimal 1092

number of maintenance teams are deduced as [3,4] and 5, 1093
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TABLE VI
OPTIMAL MAINTENANCE STRATEGY SENSITIVITY TO COSTS

Cost Element

EC FMC CPHM CS

Strategy (0 0), kf = 0 [3, 4] ∀kf [3, 4], 0 ≤ kf < 70.9 [3, 4] ∀kf

[3, 4] kf > 0 [3, 5], kf ≥ 70.9

respectively. To explore the existence of a more optimal solution1094

for this strategy, the plant is reanalyzed under dedicated mainte-1095

nance. It is observed that for the same number of teams, shared1096

maintenance strategies produce a better plant performance.1097

The optimal strategy being [3,4] is in agreement with the1098

preliminary results presented in Table IV. Therefore, the optimal1099

solution would have been obtained using this strategy alone.1100

However, the other strategies were considered to establish a1101

relationship between the optimal maintenance team size and1102

maintenance strategy.1103

4) Sensitivity to Cost Levels: The robustness of the optimal1104

maintenance strategy to variations in cost of electricity (EC),1105

fixed cost per maintenance team (FMC), fixed cost per hour of1106

maintenance (CPHM), and cost of spares (CS) is investigated.1107

Fig. 13 shows how the number of maintenance teams required1108

for optimal performance varies with kf | 0 ≤ kf ≤ 100, where1109

kf is the ratio of new cost to the original cost provided in1110

Table III. It is evident from the figure that the optimal mainte-1111

nance team size is insensitive to the cost of spares but exhibits a1112

fair degree of sensitivity to the other costs. In contrast, the opti-1113

mal maintenance strategy is insensitive to all four cost elements1114

up to kf = 70.9 (for CPHM), beyond which [3,5] becomes the1115

optimal strategy, as shown in Table VI.1116

In practice, when inflation occurs, it affects all the cost el-1117

ements concurrently. The sensitivity of the optimal solution in1118

such a scenario is investigated. It is observed that with kf = 0,1119

the maintenance strategies are all equivalent, since all the ser-1120

vices are basically provided free-of-charge. Beyond this value,1121

the optimal maintenance strategy and the number of teams re-1122

main constant at [3,4] and 5, respectively, for the entire range of1123

kf . The optimal loss, however, increases according to Fig. 14.1124

This strange behavior is explained by the dominance of the cost1125

of electricity in the loss equation (see Section II-B). When all1126

the four costs change by the same factor, the resultant effect is1127

dominated by the electricity cost, for kf > 0.4, and the other1128

costs otherwise.1129

A comparison of the trends portrayed in Figs. 13 and 151130

supports this theory. Fig. 15 is obtained by holding fixed the cost1131

of electricity and varying the maintenance costs. Expectedly, it1132

shows a decrease in the optimal maintenance team size, with1133

rising maintenance costs. Indeed, with high maintenance costs,1134

the only logical decision is downsizing the maintenance team to1135

ensure sustainability.1136

5) Computational Costs: The simulations were run on a 48-1137

core, 1895.257-MHz AMD Opteron(tm) 6168 processor using1138

19 cores running in parallel. Less than 1 min was required for the1139

nonrepairable system and an average of 8.95 min per candidate1140

solution was required for the system under PM and CM.1141

Fig. 14. Optimal system loss sensitivity to cost-level variation.

Fig. 15. Sensitivity of optimal solution to concurrent variation in FMC and
CPHM.

6) Discussions: Analytical approaches do not make a fea- 1142

sible option for the analysis of complex systems with realistic 1143

attributes. Simulation algorithms, on the other hand, are disad- 1144

vantaged by their large computational costs, made worse when 1145

employed in optimization procedures. This, often, is attributed 1146

to the large number of samples required for a dependable esti- 1147

mate of the system performance indices. Therefore, the tradeoff 1148

between accuracy and moderate computational burden is worth 1149

adequate attention. Another limiting constraint of great impor- 1150

tance is the mission time, which should be selected such that the 1151

performance indices obtained reflect the true long-term indices 1152
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of the system. This requires that the mission time be sufficiently1153

greater than the time the system takes to attain the steady state.1154

In the presented case study, 5000 samples are just enough to pro-1155

vide an acceptable degree of accuracy and a manageable com-1156

putational burden. Also, as deduced from Fig. 11, the plant’s1157

steady-state attainment time is about a fifth of its mission time.1158

These attributes endorse the dependability of the optimization1159

outcome.1160

The analyses suggest that the optimal number of maintenance1161

teams is maintenance strategy dependent. They also reveal that1162

returning components into operation during maintenance sus-1163

pensions improves system performance. This improvement is1164

attributable to the increased availability of the components cul-1165

minating in a lower EENS. The exception is the case when PM1166

is initiated only while components are not in operation. In this1167

regime, the initiation of a component’s PM is determined by the1168

failure characteristics of other components. Therefore, when the1169

component is returned into operation, its PM resumes only on1170

the occurrence of another shutdown event. The likelihood that1171

the component fails in this interval is higher than in the other1172

regimes due to the longer wait times. The result is: a fewer1173

PM actions, more failures, longer component downtimes, and1174

a higher EENS. These consequences are minimized by keeping1175

the component out of operation until PM resumes. However,1176

in both cases, initiating PM only while components are not in1177

operation yields the best performance.1178

The range of kf used in the sensitivity analysis is a little unre-1179

alistic for practical applications. The range of interest, therefore,1180

is conservatively chosen to be 0 ≤ kf ≤ 2, depicting an inflation1181

of −100% to +100%. In this range, the optimal maintenance1182

strategy is unaffected by variations in cost levels, though the1183

number of teams required for optimal performance varies with1184

the cost of electricity. The following, therefore, is recommended1185

for the hydroelectric power plant.1186

1) PM should be carried out only when a component is not1187

in operation, that is, it should coincide with a shutdown1188

event that renders the component inactive.1189

2) Components should be kept out of operation during main-1190

tenance interruptions.1191

3) At the current cost levels, five maintenance teams, in a1192

shared maintenance strategy, are required for optimal per-1193

formance. However, this should be scaled down to 3, 2, 1,1194

and 0 when the cost of electricity deflates by 50%, 60%,1195

90%, and 100%, respectively (see Fig. 13).1196

4) As evidenced in Figs. 11 and 12, PM does not quite im-1197

prove the overall performance of the system, contrary1198

to anticipations. This, as explained earlier, could be due1199

to subjecting components exhibiting exponential failure1200

characteristics to needless PM. It is anticipated that if PM1201

is not carried out on these components, additional gains1202

could be made from improved plant availability and re-1203

duced maintenance costs. This hypothesis is tested and,1204

as expected, results in an output gain of 1.82% and a cor-1205

responding system loss reduction by 7%. PM, therefore,1206

should not be carried out on the breakers, synchronizer,1207

and transformers.1208

Fig. 16. Single-line diagram of the IEEE-24 bus Reliability Test System.

B. Case Study 2: The IEEE-24 Bus Reliability Test System 1209

In this case study, we consider a more realistic system in or- 1210

der to showcase the applicability of the proposed approach to 1211

systems of practical nature. Shown in Fig. 16 is the single-line 1212

diagram of the IEEE-24 bus one-area test system, adapted from 1213

[32]. It is composed of 24 buses, 34 power lines, ten genera- 1214

tion stations, and 17 load points. Its total generating capacity is 1215

3405 MW and a varying load which annual peak is 2850 MW. 1216

The total generating capacity and load are distributed across the 1217

network as described in [33]. The buses are assumed perfectly 1218

reliable and the transmission lines, binary state. We retain the 1219

failure and repair characteristics of the transmission lines but 1220

modify a few other properties to make the system more realistic 1221

and compatible with the proposed approach. These modifica- 1222

tions are thus summarized as follows. 1223

1) Multiple generation units at a bus have been represented 1224

by a single unit with a generating capacity equivalent to 1225

the sum of the generating capacities of the units. 1226

2) To make the network more sensitive to the unavailability 1227

of transmission lines and generation units, the maximum 1228

transmission capacities of the former and minimum al- 1229

lowable loads of the latter are considered in the analysis. 1230

These capacities and limits are given in [33] and [32], 1231

respectively. Note that the minimum load for the unit at 1232

bus 22 is set to 25 MW instead of 300 MW suggested 1233
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TABLE VII
MAINTENANCE DATA FOR GENERATION UNITS

Gen. Type Bus Number Spare Usage Prob. PM Transition Distribution Parameters

CM PM Interval Duration 1-2 2-1 2-3 1-3 3-1

1 22 0.7 0.9 1200 U(156,180) Wb(2234,2) Exp(20)
2 1 & 2 0.9,0.25 0.9 1200 U(60,66) Exp(980) Exp(20) Wb(1106,2.3) Wb(2212,2) Exp(40)
3 7 0.8,0.4 0.9 1200 U(60,66) Exp(600) Exp(25) Wb(677,2.3) Wb(1354,2) Exp(50)
4 15,16 & 23 0.8,0.3 0.9 1000 U(81,87) Exp(480) Exp(20) Wb(542,2.3) Wb(1083,2) Exp(40)
5 13 1.0,0.5 0.9 1000 U(102,108) Exp(575) Exp(50) Wb(649,2.3) Wb(1298,2) Exp(100)
6 18 & 21 1,0.6 0.9 1000 U(123,129) Exp(550) Exp(75) Wb(621,2.3) Wb(1241,2) Exp(150)

in [32]. The reason for this is that its contribution to the1234

total load when every component works correctly is only1235

about 37.5 MW. A minimum allowable load of 300 MW,1236

therefore, would mean that it operates only on failure of1237

another unit. This, in other words, reduces the unit to cold1238

standby, thereby defeating our intention of making every1239

component useful to the system throughout the mission.1240

3) The buses are assigned maximum capacities according to1241

the following rules.1242

a) For load and generation buses, the maximum capac-1243

ity is arbitrarily set to three times the capacity of the1244

generation unit or load.1245

b) For buses with both a generation unit and load, the1246

capacity is set to three times the generating capacity1247

or load, whichever is greater.1248

c) For all other buses, the capacity is set to three times1249

the maximum of the capacities of the buses they are1250

connected to.1251

4) Each generation unit, with the exception of the unit at bus1252

22, is assumed to exist at three possible distinct output1253

levels: 100%, 50%, and 0% of its rated capacity. Unit 221254

operates at only two levels: 100% and 0% rated capacity.1255

1) Maintenance Information: The failure times of the trans-1256

mission lines are exponentially distributed. As a consequence,1257

they undergo CM only, with an assumed 0.9 likelihood of spares1258

being used. Due to their less bulkiness, it is assumed that the1259

maintenance crew are able to carry with them these spares. The1260

maintenance of the lines, therefore, is immune to delays in the1261

availability of spares.1262

The generation units, on the other hand, undergo both PM and1263

CM and are susceptible to all the operational dynamics described1264

in Section II. Table VII contains their failure and maintenance1265

parameters, where states 1–3, respectively, represent nominal1266

performance, partial, and complete failure. Their replacement1267

probability during CM is represented by a pair, which elements,1268

respectively, define the probabilities associated with states 3 and1269

2. Where applicable, the diagnosis and CM durations have the1270

same distribution, with means in the ratio 1:4. For instance,1271

the transition of the unit at bus 13 from state 3 to 1, denoting1272

repairs from complete failure, is exponentially distributed with1273

mean 100. Therefore, the diagnosis and CM durations are also1274

exponentially distributed with means 20 and 80, respectively.1275

All transition times are in hours, and ki for generation units1276

is conservatively assumed to be 0.3. Also note that the data1277

presented in Table VII are for illustrative purposes only.1278

TABLE VIII
MAINTENANCE COSTS FOR GENERATION UNITS

Gen. Type CM PM

CS CPHM CS CPHM

1 180 20 108 12
2 180 20 108 12
3 180 20 108 12
4 200 25 120 15
5 280 40 168 24
6 300 50 180 30

2) Maintenance Grouping and Costs: The network compo- 1279

nents are arranged into three maintenance groups, and each 1280

group is maintained by a separate maintenance company. The 1281

transmission lines above buses 11, 12, and 24 make maintenance 1282

group 1, the remaining lines make group 2, and the generation 1283

units constitute group 3. Each maintenance team in groups 1 1284

and 2 is paid a fixed £5 per hour and a fixed £100 per suc- 1285

cessful maintenance action. Teams in group 3 earn £8 every 1286

hour and £120 for every successful maintenance action. Due 1287

to economic constraints, the operator imposes the total number 1288

of maintenance teams to not exceed 16. The cost of one trans- 1289

mission line spare is averaged at £150, the cost per hour of 1290

transmission line maintenance, at £15, and the cost levels for 1291

the generation units, as defined in Table VIII. 1292

3) Objective: The current maintenance strategy, hereafter 1293

referred to as the base strategy, assumes that CM of partially 1294

failed components and PM can be initiated at any time, subject 1295

to the availability of maintenance teams. For one annual load 1296

cycle of 8736 h (see [33]) and £100 per MWh of electricity 1297

consumed, we determine the optimal maintenance team size for 1298

this strategy and compare its effectiveness with three complex 1299

strategies. The base strategy, for simplicity, is labeled strategy 1300

1, and the complex strategies, as outlined, are thus outlined as 1301

follows. 1302

1) Strategy 2: PM and CM of partially failed generation units 1303

only when they are not required. 1304

2) Strategy 3: PM and CM of partially failed generation units 1305

only when system performance is nominal. 1306

3) Strategy 4: PM of generation units only when system 1307

performance is nominal, but CM of partially failed units 1308

can be carried out at any time. 1309

Each maintenance strategy is computed for the case when the 1310

units: 1311
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Fig. 17. System graph model. (a) Both reciprocal edges shown. (b) Only one reciprocal edge shown.

a) are kept out of operation during maintenance suspensions;1312

b) are returned into operation during maintenance suspen-1313

sions.1314

4) System Modeling: Since the goal is to identify the optimal1315

maintenance strategy, a dc flow analysis, using the procedure1316

proposed in [22], is employed to compute the system reliability1317

and performance indices. The buses, generation units, and load1318

points are modeled as nodes, while the transmission lines are1319

modeled as edges in the system graph model. In this case study,1320

we have retained the edge attribute of the transmission lines to1321

keep the number of nodes moderate and improve performance.1322

Consequently, the vector of maximum edge capacities is modi-1323

fied after every transition involving a transmission line, and both1324

this vector and the vector of node capacities are required for sys-1325

tem flow calculation. Fig. 17(a) shows the graph model of the1326

system, where Un and Ln, respectively, denote the generation1327

unit and load point at bus n. Fig. 17(b) shows the same graph1328

but with only one edge of each reciprocal pair [22] shown for1329

clarity. In both cases, the number along each edge defines the1330

maximum flow along that edge as a fraction of the annual peak1331

load.1332

The effective EENS of the system (given the multiple load1333

points) could be computed as proposed in Section II. However,1334

the computation is rendered less complicated by representing the1335

global system output by a virtual node, which flow is the sum of1336

the flows through all 17 load points. The flow history of this vir-1337

tual node is recorded during simulation and subsequently used1338

to compute the effective EENS, instead of all 17 nodes. Being1339

mindful of the computational demand of simulation algorithms,1340

we employ a smart procedure to treat the variable demand on the1341

system. Recall that the objective of system reliability analysis is1342

to determine the maximum achievable system performance as1343

a consequence of component failure and maintenance. For this1344

reason, we obtain the instantaneous system performance, Y (t),1345

assuming that the demand is fixed at its peak annual value.1346

However, under this assumption, the system is no longer strictly1347

demand driven (since the actual demand varies with time), and1348

Y (t) has to be normalized to make it compatible with (1) and1349

(2). The normalization entails expressing Y (t) as a function of 1350

the same time step as the instantaneous demand, Yd(t), such 1351

that they both have equal lengths, and applying the following: 1352

Y (t) = min{Y (t), Yd(t)}. (17)

Normally, variable demand is treated by performing the sim- 1353

ulation with respect to the time step defined by the demand and 1354

the events generated by component failures and maintenance. It 1355

is, therefore, easy to deduce the computational efficiency of the 1356

procedure employed here, relative to the widely practiced. The 1357

procedure is correct for all single-load-point systems, as well 1358

as multiple-load-point systems, where the quantity of interest is 1359

the total output, and not the output through the individual load 1360

points. 1361

To derive the set, N, of possible maintenance team combina- 1362

tions, we ignore the possibility of a 0 maintenance team in any 1363

of the maintenance groups. This is due to the fact that we already 1364

know (from the previous case study) nonrepairable maintenance 1365

strategies to be grossly inefficient. Recall also that maintenance 1366

groups 1 and 2 are composed of equal number of components 1367

with the same failure and repair characteristics. They, therefore, 1368

have the same optimal maintenance team size. Given these con- 1369

straints and the upper bound imposed by the operator on the 1370

total number of maintenance teams, N contains 50 maintenance 1371

team combinations. 1372

5) Component Modeling: Figs. 18 and 19 are the system’s 1373

simplified component models, showing only the required transi- 1374

tions, as discussed in Section III-E. Since the transmission lines 1375

are not susceptible to maintenance interruptions, their failure di- 1376

agnosis and actual repair have been collectively represented by 1377

the CM state. This, however, implies that the number of spares 1378

used cannot be directly obtained from the simulation, as spares 1379

used are accounted for only if the component enters Diagnosis 1380

or PM state (see Algorithm 2). The total spares used, therefore, 1381

are obtained from the product of the spares usage probability 1382

and the number of CM to W transitions. Note that the models 1383

in Figs. 18 and 19 are based on the assumption that components 1384
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Fig. 18. Simplified multistate model for binary-state components. (a) Transmission lines. (b) Generation unit at bus 22.

Fig. 19. Simplified multistate model for multistate generation units.

TABLE IX
OPTIMAL SYSTEM LOSS AS A FUNCTION OF MAINTENANCE STRATEGY

Strategy EENS(%) L
(
£106

)
Optimal number of teams

Group 1 Group 2 Group 3

1 a 0.3940 6.6324 1 1 3
b 0.2468 4.4712 2 2 3

2 a 2.4218 37.6617 1 1 4
b 2.4780 38.6764 3 3 4

3 a 1.3592 21.3563 1 1 3
b 1.5049 23.6498 1 1 4

4 a 0.3373 5.9026 1 1 5
b 0.2128 3.9513 2 2 3

are kept out of operation during maintenance suspensions. Those1385

for the case when components are returned into operation can1386

be easily deduced from Figs. 2–4. It is also worthwhile not-1387

ing that the simplified component models for regimes 1–3 of1388

Section II-C are equivalent.1389

6) Results and Discussions: The system was analyzed on1390

the same computer used for the previous case study, and the1391

outcome is summarized in Table IX. The table provides the1392

EENS as a percentage of the total expected output, the expected1393

loss, and the optimal maintenance team combination for each1394

strategy. Each sample of a candidate solution took an average1395

of 0.8 s, using ten MATLAB workers. Given the large number1396

of candidate solutions, the number of samples per candidate1397

solution was set to 500. The sensitivity of the optimal solution1398

to the costs considered in the previous case study and a few other 1399

costs was also investigated. The additional costs considered are 1400

as follows. 1401

1) Cost per hour of CM and cost per CM call (CPHM1). 1402

2) Cost per hour of PM and cost per PM call (CPHM2). 1403

3) Total maintenance cost (MC), a combination of FMC, 1404

CPHM1, CPHM2, and the cost per CM and PM call. 1405

4) All costs relevant to the system loss function (ALL). 1406

Deducing from the data in Table IX, the optimal mainte- 1407

nance strategy is strategy 4(b). In this strategy, CM of partially 1408

failed generation units can be initiated at any time, but PM, 1409

only when system performance is nominal, with components 1410

returned into operation during maintenance suspensions (see 1411

the beginning of this subsection). Postponing both CM and PM 1412

until component shutdown (strategy 2) appears to be the most 1413

inefficient, contrary to what obtained in the previous case study. 1414

This observation reiterates the point that the optimality of a 1415

given maintenance strategy depends on specific properties of 1416

the system. For 0 ≤ kf ≤ 100, strategy 4(b) remains optimal, 1417

but the optimal number of maintenance teams varies, as de- 1418

picted in Fig. 20. It should be noted that cost parameters with no 1419

effect on the optimal number of maintenance teams have been 1420

left out in Fig. 20(a) and (b). Given that maintenance groups 1 1421

and 2 are made up of the transmission lines only (which do not 1422

undergo PM), CPHM and CPHM1 are equivalent, explaining 1423

the absence of CPHM1 and CPHM2 in Fig. 20(a). A notable 1424

conclusion drawn from Fig. 20 is that the optimal number of 1425

maintenance teams is mostly affected by the cost of electricity 1426

(EC) and the fixed cost per maintenance team (FMC). It is also 1427

easily deducible that the number of teams required for optimality 1428

reduces and increases with reduction in EC and FMC, respec- 1429

tively, both observations conforming to common reasoning. 1430

Fig. 21 shows the variation in system loss with changes in 1431

cost levels in the range 0 ≤ kf ≤ 2. For clarity, system response 1432

over the ranges 0 ≤ kf ≤ 1 and 1 ≤ kf ≤ 2 has been presented 1433

separately in Fig. 21(a) and (b), respectively. With kf = 1 as 1434

reference, Fig. 21(a) defines the sensitivity of the total system 1435

loss to cost reductions and Fig. 21(b) to cost increments. In both 1436

cases, the cost of electricity and the overall maintenance cost 1437

impact system loss the most. However, the system shows very 1438

little sensitivity to both the cost of spares and the cost per hour of 1439

PM action, suggesting a few PM actions and low spares usage. 1440
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Fig. 20. Optimal maintenance team sensitivity to cost levels. (a) Groups 1 and 2. (b) Group 3.

Fig. 21. System loss sensitivity to cost levels. (a) Cost reduction. (b) Cost increment.

The low system loss sensitivity to CPHM2 is explained by the1441

fact that only ten of the 44 system components undergo PM.1442

Given that strategy 4 imposes PM be initiated only if system1443

performance is nominal, a good number of these components1444

fail before their PM commences.1445

V. CONCLUSION1446

It is realistic to think that increasing the number of main-1447

tenance teams improves the performance and reliability of a1448

multicomponent system. However, a threshold exists, exceed-1449

ing which no gains are realized. Rather, it results in increased1450

operational costs, borne from the imbalance between income1451

and expenditure. This threshold, as expected, varies with the1452

maintenance strategy, the input costs to the system’s cost model,1453

the topology of the system, and the nontopological functional1454

relationships between its components.1455

In this work, a maintenance strategy optimization framework,1456

aiding proper maintenance scheduling and robust maintenance1457

decisions, has been presented. Applicable to both binary and1458

multistate systems of any structure, the framework proposes1459

a multistate model to define the behavior of components un-1460

der various maintenance strategies. A nonsystem-specific event-1461

driven Monte Carlo simulation based on the load-flow approach1462

proposed in [22] is employed to replicate the operation of the 1463

system. This simulation algorithm, together with the multistate 1464

component model, enhances the implementation of complex 1465

maintenance strategies. For instance, a component may be- 1466

long to two maintenance groups practicing dedicated and shared 1467

maintenance, respectively. There could also exist multiple main- 1468

tenance groups with some initiating maintenance promptly and 1469

others only during a shutdown event or at the attainment of nom- 1470

inal system performance. Many more contrasting combinations 1471

of regimes are possible without the need to modify the simu- 1472

lation algorithm. The framework is also built on a cost model 1473

structured to allow the sensitivity analysis of the optimal solu- 1474

tion from a single reliability evaluation. These attributes render 1475

it novel, efficient, and generally applicable to power and other 1476

systems alike. 1477

The framework has been successfully used to optimize the 1478

maintenance strategies for two realistic power systems, obtain- 1479

ing insightful information on their maintenance. The relation- 1480

ship derived between the optimal number of maintenance teams 1481

and the cost of electricity, for instance, is a very useful tool, 1482

given a volatile electricity market. The framework, therefore, 1483

can shape the quality of maintenance-related decisions, even in 1484

the presence of external dynamics. 1485
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