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ABSTRACT 
This paper proposes a novel fault interpretation method for transformer winding using 

features extracted from equivalent gradient areas of frequency responses. Firstly, 

frequency responses are pre-processed using binary morphology, aiming to eliminate 

the influence of stochastic factors such as noises and measurement configurations. Then 

pre-processed curves are divided into several frequency sub-bands, each of which 

reflects the influence of faults. Then fault features based on equivalent gradient areas 

are derived to quantify shape variations of frequency response curves with respect to 

specific fault types. Finally, real case studies are used to verify the capability of the 

proposed method, which can perform automated winding fault diagnosis. 

    Index Terms – Transformer windings, fault diagnosis, frequency response, 

mathematical morphology. 

 

1  INTRODUCTION 

 ONCE transformers suffer from a failure, a power grid 

may break down leading to power interruption and huge 

economic losses [1]. Therefore, various diagnosis 

techniques have been developed to detect transformer faults 

and conduct maintenance work accordingly, in order to 

avoid severe mechanical or electrical failures. Among them 

the frequency response analysis (FRA) method draws broad 

attentions because of its effectiveness to detect structure 

changes of transformer windings. Usually, a FRA method 

assesses conditions of transformer windings by comparing 

measured frequency response (FR) curves with 

corresponding reference FRA curves. Since FRA curve 

shapes are determined by equivalent electrical parameters of 

windings, variations of FRA curves are able to reflect 

structure changes of windings. 

In practice, both structure changes of windings and 

stochastic factors may change shapes of FRA curves. For 

example, the electromagnetic environment in substations is 

complex, and FRA measurements may be interfered by 

noises. Additionally measurement devices and measurement 

procedures of FRA are different, which also cause 

variations in FRA curves. Therefore, it is important to 

eliminate the influence of disturbances on FRA curves and 

preserve the frequency ranges with significant difference, 

which can improve fault diagnosis accuracies. 

In addition, defining suitable frequency ranges for fault 

analysis can increase the sensitivity of winding fault 

indicators. In references [2, 3] it was stated that different 

equivalent electrical parameters influence different regions 

of FRA curves. By analyzing changes in different frequency 

regions, a winding deformation fault can be identified more 

accurately. For this reason, Ryder divided measurement 

frequency ranges into three sub-bands [4], and Sofian 

developed a division method using four sub-bands to 

quantify FRA effects of transformer winding and core [5]. 

However, the division ranges of the above sub-bands are 

fixed, which means that the ranges of these sub-bands 

cannot be adjusted dynamically according to FRA 

characteristics of transformers. As the sub-band ranges of 

various transformers are different, dynamic frequency 

region division methods were developed to divide 

frequency ranges. Velasquez developed an algorithm to 

divide the measurement frequency range into five sub-bands 

via analyzing real cases of transformer FRA curves [6], 

however this algorithm was too complicated. Gonzales 

proposed a dynamic division algorithm based on 

Velasquez's method, which is relatively simple. However, 

Gonzales's method separated different frequency regions 

based on the poles and zeros of FRA curves, which were 

difficult to be obtained in practice [7]. 

To quantify relative changes between FRA curves, 

statistic indicators are normally utilized [8]. However, 

statistic indicators can only represent the overall difference 

between FRA curves, while they are unable to describe how 

the curves move comparatively. Hence waveform indicators 

were developed, which are more appropriate to represent 

deviations between FRA curves [9]. Commonly, the sum of 

pole shifts and the sum of zero shifts between FRA curves 
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are chosen as the waveform indicators to describe changes 

between FRA curves, which have a clear physical meaning. 

The problem lies in that new resonant points may appear or 

disappear in measurement FRA curves compared with 

reference FRA curves. Moreover, not all the extreme points 

in FRA curves are poles or zeros, and some of them are just 

disturbances. Consequently, the pole and zero shifts are 

difficult to be calculated. Some researchers proposed to 

identify poles and zeros based on locations of phase 

crossing zero points. Nevertheless, there is no one to one 

correspondence between resonant points and phase zero 

crossing points. It indicates that it is impractical to employ 

shifts of poles and zeros as winding fault features. Thus a 

new type of fault indicators needs to be derived to represent 

deviations of FRA curves accurately.  

In current FRA interpretations, FRA curves are analyzed 

by experienced electrical engineers and the deformation 

condition of a winding can be identified based on the 

difference between two FRA curves. However, this 

empirical approach has the following two drawbacks. Firstly, 

an analyst is required to have abundant experience of FRA 

interpretation and faults cannot be diagnosed by an 

inexperienced engineer. Secondly, different engineers could 

give different interpretations, as the relative movements 

between two FRA curves cannot be quantified effectively in 

the current practice. The main aim of the proposed approach 

is to automatically quantify the relationship between 

movements of FRA curves and winding faults, which can 

support fault diagnosis for inexperienced engineers in a 

unified framework. 

The rest of this paper is organized as follows: Section 2 

introduces the basic theory of binary morphology. Then an 

algorithm to pre-process FRA curves based on binary 

morphology is proposed in Section 3, which is employed to 

eliminate the effects of stochastic factors. Subsequently a 

dynamic sub-band division method based on the location of 

poles and zeros, as well as the magnitude deviation of FRA 

curves, is developed. In Section 4 a new kind of waveform 

indicators (i.e. equivalent gradient area parameters, EGAPs) 

is proposed, which can quantify the deviation of FRA 

curves accurately. Finally real case studies are investigated 

to demonstrate the ability of EGAPs to quantify variation 

features of FRA curves and achieve automated fault 

diagnosis. Concluding remarks are given in Section 7. 

2  BINARY MORPHOLOGY 

Mathematical morphology has been widely used in image 

processing, which utilizes the concepts in the set theory, 

geometry and topology to analyze the geometrical structure 

of images, in order to preserve the most important structure 

features in an image while eliminating stochastic factors 

(such as noises and rags) [10]. 

Initially, mathematical morphology was applied for 

processing of binary images, in which pixels have only two 

possible values “0” and “1”. Traditionally, the pixels with 

value “1” compose the object of interest, while the rest 

pixels constitute the background. Binary morphology 

considers a binary image as sets of elements, which have 

values “0” or “1”, then utilizes a structure element (SE) as a 

probe to detect the image structure. Given space limitations, 

only two primitive operations of binary morphology are 

introduced, i.e. dilation and erosion. 

The dilation and erosion of an image A by a structure 

element B, which are denoted by A  B and A  B 

respectively, are defined as below. 

 N | , ,      A B c E c a b a A b B           (1) 

    N | ,     A B x E x b A b B                 (2) 

Dilation is mainly used for bridging gaps in an original 

image, while erosion is applied to eliminate irrelevant 

details in the original image and preserve important objects. 

3  EXTRACTION OF AMPLITUDE 

DIFFERENCE BASED ON BINARY 

MORPHOLOGY 

The causes of FRA curve variations are usually classified 

into three groups. The first kind of causes are stochastic 

factors such as noises, remanence conditions and 

measurement conditions, which lead to slight fluctuations. 

Different remanence conditions cause vertical displacement 

in low frequency ranges and horizontal shifts near the core 

anti-resonance peak, while curve differences are usually 

small [11]. The second one is the diversity of windings. 

FRA curves measured at windings of different phases or 

windings of the same type may manifest deviations due to 

the difference of flux paths and the different geometrical 

structure of transformers. The last one is the fault occurred 

in windings, leading to characteristic changes of FRA curve. 

A severe deformation fault causes significant deviations 

in FRA curves, and other factors usually lead to 

comparatively slight deviations. Therefore, the frequency 

ranges with remarkable difference are the key features for 

fault diagnosis. For this reason, it is important to focus on 

those frequency ranges valuable for fault diagnosis and 

eliminate the influence of irrelevant factors. The 

disturbances in FRA curves are mainly in two forms. The 

first ones exist in the whole frequency range but have a 

relative low magnitude, and the other ones occur in some 

frequency points but have fast and small variations. In [12], 

discrete wavelet transform was applied to smooth FRA 

curves and preserve the information corresponding to power 

transformer internal faults, while all other disturbances were 

discarded. However, discrete wavelet transform is not able 

to eliminate noises, which cover the whole frequency range 

and have a relative low magnitude. 

As mentioned in Section 2, the erosion of an image 

removes all structures that a SE fails to fit inside, and 

shrinks other regions while the essential shape 

characteristics of interest can be preserved. It is clear that 

the erosion operation meets the requirement of noise 

reduction for FRA curves if an appropriate SE is selected. 

Therefore erosion is applied to eliminate irrelevant details 

of FRA curves in this research. 

 Based upon the graphics theory, image blocks enclosed 



 

by two FRA curves can be used for representing the 

difference between the two FRA curves. The bigger are the 

areas of the enclosed image blocks, the more significant is 

the variation between FRA curves. Furthermore, the 

amplitude difference represented by blocks can be 

processed based on an image processing technique. By 

filtering out blocks with smaller areas, the interference of 

irrelevant factors is reduced to some extent. At the same 

time the blocks representing significant amplitude 

deviations are preserved for further analysis. 

In [13], the authors stated that the erosion operation 

combined with small area filtering was able to eliminate 

irrelevant details. This method is used for FR data pre-

processing in the following subsections. Firstly a set of FRA 

curves is transformed into a binary image. Then the erosion 

operation is applied to process the image. Subsequently the 

blocks, whose areas are smaller than a pre-set threshold, are 

removed and significant amplitude differences are extracted 

in the form of image blocks. To determine the values of the 

SE and the area threshold, 22 sets of FR measurements of 

different transformers with multiple faults are utilized, 

which are collected from two grid companies and other 

literatures. 

3.1 BINARYZATION OF RESPONSE CURVES 

In this research, FRA curves are transformed into binary 

images before being processed by binary morphology. 

Consider a FRA curve has I data points   ,i i ip f m , where 

if  is the frequency value of ith data point and 
im  is the 

corresponding magnitude. Firstly a matrix which has a 

suitable size W H is built according to the amplitude and 

frequency ranges of FR data, where W and H correspond to 

the width and height of the produced image. In this research, 

W is set to 1200 pixels and H is set to 900 pixels. As the 

frequency range of the obtained FR data is between 20 Hz 

and 2 MHz, the chosen W and H are sufficient to preserve 

the value and shape information provided by the FR data in 

the binary images while the computation complexity is 

acceptable. 

Then for every data point ip  in the FRA curve, its 

corresponding coordinates in the matrix are calculated by 

Equations (3) and (4), where [] is the rounding operator. 

Therefore coordinates  r r,i ix y  and  ,mi mix y  can be 

obtained, which represent the locations of the reference 

FRA curve and the measurement FRA curve respectively in 

every column of the matrix. For every column, the values of 

matrix elements, whose vertical coordinate values are 

between riy  and miy , are specified as “1” and the others are 

set to “0”. After that a binary image representing the 

amplitude difference of FRA curves is formed. 
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For example, measurements on a HV winding of a 

transformer which suffers from radial deformation is in 

Figure 1, while its reconstructed binary image is in Figure 2. 

 
Figure 1. An example of FR measurements.  

 
Figure 2. The binaryzation image corresponding to Figure 1. 

 

 
Figure 3. The proposed structure element. 

 

 
Figure 4. Eroded image of Figure 2 using the proposed structure element. 

3.2 DERIVATION OF A STRUCTURE ELEMENT 

FOR EROSION OPERATION 

When applying image erosion, a SE is the key factor 

influencing the result of image processing. The selection of 

SE mainly focuses on selecting the shape and the size of SE.  

How to select the shape of the SE usually depends on the 

geometric shapes, which are to be eliminated from an 

original image. While the primary goal of morphological 

operations is to remove small angular features and thin lines 

from the image, a square or rectangular element is 

recommended. In FRA curves, noisy details mainly contain 

random fluctuations and fixed errors, which manifest as 



 

glitches and thin lines. Therefore a rectangle SE is chosen 

for erosion operations in this research. 

Generally, the height of the SE usually takes 1% to 5% of 

the height of the processed curve. The disturbances in FRA 

curves related to the change of measurement conditions 

mainly occur in the high frequency region, while fault 

features are more abundant in the low and medium 

frequency regions. Consequently a SE, whose size varies 

according to amplitude ranges and frequency response data 

being processed, is proposed in Figure 3.  

The definition of this rectangle SE is w h , where w and 

h are the width and height of the SE respectively. The 

height h is set as 
10[ log ( )]h a D f    . Here a  is a 

coefficient needed to be specified on previous experience 

and multiple trials. D  is the subtraction of the global 

maximum and minimum between the reference and 

measurement curves, i.e. the height of FRA curves. f  is the 

frequency value of frequency response data processing, 

while [] is the round operator.  

Determining the specific size of a SE is mostly an 

empirical process. The selection of the size relates to the 

desired processing effect. When the size of a SE is bigger, 

the processed image shrinks more. To determine the 

specific parameters of the SE in this proposed approach, the 

value of the parameter a is altered from 1% to 5% by a step 

of 1%, and the value of w is altered from 1 to 3 by a step of 

1. Then the generated SEs are applied to erosion operations 

for 22 cases of FR measurements. After comparison of these 

SEs, a is set to 0.01 and w is set to 2, as the corresponding 

SE provides the best erosion results. The erosion results of 

Figure 2 using the proposed SE is illustrated in Figure 4. 

3.3 PRE-SET AREA THRESHOLD 

As shown in Figure 4, large image blocks are preserved 

after the erosion operation. These image blocks represent 

the remarkable differences between two FR measurements, 

which can reveal the type of fault and its severity. 

Meanwhile small blocks are eroded into a few smaller 

isolated blocks. To avoid the interference of these irrelevant 

details for fault diagnosis, an area threshold is set and the 

blocks whose areas are smaller than the threshold are 

filtered out. 

As the size of the proposed SE varies according to the 

height of curves, the area threshold should also be adjusted 

corresponding to different erosion results. Consequently, the 

area threshold tS  is set as tS b D  and D is the height of 

FRA curves. In this research, 22 sets of FR measurements 

of different transformers with faults are employed, which 

are collected from two grid companies and other literatures. 

These measurements are utilized to determine the value of 

the parameter b. The value of b is altered between 0.1 and 1 

by a step of 0.1. Different filtering results of the calculated 

area thresholds in 22 cases are compared. When b is set to 

0.3, the filtering result is the best, i.e. the fault features are 

preserved and irrelevant details are eliminated in most cases. 

 After the filtration of the isolated small image blocks, the 

remaining regions after the erosion and filtration are 

restored to the original size by dilation, to avoid excessive 

processing of fault features. 

The final processing result using the binary morphology 

is shown in Figure 5. It is noticed that the frequency ranges 

reflecting remarkable amplitude difference can be acquired 

by the developed pre-processing method, which provides a 

solid foundation for the following analysis. 

 
Figure 5. The final processing result of Figure 1. 

4  DYNAMIC REGION DEFINITION OF FR 

BASED ON LOCATIONS OF RESONANCE 

AND AMPLITUDE DIFFERENCE 

As stated previously, analyzing FRA curves in divided 

frequency regions can increase the sensitivity of indicators 

to winding faults. As a result, a reliable frequency region 

division method can effectively improve the accuracy of 

fault diagnosis. Motivated by this, a novel frequency region 

division method is proposed and illustrated in Figure 6. 

 
Figure 6. The frequency division sub-bands using the proposed method. 

Recent studies reported that a FRA curve can be divided 

into five regions [6, 7]. As shown in Fig 6, the sub-band 

LF1 is between A and B, dominated by the magnetization 

inductance mL . The region between B and C (i.e. LF2) is 

mainly influenced by the shunt capacitance g,wC . The 

frequency region between C and D is defined as the sub-

band MF, which describes interactions among windings. 

Hence this area is sensitive to the winding bulk movement. 

The sub-band HF1 between D and E reflects the strong 

capacitance response caused by the series capacitance sC , 

therefore the FR in this part is very sensitive to localized 



 

changes of windings. Finally, in the sub-band HF2, the FR 

manifests characteristics of inductive impedance, which is 

influenced by the inductance of internal leads of 

transformers and grounding leads. 

As shapes of FRA curves are related to physical 

components of a transformer (e.g. winding, core, lead and 

tap), frequency division points of various regions for 

different curves are unique. Therefore, dividing FRA curves 

according to their individual characteristics is more feasible. 

However, there are no widely accepted division method. 

In [6, 7], a method was attempted to divide FRA curves 

based on locations of poles and zeros. However, as 

discussed above, detecting all the locations of resonant 

points is infeasible. To overcome such drawbacks of current 

methods, this research only utilizes the location of the first 

pole and the first zero along with FRA curve amplitude 

differences, which aims to avoid the difficulty in identifying 

all poles and zeros in medium and high frequency regions. 

According to [3], the first zero of a FRA curve is usually 

formed because of the interaction of 
mL  and g,wC , while 

the first pole is formed due to the shunt resonance of L  and 

g,wC . Both of these resonant points can be recognized 

easily from FRA curves, therefore they are defined as the 

reference points for separating LF1, LF2 and MF. When 

determining the first zero, the double peak phenomenon, 

which is due to different magnetic paths between a lateral 

winding and a central winding, is considered [14]. The real 

zero point can be identified by comparing the amplitudes of 

these two minimums. The detailed procedure of determining 

the division points A, B, C of the low and medium 

frequency ranges is depicted in Figure 7, where ( )f m s  is 

the frequency value of the sth measured FR data point.  

In Figure 6, variations of FRA curves in different 

frequency regions are dominated by different equivalent 

electrical parameters, and FRA curve variations in a 

frequency region are mainly caused by the change of 

dominating parameters, while the influence of other 

parameters is generally small. Therefore the medium and 

high frequency regions can be divided according to the 

distribution of amplitude differences. 

 Firstly the graphics based method, proposed in section 

3.1, is utilized to acquire a binary image, which 

preserves frequency ranges with comparatively 

significant amplitude differences. Then two searching 

ranges are defined according to characteristics of 

multiple FRA curves. In the searching ranges, the 

binary image is searched column by column from the 

right to the left, to find out whether any image block 

exists for every frequency point (i.e. a column in the 

binary image matrix corresponding to the currently 

searching frequency). When consecutive multiple 

frequency points have image blocks, according to the 

above analysis, these frequency points belong to the 

same sub-band. If a frequency point i  without any 

image blocks is firstly identified in a searching range, it 

means that at this frequency point i  and at least one 

left adjacent frequency point (as the width of the SE is 

2), the reference FRA curve and the measurement FRA 

curve have the same magnitude after eliminating the 

influence of noises and some stochastic factors by 

morphological operations. In other words, in these 

frequency points the FRA curves are not influenced by 

the changed electrical parameter any more, which is 

probably because they are in another sub-band which is 

not dominated by this electrical parameter. Therefore, 

the corresponding frequency value of point i  is 

defined as the separation frequency between two sub-

bands. 

 However, if the equivalent electrical parameters 

dominating a sub-band are changed significantly, the 

sub-bands nearby may also be influenced. As a result, 

image blocks may always exist in the whole searching 

range. In other words, the separation point between 

sub-bands cannot be determined by searching the 

frequency point without significant amplitude 

differences. In this case which has relatively low 

presence probability, fixed frequency points for 

dividing the medium and high frequency regions are 

employed. These fixed division points are defined after 

modifying the methods in [3] and [14] and analyzing 

multiple FRA curves, which have pre-defined 

reference values. The detailed process of finding the 

division points D, E, F are explained in Figure 8, 

where ( )f m s  is the corresponding frequency value 

of the sth frequency point in a FRA curve. 

Find out the frequency values 

of the reference points：
 

 

The curve is 

from the central 

phase?

Find out the first 

maximum     and the first 

minimum

x1  in the reference curve

Determine the frequency values 

of the separation points A, B, C：

 

 

 

Input the 

reference FR curve

No

Yes

Find out the first maximum 

y1  , the first and second 

minimums x1  and x2 in the 

reference curve

Find out the frequency values 

of the reference points：

if  magSFRA(x1)>magSFRA(x2)

i←1

if  magSFRA(x2)>magSFRA(x1)

i←2

 Figure 7. The procedure of defining the division points A, B and C. 

The proposed method has been compared with 

Velasquez's method and Gonzales's method. Figure 9 shows 

the FR measurements of a transformer winding suffering 

from mechanical deformation, and the division results of all 

the three methods are also presented.  



 

 
Figure 8. The procedure of defining division points D, E and F. 

 The division points of LF1 and LF2 defined by these 

three methods are nearly the same. The separation 

points of LF2 and MF chosen by the methods have 

large differences. The proposed method defines the 

separation point C based on the location of the first 

pole, which is utilized to distinguish the influence of 

mL  and L . Velasquez summarized the resonance peak 

distributions from four sets of FR measurements, and 

determines the location of point C based on the 

frequency value of the first pole. Gonzales separated 

LF2 and MF according to the location of the second 

pole, but without a sufficient explanation. 

 The division point D determined by the proposed 

method is close to Velasquez’s, while Gonzale’s is 

different. It is seen that FRA curves have significant 

variations in the range from 200 to 400 kHz. 

According to the proposed method and Velasquez’s 

method, these variations are categorized into HF1. 

However, Gonzales classified them into MF, which 

may lead to misclassification. The proposed method is 

similar to Velasquez’s method for separating HF1 and 

HF2, which is different from Gonzales’s method. 

In summary, the proposed dynamic frequency region 

division method is a compromise of accuracy and feasibility. 

In the following sections, FRA curves are analyzed in sub-

bands defined by the proposed dynamic division method. 

 
Figure 9. Result comparison among three dynamic division methods. 

5  EQUIVALENT GRADIENT AREA 

PARAMETER FOR DETERMINING CURVE 

DEVIATION OF FR 

To overcome the aforementioned drawbacks of the 

existing statistic indicators and waveform features, a new 

kind of parameters is proposed to quantify deviations 

between curves more accurately. In biology, differences 

between gene curves are detected by computing the areas 

between curves [16], while in this research the 

determination of curve shift direction is very important. 

Inspired by this quantification method, the areas between 

curves and the slopes of curves are taken into account for 

quantifying curve variations. Then a series of equivalent 

gradient area parameters (EGAPs) are derived to quantify 

curve deviations between two FRA curves including the 

movement direction and the extent of variations.  

 

 
Figure 10. 8 typical cases of sinusoid movements. 

In the semi-log coordinate, a FRA curve around a pole or 

a zero can be approximated as parts of a sinusoid, and the 

definition of EGAPs are derived by analyzing the 

relationships of the areas enclosed by two sinusoids, the 

mean slopes of curve segments between two intersections 

and the segment comparative movements, while the relative 



 

position of two sinusoids is different. Figure 10 illustrated 

eight typical positions of a sinusoid displaced to another 

sinusoid. The sinusoids in orange represent reference FRA 

curves 
refC , and blue ones are measurement FRA curves 

crtC . 

Firstly, the enclosed area S  of two curve segments 

between two intersections of the reference FRA curve and 

the measurement FRA curve is defined in equation (5). 

Then 
mrefG  and 

mcrtG , which are the mean slopes of the 

curve segments between intersections, are specified in 

equations (6) and (7), where 
ref ( )mag i  and 

crt ( )mag i  are 

the amplitude values of the ith data point in the reference 

FRA curve segment and the measurement FRA curve 

segment between the intersections respectively. ( )f i is the 

frequency value of the ith data point, and the data points 

between the intersections sampled by the FRA instrument 

are n. 


n-1

crt ref

1

1
( ( 1) ( ))* ( ( ) ( ))

2i

S f i f i mag i mag i


                

crt ref( ( 1) ( 1))mag i mag i               (5) 

n-1
ref ref

mref

1 10 10

( 1) ( )1

n-1 log ( 1) log ( )i

mag i mag i
G

f i f i

 


 
                 (6) 

n-1
crt crt

mcrt

1 10 10

( 1) ( )1

n-1 log ( 1) log ( )i

mag i mag i
G

f i f i

 


 
                (7) 

Table 1. Relationships of S , 
mrefG , 

mcrtG  and the curve segment 

movement direction. 

Instance S  
mrefG  

mcrtG  Movement Direction 

8 (a) S > 0 
mrefG < 0 

mcrtG < 0 Shift rightwards 

8 (b) S < 0 
mrefG < 0 

mcrtG < 0 Shift leftwards 

8 (c) S < 0 
mrefG  0 

mcrtG  0 Move upwards 

8 (d) S > 0 
mrefG  0 

mcrtG  0 Move downwards 

8 (e) S < 0 
mrefG > 0 

mcrtG > 0 Shift rightwards 

8 (f) S > 0 
mrefG > 0 

mcrtG > 0 Shift leftwards 

8 (g) S < 0 
mrefG  0 

mcrtG  0 Move upwards 

8 (h) S > 0 
mrefG  0 

mcrtG  0 Move downwards 

 

In Table 1, the relationships of area S , the mean slopes 

mrefG , 
mcrtG  and the curve segment movement direction are 

listed. It can be found that there are some links between S , 

mrefG , 
mcrtG  and the curve segment movement direction, 

which can be summarized as following, where mG  is mrefG  

or mcrtG  depending on which has a greater absolute value. 

 While mG  is much greater than zero, c m*S S G  is 

defined. If c 0S  , the curve segment shifts to the right, 

otherwise the curve segment shifts to the left. 

 While mG  is close to zero, if 0S  , the curve segment 

moves upwards, otherwise the curve segment moves 

downwards. 

As a result, four types of area parameters are defined in 

equation 8, to describe the displacement of curve segments 

between two intersections. 
1S  represents the extent of a 

curve moving rightwards, while 
2S  represents the extent of 

moving leftwards. 
3S  and 

4S  describe the curve segment 

moving upwards or downwards respectively. 

1 2 3 4

2 1 3 4

3 1 2 4

4 1 2 3

, 0, 0, 0, 0

, 0, 0, 0, 0

, 0, 0, 0, 0 0

, 0, 0, 0

&

0&, 0

c

c

m

m

S S S S S if S

S S S S S if S

S S S S S if G S

S S S S S if G S

    

    

     

     

 (8)    

In real cases, the variation trends of FRA curves are more 

complicated than that of sinusoids. In addition to curve 

shifts, the asymmetry of curve segments may also lead to 

the non-zero value of 
mG . To prevent the asymmetry of a 

curve segment from influencing the judgement on how the 

curve segment comparatively moves, a slope threshold T  is 

defined to specify when the curve segment is considered to 

move upwards or downwards. If the absolute values of 

mrefG  and 
mcrtG  are both less than the threshold, the curve 

segment is considered only to move upwards or downwards, 

otherwise it is considered to move leftwards or rightwards. 

The procedure of determining the value of T is described 

as below: The slope threshold T is assigned to different 

integer values from 7 to 15 by a step of 1. When T takes a 

certain value, all ERGPs for different frequency regions of 

the 22 cases are calculated. The curve movements are 

evaluated according to ERGPs, and the analysis results are 

compared with visual observations. When T is set to 10, all 

the evaluated results are consistent to the visual observation. 

Therefore the slope threshold T is set to 10 in the proposed 

approach. 

Table 2. The EGAPs for Figure 1. 

Sub-band 
1rS  

2rS  
3rS  

4rS  

LF1 0.0303 0 0 0 

LF2 0.0157 0 0 0 

MF 0.00261 0.0006 0.0027 0.00006 

HF1 0.0361 0 0 0 

HF2 0 0.0179 0 0.01 

As the frequency ranges of different sub-bands have 

different sizes, the area parameters 1S , 2S , 3S  and 4S  of 

different sub-bands cannot be quantified under a normalized 

numerical range. Therefore the averaged EGAPs 
riS  are 

defined to describe relative deviations of FRA curves in 

various sub-bands, where substartf  and subendf  are the 

frequency values of the start point and the end point of a 

sub-band. globalmax  and globalmin  are the global maximum 

and minimum of the reference FRA  curve and the 

measurement FRA curve. Assuming that the number of 

curve segments in a sub-band is m. 

Using Equation 9, the EGAPs which represent the 

deviations of FRA curves can be calculated, then the 

specific type of winding faults can be identified according 

to the distribution characteristics of various EGAPs in 



 

relevant sub-bands. 

m

1

subend substart global global( )*(max min )

i

i
ri

S

S
f f


 


          (9) 

The corresponding EGAPs of Figure 1 are shown in 

Table 2. According to the calculated EGAPs, the 

measurement FRA curve shifts to the right compared with 

the reference FRA curve in LF1 and LF2. In MF, the 

deviation of curves is slight. In HF1, the measurement FRA 

curve shifts to the right. And in HF2, the EGAPs illustrate 

that there are some curve segments shifting to the left or 

moving upwards. All these curve segment movement trends 

are consistent with the actual variations of the FRA curves, 

which demonstrates the detection ability of EGAPs to 

describe FRA curve movements. 

6  VALIDATION AND DISCUSSION 

The proposed winding fault interpretation algorithm is 

validated by two real typical cases from a FR database. 

Case 1: This case corresponds to a HV winding of a 110/10 

kV transformer. The reference test on this winding was 

measured when the transformer was healthy, while the 

actual test was performed on the transformer suffering an 

axial displacement. The FR traces are shown in Figure 11.  

 
Figure 11. FR measurements on an HV winding of a 110/10 kV 

transformer. 

Applying the pre-processing procedure based on the binary 

morphology and the dynamic frequency region division 

method, the calculation results of the EGAPs for this case 

are listed in Table 3. It can be seen that 1rS , 2rS , 3rS  and 

4rS  are all close to zero in the sub-bands LF1 and LF2, 

which means that the measurement FRA  curve and the 

reference FRA curve are nearly the same in these two sub-

bands. In MF, 2rS  and 4rS  are predominated, which can be 

inferred that the measurement FRA curve shifts leftwards as 

well as moves upwards slightly compared with the reference 

FRA curve. In HF1, 2rS  and 3rS  are much greater than 1rS  

and 4rS . It illustrates that the measurement curve 

comparatively shifts leftwards and moves downwards. In 

HF2, the measurement curve slightly moves leftwards, 

rightwards, as 
1rS , 

2rS  has much greater value than others. 

It is noticed that the identification of the EGAPs is in line 

with the actual variations between the two FRA curves. 

Table 3. The EGAPs for Figure 11. 

Sub-band 
1rS  

2rS  
3rS  

4rS  

LF1 0 0.0001 0 0 

LF2 0 0 0 0 

MF 0 0.0139 0 0.0102 

HF1 0.004 0.0423 0.0399 0 

HF2 0.0088 0.0187 0.0018 0 

 

Table 4. Comparison of the EGAPs and descriptions from other literatures 

for axial displacement. 

Sub-band EGAPs Other literature [3] [5] 

LF1 Ignorable deviations Generally unaffected 

LF2 Ignorable deviations Generally unaffected 

MF 
Shift leftwards and move 

downwards slightly 

Obvious changes (usually 

shift leftwards) 

HF1 
Shift leftwards and move 

upwards 

Obvious changes (usually 

shift leftwards) 

HF2 
Slightly moving 

leftwards, rightwards 
Unpredictable 

 

Moreover, the identification of EGAPs in this case is also 

compared with the qualitative rules of winding axial 

displacement from other researchers' work, as well as some 

international technical standards as listed in Table 4. It can 

be noted the identification of the EGAPs and other 

literatures are basically consistent, except the differences in 

the sub-band HF2, which may be caused by the influence of 

experiment configurations. 

Case 2: This case corresponds to a 138/13.8 kV power 

transformer. FR measurements were recorded in the high 

voltage winding of phase A, which is shown in Figure 12. 

According to the onsite diagnosis, the deviations between 

curves are mainly due to short-circuit between turns, and the 

fluctuations in HF2 probably relates to stochastic factors. 

The calculated results of EGAPs are listed in Table 5, 

which is basically consistent to the deviations between FRA 

curves. Moreover, the identification of EGAPs for shorted 

turns are compared with diagnosis rules from other 

literatures as listed in Table 6, which are nearly the same. 

 
Figure 12. FRA in an HV winding of a 138/13.8 kV transformer. 

It can be summarized from the above cases that EGAPs 

have the ability to perform automated winding fault 

diagnosis. To identify a specific winding fault, EGAPs of 

FRA curves are calculated and compared with diagnosis 

results based on distributions of EGAPs. The most 



 

important contribution of this research is on the derivation 

of EGAPs to quantify FRA curve trends accurately, so as to 

achieve automated fault diagnosis, which overcomes the 

difficulties of parameter calculations in traditional 

algorithms. Additionally, EGAPs can quantitatively identify 

faults, unlike the ambiguous descriptions from traditional 

diagnosis rules. Therefore, EGAPs can be utilized as a new 

kind of quantitative tool to accurately identify winding 

deformation faults, which is very useful for analyzing 

characteristics of faults more accurately. 

Table 5. The EGAPs for Figure 12. 

Sub-band 
1rS  

2rS  
3rS  

4rS  

LF1 0.2523 0 0 0 

LF2 0.2505 0 0 0 

MF 0 0.0016 0.0003 0.0001 

HF1 0 0.0002 0 0 

HF2 0.0045 0 0.0362 0 

Table 6. Comparison of EGAPs and diagnosis rules from other literatures 

for shorted turns. 

Sub-band EGAPs Other literature [15] [17] 

LF1 Shift rightwards greatly 
Increased amplitude and 

shift rightwards 

LF2 Shift rightwards greatly 
Increased amplitude and 

shift rightwards 

MF Ignorable deviations Generally unaffected 

HF1 Ignorable deviations Generally unaffected 

HF2 Move downwards Generally unaffected 

7  CONCLUSION 

This paper proposes a novel interpretation algorithm of 

FR measurements for winding fault diagnosis. Binary 

morphology is utilized to eliminate irrelevant details in FR 

measurements and preserve significant amplitude 

differences representing key features of FRA curves. A new 

dynamic frequency region division method is also 

developed, which shows a high accuracy and feasibility 

compared with conventional division methods. To 

overcome the drawbacks of statistic indicators and 

waveform features, EGAPs are defined to represent the 

deviation of FRA curves more accurately, which can be 

applied for automated winding fault diagnosis. Moreover, 

EGAPs are able to represent diagnosis rules in a 

quantitative way, which contributes to analyzing 

characteristics of winding faults more accurately. 
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