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Abstract 

Children who hear large amounts of diverse speech learn language more quickly than 

children who do not. However, high correlations between the amount and the diversity of the 

input in speech samples makes it difficult to isolate the influence of each. We overcame this 

problem by controlling the input to a computational model so that amount of exposure to 

linguistic input (quantity) and the quality of that input (lexical diversity) were independently 

manipulated. Sublexical, lexical, and multi-word knowledge were charted across 

development (Study 1), showing that while input quantity may be important early in learning, 

lexical diversity is ultimately more crucial, a prediction confirmed against children’s data 

(Study 2). The model trained on a lexically diverse input also performed better on nonword 

repetition and sentence recall tests (Study 3) and was quicker to learn new words over time 

(Study 4). A language input that is rich in lexical diversity outperforms equivalent richness in 

quantity for learned sublexical and lexical knowledge, for well-established language tests, 

and for acquiring words that have never been encountered before. 

 

Keywords: input quantity; lexical diversity; vocabulary acquisition; CLASSIC; language 

acquisition.  
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1. Introduction 

The onset and speed of vocabulary acquisition differs enormously from child to child, 

in all languages. A significant proportion of this variation is explained by children’s different 

experiences of language in their environment. Children who hear a large amount of lexically 

diverse child-directed speech learn language more quickly and have larger vocabularies than 

children who do not (for a review, see e.g. Hoff, 2006). However, it is almost impossible to 

directly compare the effect of input quantity with the effect of lexical diversity in natural 

speech samples because the two are highly correlated. In this paper, we use computational 

modeling to investigate how the quantity of input and the lexical diversity of that input 

impact on a model’s learning throughout development. We show how the lexical diversity of 

the language input is more important than its quantity for learning sublexical and lexical 

knowledge, for performing language tests that are highly predictive of the children’s 

language ability, and for vocabulary learning more generally.  

Preschool children show large individual differences both in the age of onset, and in the 

speed, of vocabulary learning (Fenson et al., 2007). These differences are strongly predicted 

by environmental factors, particularly the quantity and quality of the linguistic input children 

receive. In terms of quantity, several studies have established a direct strong or medium 

correlation between measures of the sheer quantity of linguistic input children hear and the 

size of children’s vocabularies (see e.g. Bornstein, Haynes, & Painter, 1998; Bornstein & 

Tamis-LeMonda, 1995; Cartmill et al., 2013; Hart & Risley, 1992, 1995; Hoff & Naigles, 

2002; Hurtado, Marchman & Fernald, 2008; Huttenlocher, Waterfall, Vasilyeva, Vevea & 

Hedges, 2010; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Rowe, 2012). For 

example, Huttenlocher et al. (1991) showed that 20% of the variance in children’s vocabulary 

growth between 16 and 24 months of age (N= 22) was predicted by variations in the amount 

of speech produced by the children’s mothers. Analyses of Hart and Risley’s (1992, 1995) 
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American data show that some children (particularly those defined as of high socio-economic 

status) were exposed to up to 153,000 more words per week than others, which had a 

significant effect on these children’s vocabulary growth. Pearson, Fernandez, Lewedeg and 

Oller (1997) even showed that the relative vocabulary size of bilingual English-Spanish 

speaking one-to-two year olds was predicted by the relative amount of input they received in 

each language, which suggests a direct correlation between the likelihood of hearing a word 

in a language and the ability to learn it (for similar results, see also Hoff et al., 2012).  

The quality, as well as the quantity, of the language input is important. Input quality 

can be operationalized in many different ways. Some studies have tested the complexity of 

input utterances, using for example, a Mean Length of Utterance (MLU) measure (Bornstein, 

Hayes, & Painter, 1998; Hoff & Naigles, 2002) or constituent and clausal complexity 

(Huttenlocher et al., 2010). Others have focused on communicative devices thought to 

increase the likelihood of the child interpreting a word correctly, such as the degree to which 

the referent of the word is easily identifiable or not (referential uncertainty; Cartmill et al., 

2013) or the number of utterances spoken during periods of joint attention (Hoff & Naigles, 

2002). Still others focus on features of the conversations that parents hold with their children, 

and measure, for example, how effectively parents engage the child’s attention during 

episodes of joint engagement or how often they model language during routines and rituals 

(e.g. Hirsh-Pasek et al., 2015). However, the metric that is used most often, and which 

produces the most consistent effects, is lexical diversity, operationalized as the number of 

different word types produced by the caregiver during a set timeframe (e.g. Bornstein et al., 

1998; Demir-Vegter, Aarts, & Kurvers, 2014; Hoff & Naigles, 2002; Huttenlocher et al., 

2010; Pan, Rowe, Singer, & Snow, 2005; Rowe 2012; see also Hsu, Hadley, & Rispoli, 2015, 

for results for verb lexical diversity). For example, Bornstein et al. (1998) found that both 

maternal lexical diversity and maternal MLU were significant predictors of child vocabulary 
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at 18 months in a structural equation model. Similarly, Hoff and Naigles (2002) reported that 

the number of different word types produced by the mothers of 63 two-year olds was a strong 

predictor of the number of different words their children produced ten weeks later (though in 

this study, MLU was a stronger predictor). An input that models a high proportion of rare 

words is particularly effective, especially at older ages (e.g. Weizman & Snow, 2001; Beals, 

1997; Rowe 2012). Thus, there is good evidence for a role for both the quantity of the input 

and its lexical diversity in determining the rate at which children develop vocabulary.  

However, almost all research to date has tested input quantity and lexical diversity 

using speech samples where both are free to vary. Very few studies, if any, directly compare 

the independent effects of input quantity and lexical diversity on child language, and virtually 

none test how these relationships change with development. This is problematic, since any 

complete theoretical account of vocabulary acquisition has to explain not only how different 

properties of the input are utilized during learning, but also how changes in the amount and 

structure of this learned knowledge affect subsequent learning.  

Studying the effect of the input developmentally is important since there is tentative 

evidence for differential age-related effects. Rowe (2012) recently assessed age-related 

changes in the contribution of input quantity and quality to vocabulary growth, looking at the 

effects of input at 18, 30, and 42 months on children’s vocabulary 12 months later. Quantity 

(number of word tokens produced in a 90 minute interaction) was a strong predictor of 

vocabulary at 30 months but lexical diversity (total number of different word types) and 

sophistication (total number of rare words) were the strongest predictors by the time the 

children reached 42 months. By 54 months, the amount of decontextualized talk in the input 

(explanations, talk about pretense, narratives) was the strongest predictor of vocabulary. This 

progression makes sense when seen in the light of the acquisition tasks facing children at 

different ages. In the earliest stages of learning, when the child knows few words, hearing any 
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word multiple times will lead to learning. Thus, frequent exposure to a small number of 

words will be effective. However, later on, when many high frequency words have already 

been learnt, exposure to a larger variety of words becomes more important. Even later, 

decontextualized language introduces children to a different set of (infrequent) words (e.g. 

explicit explanation of word meanings, words about the future or past), which is why it has its 

strongest effect later in learning.  

In this paper, we directly compare the effects of input quantity and lexical diversity on 

vocabulary acquisition across development. We do this using a computational model, because 

directly comparing these effects is very difficult to do within the context of natural language 

settings. Parents who are verbose also use a wider variety of different words (e.g., Hart & 

Risley, 1992; Smolak & Weinraub, 1983; Weizman & Snow, 2001), so, while maternal type 

and token data might both predict child vocabulary growth, the correlation between them is 

usually so high as to render meaningless any statistical differences between the two. For 

example, Hoff and Naigles (2002) were unable to enter both number of word tokens (input 

quantity) and number of word types (lexical diversity) into the same regression model 

because high correlations between these measures (r = .89) made their effects 

indistinguishable statistically. The majority of research outlined above is therefore difficult to 

interpret since measures of input quantity are confounded by measures of input quality 

(lexical diversity, syntactic complexity etc.) and vice versa. 

Using a computational model allows us to bypass this problem, because we can 

artificially manipulate the naturalistic language input by varying the amount of language 

input (while keeping lexical diversity fixed) or varying its lexical diversity (while keeping 

amount of input fixed). By measuring the model’s learning after it has been trained using 

different inputs we can isolate the different effects. In addition, by testing the model at 

different points in its learning cycle, and comparing its output with data from real children, 
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we can investigate whether the relative importance of the quantity and diversity of the input 

changes throughout development and how the model’s developing vocabulary impacts upon 

its performance. 

In computational modeling, much hinges on the type of learning mechanisms and 

parameters implemented in the model. If the results of the model are to inform our thinking 

about how children might learn, these mechanisms must be psychologically plausible. To this 

end, we chose to use CLASSIC (Jones, 2016; Jones, Gobet, Freudenthal, Watson, & Pine, 

2014), a computational model that learns lexical and phonological knowledge from exposure 

to word-delimited phonemically-coded input, and has been successful previously in modeling 

children’s performance in closely related developmental tasks (nonword repetition 

performance, see e.g. Jones, Gobet, & Pine, 2007). In addition, since CLASSIC can use 

naturalistic (maternal) utterances as input, we can manipulate the properties of this input 

(e.g., increasing quantity or lexical diversity) to examine the effect this has on the model’s 

learned knowledge, its performance on established language tests, and also how the model’s 

vocabulary learning compares with that of real children. Furthermore, since CLASSIC learns 

incrementally from the input, we can access the results of the model’s learning at different 

points in development.  

In sum, the goal of this paper was to determine the effect of the quantity and diversity 

of the input on vocabulary learning in a CLASSIC model. In Study 1, we tested the effect of 

input quantity and lexical diversity on the model’s learning. In Study 2, we compared the 

model’s vocabulary learning with that of 2- to 3-year-old children. In Study 3, we 

investigated the effect of input quantity and diversity more generally by examining the 

performance of the model on two tests that are highly predictive of children’s language 

success: nonword repetition and sentence recall. In Study 4, we examined the effect of 

different inputs on the process of word learning itself, by determining how many new words 
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were learned by the models exposed to different input types. Below we first outline the model 

and its parameters, before presenting the four studies and discussing their implications. 

 

2. CLASSIC (Chunking Lexical and Sublexical Sequences in Children) 

2.1 How CLASSIC Learns 

CLASSIC is a symbolic model based on the EPAM/CHREST architecture, which has 

been used to model a range of perceptual and cognitive phenomena in verbal learning, expert 

memory, language acquisition and education (see Gobet et al., 2001). These models 

implement a chunk-based learning mechanism that learns by gradually chunking information 

in the model’s internal representational system on the basis of incoming input. CLASSIC’s 

architecture has been adapted to learn phonemic sequence vocabulary from phonetically-

coded naturalistic input.  

CLASSIC begins with built-in knowledge of the phonemes of standard British English, 

realized as text symbols that are analogous to the International Phonetic Alphabet. The input 

to the model is real utterances (e.g., maternal utterances) that are converted into text-based 

word-delimited phonetic symbols (e.g., /w ɒ t/ k æ t/ for ‘what cat?’). From this input, 

CLASSIC learns increasingly long sequences (chunks) of phonetic information. The initial 

presentations of phonetic input will usually lead to sublexical information being learned (i.e., 

phonetic sequences below the lexical level). However, as more input is seen, it is increasingly 

likely that the sequences learned will correspond to lexical items and multi-word sequences.  

For the purposes of this article, we will refer to the knowledge represented in 

CLASSIC as chunks (we will see that a chunk can contain a phoneme, a sublexical sequence 

of phonemes, a word or sequence of words). Take as an example the utterance /w ɒ t/ i z /θ æ 

t/ (‘what is that?’). CLASSIC uses its existing knowledge to code the utterance into as few 

chunks as possible. Since CLASSIC begins with chunks that correspond to each phoneme 
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within standard British English, on its first presentation, the utterance will be coded into eight 

chunks, one for each phoneme (/w, ɒ, t/ i, z /θ, æ, t/). CLASSIC’s learning algorithm will 

then create new chunks that combine the knowledge from adjacent chunks (i.e., wɒ, ɒt, iz, 

θæ, æt). CLASSIC does not learn across word boundaries unless the chunks involved 

correspond to lexical items or multi-word sequences (for an explanation, see below). If the 

same utterance were presented a second time, it would now be coded using five chunks (/wɒ, 

t/ iz, /θæ, t/) and the learning algorithm would again learn new chunks for adjacent items (i.e., 

wɒt, θæt). On the third presentation, the utterance can be coded into chunks that correspond 

to lexical items (/wɒt/, iz, /θæt/), which would lead to multi-word chunks being learned (i.e., 

wɒt iz, iz θæt). Within CLASSIC, chunks are represented in a hierarchy based on the initial 

phoneme in a learned sequence (e.g., below /w/ would be the sublexical chunk /wɒ/, below 

that the lexical chunk /wɒt/, and below that the multi-word chunk /wɒt iz/). However, the 

hierarchical nature of CLASSIC is not used in any of the results presented here – rather it is 

the presence or absence of learned chunks that is important. Knowledge of whether a newly 

learned chunk is sublexical, lexical or multi-word is determined based on the word-delimited 

input.  

Young children are usually unable to process long utterances in full (e.g., Gathercole, 

2006), and so CLASSIC includes a processing constraint that limits the amount of 

information that can be processed at any one time. It is based on a simple sigmoidal function 

(see Figure 1) in which, on average, 4.5 chunks are processed for any given input, with the 

most recently heard chunks being favored. We chose a sigmoidal function because this is 

broadly consistent with the effects found in serial recall tests, where the proportion of lists 

recalled is a sigmoidal function of list length (see Grenfell-Essam & Ward, 2012). For 

example, in Figure 1 below, the two most recent chunks have access probabilities of .97 and 

.92, meaning the probability of their joint access is .89 (.97 * .92 = .89). The processing 
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limitation restricts learning from longer words and utterances because it means that 

consecutive chunks are not always accessed and, therefore, not always chunked. For example, 

assuming CLASSIC hears a single-word utterance, where the word can be coded using 9 

chunks, and where 4.5 chunks will be accessed on average, the probabilities outlined in 

Figure 1 mean that 2.5 adjacent chunks will be accessed (i.e. the model has 2.5 opportunities 

to learn something about the word). Table 1 exemplifies how learning is reduced on the basis 

of the processing constraint. It is worth noting that previous applications of CLASSIC have 

labeled the constraint on information processing as ‘short-term memory’; however, since a 

limit on information processing could arise from many sources (e.g., limits on attention), we 

now use the broader term processing constraint. 

 

 

Figure 1. Probability of accessing a chunk on the basis of its position from the end of the 

input utterance. ‘0’ on the x-axis represents a chunk in the utterance-final position, ‘1’ 

represents the last but one chunk and so on. A probability of 0.5 occurs 4.5 chunks from the 

end of the utterance (at 3.5 on the x-axis because the final item is indicated by ‘0’). 
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As Table 1 illustrates, on each presentation of the utterance, CLASSIC learns more 

information (e.g., longer chunks). As a consequence, it is capable of processing more of the 

utterance on the next presentation, which leads to further learning in turn. In other words, 

early in the learning cycle, the model is unable to represent, and learn from, much of the 

input. Later in learning, more of the input can be processed, and more learning is likely to 

take place.  

 

 

 

Table 1.  

Potential learning when CLASSIC is repeatedly exposed to the phrase ‘what is that’ when the 

input utterance is constrained by processing limitations. Items underlined are those that are 

not accessed based on the sigmoidal function from Figure 1. 

 

Number of exposures Chunks to be subjected to 

processing constraint 

New chunks learned 

1. /w ɒ t/ i z /θ æ t/ /w, ɒ, t/ i, z /θ, æ, t/ 

[8 chunks, 50% accessed] 

θæ, æt 

2. /w ɒ t/ i z /θ æ t/ /w, ɒ, t/ i, z /θæ, t/ 

[7 chunks, 71% accessed] 

iz, θæt 

3. /w ɒ t/ i z /θ æ t/ /w, ɒ, t/ iz /θæt/ 

[5 chunks, 80% accessed] 

ɒt, iz θæt 

 

The more input the model receives, the more vocabulary it learns (chunks that 

correspond to a lexical item), and the better its performance on vocabulary-related tasks. 
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However, the quantity and lexical diversity of the input are likely to have different effects on 

the model’s learning. Increasing the quantity of the input (number of word tokens) while 

keeping lexical diversity (number of word types) constant is likely to lead to the model 

learning increasingly longer chunked units of consistently repeated sequences of phonemes. 

Increasing the lexical diversity of the input, on the other hand, is likely to lead to it learning a 

wide variety of smaller chunks, because it is less likely that the same word, utterance or 

sequence of words will be repeated in the input. The question we ask is whether learning 

longer chunks of knowledge (from increased quantity) will lead to faster vocabulary learning 

and better performance on language-related tests than learning smaller but more varied 

chunks of knowledge (from increased lexical diversity). Increasing input quantity may lead to 

more words being learnt, or may simply lead to more chunking of words into multi-word 

chunks. Increasing lexical diversity may cause the model to learn more lexical chunks 

(words), or more sublexical chunks, with fewer of these chunked into words.  

We investigated this in Study 1. However, before that, we justify the assumptions and 

parameters used within CLASSIC and then give details on how CLASSIC has been applied 

to verbal tasks in order to illustrate how the model can be seen as a viable model of language 

learning. 

2.2 CLASSIC’s Assumptions and Parameters  

2.2.1 CLASSIC’s learning mechanism. Like other models based on the 

EPAM/CHREST architecture (Gobet et al., 2001), CLASSIC implements a chunk-based 

learning mechanism that makes gradual changes to the model’s internal representations by 

chunking information received from the incoming input. Chunking as an information-

processing mechanism was first proposed by De Groot (1978), based on studies of human 

problem solving, and by Miller (1956), based on studies of human perception and memory. 

Since then, chunking has become established as one of the key mechanisms of human 
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cognition (Gobet et al., 2001), and explains how humans are able to extract, and process, 

increasingly large amounts of information from the environment over time in the face of 

constant cognitive limitations. For example, by chunking information in long-term memory, 

we can encode and retrieve long sequences of numbers (e.g., in the digit span task, Richman, 

Staszewski, & Simon, 1995) and syllables (e.g., in nonword repetition tasks, Jones et al., 

2007). Chunk-based learning models based on the EPAM/CHREST architecture have 

simulated human behavior in a variety of domains including verbal learning, expert memory 

for chess positions, science education, and language development (see Gobet et al., 2001, for 

a review). 

CLASSIC’s learning is based on two assumptions: a) that regularly occurring 

sequences (be they sequences of phonemes or words) will eventually be learned as chunks; 

and b) that the processing of a sequence is facilitated when the sequence can be coded using 

few, rather than many, chunks (see Table 1). Sublexically, these assumptions are based on 

robust evidence that children and adults find it easier to process and produce a phoneme 

sequence if they have previously been exposed to it as a sequence, than if they have simply 

been exposed to its component phonemes in separate phonological contexts (e.g., Catts & 

Kamhi, 1984; Demuth, Culbertson, & Alter, 2006; Jakobson, 1941/1968). For example, even 

when children are able to produce all constituent sounds in a phoneme sequence, they are 

more accurate at producing those sequences that exist in the native language over those that 

do not (Beckman & Edwards, 1999). There is also support at the lexical level: young children 

more readily process highly familiar sequences of words than less familiar ones (Bannard & 

Matthews, 2008) while multi-word sequences show age of acquisition processing advantages 

in the same way that lexical items do (e.g., faster response times to early acquired phrases, 

Arnon, McCauley & Christiansen, 2017).  
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2.2.2 Parameter 1: Probability of learning a new chunk set to 1.0. CLASSIC learns 

new chunks by joining the information in two adjacent chunks together. This happens every 

time two adjacent chunks are accessed, which means that the probability of learning a new 

chunk when adjacent chunks are accessed is 1.0 (note that the processing constraint means 

that adjacent chunks are not always accessed). However, this fast learning is not intended to 

be an illustration of one-shot learning (c.f. Stevens, Gleitman, Trueswell, & Yang, 2010). 

Rather, it is a necessity based on the paucity of naturalistic language that is available as input 

to the model. The maternal input to the model (see later) averages 97,000 words, which is 

trivial compared to estimates of children’s linguistic exposure. Hart and Risley (1992, 1995) 

have shown that some children are exposed to up to 153,000 more words per week than 

others, while Swingley (2007) suggests that children may be hearing up to half a million 

words in a three-week period. Thus, in order to see any development in our model, we have 

to allow it to learn more quickly than real children. That said, while our main model uses a 

chunk-learning probability set to 1.0, we also manipulated this in Study 1, to examine how 

different learning parameters behave in response to changes in input quantity and lexical 

diversity.  

2.2.3 Parameter 2: Processing limitation of 4.5 chunks. A probabilistic processing 

constraint is applied within CLASSIC such that, on average, only 4.5 chunks can be accessed 

in any given input. This mimics processing limitations that prevent young children from 

processing long utterances in full (Gathercole, 2006). However, although we think it 

important to model some type of information processing constraint, we do not intend to imply 

that a setting of exactly 4.5 chunks is realized in young children. In Study 1, we modeled 

variations in the processing limitation, and show that the same broad pattern of effects 

emerges regardless of the number of chunks that can be processed at any one time. 
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2.2.4 Favoring the most recent chunks in an utterance (recency effect). We also set 

the processing constraint to favor the most recent chunks in a coded utterance. This is based 

on well-established recency effects in which participants are more accurate at recalling the 

most recent (last presented) items in a list than items in the middle of lists (e.g., Gupta, 2003, 

Hulme et al., 1997). Young children also show a recency effect in that they attend more 

closely to word-final syllables (Echols & Newport, 1992). However, in Study 1, we also 

tested the effect of removing the recency bias. We do not implement a primacy effect (i.e., 

facilitatory recall for items at the beginning of to-be-recalled lists) because such effects are 

likely to result from a rehearsal strategy, which children below the age of 7 years rarely use 

(e.g., Gathercole & Adams, 1994). 

2.2.5 Inclusion of word boundary information. We include information about word 

boundaries in the input because there is substantial evidence that children are already capable 

of determining word boundaries via a range of phonetic, phonological and distributional cues 

by their first birthday (see Rowland, 2014, for a review). However, it is worth noting that 

previous studies that either use a derivative of CLASSIC that dispensed with word 

boundaries, or that directly compare models with/without word boundary information, show 

that the inclusion/exclusion of word boundary information has very little effect on the 

performance of the model (Jones, Gobet & Pine, 2007; Jones, 2016). For example, in Jones 

(2016), a direct comparison of models that included/excluded word boundaries in CLASSIC 

only moved the fit between model and child nonword repetition data from 7% to 8%. 

2.3 Previous Applications of CLASSIC to Verbal Tasks 

The main strength of CLASSIC is how well it is able to simulate child and adult 

performance on tasks that are verbal in nature. Nonword repetition (NWR) is one such task, 

being highly predictive of vocabulary size (e.g., Gathercole & Baddeley, 1989; Hoff, Core & 

Bridges, 2008), and of language performance more generally (e.g., Gathercole, 2006). NWR 
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performance can even be used as a clinical marker of language impairment (e.g., Jones, 

Tamburelli, Watson, Gobet & Pine, 2010; Nash & Donaldson, 2005). As such, it provides an 

excellent test bed for CLASSIC’s ability to approximate children’s language learning.  

For example, Jones (2016) examined the development of nonword repetition 

performance using the same CLASSIC model outlined here. The author analyzed the model’s 

performance using input aimed at young children (maternal input addressed to 2-3-year-olds) 

and input addressed to older children (4-6 year olds). The linguistic input was temporally 

ordered so that utterances aimed at younger children were processed first. In this way, model 

performance at an early stage of learning could be compared to two-year-old children, model 

performance after more learning could be compared to three year olds, and so on until all of 

the input had been processed by the model (which was then compared to six year olds). 

Model-child comparisons were made across six different nonword repetition studies, which, 

between them, tested children at seven different ages, on six different sets of nonwords that 

varied across a range of characteristics such as length, consonantal complexity, and 

phonotactic probability. In total, there were 38 datapoints for model-child comparisons. 

CLASSIC proved extremely accurate at modeling children’s performance. For example, the 

model’s repetition accuracy for individual nonwords significantly correlated (r = .72) with 

those of children; overall nonword repetition performance for the model was within 7% of the 

children and fit over 85% of the child data (33 of 38 datapoints); nonword repetition 

performance strongly correlated with vocabulary size (as occurs in child studies); and the 

model and children showed the same effects of length, consonantal complexity and 

phonotactic probability.  

Jones and Macken (2015) also used the same CLASSIC model, trained on a large 

sample (half a million utterances) of adult-directed speech and written literature, to examine 

performance in digit span, the archetypal measure of verbal short-term memory. Their 
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computational and empirical studies examined a long-known and hitherto unexplained oddity 

in digit span performance, namely that span for random sequences of digits is consistently far 

greater than span for random sequences of other stimuli such as words. Jones and Macken 

(2015) showed that such ‘digit span superiority’ can be explained by the fact that random 

sequences of digits are far more prevalent within natural language, with CLASSIC showing 

the same digit superiority effects as adults. CLASSIC performed within 4% of the adult span 

size data across three different types of stimuli (digits, words, and a mixture of the two). 

Moreover, the model predicted a critical difference between digit lists and word lists at list 

length five, because digit lists at this length could be coded using far fewer chunks than for 

word lists. This is precisely where adults faltered for word lists, with 60% failing at this list 

length compared to only 26% of the same adults failing for digit lists.  

Note that CLASSIC has no knowledge of syntax or semantics; it is learning sequence 

information from naturalistic language input. As such, it is not a fully-realized model of the 

complete language learning process (e.g., it is unable to produce novel utterances, though see 

Freudenthal, Pine, Jones & Gobet, 2015, for a productive model based on a similar 

architecture). Nevertheless, previous work with CLASSIC shows that it is capturing critical 

aspects of linguistic knowledge within its learning, and that it is doing so for both sublexical 

and lexical/multi-word sequences. 

 

3. Study 1: Modeling the Effect of Input Quantity and Lexical Diversity on Language-

related Learning using CLASSIC 

In Study 1, we investigated the information learned within the model, and how this 

changed across development, when the input was maternal utterances, when the input was 

artificially manipulated to increase lexical diversity (keeping quantity constant) and when the 

input was artificially manipulated to increase quantity (keeping lexical diversity constant). 



Diversity not quantity in caregiver speech  Page 18 

3.1. Method 

3.1.1 Input to the model. The Manchester corpus (Theakston, Lieven, Pine, & 

Rowland, 2001) on CHILDES (MacWhinney, 2000) contains transcripts for 12 children, each 

comprising 34 hours of mother-child interactions recorded over a one-year period. All 

children began the study aged between 22 and 24 months and were recorded for two hours 

every three weeks for a year. To increase sample size to N = 16, four additional children who 

were of the same age as the children in the Manchester corpus were added: Eleanor and 

Fraser from the MPA-EVA corpus, Thomas from the Thomas corpus (for both, see Lieven, 

Salomo & Tomasello, 2009) and Lara from the Lara corpus (Rowland & Fletcher, 2006; all 

corpora available on CHILDES, see MacWhinney, 2000). Significantly more data were 

available for these corpora than for the Manchester corpus children, so we used random 

sampling to extract thirty-four hours of transcripts for these children. The mean number of 

utterances across the 16 mothers was 24,385 (SD = 6,231).  

All maternal utterances addressed to the 16 children were coded phonemically by 

converting each constituent word to its phonetic equivalent. Note that the phonemic input to 

the model involved automatic conversion of the utterance string into its phonemic 

representation using a word-phoneme database. This means the number of utterances for each 

mother are slightly lower than in the original transcripts. The maternal input is hereafter 

labelled ‘Mother’. Table 2 shows the characteristics of the input. 

Artificial manipulations were then made to the Mother inputs in order to either 

increase the lexical diversity (increasing word types) or increase the input quantity 

(increasing word tokens) while keeping other properties of the input identical across the input 

sets. For the Diversity manipulation, we considered replacing half of each mother’s 

utterances with those of another mother from our corpus set (since all are parts of ongoing 

conversations aimed at 2-3-year-old children). However, this did not significantly increase 



Diversity not quantity in caregiver speech  Page 19 

the number of word types. The Diversity manipulation was therefore created by substituting 

half of each mother’s utterances (taken at random) with utterances addressed to 3-5 year old 

children, which are more diverse in terms of word types. Utterances were taken from the 

Forrester (Forrester, 2002), Lara (Rowland & Fletcher, 2006), Smith (Smith, 1973) and 

Thomas (Lieven et al., 2009) corpora from the English UK transcripts on CHILDES. The 

sample taken was pseudo-random to ensure that we matched the number of word tokens from 

the original substituted mother utterances as closely as possible (i.e., MLU and number of 

word tokens were identical to the original mother utterances), with each mother having a 

different pseudo-random set of input utterances. In sum, the Diversity manipulation matched 

the Mother input for input quantity (number of word tokens) but differed in lexical diversity 

(number of word types). 

The Quantity manipulation was created by pseudo-randomly duplicating a subset of 

utterances from each of the original mother inputs (thereby keeping number of word types 

constant), again distributing the utterances across the mothers’ inputs. The proportional 

increase in word tokens matched as much as possible the proportional increase in word types 

in the Diversity input. Although number of utterances is not one of our measures, we also 

kept the proportional increase in utterances consistent with the increase in word tokens, 

because the model is presented with the input one utterance at a time (mean utterances = 

40,537, SD = 12,777). The Quantity manipulation for each mother therefore matched the 

Mother input for lexical diversity (number of word types) but differed in input quantity 

(number of word tokens and utterances).  

Each input was presented to the model one utterance at a time and processed in line 

with the model description above. The model’s learning was tested by measuring the 

information contained within its chunks (sublexical sequences, sequences corresponding to 

lexical items, multi-word sequences). We measured learning at 5% intervals (i.e., when the 
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model had seen 5% of the input, 10% of the input etc.) to assess learning over developmental 

time.  

The probabilistic processing constraint within the model means that, while on average 

4.5 chunks are accessed, this will vary from utterance to utterance, which means results will 

differ slightly each time the model is run. We therefore performed ten independent model 

runs for each input type (Mother, Diversity manipulation, Quantity manipulation) for each of 

the mothers (N = 16) and averaged performance across the ten runs. For example, the same 

mother input for Anne was presented to the model ten times and all mother performance 

measures for Anne were averaged across these ten independent runs.  
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Table 2.  

Input characteristics. All figures are in 1,000s except MLU. The Quantity manipulation 

increases the number of word tokens by duplicating maternal utterances, thus having the 

same number of word types as the Mother. The Diversity manipulation increases the number 

of word types by replacing maternal utterances with those from input aimed at older children, 

thus having the same number of word tokens as the Mother. Both the duplicated maternal 

utterances and the utterances aimed at older children were pseudo-randomly selected such 

that MLU remained the same as per the maternal input. The italicized rightmost two columns 

indicate the changed metrics for the artificially manipulated inputs. 

Child 

 

Mother/ 

Diversity: 

Tokens 

Mother/ 

Quantity: 

Types 

All inputs: 

MLU 

Diversity: 

Types 

Quantity: 

Tokens 

Anne 126.3 2.8 3.8 5.3 234.4 

Aran 169.5 4.2 5.0 6.3 255.5 

Becky 89.1 2.4 3.6 4.4 162.6 

Carl 79.0 2.1 3.7 4.1 150.6 

Dominic 120.3 2.6 3.7 5.0 234.0 

Gail 94.8 3.7 3.8 5.1 131.4 

Joel 95.1 3.6 3.8 5.0 132.5 

John 72.3 2.7 4.1 4.2 112.5 

Liz 69.8 2.6 4.0 4.1 112.7 

Nicole 105.2 3.1 3.9 4.9 165.0 

Ruth 126.5 2.9 3.8 5.2 231.4 

Warren 71.7 3.0 4.4 4.4 106.6 

Eleanor 52.5 2.1 3.4 3.5 88.8 
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Fraser 77.8 2.5 3.6 4.1 129.2 

Lara 73.4 2.5 3.5 4.1 120.9 

Thomas 126.3 3.6 5.1 5.5 191.3 

M 96.9 2.9 4.0 4.7 160.0 

3.2 Results 

We first analyzed the effect of the different input types on the model’s learning at the 

end of the learning process. Table 3 shows the mean number (SD) of chunks learned by the 

model at the end of the learning period for each type of input. For all items, it is worth noting 

that despite the probability of learning a chunk being 1.0, the model actually learns far fewer 

than one chunk per utterance regardless of input type (e.g., only 71% of the Diversity input 

utterances result in the learning of a new chunk). In part this is because the processing 

constraint reduces learning opportunities but it is also because single-word utterances, which 

are learnt quickly, account for 26% of utterances across all inputs (once the word is learned, 

no further learning can take place on subsequent repetitions). 

We analyzed the data using four one-way ANOVAs, with input type 

(Mother/Diversity/Quantity) as the independent variable; the DVs were, respectively, all 

chunks, chunks corresponding to a sublexical sequence, chunks corresponding to a lexical 

item, and chunks corresponding to a multi-word sequence. For each input type, N = 16 

because there are 16 different children and therefore 16 different inputs.  

There was an effect of input type for all chunks (F(2,45) = 3.59, p = .036, ηp
2 = .14), 

indicating that the model learned more chunks overall from the Quantity input than the 

Mother input (p = .015) and the Diversity input (p = .048) with no significant difference 

between the Diversity and Mother inputs (p = .620). However, this result masks very 

different patterns across the different types of information held in a chunk (sublexical 

sequence, lexical item (word), multi-word sequence). For lexical items (words), the 
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significant effect of input type (F(2,45) = 11.81, p < .001, ηp
2 = .34) showed that the model 

learned significantly more chunks that corresponded to lexical items from the Diversity input 

than from both the Quantity (p = .005) and Mother input (p < .001), with no significant 

difference between the Quantity input and the Mother input (p = .072). A similar pattern was 

seen for sublexical sequences (F(2,45) = 18.60, p < .001, ηp
2 = .45), with significantly more 

chunks containing sublexical sequences learned from the Diversity input than from both 

Quantity and Mother input (both ps < .001), with no significant difference between the latter 

(p = .618). 

 

Table 3.  

Mean number of chunks (SDs) learned by the end of the learning process for each different 

type of input. A chunk corresponds to a phoneme or sequence of phonemes that has been 

learned from the input, and as such can contain sublexical sequences (phoneme or phoneme 

sequences that do not correspond to a word or sequence of words), a lexical item (phoneme 

or phoneme sequence that corresponds to a word), or a multi-word sequence (phoneme 

sequence that corresponds to more than one word). 

Chunk contents 

Input type 

Mother Diversity Quantity 

All 16680 (4148) 17480 (4278) 20729 (5071) 

Lexical items 1929 (362) 2577 (403) 2177 (376) 

Sublexical sequences 1198 (167) 1527 (163) 1228 (176) 

Multi-word sequences 13553 (3756) 13375 (3740) 17323 (4661) 

 

The model exposed to the Quantity input learned more chunks corresponding to multi-

word sequences (F(2,45) = 4.79, p = .013, ηp
2 = .18) than both the Diversity and Mother 
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inputs (p = .009 and p = .012 respectively), with no significant difference between the latter 

two (p = .902). Overall, across all three input types, the model learned more multi-word 

sequences than lexical items or sublexical sequences. This is not too surprising when one 

considers the maternal input averages 96,900 word tokens but only 2,900 types (i.e., a 

type:token ratio of 1:33). That is, the model has many opportunities to learn vocabulary 

items, and once it has done so, subsequent learning will involve multi-word sequences.  

A different pattern emerges when we consider how the model learned over time 

(development). Figures 2, 3, and 4 show how the different types of information contained in a 

chunk changed over time by charting learning over the course of the input. For chunks 

corresponding to lexical items (Figure 2) and sublexical sequences (Figure 3), the Quantity 

input outperformed the other inputs early in learning (i.e., when only a small amount of the 

input had been processed) but was quickly superseded by the Diversity input. For chunks 

corresponding to multi-words (Figure 4), however, the Quantity input consistently 

outperformed both the Diversity and Mother inputs throughout development. 

For chunks corresponding to lexical items and sublexical chunks, we analyzed the 

strength of the crossover effect by comparing the number of chunks learned from the 

different inputs at appropriate points before and after the crossover in a two-way ANOVA. 

We first determined where the crossover occurred between Diversity and Quantity inputs; we 

then noted the point at which the Quantity input was maximally superior to Diversity before 

the crossover (‘early in learning’); and, finally, we sampled the point after the crossover that 

was the same distance away in time. In other words, we sampled from points equidistant 

before and after the crossover, with the distance determined by the point of maximal 

difference between inputs before the crossover. For example, the data for lexical items shows 

that Quantity was maximally superior to Diversity after 5% of the input had been seen, with 

the crossover occuring after 40% of the input had been seen. Thus, we sampled from the 
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Diversity and Quantity inputs after 5% of the input was seen and after 75% of the input was 

seen. A 2 (input type: Diversity or Quantity) x 2 (location: pre-crossover, post-crossover) 

ANOVA showed that the interaction was significant for both lexical sequences (F(1,30) = 

8.19, p = .008, ηp
2 = .21) and sublexical sequences (F(1,30) = 18.22, p < .001, ηp

2 = .38). 

Early in learning, the model learned more chunks corresponding to lexical items and 

sublexical chunks from the Quantity input than the Diversity input. Later in learning, this 

pattern was reversed.  

 

   

Figure 2. Number of chunks learned that corresponded to lexical items (vocabulary) for each 

type of input at different stages of the model’s learning (N = 16 mothers for each input type). 

Relative to the maternal input, the diversity input increases word types while keeping word 

tokens constant; the quantity input increases word tokens while keeping word types constant.  
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Figure 3. Number of chunks learned that corresponded to a sublexical sequence for each type 

of input at different stages of the model’s learning (N = 16 mothers for each input type).  

 

Figure 4. Number of chunks learned that corresponded to a multi-word sequence for each 

type of input at different stages of the model’s learning (N = 16 mothers for each input type).  

 

In sum, for lexical and sublexical knowledge, input quantity leads to faster learning 

early in the learning process (i.e., when a small amount of the input has been processed), with 

lexical diversity leading to faster learning subsequently. Input quantity is advantageous 

throughout for multi-word knowledge. 
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 3.2.1 Parameter manipulation. To determine the effect of the parameter settings of 

the model (processing limit averaging 4.5 items, the recency assumption, chunk learning 

probability of 1.0), the model was re-run at a range of different parameter settings (processing 

limitation 2.25, 3.00, 3.75; probability of learning 0.25, 0.50, 0.75) and also without the 

recency assumption. The same pattern was found for lexical items and sublexical items, so 

we present only the data for lexical items here. For simplicity, we do not present data from 

the Mother input type. Figure 5 shows the effects of the different processing limitations, 

Figure 6 shows the effect of removing the recency bias, and Figure 7 shows the effects of 

varying the probability of learning a new chunk. It is quite clear across the figures that most 

reductions in parameter settings simply shift the crossover point later in development. Lower 

parameter settings mean that the models require greater quantities of input before an input 

rich in diversity can gain the upper hand. Removing the recency bias has little effect on the 

pattern of results: slightly fewer words are learned overall but the point of crossover is similar 

to that for the original recency-biased model and Diversity gains an advantage in both models 

before half of the input has been seen. 

 Only when the probability of learning a new chunk was very low (0.25) did the 

Diversity input never surpass the Quantity input by the end of the learning run (see Figure 7). 

At this probability, because of the processing constraint, two adjacent chunks in a sequence 

must be encountered and accessed an average of four times in order for the sequence to be 

learned as a new chunk. As a result, chunk knowledge in these models was low: the Diversity 

and Quantity models learned an average of 5,851 and 8,193 chunks respectively (learning one 

chunk every 4-5 utterances). In essence, at low probabilities for learning, the model needs 

greater quantity of input. Thus, larger input sets are required to examine whether very low 

probabilities for learning will yield the same pattern of effects as we see for other settings. 



Diversity not quantity in caregiver speech  Page 28 

For multi-words, irrespective of parameter settings, the Quantity input always resulted in the 

model learning more multi-word chunks than the other inputs, for all time points.  

 

Figure 5. Effect of Diversity and Quantity inputs at different processing limitations (ranging 

from 2.25 to 3.75; the original setting was 4.50), for different stages of the model’s learning. 

 

 

Figure 6. Effect of Diversity and Quantity inputs with and without the recency bias in the 

model, for different stages of the model’s learning. 
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Figure 7. Effect of Diversity and Quantity inputs for different probabilities of learning a new 

chunk (probabilities ranging from 0.25 to 0.75, the original setting was 1.00), for different 

stages of the model’s learning. 

3.3 Discussion 

Early in learning, the model consistently showed an initial advantage for the Quantity 

input. However, for lexical and sublexical learning, though not multi-word word learning, the 

Diversity input quickly superseded the Quantity input, providing a superior learning 

environment by the end of the learning process. These developmental changes occurred 

despite the fact that the model has no developmental parameters; while there is a processing 

constraint, this is fixed to always average 4.5 chunks. Performance differences over time 

therefore arose from changes in chunked knowledge accrued over time based on the input 

presented to the model. 

The fact that the model learns more lexical items from the Diversity than the Quantity 

input is interesting. Although the Diversity input contains more word types than the Quantity 

input, this is not the reason for its superiority. In fact, neither model is at ceiling in its 

performance (75% of the Quantity input lexical items are learned compared to 55% of the 
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(because items are repeated more often). Instead, the Diversity input yields superior learning 

in the model because vocabulary items are comprised of a limited number of phonemes (~44 

for standard British English) and phoneme combinations. The Diversity model learns a large 

number of these sublexical sequences, and thus has a larger repertoire of chunked sublexical 

knowledge that can be used to code the input utterances (and the lexical items therein). This 

increases the likelihood of learning taking place on those items. For example, the model that 

has already learned the sublexical sequences involved in make (m/eɪ/k) will more easily learn 

related words such as lake (l/eɪ/k) because of the shared sublexical chunks across items 

(similar effects are also seen in children, Coady & Aslin, 2003). In other words, by having a 

greater amount of sublexical knowledge at its disposal, the Diversity model is more able to 

process and learn vocabulary items. This is an issue we will return to in Study 4 when we 

examine how the model learns new words. For the moment, since the conclusions thus far 

center on a modeling environment, we now examine whether these effects are also seen in 

children. 

 

4. Study 2: Effects of Input Quantity and Diversity in Children 

The model above predicts that the quantity of the children’s input will initially be the 

strongest predictor of their vocabulary growth, but that the lexical diversity of their input will 

eventually overtake input quantity as the strongest predictor. In Study 2, we investigated this 

prediction by testing whether individual differences in the quantity and diversity of children’s 

input predicted individual differences in vocabulary growth.  

4.1 Method 

4.1.1 Participants. The participants were the same 16 children whose input data were 

used in the model above. As in the model, the input data consisted of maternal utterances 
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only. We now also include the children's utterances (child data) in order to assess child 

vocabulary size. 

To assess the effect of the input on early and late learning separately, we divided the 

sample in half, into Time 1 and Time 2 data. In order to avoid discourse effects inflating the 

correlations between input and child data, we extracted child and adult data from different 

transcripts. At time 1, the input data were extracted from the first 15 hours of transcripts 

(average child age at transcript 1 = 22 months, range = 21 to 24 months) and the child data 

from two subsequent hours of transcripts (transcripts 16 and 17; average age = 28 months, 

range = 25 to 30 months). At time 2, input data was extracted from transcripts 18 to 32 

(average age at transcript 18 = 28 months, range = 26 to 30 months), and the child data was 

extracted from transcripts 33 and 34 (average age = 33 months, range = 32 to 36 months). 

4.1.2 Coding. For the input data (maternal utterances) we used the same measures as 

for the model: number of word tokens (quantity) and number of word types (lexical 

diversity). However, unlike for the model, we do not have a direct measure of the children’s 

vocabulary size, so we approximated vocabulary size using the VOCD (VOCabulary 

Diversity) measure from the CLAN programs (MacWhinney, 2000). VOCD measures the 

diversity of a participant’s vocabulary in a sample of naturalistic speech, which acts as a 

proxy for vocabulary size, providing a way to compare the relative size of children’s 

vocabulary from naturalistic data. Unlike other measures of vocabulary diversity (e.g., type-

token ratio), VOCD controls for sample size by taking into account the fact that samples with 

larger numbers of tokens yield lower values for type-token ratio and vice versa. The program 

analyzes the probability of new vocabulary being introduced with an increase in sample size 

and bases its VOCD score on the type-token ratio versus token curve calculated from data for 

the transcript as a whole (for a description of VOCD, see Malvern, Richards, Chipere & 
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Purán, 2004). All measures, for both mothers and children, were extracted from the data 

using the CLAN programs in CHILDES.  

4.2 Results and Discussion 

The descriptive statistics are shown in Table 4. Statistical analyses were performed in R 

(R core team, 2012) using log transformed data, though raw data are presented in descriptive 

statistics. Table 5 shows the correlations between all measures. For the input, there were 

strong correlations between individual measures across time and medium to strong 

correlations across different measures. There were medium correlations between child time 1 

and 2 VOCD scores (r = 0.47, N = 16, p < .05). This suggests good continuity over time for 

the input quantity and diversity measures, and the child’s language learning measures.  

There was no significant correlation between input quantity and child vocabulary at 

either time. In fact, there were negative correlations between quantity and Time1 VOCD 

scores. Note that the children’s Time1 VOCD data were skewed, even when log transformed, 

by an outlier (Ruth’s Time1 VOCD score was only 18.83, compared to a mean across the 

other 15 children of 64.90 (SD = 11.23)). Nevertheless, even without Ruth (see table 5), the 

negative correlations between quantity and Time 1 VOCD scores remain.  

As predicted, there were significant correlations of moderate strength between input 

diversity measures (Diversity Time1, Diversity Time2 and Overall Diversity) and the 

children’s time 2 VOCD scores (bolded in table 5). This contrasts to the correlations between 

the input diversity measures and time 1 VOCD scores, which were all small and non-

significant.  

 

Table 4.  

Means and standard deviations (in parentheses) across all 16 mother-child dyads. Maternal 

quantity and diversity at Time 1 is calculated from transcripts recorded when the children 
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were between 22 and 28 months (average age), and at Time 2 from transcripts recorded 

between 28 and 33 months (average age).  To avoid discourse effects, child vocabulary 

(approximated by VOCD) was calculated from separate transcripts at average age 28 months 

(time 1) and 33 months (time 2). 

 

Measures Time1 Time2 All (T1+T2) 

Input Mean number of 

word tokens 

(Quantity) 

48796 

(12972) 

49024 

(15419) 

102641 (20813) 

 Mean number of 

word types 

(Diversity) 

2191 (416) 2402 (544) 3209 (676) 

Child VOCD 

(vocabulary size) 

62.02 (15.82) 73.96 (12.71)  

 Mean MLU  2.56 (0.41) 3.13 (0.32)  
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Table 5.  

Pearson’s (R) correlations between log transformed variables, primarily to examine whether 

maternal input quantity at time 1 predicts child vocabulary at time 1, and whether maternal 

lexical diversity at time 2 predicts child vocabulary at time 2. All correlations are one-tailed 

so only positive (predicted) significant relationships are flagged. Predicted significant 

correlations are in bold. 1 

  

Quantity: No. word 

tokens 

Diversity: No. input 

word types 

Child Vocab. (VOCD) 

 Time 1 2 All  1 2 All  1 

1 (no  

Ruth) 

2 

Quantity: 

Number of 

word 

tokens 

1 1.00 0.88** 0.98** 0.67** 0.73** 0.66** -0.26 -0.26 0.26 

2  1.00 0.96** 0.59* 0.80** 0.69** -0.34 -0.22 0.18 

All 

  

1.00 0.62* 0.77** 0.67** -0.32 -0.26 0.20 

Diversity: 

Number of 

word types 

1 
   

1.00 0.88** 0.95* 0.10 -0.06 0.47* 

2     1.00 0.97** -0.03 0.03 0.43* 

All      1.00 0.03 0.02 0.48* 

Child 

Vocabulary 

(VOCD) 

1 
   

   1.00  0.43 

2         1.00 

1  * p < .05, ** p < 0.01. 
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Table 6.  

 

Results of multiple regressions examining the extent to which diversity and child vocabulary 

at time 1 predict child vocabulary at time 2 (child vocabulary is approximated by VOCD). 

Model R2 AdjR squared Residual 

SE 

beta P1 

Model 1 

Overall Diversity  

VOCD Time 1 

0.40 

 

0.31 0.14 - 

0.39 

0.21 

0.02* 

0.02* 

0.04* 

Model 2 

Diversity Time1 

VOCD Time1 

0.37 0.28 0.15 

 

- 

0.42 

0.19 

0.02* 

0.04* 

0.05 

Model 3 

Diversity Time 2 

VOCD Time 1 

0.39 0.30 0.15 

 

- 

0.36 

0.22 

0.02* 

0.03* 

0.03* 

* significant at p < .05, one tailed 

We ran three regression models to investigate the significant effects of input diversity 

on Time2 VOCD scores in more detail (see Table 6). Model 1 included Overall Diversity 

(Time 1+2) and Time1 VOCD as predictors, and Time2 VOCD as the dependent variable. 

Both predictors together explained 40% of the variance in Time2 VOCD scores, and both 

were independently significant predictors. Models 2 and 3 that, respectively, included Time1 

and Time2 Diversity scores in place of Overall Diversity yielded similar results. 

Finally, we ran simple paired correlations to determine whether there was a relationship 

between the vocabulary of the children at Time2 (VOCD) and the vocabulary of the 16 

different mother-input models (each trained on the input of one child’s mother) at the end of 

the learning period. Without Ruth (as an outlier), child vocabulary and model vocabulary 
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showed a medium-strength correlation, but this was non-significant at p < .05 (r = 0.43, N = 

15, p = .055, one-tailed). This analysis would have to be replicated, with increased power, 

before strong conclusions could be drawn. 

In sum, as predicted by the model, the children’s vocabulary at the end of the learning 

period (time 2) was better predicted by the lexical diversity of the input than by the quantity 

of input to which children were exposed. However, unlike in the model, there was no effect 

of quantity at the earlier time period (time 1) and this is an issue we return to in the general 

discussion. We now return to the model to determine the effects of lexical diversity and input 

quantity on performance in language-related tasks. 

 

5. Study 3: Testing the Model’s Performance on Two Tasks that are Highly 

Predictive of Language Ability 

In Study 1 we showed that the model learned more chunks that corresponded to 

sublexical sequences and lexical items (words) from the Diversity input than the Quantity 

input. In Study 2, we showed that the latter effect held across individual English-learning 

children; children who heard a more lexically diverse input were able to produce a larger 

number of different words. In Study 3, we tested whether models that have learnt from an 

input rich in lexical diversity also perform better on more formal tests that are highly 

predictive of language ability: (1) a nonword repetition test and (2) a sentence recall test, both 

of which predict both typical and atypical language performance (e.g., Alloway, Gathercole, 

Willis & Adams, 2004; Archibald & Joanisse, 2009; Hoff, Core & Bridges, 2008; Thal, 

Miller, Carlsen & Moreno Vega, 2005). Testing the model on these tasks represents a good 

method to examine which of input quantity and lexical diversity are likely to result in optimal 

language learning.  

5.1 Method 
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5.1.1. Nonword repetition. We used the Children’s Test of Nonword Repetition 

(CNRep, Gathercole & Baddeley, 1989). When administered to children, this test involves 

speaking aloud nonwords, one at a time, with the child’s task being to repeat the nonword 

(scoring 1 for a correct repetition and 0 for an incorrect one). The test comprises 20 nonwords 

containing consonant clusters (e.g., sladding) and 20 without consonant clusters (e.g., rubid). 

Each set of 20 nonwords contains five nonwords at each of two, three, four and five syllables 

in length. We excluded the five syllable items because they are not appropriate for the young 

children to whom the input is directed. Since the CNRep is generally considered to contain a 

number of nonwords that are ‘wordlike’ (e.g., Graf Estes, Evans & Else-Quest, 2007), we 

also included the ‘non-wordlike’ two, three and four syllable nonwords from Jones et al. 

(2010). These vary in phonotactic probability, with six nonwords at each length containing 

sublexical sequences that occur relatively frequently in English and six at each length that do 

not. These nonwords also provide a validity check for the model: because nonwords with low 

phonotactic probability are less supported by existing linguistic knowledge, the model should 

perform worse for these nonwords than for the CNRep nonwords. In total, the nonword 

repetition tests use 66 nonwords, 30 from the CNRep and 36 from Jones et al. (2010). 

Each nonword was converted to phonemes and presented to the model one at a time. 

A nonword was considered to be accurately repeated only when all constituent phonemes 

within the nonword were represented accurately, given the fixed limit on the number of 

chunks that can be processed at any one time. The nonword tests were presented to the model 

during learning at 5% intervals and at the end of the learning period. 

5.1.2 Sentence recall. Each sentence in the sentence recall subtest of the Clinical 

Evaluation of Language Fundamentals – Preschool 2 UK (CELF, Wiig, Secord, & Semel, 

2006) was converted to a word-delimited phonemic representation and presented to the model 

in full. The subtest comprises 12 sentences that gradually increase in length from four words 
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upwards. Subtest scoring procedures took place at the word level. A score of 3 was given for 

each sentence that was accurately represented within the processing constraint of the model; a 

score of 2 was given when one word was incorrect; a score of 1 was given when 2-3 words 

were incorrect; and a score of 0 for 4 or more errors. In line with the administration 

procedures of this test, no further sentences were presented after three consecutive zero 

scores. The sentences were presented to the model during learning at 5% intervals and at the 

end of the learning period. 

We also administered an additional sentence recall test because the CELF subtest 

includes only 12 sentences and we wanted to ensure that any effects seen were not the result 

of a fortuitous input that happened to learn the words and phrases that were included in the 

CELF subtest. We therefore chose to capitalize on the properties of the inputs that are used 

for the models. For each input type for each mother (e.g., Anne), we sourced a random 

sample of 100 sentences from the remaining 15 mothers that did not appear in any of that 

mother’s speech, together with a random sample of 100 sentences from the older input that 

did not appear in any input (N = 200 novel sentences, mean MLU = 5.84, SD = 2.81). We did 

this to ensure a fair comparison across the Quantity and Diversity models, because (for 

example) one may expect a model trained partly on utterances aimed at older children to 

perform well on sentences aimed at older children. As per the nonword repetition test, a 

sentence was considered to be accurately recalled when all constituent phonemes within the 

sentence were represented accurately within the fixed processing constraint. All 200 

sentences were presented to the model during learning at 5% intervals and at the end of the 

learning period. 

5.2 Results and Discussion 

Means and standard deviations for performance on each test once all of the input had 

been processed are given in Table 7. Figure 8 shows how nonword repetition performance 
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varies across the two nonword tests. For both wordlike and non-wordlike nonwords, although 

there was an initial benefit of Quantity, the Diversity input exerted superiority even before 

half of the input had been seen. This occurred more quickly for the non-wordlike nonwords 

because these gained greater benefit from the variation in sublexical sequences that the 

Diversity input affords. However, at the end of learning, there were effects of input type on 

both nonword tests (wordlike nonwords: F(2,45) = 18.61, p < .001, ηp
2 = .45; non-wordlike 

nonwords F(2,45) = 15.68, p < .001, ηp
2 = .41). In both cases, the Diversity input 

outperformed both the Quantity and the Mother input (p < .001 in all cases) with no 

significant difference between the Quantity and Mother inputs (p > .364 or greater).  

The superior performance of the Diversity model is because of the information in the 

chunks themselves. Nonword repetition in the model primarily involves the use of sublexical 

knowledge – because a nonword is novel it will not have already been chunked into a lexical 

chunk. The Diversity model learns a greater number of sublexical chunks than the Quantity 

model and is therefore more likely to have already encountered many of the sublexical 

sequences within nonwords. The Quantity model, on the other hand, is less likely to have 

encountered some of the sublexical sequences in nonwords and would have to (inefficiently) 

represent those unfamiliar sequences as a series of individual phoneme chunks. Indeed, at the 

end of learning, the average size (i.e., number of phonemes) of the chunks used by the 

Diversity model is 2.28 for wordlike nonwords and 2.16 for those that are not wordlike, 

compared to 2.10 and 2.02 for the Quantity model. That is, the Diversity model is more able 

to efficiently represent nonwords because it learns a greater array of sublexical information. 
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Table 7.  

Means and standard deviations (in parentheses) for performance on the nonword repetition 

tests (% repeated correctly, N = 66), the CELF sentence recall test (minimum score = 0, 

maximum score = 33), and the recall of novel sentences (% recalled accurately, N = 200) at 

the end of the model’s learning for each different type of input. Relative to the maternal 

input, the diversity input increases word types while keeping word tokens constant; the 

quantity input increases word tokens while keeping word types constant. 

Language test 

Input type 

Mother Diversity Quantity 

Wordlike nonwords 71.85 (2.19) 76.10 (2.24) 72.13 (2.19) 

Non-wordlike nonwords 59.28 (2.43) 65.13 (2.81) 60.31 (4.01) 

CELF sentence recall 13.67 (1.79) 16.07 (1.07) 14.50 (1.60) 

Novel sentence recall 51.98 (4.22) 56.33 (4.02) 53.97 (4.36) 

 

 

 

Figure 8. Repetition accuracy for wordlike nonwords (W) and non-wordlike nonwords (N) 

for the different input sets and across different amounts of input seen by the model.  
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Figure 9. CELF sentence recall subtest scores for each input set and for different stages of the 

model’s learning.  

 

  

Figure 10. Proportion of sentences accurately recalled (N = 200) for each input set and for 

different stages of the model’s learning.  
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seen, this situation reversed. At the end of learning, there was an effect of input type (F(2,45) 

= 10.21, p < .001, ηp
2 = .31) with the Diversity model performing significantly better on the 

CELF test than the Mother model (p < .001) and the Quantity model (p = .006). Figure 10 

shows the sentence recall scores involving novel sentences (N = 200) across the three input 

sets. The pattern of results is identical to that of the CELF subtest: the Quantity input initially 

outperformed the Diversity input but before half of the input had been seen, this situation 

reversed. At the end of learning, there was an effect of input type (F(2,45) = 4.71, p = .014, 

ηp
2 = .17) with the Diversity model performing significantly better on sentence recall than the 

Mother model (p = .004), and with the results in the predicted direction (albeit non-

significant) compared to the Quantity input (p = .064).  

Intuitively, these are perhaps unexpected results – after all, the model will process 

sentences most efficiently when the sentence can be coded using chunks that correspond to 

multi-word sequences (since these hold the greatest amount of information about word 

sequences) and least efficiently when the sentence can only be coded using chunks that 

correspond to sublexical sequences. Since the Quantity model holds the most multi-word 

chunks, one might expect it to outperform the Diversity model. However, sentence recall 

involves novel sequences of lexical items, and some of those lexical items may not have been 

encountered before (i.e., bringing to the fore the extent of the model’s knowledge of lexical 

items and sublexical sequences). Take for example the sentence ‘James and the giant peach’: 

the model that knows each lexical item as a chunk can code this sentence using at most five 

chunks, and fewer than five if some of the sequence is known as a multi-word chunk; 

however, if one lexical item is unknown then not only is the ability to use multi-word chunks 

more restricted, but also the model would need to fall back on its sublexical knowledge – 

both of these points would likely significantly increase the number of chunks needed to code 

the sentence. The greater number of chunks that correspond to lexical items in the Diversity 



Diversity not quantity in caregiver speech  Page 43 

model over the Quantity model therefore allow it to more efficiently process novel sentences 

because the Diversity model has less need to fall back on sublexical knowledge: for example, 

when coding the 200 novel sentences, the Diversity model need only use sublexical 

knowledge for 9% of chunks compared to 14% for the Quantity model. For the Diversity 

input, therefore, a greater range of sublexical information leads to easier learning of lexical 

items, and a subsequently greater range of lexical items leads to easier processing of novel 

sentences.  

In Study 3 we have shown that the Diversity model, which learns more sublexical and 

lexical chunks than the Quantity model, outperforms the Quantity model in representing new 

verbal material in the form of nonwords and novel sentences. The advantage that the 

Diversity input affords in relation to processing novel stimuli should also extend to learning 

new vocabulary, which we tested below in Study 4.  

 

6. Study 4: Effect of Input Diversity and Quantity on Learning Novel Words 

In Study 4, we assessed the ability of the models trained on the Quantity and Diversity inputs 

to learn new words. In the child language literature, there is good evidence for a virtuous 

circle between the input, child vocabulary size and the speed of new learning. Children who 

have been exposed to richer input not only possess a larger vocabulary than their peers but 

also process words more quickly. In turn, this affects the speed with which children learn new 

words and, ultimately, on the size of their vocabulary in later years. For example, Weisleder 

and Fernald (2013) showed that 19 month old infants who heard more child-directed speech 

were quicker to process familiar words presented to them in real time, and had a larger 

expressive vocabulary by 24 months (see also Hurtado, Marchman & Fernald, 2008). In fact, 

the advantages of faster processing speed in young children can still be seen years later; 

Marchman and Fernald (2008) demonstrated that the speed of spoken word recognition and 
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vocabulary size in a group of 25 month old children predicted the same children’s linguistic 

and cognitive skills six years later, at the age of eight years.  

However, it is not yet clear whether it is quantity or diversity that is driving this 

effect, because it is so difficult to disentangle the two in real speech. The findings from Study 

3 above predict that it will be input diversity that is important here, because a more lexically 

diverse input gives the model a broader repertoire of sublexical and lexical linguistic 

knowledge, which it can then use to process new words in fewer chunks (i.e. faster) on the 

first presentation. This means that new words will require fewer presentations before they are 

fully parsed, and chunked, which means that they will be learned more quickly and 

efficiently. In Study 4 we test this prediction. 

6.1 Method 

For each mother (e.g., Anne), we sourced 100 novel words from the remaining 15 mothers 

that were not seen in the current mother’s (e.g., Anne’s) input, together with 100 novel words 

from the older input that did not appear in any of the inputs (N = 200, mean phonemic length 

= 5.74, SD = 1.79). At each stage of the model’s learning, we presented each individual novel 

word to the model and recorded how many chunks were required to code the word. We 

counted each word as learnt if the model were able to represent the word using two chunks 

only. We used two chunks as the criteria for learning because of the way the model learns; 

since the model learns a new chunk for each adjacent set of chunks, if the novel word can be 

represented using two chunks, the model would learn it on the first presentation if both 

chunks were accessed. Novel words were presented individually to the model during 

learning, at 5% intervals, using the same model and inputs as in Study 1. As with the 

nonword repetition and sentence recall tests, no learning occurred in the model when 

presenting each new word, because doing so would add new information to the model’s 

existing chunked knowledge, which would impact on the model’s performance of the 
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remaining novel words and linguistic input. The dependent measure was the proportion of 

novel words that the model was able to learn (i.e., represent in two chunks) at each stage of 

the model’s input. 

6.2 Results and Discussion 

Figure 11 shows the proportion of novel words that the model was able to learn across the 

learning cycle.  

 

Figure 11. Novel words learned (%) for each input set and for different stages of the model’s 

learning.  
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increasing the lexical diversity of an input rather than increasing input quantity ultimately 

results not only in a larger vocabulary (Study 1) but faster learning of novel words. 

 

7. General Discussion 

We used a computational model to compare the quality of the language input against 

its quantity by manipulating the amount of lexical diversity (operationalized as number of 

different word types) and the amount of input quantity (operationalized as number of word 

tokens). In Study 1, early in learning, increases in input quantity outperformed increases in 

lexical diversity for both lexical and sublexical knowledge. However, mid-way through the 

model’s learning, increases in diversity became more important than increases in input 

quantity, exerting a superiority that increased in strength until all of the input had been 

processed. In contrast, input quantity consistently outperformed lexical diversity for multi-

word knowledge. In Study 2, we then tested these findings against child data, confirming that 

at time 2, though not at time 1, an input rich in lexical diversity led to more lexical learning 

than an input rich in quantity. In Study 3, two well-established predictors of language 

proficiency were then applied to the model (nonword repetition and sentence recall) and, in 

both cases, increasing the diversity of the input rather than the quantity of it led to 

significantly better language outcomes. In Study 4, we demonstrated that the Diversity model 

not only learnt more words than the other models, it was also capable of learning novel words 

more quickly too. A significantly greater number of novel words were learned when the 

model experienced a lexically diverse input than when it experienced an input rich in 

quantity. In sum, the work suggests that while quantity of input is important in early learning, 

thereafter, it is the diversity of one’s language exposure that ultimately drives vocabulary 

growth.  
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This study is one of the first direct comparisons of lexical diversity versus input 

quantity that is not confounded by other variables. We have long known that children who 

hear richer input learn language faster and learn more vocabulary items overall, but we have 

not until recently been able to establish what properties of a rich input contribute to this 

effect. The results here confirm those of Rowe (2012), which suggest that while input 

quantity is important during the very early years of language learning (up to ~30 months), 

thereafter it is crucial for the child to hear a range of utterances and vocabulary items. In 

other words, the definition of optimal input can change over development, depending on the 

linguistic knowledge that the model (or child) already possesses (see Bohannon & Hirsk-

Pasek, 1984, for similar arguments). Eventually, however, both for the model, and for the 

English-learning children tested here, better outcomes were ultimately reported for more 

lexically diverse inputs.  

However, there are three caveats that must be applied to this conclusion. First, while 

measures of lexical diversity explain a significant amount of variance in vocabulary learning 

across children (on average, about 20% in the literature as a whole), the remaining variance 

also needs to be accounted for. One factor likely to explain additional variance is the child’s 

prior knowledge must play an additional role in later learning. In the model (studies 1, 3 and 

4), the amount and type of prior, chunked knowledge affected subsequent performance, and 

in children (Study 2), VOCD at time 1, combined with lexical diversity, explained 40% of the 

variance in vocabulary learning. However, many other cognitive factors (e.g. socio-cognitive 

skills, attention span, working memory), environmental factors (e.g. Weikum, Oberlander, 

Hensch & Werker, 2012), and genetic factors (e.g. Lai, Fisher, Hurst, Vargha-Khadem & 

Monaco, 2001) are likely to affect the rate of learning too, and will need to be considered in a 

full model of vocabulary learning.  
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Second, at very low probabilities for learning (0.25 in the simulations presented), an 

input rich in lexical diversity did not quite surpass an input rich in input quantity by the end 

of the model’s learning. Quantity is clearly of greater importance when learning is difficult; 

one first needs a reasonable knowledge base before increases in diversity can be capitalized 

on. The probability for learning in the original models was set to 1.0 because the available 

maternal speech samples reflect only a small proportion of the language children hear. Larger 

speech samples are required to investigate whether the quantity-early/diversity-later pattern 

holds for low learning probabilities. 

Third, we do not yet know how accurately CLASSIC’s learning architecture captures 

real children’s vocabulary learning. CLASSIC is a symbolic model that implements a chunk-

based learning mechanism that makes graduate changes to the model’s knowledge 

representations on the basis of incoming input. Its mechanism is associative, not error-based, 

because learning (representational change) is not dependent on the model making erroneous 

predictions about the upcoming input (unlike, for example, Chang, Dell & Bock’s, 2006, 

Dual Path model of syntax acquisition). However, the learning in CLASSIC is not associative 

in the classical sense because the model does not make changes to its representations on 

every parse of the input (unlike, for example, the word learning model of Fazly, Alishahi, & 

Stevenson, 2010). CLASSIC learns only when presented with new information, so if an 

incoming utterance in the model is already represented as one chunk, no learning occurs. In 

essence, whether learning occurs depends on a combination of the model’s state at the time of 

learning (which is determined by previous learning) and the identity of the incoming 

utterance (and how similar it is to all previous utterances processed).  

CLASSIC’s learning mechanism is based on a wealth of evidence about human 

memory and learning in children and adults (see Gobet et al., 2001) and implements 

psychologically plausible parameters (e.g. a limitation on the amount of information that 
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children can process at any one time, Gathercole, 2006). However, CLASSIC is clearly not 

capturing the child data exactly. The correlation between the final output of the model and the 

children’s Time 2 VOCD scores was only moderate and non-significant. In addition, for the 

children, unlike the model, there was no effect of sheer exposure to language, even at the 

earlier time period (time 1). This is partly because, as stated above, there are many other 

factors that influence child vocabulary learning that were not included in the model. It is also, 

perhaps, because the match between child age and model “age” is not exact; the input we 

gave to the model constitutes only a fraction of the input that children have heard by the age 

of two years. However, perhaps more importantly, it is also because the model is not 

capturing all aspects of the process of learning a word; most notably, it omits the process of 

learning word meanings as well as the role that other factors such as prosody and syntax may 

play (see e.g. Christophe, Dupoux, Bertoncini & Mehler, 1994; Gillette, Gletiman, Gleitman 

& Lederer, 1999). Ultimately, to learn a word, one needs to map a particular phonological 

form (a sequence of phonemes with a particular stress pattern) onto a particular semantic 

concept, which is itself a complex, multi-dimensional task. The role of the input in this part 

of the word learning process is not considered in this paper at all and will need to be 

considered in future work. 

In addition, CLASSIC implements just one of many plausible models of the child’s 

vocabulary learning mechanism. In future work it will be important to compare the 

predictions of our model, in which the input interacts with a chunk-based learning 

mechanism, with models that implement other types of learning mechanisms. We are not 

currently aware of any models that have addressed similar questions. However, we are quite 

optimistic that CLASSIC will make unique predictions about development when compared 

against other models. For example, it is difficult to see how simple, unmodified one-shot 

learning models (c.f., Stevens et al., 2016), which store word forms intact (as a unit) on the 
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first hearing, could make similar predictions about the developmental effects we see here 

(input quantity important early in learning, but lexical diversity ultimately superior), or the 

effects we see in nonword repetition tests (e.g., nonwords that are phonologically similar to 

real words are repeated more easily and more accurately by young children, Gathercole, 

1995). It is also difficult to see how an error-driven learning mechanism (c.f. Gasser & Smith, 

1998, Chang, et al., 2006) would yield the developmental effects we see here, even if that 

mechanism was capable of sequencing or chunking phonemes on the basis of distributional 

information. In error-based mechanisms, learning occurs only when the model makes a 

wrong prediction. Since incorrect predictions are more likely from diverse (unpredictable) 

input, such models would likely predict an effect of input diversity from the very beginning 

of learning. Finally, we might predict that models that implement traditional cross-situational 

associative learning (e.g., Fazly et al., 2010), if adapted to learn the phonological form of 

words, would learn most quickly from an input that is rich in quantity, because these models 

require substantial repetition of a word in a variety of contexts before word learning takes 

place. In future work, it will be important to test our predictions against implementations of 

different learning mechanisms.  

The results from the CLASSIC model also yield three hypotheses about the 

mechanisms by which children learn words, which make clear predictions that can be tested 

against child data. First, the results suggest that lexical diversity will be more important than 

mere repetition (input quantity) in all but the early stages of word learning. Increasing the 

lexical diversity of the input enabled our model to build a larger store of sublexical chunks 

that were then available to process new, incoming input. The model learned by coding 

utterances into as few chunks as possible and combining adjacent chunks on each exposure 

until the whole word was represented as one chunk. It was therefore a huge advantage for the 

model to have a large store of sublexical chunks, because it meant that new words could be 
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processed using fewer, larger chunks, which increased the chances of the word being learnt 

with fewer exposures. In other words, by having a greater repertoire of sublexical knowledge 

at its disposal, the model trained on the Diversity input could learn new vocabulary items 

more quickly. The prediction here, therefore, is that language input that is lexically diverse 

from a relatively early age will support better and faster vocabulary learning, because once a 

critical level of sublexical information has been learned, children may be ready to exploit that 

knowledge to great effect. In addition, since varying the learning parameters resulted in a 

similar pattern of results, but with a later cross-over, the model predicts that children who 

receive less input should have a longer period in which an input that is rich in quantity, not 

lexical diversity, leads to faster word learning. We have tested the first of these predictions 

using the VOCD statistic on children’s word production data in Study 2 above, but this 

measure is only a proxy for vocabulary learning. Further work using more direct measures of 

vocabulary knowledge (e.g., standardized test scores), testing children who have been 

exposed to more or less diverse inputs, is needed to test predictions about the influence of 

lexical diversity and input quantity across development. 

Second, the findings suggest a reason why children’s performances on nonword 

repetition and sentence recall tests are such strong predictors of vocabulary learning. Recall 

that the Quantity input actually led to the model learning a greater total amount of linguistic 

information than the Diversity input (mostly in the form of multi-word sequences, see Table 

3) and yet the model trained on the Diversity input outperformed the Quantity input model on 

nonword repetition and sentence recall tasks. That is, it is not the sheer amount of learned 

linguistic information that is important, but what kind of linguistic information is learned. 

The performance of the model on these tests suggests that a key component of these tasks 

relates to how the child is able to bring to bear what they have learned from their linguistic 

experience on the novel stimuli involved. In essence, these tasks are measuring the flexibility 
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of the child in dealing with a novel stimulus and thus both capitalize on variation in learned 

knowledge. In the case of nonwords this is largely governed by the amount of sublexical 

information experienced by the rememberer, and in the case of sentence recall this is largely 

governed by the amount of lexical information experienced by the rememberer. Thus, the 

prediction here is that children’s performance on both of these tests will be determined by 

their sublexical and lexical knowledge, which in turn will be predicted by the diversity of 

their input. 

Third, the results suggest a reason for the virtuous circle in which children who have 

been exposed to richer input are able to process words more quickly, which in turn affects the 

speed with which they learn new words and, ultimately, on the size of their vocabulary in 

later years (Weisleder & Fernald, 2013). Our results suggest that it is lexical diversity that is 

responsible for this effect. The model exposed to the Diversity input learned a large number 

of sublexical and lexical chunks, which enabled it to process incoming new words more 

quickly (because it could use pre-existing chunked knowledge rather than building 

representations from scratch, phoneme by phoneme). Thus, as well as predicting that lexical 

diversity will have stronger correlations with children’s speed of processing than quantity of 

exposure, this paper makes a clear case for why we find a relationship between input 

richness, processing speed and vocabulary size in children’s language learning. Exposure to 

lexically diverse inputs enable a broad range of linguistic material to be learned, particularly 

sublexical and lexical material. This allows a greater amount of a novel input to be processed 

at each exposure, which, in turn, allows more of the input to be learned. Over time, fewer 

exposures are needed to learn novel words, which leads to faster learning long-term and, 

ultimately, to a larger vocabulary. If this prediction is upheld when tested with children, it has 

strong implications for our theories of word learning, but also for interventions for children 

whose language learning is slower than we would like (e.g. some disadvantaged children, see 
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Fernald, Marchman & Weisleder, 2013). Interventions that provide children with a lot of 

repetitive input initially, which is slowly replaced by more lexically diverse input, may lead 

to more optimal learning; not only exposing children to a greater range of sublexical 

sequences and to a greater range of words, but also increasing the speed of their subsequent 

learning, with a subsequent positive effect on language and cognitive development in later 

childhood.  

In summary we have provided a computational analysis of caregiver speech in which 

maternal utterances were manipulated to increase the amount of lexical diversity (quality) of 

the input while keeping the amount of language exposure (quantity) constant and vice versa. 

The analysis showed that an input rich in lexical diversity outperforms an input equivalently 

rich in quantity for learned sublexical and lexical knowledge, for well-established language 

tests, and for acquiring words that have never been encountered before. 
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