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Abstract

Identifying the relations that exist between words (or entities) is
important for various natural language processing tasks such as, re-
lational search, noun-modifier classification and analogy detection. A
popular approach to represent the relations between a pair of words is
to extract the patterns in which the words co-occur with from a cor-
pus, and assign each word-pair a vector of pattern frequencies. Despite
the simplicity of this approach, it suffers from data sparseness, infor-
mation scalability and linguistic creativity as the model is unable to
handle previously unseen word pairs in a corpus. In contrast, a compo-
sitional approach for representing relations between words overcomes
these issues by using the attributes of each individual word to indirectly
compose a representation for the common relations that hold between
the two words. This study aims to compare different operations for
creating relation representations from word-level representations. We
investigate the performance of the compositional methods by measur-
ing the relational similarities using several benchmark datasets for word
analogy. Moreover, we evaluate the different relation representations
in a knowledge base completion task.

1 Introduction

Different kinds of semantic relations exist between words such as synonymy,
antonymy, meronymy, hypernymy, etc. Identifying the semantic relations
between words (or entities) is important for various Natural Language Pro-
cessing (NLP) tasks such as knowledge base completion [Socher et al., 2013],
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relational information retrieval [Duc et al., 2010] and analogical reasoning
[Turney and Littman, 2005]. To answer analogical questions of the form “a
is to b as c is to d ”, the relationship between the two words in each pair
(a, b) and (c, d) must be identified and compared. For example, (lion, cat)
is relationally analogous to (ostrich, bird) because a lion is a large cat as an
ostrich is a large bird. In relational information retrieval, given the query a
is to b as c is to? we would like to retrieve entities that have a semantic
relationship with c similar to that between a and b. For example, given the
relational search query Bill Gates is to Microsoft as Steve Jobs is to?, a
relational search engine [Duc et al., 2011] is expected to return the result
Apple Inc.

A popular approach for representing the relations that exist between
pairs of words is to extract the lexical patterns in which the pairs of words
co-occur in some context [Turney and Littman, 2005, Turney, 2006, Bollegala
et al., 2008]. In a text corpus, relationships between words are categorised
by the patterns in which they co-occur, for instance “a is a b” or “b such as
a ” patterns indicate that a is a hyponym of b. Following the Vector Space
Model (VSM) [Turney and Pantel, 2010], each pair of words is represented
using a vector of pattern frequencies where the elements correspond to the
number of times the two words in a given pair co-occur with a particular
pattern. This representation allows us to measure the relational similarity
between two given pairs of words by the cosine of the angle between the
corresponding pattern-frequency vectors. We call this approach the holistic
approach, because the pairs of words are treated as a whole rather than indi-
vidually. This method achieved human-level performance for measuring re-
lational similarity on Scholastic Aptitude Test multiple-choice word analogy
questions. The average score reported for the US college applicants is 57.0%,
whereas Latent Relational Analysis (LRA), a state-of-the-art algorithm for
measuring relational similarity using the holistic approach, obtained a score
of 56.1% [Turney, 2006, 2005].

Despite the holistic method achieving human-level performance, espe-
cially for relational similarity prediction tasks, a major drawback of the
holistic approach is the data sparseness. Most of the elements in pair-pattern
vector space have zero occurrences, because most related words co-occur
only with a small fraction of the extracted patterns. Moreover, not every
related word pair co-occur even in a large corpus. Therefore the relations
that exist between words that co-occur rarely cannot be adequately repre-
sented. Another limitation of this approach is its scalability, as we must
consider co-occurrences between patterns and all pairs of words. The num-
ber of all pair-wise combinations between words grows quadratically with
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the number of words in the vocabulary. Therefore, it is computationally
costly, especially if the vocabulary size is very large (> 106) and new words
are continuously proposed because for each new word, we must pair it with
existing words in the vocabulary. Furthermore, a continuously increasing
set of patterns is required in order to cover the relations that exist between
the two words in each of those word-pairs.

To overcome the above mentioned issues in the holistic approach, an
alternative method that does not rely on pair-pattern co-occurrences is re-
quired. Such alternative methods must be able to represent the semantic
relations that exist between all possible pairings of words, requiring only
semantic representations for the constituent words. In this paper, we call
such approaches for representing the relationship between words as compo-
sitional approaches, because the way in which the relation representation
is composed using the semantic representations of the constituent words.
Different approaches have been proposed in the NLP community for repre-
senting the meaning of individual words based on the distributional hypothe-
sis [Harris, 1985], which states that the meaning of a word can be predicted
by the words that co-occur with it in different contexts. Counting-based
approaches [Baroni et al., 2014] represent the meaning of a word by a poten-
tially high-dimensional sparse vector, where each dimension corresponds to
a particular word that co-occurs with the word under consideration in some
context. The values of the dimensions are computed using some word asso-
ciation measure such as the pointwise mutual information or log-likelihood
ratio [Turney et al., 2010].

Prediction-based approaches have also been used for representing the
meanings of words using vectors [Mikolov et al., 2013a, Pennington et al.,
2014]. Instead of counting the co-occurrences of a target word in its con-
text, Neural Network Language Model (NNLM) [Bengio et al., 2003] uses
distributional information in a corpus to maximise the probability of predict-
ing the target word from the surrounding context. This procedure embeds
the words into a low-dimensional latent dense vector space model. Mikolov
et al. [2013c] show that the learnt word embeddings using recurrent neural
network language model [Mikolov et al., 2010] captures linguistic regulari-
ties by simply applying vector offset and addition operators. They evaluate
the accuracy of the learnt word representation by applying them to solve
word analogy questions of the form “a is to b as c is to d ”, where d is
unknown and it is typically selected from a subset of words from the vocab-
ulary such that vb − va + vc ≈ vd (we denote the vector representing the
word a as va). Arguably, one of the most popular examples is the following:
vking − vman + vwoman ≈ vqueen, which describes a gender relationship.
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In compositional approaches, the meaning of longer lexical units such
as phrases or sentences are composed by applying some operators on the
semantic representations for individual words. The principle of composi-
tionality states that the meaning of the hole is a function of the meaning of
the parts [Frege, 1892]. Over the years, researchers in compositional seman-
tics have applied different compositional approaches to extend the meaning
of individual words to larger linguistic units [Mitchell and Lapata, 2010,
Baroni and Zamparelli, 2010, Guevara, 2010]. However, the problem of rep-
resenting the meaning of a sentence differs from our problem, representing
the relation between two words, in several important ways. First, a sen-
tence would often contain more than two words, whereas we consider word
pairs that always contain exactly two words. Second, a good sentence rep-
resentation must encode the meaning of the sentence in its entirety, ideally
capturing the meanings of salient content words in the sentence. On the
other hand, in relation representation, we are not interested in the mean-
ings of individual words, but the relationship between the two words in a
word pair. For example, given the word pair (ostrich, bird), the semantics
associated with ostrich or bird is not of interest to us. We would like to
represent the relation is-a-large that holds between the two words in this
example. It is true that most of the compositional operators that have been
proposed in prior work on sentence representations such as vector addition
or element-wise multiplication could be used to create relation representa-
tions for word pairs, but there is no guarantee that the exact same operators
that have found to be effective for sentence representation will be accurate
for relation representation. As we see later in our experiments, vector offset,
which does not scale up to sentences turns out to be a better operator for
relation representation.

In this paper, we explore several compositional approaches for creating
representations for the relations between words. In brief, we need a function
that takes two vector representations for each word in a given word-pair
to generate a vector for the relation that exists between those words. Our
contributions in this work can be summarised as follows:

• An empirical comparison of the unsupervised compositional operators
(offset, concatenation, addition and element-wise multiplication) to
represent relations between words.

• Investigate the performance of those operators on relational similarity
and a relational classification tasks using five different word-analogy
benchmark datasets.

4



• Evaluate such operators on a knowledge base completion task.

• Understand to what extent the performance of those methods change
across different word representation methods including counting-based
and predicting-based approaches.

• Systematically examine how the performance of different composi-
tional operators are affected by the dimensionality of the word em-
beddings.

Our study shows that the offset operator for relational compositionality
outperforms other compositional operators on word-analogy datasets. For
knowledge base completion, element-wise multiplication shows its ability to
capture relations between entity embeddings for a given knowledge graph.

2 Related work

Representing the meaning of individual words has received a wide attention
in NLP. Different representation methods have been proposed using the
distributional semantics of the words in a corpus to obtain a vector space
model of semantics where each word is represented in term of its surrounding
lexical contexts. The distributional hypothesis is summarised by Firth [1957]
as follows “You shall know a word by the company it keeps”, which means
that the words that appear in similar contexts share similar meanings. The
traditional count-based word representations count the co-occurrences of a
word with its neighbouring words in a specific window size. In practice
however this method generates high dimensional and sparse vectors [Baroni
and Lenci, 2010, Turney et al., 2010].

Recently, instead of counting the occurrences between words and con-
texts, machine learning techniques have been applied in NLP to directly
learn dense words vectors by predicting the occurrence of a word in a given
context. For example, skip-gram and continuous bag-of-words models learn
vectors that maximise the likelihood of co-occurrence contexts in a corpus
[Mikolov et al., 2013a]. The word representations learnt via prediction-based
methods are often referred to as words embeddings because the words are
represented (embedded) using vectors in some lower-dimensional space. In
addition to the fact that the learnt semantic space represents semantically
similar words close to each other, Mikolov et al. [2013c] report that word
embeddings capture relational information between words by simple linear
offset between words vectors. In their study, they propose an analogical rea-
soning task to evaluate word embeddings. To answer analogical questions
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of the form “a is to b as c is to ? ”, they subtract the embedding of word b
from a and then add the embedding of c. Next, a word in the entire vocab-
ulary set that is the most similar to the generated vector is selected as the
answer. They refer to this method for solving analogy as 3CosAdd. Follow-
ing this work, alternative methods have been proposed and compared with
3CosAdd for analogical reasoning [Levy et al., 2014, Linzen, 2016, Drozd
et al., 2016]. These prior studies focus on proposing methods for solving
word analogy problems given word embeddings but do not consider com-
posing representations for the relations that exist between two words in a
word-pair.

Vylomova et al. [2015] conduct a study to evaluate how well the off-
set method encodes relational information between pairs of words. They
test the generalisation of the offset method across different types of rela-
tions by evaluating the relational vectors generated by the offset method
in an unsupervised (clustering) task and a supervised (classification) task.
They conclude that information about syntactic and semantic relations are
implicitly embedded in the offset vectors, especially under supervised learn-
ing. However, they find that the offset method does not capture semantic
relations to the same level of accuracy as it captures the syntactic relations.

Many compositional operators have been proposed for the purpose of
representing sentences [Baroni and Zamparelli, 2010, Mitchell and Lapata,
2008]. For example, Mitchell and Lapata [2008] introduce additive and mul-
tiplicative models for sentence representations, whereas Nickel et al. [2016]
proposed circular correlation for relational composition. However, to the
best of our knowledge, there exist no work that compares different compo-
sitional operators for the purpose of relation representation. To this end,
our study aims to systematically evaluate how well the contribution of word
embeddings to represent relations between words by comparing different
compositional operators under unsupervised settings.

3 Relation Composition

3.1 Compositional operators

Our goal in this paper is to compare different compositional operators for the
purpose of composing representations for the relation between two words,
given the word embeddings for those two words. In this work, we assume
that pre-trained word embeddings are given to us, and our task is to use
those word embeddings to compose relation representations. Specifically,
given a word-pair (a, b), consisting of two unigrams a and b, represented
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respectively by their embeddings va,vb ∈ Rn, we propose and evaluate
different compositional operators/functions that return a vector vr given
by (1) that represents the relationship between a and b.

vr = f(va,vb) (1)

In this paper, we limit our study to non-parametric functions f . Parametric
functions that require labelled data for computing the optimal values of the
parameters for generating relation representations are beyond the scope of
this paper.

We use the following operators to construct a vector for a given pair of
words:

PairDiff: Pair Difference operator has been used by Mikolov et al. [2013c]
for detecting syntactic and semantic analogies using the offset method.
For example, given a pair of words (a, b), they argue that (vb − va)
produces a vector that captures the relation that exits between the
two words a and b. Under the PairDiff operator, a resultant relation
representation vector has the same dimensionality as the input vectors.
The PairDiff operator is defined as follows:

vr = (vb − va) (2)

PairDiff captures the information related to a semantic relation by
the direction of the resultant vector. Similar relations have shown
to produce parallel vectors in prior work on word embedding learn-
ing [Pennington et al., 2014]. Such geometric regularities are useful
for NLP tasks such as solving word analogies [Mikolov et al., 2013c].

Concat.: The linear concatenation of two n-dimensional vectors va =
(a1, . . . , an)> and vb = (b1, b2, . . . , bn)> produces a 2n-dimensional
vector vr given by,

vr = (a1, a2, . . . , an, b1, b2, . . . , bn)>.

vr can then be used as a proxy for the relationship between a and
b. Vector concatenation retains the information that exist in both
input vectors in the resulting composed vector. In particular, vec-
tor concatenation has been found to be effective for combining multi-
ple source embeddings to a single meta embedding [Yin and Schütze,
2016]. However, one disadvantage of concatenation is that it increases
the dimensionality of the relation representation compared to that in
the input word embeddings.
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Mult: We apply element-wise multiplication between va and vb such that
the ith dimension of vr has the value of multiplying the ith dimensions
of the input vectors. Applying element-wise multiplication generates a
vector in which the dimensions common to both words receive non-zero
values. Mult operator is defined as follows:

vr = (va � vb)

vri = vaivbi

(3)

Element-wise multiplication has the effect of selecting dimensions that
are common to the embeddings of both words for representing the rela-
tionship between those words. Prior work on compositional semantics
have shown that element-wise multiplication to be an effective method
for composing representations for larger lexical units such as phrases
or sentences from elementary lexical units such as words [Mitchell and
Lapata, 2008]. However, element-wise multiplication has an undesir-
able effect when the embeddings contain negative values. For example,
two negative-valued dimensions can generate a positive-valued dimen-
sion in the relational representation. If the relations are directional
(asymmetric), then such changes of sign can incorrectly indicate op-
posite/reversed relations between words. For example, Baroni and
Zamparelli [2010] report that word embeddings created via singular
value decomposition performs poorly when composing phrase repre-
sentations because of this sign-flipping issue. As we see later in Sec-
tion 5, Mult also suffers from data sparseness because if at least one of
the corresponding dimensions in two word embeddings is zero (or nu-
merically close to zero), then the resultant dimension in the composed
relational vector becomes zero. Our experimental results suggest that
more than negativity, sparseness is problematic for the Mult operator.
However, to the best of our knowledge, the accuracy of element-wise
multiplication has not been evaluated so far in the task of relation
representation.

Add: We apply element-wise addition between va and vb such that the ith

dimension of vr has the value of adding the ith dimensions of the input
vectors, given as follows:

vr = (va + vb)

vri = vai + vbi

(4)

Element-wise multiplication and addition have been evaluated in com-
positional semantics for composing phrase-level or sentence-level representa-
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tions from word-level representations [Mitchell and Lapata, 2009, 2008]. In
the context of relations, a relationship might materialise between two entities
because they share many attributes in common. For example, two people
might become friends in social media because they discover they have many
common interests. Consequently, element-wise addition and multiplication
emphasise such common attributes by adding their values together when
composing the corresponding relation representation. In this work, we hy-
pothesise that some relations are formed between entities because they have
common attributes. By pairwise addition or multiplication of the attributes
of two given words, we are emphasising these common attributes in their
relational representation.

Element-wise operators between word vectors assume that the dimen-
sions of the word representation space are linearly independent. Alterna-
tively, we can consider that the dimensions are cross-correlated and use
cross-dimensional operators (i.e. operators that consider ith and jth dimen-
sions for i = j as well as i 6= j) instead of element-wise operators to create
relation representations. For this purpose, given a word representation ma-
trix W ∈ Rm×n of m words and n dimensions, we create a correlation matrix
C ∈ Rn×n in which the Cij element is the Pearson correlation coefficient of
W:,i and W:,j , (i.e., the ith and the jth dimensions for all of the represented
words). In our preliminary experiments, for the pre-trained word embed-
dings we use as inputs, we found that the correlation coefficients between i,
j( 6= i) dimensions are close to zero, which indicates that the dimensions are
indeed uncorrelated. Consequently, for the prediction-based word embed-
dings we used in this comparative study, we did not obtain any significant
improvement in performance by using cross-dimensional operators. There-
fore, in the remainder of the paper, we do not consider cross-dimensional
operators.

3.2 Input Word Embeddings

We consider three widely used prediction-based word embedding meth-
ods namely, Continuous Bag-of Words (CBOW), Skip-gram (SG)1[Mikolov
et al., 2013a] and Global Vector Prediction (GloVe)2 [Pennington et al.,
2014]. CBOW and SG models the task of learning word embeddings as
predicting words that co-occur in a local contextual window. The latent
dimensions in the embeddings can be seen as representing various semantic
concepts that are useful for representing the meanings of words. However,

1https://code.google.com/archive/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
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unlike in counting-based word embeddings, in prediction-based word embed-
dings the dimensions are not explicitly associated with a particular word or
a class of words. In brief, CBOW learn word embeddings by maximising
the probability of predicting a target word from the surrounding context
words, whereas SG aims to predict surrounding context words given a tar-
get word in some context. On the other hand, GloVe learning method con-
siders global co-occurrences over the entire corpus. Specifically, GloVe first
builds a co-occurrence matrix between words, and then learns embeddings
for the words such that using the inner-product between the corresponding
embeddings we can approximate the logarithm of the co-occurrence counts
between the words.

For consistency of the comparison, we train all word embedding learning
methods on the same ukWaC corpus3 which is a web-derived corpus of En-
glish consisting of ca. 2 billion words [Ferraresi et al., 2008]. We lowercase
all the text and tokenise using NLTK4. We use the publicly available imple-
mentations by the original authors of CBOW, SG, and GloVe for training
the word embeddings using the recommended parameters settings. Specifi-
cally, the context window is set to 5 words before and after the target word,
and words with frequency less than 6 in the corpus are ignored, resulting in a
vocabulary containing 1,371,950 unique words. The negative sampling rate
in SG is set to 5 words for each co-occurrence. Our vocabulary is restricted
to the words that appeared more that 6 times in the corpus, resulting in a
vocabulary which includes 1,371,950 unique words. Using each of the word
embedding learning methods, we learn 300 dimensional word embeddings.

In addition to prediction-based word embeddings described above (i.e.
CBOW, SG, and GloVe), we evaluate counting-based word representations
for relation representation. This method assigns each word with a high-
dimensional vector that captures the contexts in which it occurs. We first
construct unigram counts from the ukWaC corpus. The co-occurrences be-
tween low-frequency words are rare and result in a sparse co-occurrence
matrix. To avoid this issue, we consider the most-frequent 50,000 words
in the corpus as our vocabulary, and consider co-occurrences between only
those words. We found that a vocabulary of 50,000 frequent words to be
sufficient for covering all the benchmark datasets used in the evaluations.
Moreover, truncating the co-occurrence matrix to the top frequent contexts
makes the dimensionality reduction methods computationally inexpensive.
Then the word-word co-occurrence statistics are computed from the corpus

3http://wacky.sslmit.unibo.it/doku.php?id=corpora
4http://www.nltk.org/_modules/nltk/tokenize.html
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using windows of size 5 tokens on each side of the target word. We weight
the co-occurrences by the inverse of the distance between the two words
measured by the number of tokens that appear between the two words. Af-
terwards, Positive Pointwise Mutual Information (PPMI) is computed from
the co-occurrence matrix W ∈ Rm×n as follows:

PPMI(x, y) = max

(
0, log

p(x, y)

p(x)p(y)

)
, (5)

where p(x, y) is the joint probability that the two words x and y co-occurring
in a given context, whereas p(x) is the marginal probability. We then apply
Singular Value Decomposition (SVD) to the PPMI matrix, which factorises
W as, W = USV>, where S is the singular values of W. We truncate
S keeping only the top 300 singular values to reduce the dimensionality
and thus increase the density of words representation. This count-based
statistical method for word representations is widely applied in NLP to
produce semantic representations for words and documents [Clark, 2015,
Turney et al., 2010].

As an alternative dimensionality reduction method, we use Nonnega-
tive Matrix Factorisation (NMF) in our experiments [Lee and Seung, 2001].
Given a matrix W ∈ Rm×n, NMF computes the factorisation W = GH,
where G ∈ Rm×d, and H ∈ Rd×n, and G ≥ 0,H ≥ 0 (i.e. G and H contain
non-negative elements). By setting d < min(n,m), we can obtain lower d-
dimensional embeddings for the rows and columns of W, given respectively
by the rows and columns in G and H. Unlike, SVD, the embeddings cre-
ated using NMF are non-negative. By using non-negative embeddings in our
evaluations, we can test the behaviour of the different relation composition
operators under nonnegativity constraints.

4 Evaluation methods

Prior work that proposed compositional operators such as Mult, Add etc.
evaluate their effectiveness on semantic composition tasks. For example,
Mitchell and Lapata [2008, 2010] used a crowd sourced dataset of phrase
similarity. First, a phrase is represented by applying a particular compo-
sitional operator on the constituent word representations. Next, the simi-
larity between two phrases is computed using some similarity measure such
as the cosine similarity between the corresponding phrase representations.
Finally, the computed similarity scores are compared against human similar-
ity ratings using some correlation measure such as the Spearman or Pearson
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correlation coefficients. If a particular compositional operator produces a
higher agreement with human similarity ratings then it is considered su-
perior. However, our task in this paper is to measure similarity between
relations and not phrases (or sentences). Therefore, this evaluation proto-
col is not directly relevant to us. Instead, we use word analogy detection
(Section 4.1) and knowledge base completion (Section 4.3) tasks, which are
more dependent on better relation representations.

4.1 Relational similarity prediction

Given two word pairs (a, b) and (c, d), the task is to measure the similarity
between the semantic relations that exist between the two words in each
pair. This type of similarity is often referred to as relational similarity in
prior work [Turney, 2006]. The task is to measure the degree of relational
similarity between two given word-pairs (a, b) and (c, d). We need a method
that assigns a high degree of relational similarity if the first pair stands
in the same relation as another pair. Two benchmark datasets have been
used frequently in prior work for evaluating relational similarity measures
are SAT [Turney et al., 2003] dataset and SemEval 2012-Task25 [Jurgens
et al., 2012] dataset. Next, we briefly describe the protocol for evaluating
relational similarity measures using those datasets.

The Scholastic Aptitude Test (SAT) word analogy dataset contains 374
multiple choice questions in which each question contains a word-pair as the
stem, and the examinees are required to select the most analogous word-
pair from a list of 4 or 5 candidate answer word-pairs. An example is
shown in Table 1. We generate relation embeddings for the question and its
choice word-pairs using a compositional operator. Next, the cosine similarity
(Equation 6) between the relation representation x of the question word-pair
(a, b) and the relation representation y of each of the candidate word-pairs
(c, d) is computed to select the candidate with the highest similarity score
as the correct answer. Cosine similarity between two vectors is defined as
follows:

sim(x,y) = cos(θ) =
x>y

||x|| ||y||
(6)

The recorded accuracy is the ratio of the number of questions that are an-
swered correctly to the total number of the questions in the dataset. Because
there are five candidate answers out of which only one is correct, random
guessing would give a 20% accuracy.

5https://sites.google.com/site/semeval2012task2/
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Stem: ostrich:bird

Choices: (a) lion:cat
(b) goose:flock
(c) ewe:sheep
(d) cub:bear
(e) primate:monkey

Solution: (a) lion:cat

Table 1: An example question from the SAT dataset. In this question, the
common relation between the stem (ostrich, bird) and the correct answer
(lion, cat) is is-a-large.

Main Category Description Subcategories Prototypical pairs
PART-WHOLE One word names a part of the Object:Component car:engin, face:nose

entity named by the other word Mass:Portion water:drop, time:moment
Collection:Member forest:tree, anthology:poem

CLASS-INCLUSION One word names a class that includes Taxonomic flower:tulip, poem:sonnet
the entity named by the other word Functional weapon:knife, ornament:brooch

Class Individual river:Nile, city:Berlin
CAUSE-PURPOSE One word represents the cause, purpose or goal Cause:Effect enigma:puzzlement, joke:laughter

of entity named by the other word, or the purpose Case:Compensatory Action hunger:eat, fatigue:sleep
or goal of using the entity named by the other wod Enabling Agent:Object match:candle, gasoline:car

Table 2: Example of taxonomy of the semantic relations in SemEval dataset

SemEval 2012 Task-2 covers 10 categories of semantic relations, each
with a number of subcategories. In total the dataset has 79 subcategories.
Each subcategory (relation) has approximately 41 word pairs and three to
four prototypical examples. Example word-pairs from the SemEval dataset
are illustrated in Table 2. The task here is to assign a score to each word-
pair, which indicates the average of the relational similarity between the
given word-pair and prototypical word-pairs in a subcategory.

An alternative approach for measuring the accuracy of a relation embed-
ding method is to apply the relation embedding to complete word analogies.
measuring relational similarity could be evaluated in terms of completing an
analogy a : b :: c :?. In other words, we must find the fourth (missing) word
d from a fixed vocabulary such that the relational similarity between (a, b)
and (c, d) is maximised. Equation 7 uses the PairDiff operator for represent-
ing the relation between two words, and use cosine similarity to measure
the relational similarity between the two word-pairs. Likewise, we can use
the other compositional operators Add and Mult to first create a relational
embedding and then use cosine similarity to measure relational similarity.

For the analogy completion task we use two datasets: MSR [Mikolov
et al., 2013c], and Google analogy [Mikolov et al., 2013b] datasets. MSR
dataset contains 8,000 proportional analogies covering 10 different syntactic
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relations, whereas the Google contains 19,544 analogical word-pairs covering
9 syntactic and 4 semantic relation types, corresponding to 10,675 syntactic
and 8,869 semantic analogies. We restrict the search space for the missing
word to the words that appear in a large set of vocabulary consists of 13,609
words in ukWaC, excluding the three words for each question.

d∗ = arg max
d∈V

(cos(vb − va,vd − vc)) (7)

4.2 Relation classification

In relation classification, the problem is to classify a given pair of words
(w1, w2) to a specific relation r in a predefined set of relations R accord-
ing to the relation that exists between w1 and w2 . We use the DiffVecs
dataset proposed by Vylomova et al. [2015] that consists of 12,458 triples
〈w1, w2, r〉, where word w1 and w2 are connected by a relation r. The rela-
tion set R includes 15 relation types comprising lexical semantic relations,
morphosyntactic paradigm relations and morphosemantic relations.6

We use the different compositional operators discussed in Section 3.1
to represent each word-pair by a relational embedding. We then perform 1-
nearest neighbour (1-NN) classification in this relational embedding space to
classify the test word-pairs into the relation types. If the nearest neighbour
has the same relation label as the target word-pair, then we consider it to be
a correct classification. The classification accuracy is computed as follows:

Accuracy =
correct matches

total number of pairs
(8)

We experimented using both unnormalised word embeddings as well as
`2 normalised word embeddings. We found that `2 normalised word embed-
dings perform better than the unnormalised version in most configurations.
Consequently, we report results obtained only with the `2 normalised word
embeddings in the remainder of the paper.

4.3 Knowledge base completion

Knowledge graphs such as WordNet and FreeBase that link entities accord-
ing to numerous relation types that hold between entities are important
resources for numerous NLP tasks such as question answering, entity and
relation extraction. Automatic knowledge base completion attempts to over-
come the incompleteness of such knowledge bases by predicting missing re-
lations in a knowledge base. For instance, given a first entity (also known as

6https://github.com/ivri/DiffVec
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the head entity h) and a relation type r, we need to predict a second entity
(also known as the tail entity t) such that h and t are related by r.

To evaluate the unsupervised compositional operators for the knowledge
base completion task, we apply the following procedure. First, we require
pre-trained entity embeddings as the input to a compositional operator.
Translating embeddings (TransE) model is one of the popular methods for
learning entity representations from a given knowledge graph [Bordes et al.,
2013]. In TransE, if (h, r, t) holds, then the entity embeddings are learnt
such that: h + r ≈ t. We consider two knowledge bases frequently used
in prior work on knowledge base completion [Bordes et al., 2013]. Namely,
WordNet (WN18) and FreeBase (FB15k). The datasets and the source code
that generates entity embeddings are publicly available [Lin et al., 2015]7.

To evaluate the accuracy of a relation composition operator f , we first
create a representation ri for each relation type r using the entity pairs(h, t)
in the training data by applying f to the embeddings of the two entities h
and t as follows:

r =
1

|R|
∑

(h,r,t)∈R

f(h, t) (9)

Here, R is the set of pairs of entities that are related by ri.
Next, for each test triple (h′, r′, t′), we rank the candidate tail entities t′

according to the cosine similarity between each of the relation embedding
r′ of the relation r′ computed using (9), and the result of applying f to the
entity embeddings h′ and t′. The cosine similarity score we used to rank
candidate tail entities is given by,

cos(r, f(h′, t′)). (10)

We rank all tail entities in all test entity pairs according to (10) and select
the top-ranked entity as the correct completion. This process is repeatedly
applied for predicting the head entities for each test triple as well.

If the correct tail (or head) entity (according to the original test tu-
ple) can be accurately predicted using the relation embeddings created by
applying a particular compositional operator, then we can conclude that op-
erator to be accurately capturing the relational information. Following prior
work on knowledge base completion, we use two measures for evaluating the
predicted tail (or head) entities: Mean Rank and Hits@10. Mean rank is
the average rank assigned to the correct tail (or head) entity in the ranked
listed of candidate entities according to (10). A lower mean rank is better

7https://github.com/thunlp/KB2E
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because the correct candidate is ranked at the top by the compositional op-
erator under evaluation. Hits@10 is the proportion of correct entities that
have been ranked among the top 10 candidates. It is noteworthy that our
purpose here is not to propose state-of-the-art knowledge base completion
methods. We are using knowledge base completion simply as an evaluation
task to compare different compositional operators, whereas the prior works
in knowledge base completion learn entity and relation embeddings that can
accurately predict the missing relations in a knowledge base.

5 Experimental results

5.1 Performance of Relational Similarity Task

In Table 3, we compare the four compositional operators (PairDiff, Con-
cat, Add and Mult) described in Section 3.1 for the four different word
representation models as described in Section 3.2. We observe that PairDiff
achieves the best results compared with other operators for all the evaluated
datasets and all the word representation methods. PairDiff is significantly
better than Add or Mult for all embeddings (both prediction- and counting-
based) in MSR, Google and DiffVec datasets according to Clopper-Pearson
confidence intervals (p < 0.05). SAT is the smallest dataset among all, so
we were unable to see any significant differences on SAT.

Analogy completion in Google and MSR datasets are considered as an
open vocabulary task because to answer a question of the form “a is to b as c
is to ?”, we must consider all the words in the corpus as candidates, which is
an open vocabulary, not limited to the words that appear in the benchmark
datasets as in SAT or SemEval datasets. Therefore, applying PairDiff to
each pair (a, b) and (c, d) will retrieve candidates d that have relations with
c similar to the relation between a and b, but not necessary similar to the
word c. For instance, the top 3 ranked candidates for a question “man is
to woman as king is to ?” are women, pregnant and maternity. We notice
that the top ranked candidates indicate feminine entities. This explains
the performance of PairDiff on MSR and Google datasets, which is lower
compared with other datasets. Similar observations have been made by
Levy et al. [2014]. Moreover, the open vocabulary task (Google and MSR) is
harder than the closed vocabulary task (SAT, SemEval and DiffVecs) as the
number of incorrect candidates is much larger in the open vocabulary setting.
This means that the probability of accidentally retrieving a noisy negative
candidate as the correct answer is higher than in the closed vocabulary task.
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Representation Compositional SAT SemEval MSR Google DIFFVECS
model operator Sem. Syn. Total

CBOW PairDiff 41.82 44.35 30.16 24.43 32.31 28.74 87.38
Concat 38.07 41.06 0.39 3.01 1.26 2.05 83.74

Add 31.1 36.37 0.06 0.16 0.15 0.15 79.27
Mult 27.88 35.19 8.13 2.38 6.11 4.42 79.16

SG PairDiff 39.41 44.03 21.08 22.28 26.47 24.57 86.32
Concat 35.92 41.21 0.3 1.4 1.17 1.27 81.19

Add 28.69 35.48 0.0 0.17 0.13 0.15 78.48
Mult 24.4 35.4 3.26 2.29 4.47 3.48 78.33

GloVe PairDiff 41.02 42.8 16.74 15.42 21.0 18.47 83.87
Concat 36.19 40.17 0.31 2.27 1.17 1.67 81.1

Add 29.22 35.23 0.0 0.24 0.18 0.2 73.76
Mult 23.32 32.0 0.91 3.87 1.39 2.51 66.32

SVD PairDiff 36.9 43.44 8.49 2.84 11.26 7.44 85.8
Concat 38.77 42.04 0.35 0.5 0.82 0.68 81.25

Add 31.82 36.05 0.01 0.26 0.14 0.19 77.93
Mult 29.14 34.79 5.56 0.52 6.91 4.01 77.58

NMF PairDiff 35.29 42.88 2.8 1.75 3.66 2.79 84.66
Concat 31.02 41.39 0.19 0.44 0.65 0.5 81.4

Add 29.68 36 0.03 0.21 0.11 0.16 77.56
Mult 21.12 34.49 0.0 0.03 0.0 0.02 56.99

Table 3: Accuracy of the compositional operators for relational similarity
prediction and relational classification (last right column).

Mult is performing slightly worse with NMF compared to other embed-
dings. Recall that NMF produces non-negative embeddings and Mult is
performing an elementwise multiplication operation on the two input word
embeddings to create the embeddings for their relation. If the negativity
was the only issue with Mult operator as previously suggested by [Baroni
and Zamparelli, 2010], then Mult should have performed better with NMF.
We hypothesise the issue here is sparsity in the relation representations. To
test our hypothesis empirically we conduct the following experiment.

First, we randomly select 140 word-pairs from the Google dataset and
apply different compositional operators to create relation embeddings for
each word-pair using 300 dimensional CBOW word embeddings as the input.
Next, we measure the average sparsity of the set of relational embeddings
created by each operator. We define sparsity at a particular cut-off level ε
for a d dimensional vector as the percentage of elements with absolute value
less than or equal to ε out of d. Formally, sparsity is given by (11).

sparsity =
1

d

d∑
i=1

I[|xi|≤ ε] (11)
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Here, I is the indicator function which returns 1 if the expression evaluated
is true, or 0 otherwise. Our definition of sparsity is a generalisation of the
`0 norm that counts the number of non-zero elements in a vector. However,
in practice, exact zeros will be rare and we need a more sensitive measure
of sparsity, such as the one given in (11). Average sparsity is computed by
dividing the sum of sparsity values given by (11) for the set of word-pairs
by the number of word-pairs in the set (i.e. 140).

Figure 1 shows the average sparsity values for different operators under
different ε levels. Figure 1 shows that Mult operator generates sparse vectors
for relations compared to other operators under all ε values. Considering
that Mult is performing a conjunction over the two input word embeddings,
even if at least one embedding has a nearly zero dimension, after elementwise
multiplication we are likely to be left with nearly zero dimensions in the
relation embedding. Such sparse representations become problematic when
measuring cosine similarity between relation embeddings, which leads to
poor performances in word analogy tasks.

Figure 1: The average sparsity of relation embeddings for different operators
using CBOW embeddings with 300 dimensions for some selected pairs of
words.

5.2 Effect of Dimensionality

The dimensionality of the relational embeddings produced by the composi-
tional operators presented in Section 3.1 depends on the dimensionality of
the input word embeddings. For example, Mult, Add, and PairDiff oper-
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ators produce relational embeddings with the same dimensionality as the
input word embeddings, whereas the Concat operator produce relational
embeddings twice the dimensionality of the input word embedding. A nat-
ural questions therefore is that how does the performance of the relational
embeddings vary with the dimensionality of the input word embedding. To
study the relationship between the dimensionality of the input word em-
bedding and the composed relational embedding we conduct the following
experiment.

We first train word embeddings of different dimensionalities using the
ukWaC corpus. We keep all the other parameters of the word embedding
learning method fixed except for the dimensionality of the word embed-
dings learnt. Because CBOW turned out be the single best word embedding
learning method according to the results in Table 3, we use CBOW as the
preffered word embedding learning method in this analysis. Figure 2 shows
the performance of the different compositional operators on the benchmark
datasets using CBOW input word embeddings with dimensionalities in the
range 50-800.

As seen from Figure 2, PairDiff outperforms all other operators across
all dimensionalities. The best results on SemEval and DiffVecs datasets
are reported by PairDiff with 200 dimensions. Performance saturates when
the dimensionality is increased beyond this point. On the other hand, SAT
shows different trend. On SAT, the performance of PairDiff continuously
increases with the dimensionality of the input word embeddings. On the
other hand, in MSR and Google datasets we see a different trend where
the performance of PairDiff decreases while that of Mult increases with the
dimensionality of the input word embedding.

To understand the above-described trends first note that the dimensions
in word embeddings are providing almost complementary information re-
lated to the semantics of a word.8 Adding more dimensions to the word
embedding can be seen as a way of representing richer semantic informa-
tion. However, increasing the dimensionality also increases the number of
parameters that we must learn. Prediction-based word embedding learning
methods first randomly initialise all the parameters and then update them
such that the co-occurrences between words can be accurately predicted in
a given context window. However, the training dataset, which in our case
is the ukWaC corpus, is fixed. Therefore, we will have more parameters
than we could reliably estimate using the data we have, resulting in some

8As described in Section 3.1, Pearson correlation coefficients between different dimen-
sions in word embeddings are small, showing that different dimensions are uncorrelated.
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Figure 2: The effect of the dimensionality of the CBOW word embeddings
for compositional relation representations.

overfitted noisy dimensions as we increase the dimensionality of the word
embeddings learnt.

One hypothesis for explaining the seemingly contradictory behaviour
with PairDiff and Mult operators is as follows. When we increase the dimen-
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sionality of the input word embeddings, there will be some noisy dimensions
in the input word embeddings. PairDiff operators amplifies the noise in the
sense that the resultant offset vector will retain noisy high dimensions that
appear in both word embeddings. On the other hand, Mult operator can
be seen as a low-pass filter where we shutdown dimensions that have small
(or zero) valued dimensions in at least one of the two embeddings via the
element-wise multiplication of corresponding dimensions. Therefore, Mult
will be robust against the noise that exist in the higher dimensions of the
word embeddings than the PairDiff operator.

To empirically test this hypothesis we compute the `2 norm of (va− vb)
and (va�vb) for word embeddings of different dimensionalities and compute
the average over 140 randomly selected word-pairs. As shown in Figure 3,
the norm of PairDiff relation embedding is increasing with dimensionality,
whereas norm of the relation embedding generated by Mult decreases. This
proves our hypothesis that Mult is filers out the noise in high dimensional
word embeddings better than PairDiff.

Figure 3: Average `2 norm of relational vectors generated using PairDiff and
Mult operators.

5.3 Performance on Knowledge Base Completion Task

Table 4 displays the performance on the compositional operators for the
knowledge base completion task on the two knowledge graphs WN18 and
FB15k, where low mean rank and high Hits@10 indicates better perfor-
mance. As can be seen from the Table, Mult operator yields the lowest
mean rank and the highest Hits@10 accuracy among other operators for the
both knowledge bases.
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Given that PairDiff was the best operator for relational similarity tasks,
it is surprising that Mult operator outperforms PairDiff in both WN18 and
FB15k datasets. Recall that knowledge base completion is the task where
given that (h, t) pair is related by a relation r (as provided in the train
set) we need to assess how likely that (h′, t′) is related by r. In our evalua-
tion process, this task is answered by measuring the inner-product between
f(h, t) and f(h′, t′), where f is a compositional function that represents
the relationship between h and t. In the case of Mult operator, we have:
similarity-score = (h� t)>(h′� t′), this indicates that if a dimension is not
common across all four entities it does not contribute to the overall similar-
ity score. This can be seen as a strict way of estimating relational similarity
between train and test pairs because a particular dimension must be on in
all four words involved in an analogy.

On the other hand, PairDiff operator scores test entity pairs by (h −
t)>(h′ − t′). Here, (h′, t′) is an entity pair in the test dataset with the
target relation r, and we are interested in finding, for example, candidate
tail entities t′ that has r with a given head entity h′. This score can be
further expanded as (h − t)>h′ − (h − t)>t′. The first term is fixed given
the training dataset and the head entity, and the rank of the tail entity is
determined purely based on (h − t)>t′, where the head entity h′ does not
participate in. This is problematic because entities t′ that are similar to
t and dissimilar to h will be simply ranked at the top irrespective of the
relation t′ has with h′. Indeed in Table 4 we see that mean rank for PairDiff
is significantly higher compared to that of Mult. This suggests that many
irrelevant tail (or head) entities are ranked ahead of the correct entity for
each test tuple. On the other hand, in relational similarity task, the two
pairs between which we must measure similarity are fixed and this issue is
not

If a relation is asymmetric such as hypernym and hyponym as in WN18,
addition model will be insensitive to the directionality of such relations com-
pared to PairDiff which explains the better performance of PairDiff over
Add.

5.4 Evaluating the Asymmetry of the PairDiff Operator

Relations between words can be categorised as either being symmetric or
asymmetric. If two words a and b are related by a symmetric relation r,
then b is also related to a with the same relation r. Examples of symmetric
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Compositional WN18 FB15k
operator MeanRank Hits@10(%) MeanRank Hits@10(%)

PairDiff 13,198 11.34 1,206 44.4
Concat 9,896 2.77 542 29.49

Add 12,178 1.88 1,211 21.7
Mult 812 54.93 256 50.66

Table 4: Accuracy of the compositional operators for knowledge base com-
pletion task.

relations include synonyms and antonyms. On the other hand, if a is related
to b by an asymmetric relation, then b might not be necessarily related
to a with the same relation r. Examples of asymmetric relations include
hypernyms and meronyms. As discussed in Section 5.1, PairDiff operator
outperforms Add and Mult operators. Unlike Mult and Add, which are
commutative operators, PairDiff is a non-commutative operator. Therefore,
PairDiff should be able to detect the direction of a relation.

To test the ability of PairDiff to detect the direction of a relation, we
set up the following experiment. Using a set of word-pairs where there is
a common directional relation r between the two words in each word pair
as training data, we use PairDiff to represent the relationship between two
words in a word-pair, given the word embeddings for those two words. Next,
we swap the two words in each word-pair and apply the same procedure to
create relation embeddings for the reversed relation r′ in each word-pair. We
model the task of predicting whether a given word-pair contains the original
relation r or its reversed version r′ as a binary classification task. Specifically,
we train a binary support vector machine with a linear kernel with the cost
parameter set to 1 using held-out data. If the trained binary classifier can
correctly predict the direction of a relation in a word-pair, then we can
conclude that the relation embedding for that word-pair accurately captures
the information about the direction of the relation that exists between the
two words in the word-pair. We can repeat this experiment with symmetric
as well as asymmetric relation types r and compare the performances of the
trained classifiers to understand how well the directionality in asymmetric
relations is preserved in the PairDiff embeddings.

For the asymmetric relation types we use all relation types in the DIFFVECS

because this dataset contains only asymmetric relation types. For symmet-
ric relation types we use two popular symmetric semantic relations namely,
synonymy9 and antonymy10. We report five-fold cross-validation accuracies

9http://saifmohammad.com/WebDocs/LC-data/syns.txt
10http://saifmohammad.com/WebDocs/LC-data/opps.txt
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with each relation type in Figure 4. If the classifier reports a high classifi-
cation accuracy for asymmetric relations than symmetric relations, then it
indicates that the relation embedding can encode the directional informa-
tion in a relation. From Figure 4 we see that, overall, the accuracies for the
two symmetric relation types is lower than that for the asymmetric relation
types. This result indicates that PairDiff can correctly detect the direction
in the asymmetric relation types.

Figure 4: The accuracy of SVM classifier.

6 Discussion and conclusion

This work evaluated the contribution of word embeddings for representing
relations between pairs of words. Specifically, we considered several compo-
sitional operators such as PairDiff, Mult, Add, and Concat for creating a
representation (embedding) for the relation that exist between two words,
given their word embeddings as the input. We used different pre-trained
word embeddings and evaluated the performance of the operators on two
tasks: relational similarity measurement and knowledge base completion.
We observed that PairDiff to be the best operator for relational similarity
measurement task, whereas Mult operator to be the best for knowledge base
completion task. We then studied the effect of dimensionality on the per-
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formance of these two operators and showed that the sparsity of the input
embeddings is affecting the Mult operator, and not the negativity of the in-
put word embedding dimensions as speculated in prior work. Our analysis
in this paper was limited to unsupervised operators in the sense that there
are no parameters in the operators that can be (or must be) learnt from
training data. This raises the question whether we can learn better compo-
sitional operators from labelled data to further improve the performance of
the compositional approaches for relation representation, which we plan to
explore in our future work.
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