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The paper presents a model of a chiral multi-structure
incorporating gyro-elastic beams. Floquet–Bloch
waves in periodic chiral systems are investigated
in detail, with the emphasis on localization and
the formation of standing waves. It is found that
gyricity leads to low-frequency standing modes and
generation of stop-bands. A design of an earthquake
protection system is offered here, as an interesting
application of vibration isolation. Theoretical results
are accompanied by numerical simulations in the
time-harmonic regime.

1. Introduction
Gyroscopic systems are always fascinating in their
dynamic response and they are used in many applications
in physics, engineering and aeronautics. In this paper,
we show how to employ so-called gyrobeams (see,
for example, [1]) in order to create low-frequency
resonators, which can influence the behaviour of
Floquet–Bloch waves in multi-structures subjected to
dynamic excitations, such as earthquakes.

Many engineering structures (for example, bridges,
pipelines and industrial warehouses) are designed as
long chains of repetitive units, connected to each other by
means of different types of joints. The dynamic study of
such structures can be simplified by employing Floquet–
Bloch theory, which reduces the problem to the analysis
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of a single unit cell with quasi-periodicity conditions. In this paper, we focus attention on flexural
systems consisting of beam elements.

Periodic flexural systems have been extensively investigated in the last few decades [2–12].
In a recent work [13], it was proposed to use multi-scale high-contrast resonators to mitigate the
vibrations of mechanical systems induced by earthquakes. These vibrations are generally difficult
to suppress because they occur at low frequencies and are characterized by a wide spectrum.
The range of frequencies in question for structures subjected to seismic loads is generally 0–
30 Hz see [13]. The theoretical and practical challenge is to create, within the required frequency
interval, ‘energy sinks’ where waves are channelled and thus diverted away from the main
protected structure. Owing to their versatility, multi-scale high-contrast resonators can also be
employed to protect randomly perturbed structures [14] from seismic waves. The incorporation
of resonators into an elastic structure can lead to many interesting effects, such as generation of
low-frequency standing waves [15], negative refraction [16,17], cloaking and filtering of seismic
waves [18,19].

In this work, we propose a novel design of low-frequency resonators, which are not required
to possess a high contrast mass to stiffness ratio. These resonators are beams with distributed
gyricity, namely each volume element of the beam possesses additional angular momentum,
as described in [1]. If the gyricity constant is sufficiently large, the structural element exhibits
relatively low eigenfrequencies. Accordingly, gyro-elastic beams can be used as low-frequency
resonators to reduce the vibrations of a structure, in a similar manner to that described
in [13].

Gyroscopic systems have been analysed in conjunction with the motion of spinning spacecraft.
The eigenvalue problems of linear gyroscopic systems were studied in [20,21], where the response
of a rigid body connected to elastic components and subjected to an external force was also
determined. The stability effect of gyroscopic forces and flutter instability in gyroscopic systems
were discussed in [22–25].

The introduction of gyroscopic spinners into a structural model alters the properties of the
structure, mainly due to the conferred chirality effects. Chirality is the property of an object
whereby it cannot be superimposed onto its mirror image [26]. The dynamics of an elastic lattice
connected to a system of rigid spinners was studied for the first time in [27], where it was shown
how the dispersion surfaces of the lattice are modified by changing the parameters of the spinners.
The phenomena of wave polarization and dynamic anisotropy occurring in lattices with rigid
spinners were discussed in detail in [28], together with the frequency response of the lattice due
to external harmonic excitations. The same model was used in [29,30] to generate one-way edge
modes in an elastic lattice, where the time-reversal symmetry is broken by the gyroscopic term.
Recently [31], a non-uniform system of gyroscopic spinners was designed to produce a very
localized uni-directional wave pattern in an elastic lattice. It was shown that this wave pattern
can be diverted, as in a deflecting elastic prism, by modifying the arrangement of the spinners
inside the medium. This phenomenon was named DASER (Dynamic Amplification by means of
Spinners in an Elastic Reticulated system).

The idea of ‘distributed gyricity’ was introduced in [1], where partial differential equations
governing the motion of a gyro-elastic structure were derived and vibration modes were
determined. This theory was developed further in successive papers [32,33]. Static and dynamic
instabilities exhibited by gyro-elastic beams were discussed in [34].

The present paper is organized as follows. In §2, we give the equations of motion of a single
beam with distributed gyricity and we determine the eigenfrequencies and eigenmodes for
different values of the gyricity constant. In §3, we consider a structural frame, composed of a
classical Euler–Bernoulli beam and a gyro-elastic beam, and we show how the eigenfrequencies
of the frame are affected by gyricity. In §4, we determine the dispersion curves for a periodic
system, consisting of an infinite number of repetitive frames containing gyro-elastic beams; in
particular, we show that large stop-bands are generated when gyricity is present. In §5, we exploit
the gyricity effect to reduce considerably the vibrations of a long structure, subjected to an external
harmonic excitation. Finally, in §6 we provide concluding remarks.
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Figure 1. Normalized eigenfrequencies ω̂ of a clamped-free gyro-elastic beam for different values of the normalized gyricity
constant ĥ. In the diagram, the square roots of ω̂ and ĥ are plotted. Some of the eigenmodes are shown in the insets, where
the small crosses indicate the positions of the inflection points. (Online version in colour.)

2. Dynamics of a gyro-elastic beam
We consider an elastic Euler–Bernoulli beam of square cross section, which is clamped at one end
and is free at the other end, as sketched in figure 1. The beam is characterized by a continuous
distribution of gyricity, which is independent of the motion of the body and of the mass and
stiffness distribution in the beam [1]; in addition, it is assumed for simplicity that gyricity is
uniform along the beam length and is independent of time. Owing to this special feature, this
structural element will be henceforth referred to as gyro-elastic beam or gyrobeam.

(a) Equations of motion
In the transient regime, the governing equations describing the flexural motion of the gyrobeam
without external loads and pre-stress are given by Yamanaka et al. [34]

EJ
∂4u(z, t)

∂z4 + ρA
∂2u(z, t)

∂t2 + h
∂3v(z, t)
∂z2∂t

= 0

and EJ
∂4v(z, t)

∂z4 + ρA
∂2v(z, t)

∂t2 − h
∂3u(z, t)
∂z2∂t

= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where z is the direction of the beam axis, u and v are the displacement components in the x- and
y-directions, respectively, t is time, E is the Young’s modulus, ρ is the density, A and J are the
cross-sectional area and second moment of area (identical in the two directions), respectively, and
h is the gyricity constant. We note that the second moments of area in the x- and y-directions are
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identical, i.e. Jx = Jy = J, because we have considered a beam with a square cross section. For a
rectangular cross section Jx �= Jy, and the equations (2.1) change accordingly.

The quantity h has the physical dimension of N s. The practical implementation of h depends
on how a gyrobeam is modelled in engineering applications. In a different work, which is
intended to provide a practical design for a gyrobeam, we have developed a concept based on
the analysis of a multi-scale system of elastic links connecting gyroscopic spinners. It is assumed
that the moments of inertia of each gyroscopic spinner with respect to the transverse axes are
negligibly small in comparison with the moment of inertia I with respect to the spinner axis.
The gyricity constant h is proved to be proportional to I and to the rate of spin Ω of individual
gyroscopes, and it is inversely proportional to the distance d between neighbouring gyroscopes.

In the time-harmonic regime, the displacement components are expressed as u(z, t) = U(z) eiωt

and v(z, t) = V(z) eiωt, where ω is the radian frequency. In this case, equations (2.1) take the form

EJ
d4U(z)

dz4 − ρAω2U(z) + ihω
d2V(z)

dz2 = 0

and EJ
d4V(z)

dz4 − ρAω2V(z) − ihω
d2U(z)

dz2 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

The general solutions of (2.2) are given by

U(z) = A1 cos(β+z) + A2 sin(β+z) + A3 cosh(β−z) + A4 sinh(β−z)

+ A5 cos(β−z) + A6 sin(β−z) + A7 cosh(β+z) + A8 sinh(β+z)

and V(z) = i{A1 cos(β+z) + A2 sin(β+z) + A3 cosh(β−z) + A4 sinh(β−z)

− A5 cos(β−z) − A6 sin(β−z) − A7 cosh(β+z) − A8 sinh(β+z)},

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

where Ai (1 ≤ i ≤ 8) are arbitrary constants and

β± =
(

ω[∓h +
√

h2 + 4ρEAJ]
2EJ

)1/2

. (2.4)

The expressions in (2.4) become equal to

β =
(

ρAω2

EJ

)1/4

when h = 0 and consequently, in this case, the solutions U(z) and V(z) take the form

U(z) = B1 cos(βz) + B2 sin(βz) + B3 cosh(βz) + B4 sinh(βz)

and V(z) = C1 cos(βz) + C2 sin(βz) + C3 cosh(βz) + C4 sinh(βz),

}
(2.5)

where Bi, Ci (1 ≤ i ≤ 4) are arbitrary constants. The latter expressions are the displacement
components of a classical Euler–Bernoulli beam under time-harmonic conditions.

The boundary conditions for a clamped-free gyrobeam are given by

U|z=0 = 0, V|z=0 = 0, φx|z=0 = dV
dz

∣∣∣∣
z=0

= 0, φy|z=0 = dU
dz

∣∣∣∣
z=0

= 0,

Mx|z=L = EJ
d2V
dz2

∣∣∣∣∣
z=L

= 0, My|z=L = EJ
d2U
dz2

∣∣∣∣∣
z=L

= 0,

Tx|z=L = EJ
d3U
dz3

∣∣∣∣∣
z=L

+ ihω
dV
dz

∣∣∣∣
z=L

= 0

and Ty|z=L = EJ
d3V
dz3

∣∣∣∣∣
z=L

− ihω
dU
dz

∣∣∣∣
z=L

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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where L is the length of the gyrobeam, while φj, Mj and Tj (j = x, y) are the rotations, bending
moments and modified shear forces, respectively, with respect to the axes x and y. We note that
the bending moments have the same expressions as for a classical Euler–Bernoulli beam, while
the shear forces contain a term that depends on the gyricity constant h [34].

(b) Eigenfrequency analysis
The eigenfrequencies and eigenmodes of the clamped-free gyrobeam are obtained by solving the
spectral problem (2.2), (2.6). The results are shown in figure 1 for different values of the gyricity
constant. The quantities ω̂ and ĥ in the diagram represent the normalized eigenfrequency and the
normalized gyricity, respectively, which are defined as

ω̂ = ω

√
ρAL4

EJ
(2.7)

and

ĥ = h√
EJρA

. (2.8)

Figure 1 shows the eigenfrequencies for a beam with square cross section. For ĥ = 0, the
eigenfrequencies have multiplicity 2; for ĥ �= 0, each pair of eigenfrequencies splits into two, one
smaller and one larger than the double eigenfrequency for ĥ = 0. This phenomenon was already
observed in [1] for a gyrobeam with a rectangular cross section and a non-uniform gyricity
distribution. This will be exploited in §§4 and 5 to design an efficient system of resonators
to reduce the vibrations of an elastic multi-structure. As the number of eigenfrequencies
which accumulate in a prescribed low-frequency range becomes larger as the gyricity constant
is increased, we can take a large value of the gyricity constant in order to have many
eigenfrequencies in that low-frequency range. When the structure is subjected to a dynamic
force whose Fourier spectrum has one or more frequencies falling inside the considered low-
frequency range, the gyrobeams act as resonators because their eigenfrequencies are close to the
frequencies of the external force. Consequently, they start vibrating and thus divert the energy
coming from the external excitation away from the main structure which, as a result, undergoes
smaller vibrations.

The first three types of eigenmodes of the clamped-free gyrobeam (denoted as modes I, II
and III), calculated for ĥ = 1, are illustrated in the bottom part of figure 1. The two deformed
shapes associated with each mode have the same number of nodes, which are the points where the
displacement is zero. However, they differ in the number and positions of the points of inflection,
which are defined as the points along the beam axis where the curvature changes sign and the
bending moment is zero. The locations of the inflection points are identified with small crosses in
the insets of figure 1. This observation was not discussed in [1].

In order to better visualize the three-dimensional deformed shapes presented in the bottom
part of figure 1, we have applied to the top of the gyrobeam a harmonic force having a frequency
equal to one of the eigenfrequencies of the beam for the case ĥ = 1. We have then computed the
responses of the gyrobeam in the steady-state regime for the six eigenfrequencies indicated in
figure 1a–f. The motion of the beam for each frequency is shown in electronic supplementary
material, Video S1. There, the arrow represents the direction of the harmonic force. The trajectory
of each point of the gyrobeam is a circle, since the amplitudes of u and v are identical and their
phase difference is ±π/2. We point out that the aim of the video is only to show how the gyrobeam
deforms at different frequencies.

It is interesting to observe that the curves
√

ω̂ versus
√

ĥ in figure 1 intersect at a number
of points where the gyrobeam possesses a double eigenfrequency. The eigenmodes associated
with each double eigenfrequency are different, being characterized by a different number
of nodes.
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Figure 2. Eigenfrequencies ω of a structural frame made of a classical Euler–Bernoulli beam and a gyro-elastic column, for
different values of the gyricity constant h. A comparison of somemodes of the structure for h= 0 N s and h= 3000 N s is also
shown. (Online version in colour.)

3. Analysis of a frame with a gyro-elastic column
We study the structural frame sketched in figure 2, consisting of a continuous Euler–Bernoulli
beam (A–C) and a column with distributed gyricity (B–D). Both ends of the horizontal beam and
the bottom end of the column are clamped; the connection between the beam and the column is
assumed to be rigid, which implies continuity of displacements, rotations, moments and forces
at the junction. For this structure, we also take into account the longitudinal displacements of
both structural elements. We assume that the two beams have length L = 2 l = 2 m and a square
cross section of side length 0.05 m, and that they are made of steel, having Young’s modulus
E = 210 GPa, Poisson’s ratio ν = 0.3 and density ρ = 7850 kg m−3.

The eigenfrequencies ω of the frame are plotted in figure 2 against the gyricity constant h. It
is apparent that gyricity affects the dynamic behaviour of the system, making it more flexible or
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rigid depending on the vibration mode. The most interesting feature is that the eigenfrequencies
cluster at low frequencies for large values of h, as observed for a single gyrobeam.

The eigenmodes associated with the lowest four eigenfrequencies for the cases h = 0 N s and
h = 3000 N s are illustrated in the bottom part of figure 2 (modes a–d). The eigenmodes were
obtained by using the finite-element software Comsol Multiphysics�, while the eigenfrequencies
were calculated analytically and verified with the finite-element model. It is interesting to observe
how the gyricity constant modifies the deformed shapes of the frame at the different frequencies.

The motion of the gyrobeam under an external excitation is displayed in the video included in
electronic supplementary material, Video S2. There, the gyricity constant is h = 3000 N s and the
frame is subjected to a harmonic force applied to the junction, acting along the x-direction and
having a radian frequency ω = 314.8 rad s−1 (which corresponds to the second eigenfrequency of
the frame for that value of h). The video shows that the horizontal beam moves in the y-direction
though the force acts in the x-direction (the u displacement of the junction point is very small
because of the high axial stiffness of the horizontal beam). Moreover, it can be noticed from the
top view of the frame that the gyro-elastic column rotates around the z-axis, hence its points move
both in the x- and y-directions.

Finally, we observe that some lines in figure 2 are horizontal, which means that some
eigenfrequencies are not affected by a variation in the gyricity constant. This occurs for the
eigenmodes in which the gyro-elastic column is not deformed (see, for example, modes f in the
bottom part of figure 2).

4. Floquet–Bloch waves in a periodic structure with gyrobeams
In this section, we consider a system made of a very large number of frames, attached to each
other. One of the frames is shown in figure 3. This system can be studied as a periodic structure
by imposing the quasi-periodicity (or Floquet–Bloch) conditions at the ends of a repetitive frame
(or periodic cell). The quasi-periodicity conditions are expressed by

Υ (x∗ + L, y, z) = Υ (x∗, y, z) eikL, (4.1)

where x∗ is the x coordinate of the left end of the horizontal beam, L = 2 l is the
length of the periodic cell, k is the wavenumber and Υ is the vector of generalized
displacements and forces, given by Υ = (U, Φ, M, F). Here, U = (U, V, W) is the vector of
displacements, Φ = (dU/dx, dV/dx, dW/dx) is the vector of axial strain and rotations, M =
(Gθ Jt, EJ(d2V/dx2), EJ(d2W/dx2)) is the vector of twisting and bending moments (where G
is the shear modulus, θ is the twisting angle and Jt is the twisting moment), and F =
(EA(dU/dx), EJ(d3V/dx3), EJ(d3W/dx3)) is the vector of axial and shear forces.

The periodic cell in figure 3 has been modelled in the finite-element software Comsol
Multiphysics�, where the Floquet–Bloch conditions (4.1) have been imposed at the ends of the
horizontal beam. We have considered two cases: in the first one, the gyricity constant h = 0 N s in
the entire structure; in the second one, h = 50 000 N s in the column and h = 0 N s in the horizontal
beam. The value h = 50 000 N s is of special interest, because for this value of the gyricity constant
sufficiently many eigenfrequencies of the gyrobeam accumulate near the origin, as shown in
figure 2. The dispersion curves corresponding to these two cases are plotted in figure 3, where
f = ω/(2π ) is the frequency in Hz. The dashed lines in figure 3 represent the dispersion curves for
an infinite Euler–Bernoulli beam without supports, which are given in [12,35,36]

cos (βL) = cos (kL) with β = 4

√
ρAω2

EJ
(for flexural waves)

and cos
(

ωL
c

)
= cos (kL) with c =

√
E
ρ

(for compressional waves).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

By looking at the dispersion diagram for h = 0 N s, it can be seen that the main effect of
the column is to open a zero-frequency band-gap and to generate other stop-bands at higher
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Figure 3. Dispersion curves for the periodic frame on the left, obtained for the following values of the gyricity constant in the
column: h= 0 N s and h= 50 000 N s. The dashed lines are the dispersion curves for the infinite Euler–Bernoulli beam.

frequencies by decreasing the upper limits of the branches. At the boundaries of the Brillouin
zone, standing waves are observed, characterized by zero group velocity. When the gyricity
constant in the column is increased, more dispersion curves appear within the same frequency
range, accompanied by the formation of new stop-bands. However, these stop-bands are very
narrow.

An alternative is presented in figure 4: the main structure (namely, the horizontal beam and
the column) is made of Euler–Bernoulli beams without gyricity, and two gyro-elastic columns
are connected to it by means of a rigid beam (depicted by a grey line). Displacements, rotations,
moments and forces are continuous at the junction between the main structure and the rigid beam.
The gyricity constants of the two gyrobeams are equal in absolute value but have opposite sign,
hence they rotate in opposite directions. The absolute value of the gyricity constants of the two
gyrobeams is indicated by h∗. The gyrobeams are connected to the rigid beam by hinges (drawn
as empty circles), which have proved to be the best internal constraint for our purposes after a
thorough study of the structure.

The dispersion curves for the cases when the entire structure has zero gyricity and when
the gyrobeams have gyricity constant h∗ = ±50 000 N s are shown on the right of figure 4. The
eigenfrequencies determined for low values of the wavenumber k are mainly associated with the
axial deformations of the horizontal beam (along the x-direction), as illustrated by the eigenmode
included in figure 5c. These vibrations are usually not dangerous, since appropriate constraints
are usually imposed at the ends of the corresponding finite structure to prevent the rigid motion in
the x-direction and also the beams are very rigid in the axial direction. Consequently, considering
only the transverse vibrations of the horizontal beam (along the y- and z-directions), it can be
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Figure 5. Eigenmodes of the structure in figure 4, corresponding to the eigenfrequencies indicated in figure 4. (Online version
in colour.)

seen that the dispersion diagram is characterized by very narrow pass-bands at low frequencies
and flat dispersion curves at higher frequencies. Accordingly, we expect that transverse waves do
not propagate in such a system, except for small frequency intervals. Vibrations associated with
the upper dispersion curves displayed in figure 4 are mainly in the z-direction, as shown by the
eigenmode in figure 5d.

The frequencies of the flat dispersion curves can be estimated analytically. They coincide with
the eigenfrequencies of a single gyrobeam with a clamped end and a pinned end, which were
calculated by using the analytical approach described in §2. An example of an eigenmode of
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variable frequency f is plotted in both diagrams. PML are added to prevent reflections of waves at the right boundary.

the structure in correspondence with a flat dispersion curve, shown in detail in the zoom of the
dispersion diagram of figure 4, is presented in figure 5a. From figure 5, it is apparent that, at this
frequency, the main structure does not vibrate, and all the energy of deformation is confined
within the gyrobeams. Above each flat dispersion curve, there is a stop-band and, at higher
frequencies, a small pass-band appears, where the entire structure vibrates (see figure 5, mode
b). However, this pass-band is very narrow.

The dispersion curves determined for some intermediate values of h∗ between h∗ = 0 N s and
h∗ = 50 000 N s are presented in appendix A.

The structural configuration sketched in figure 4 will be used in the next section to show
how gyrobeams can be employed to reduce the vibrations of the main horizontal beam when
the structure is subjected to an external excitation.

5. Transmission problem in a multi-structure with gyrobeams
In order to test the isolation device proposed in §4, we study the structure illustrated in the
top part of figure 6, which consists of an assembly of many repetitive units, as that depicted
in figure 4. At the left end of the structure we impose a harmonic displacement of amplitude d0
and frequency f , acting in the y-direction. At the right end, we introduce PMLs (perfectly matched
layers), which are used to minimize reflections of waves at the boundary and to model a semi-
infinite system. The PML are designed to gradually dissipate the energy of the impinging waves
[37]. The absorption effect is introduced by implementing a complex Young’s modulus in the
beams, given by

Ec = E(1 + iη), with η = η1[eη2(x−xPML) − 1]. (5.1)
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In the formula above, η is the absorption factor or isotropic loss factor, and xPML is the x coordinate
of the interface between the non-dissipating frames and the PML. The coefficients η1 and η2 are
tuned to make the absorption coefficient increase slowly, since a high-contrast interface would
generate reflected waves. The part of the structure with PML needs to be long enough to dissipate
all the energy travelling through it. An alternative type of PML in a flexural system is discussed
in [38].

We have built a finite-element model in Comsol Multiphysics� to determine the displacement
field in the structure produced by the imposed displacement. The computations have been
performed in the frequency domain. As earlier, we have examined two scenarios: in the first one,
the entire structure is made of classical Euler–Bernoulli beams, while in the second one gyricity
is introduced in the lateral columns, which have gyricity constant ±h∗ (the reader is referred to
the periodic unit of figure 4 for the position of the gyrobeams in each frame). In both cases, the
beams connecting the gyrobeams to the main structure are rigid. Figure 6 shows the displacement
amplitude of a point of the structure, indicated by P in the top part of the figure, for both scenarios.
Additional computations have shown that very similar diagrams are found for the other points
of the structure, provided that they are not too close to the external excitation. These results are
included in electronic supplementary material, Fig. S6. The deformed shapes of the system in the
two scenarios are presented in figure 7 for two different frequencies, at which waves propagate.

The displacement amplitudes plotted in figure 6 are different from zero at the frequencies
within the pass-bands of the corresponding periodic structure, determined from figure 4. This
shows that the forced response of the semi-infinite structure can be deduced from the behaviour
of the infinite system, represented by the dispersion diagram. The very narrow pass-bands
calculated for the system with gyrobeams at higher frequencies were not detected by the model
in the frequency domain, though the frequency step adopted in the computations was very small
(�f = 0.0001 Hz).

The most important outcome of figure 6 is that the frequency ranges where waves
can propagate are reduced significantly if gyrobeams are employed. This demonstrates that
gyrobeams are an efficient tool to mitigate the transverse vibrations of a structural system if the
frequency of the applied force is not very low. An enhanced design, combining alternating frames
with and without gyrobeams, is discussed below.

In the numerical computations, we have not considered an external excitation acting along
the z-direction, because the ensuing waves would not trigger the gyricity effect in the columns.
Indeed, the dispersion curves corresponding to this type of waves are not altered by changing the
gyricity constant in the columns (compare the upper dispersion curves in figure 4 for h∗ = 0 N s
and h∗ = 50 000 N s). On the other hand, an external excitation acting in the x-direction would
generate compressional and extensional waves in the horizontal beams which, however, occur at
higher frequencies due to the high longitudinal stiffness of the beams. In addition, rigid motions
along the x-direction are usually prevented in practice by introducing appropriate constraints
(e.g. hinges) at the abutments of the structure.

The structural responses of the system for other values of the gyricity constant are included in
appendix B.

(a) Effect of damping on the dynamic response
We have also computed the response of the semi-infinite system shown in the top part of figure 6
when damping is introduced in the lateral columns of each frame (i.e. the thick lines in the
periodic unit of figure 4). Damping was introduced by defining Young’s modulus of all lateral
columns as

Ec = E(1 + iη). (5.2)

We have considered a uniform absorption factor equal to 5%, namely η = 0.05, which is very
common in civil engineering structures [13].
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PML

PML

a

b

Figure 7. Deformed shapes of the structure in figure 6, computed at the frequencies indicated in figure 6. (Online version in
colour.)

The structural response of the system for different values of the frequency is plotted in figure 8
for the cases where the lateral columns are classical Euler–Bernoulli beams and gyrobeams.
To simplify the comparison with figure 6, we have also shown in figure 8 the displacement
amplitudes determined without damping (dotted lines). It can be noticed from the figure that
the main advantage of adding damping to the structure is obtained when h∗ �= 0, because in this
case the displacement amplitudes decrease significantly.

(b) Enhanced design of a multi-structure
We have shown that a periodic system made of an infinite array of frames as that of figure 4
creates a low-frequency band-gap when h∗ = 0 N s and a large band-gap at higher frequencies
when h∗ = 50 000 N s. Accordingly, we can create a very efficient filter for transverse waves if we
design the structure as an alternating series of frames with and without gyricity. An example
of such a structure is depicted in the top part of figure 9. It consists of an array of eight frames
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Figure 8. Same as in figure 6, but after adding damping to the lateral columns (without and with gyricity). The dotted lines
represent the responses of the system without damping, taken from figure 6.
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Figure 9. Displacement amplitudes, produced by an external excitation, computed at four different points of a semi-infinite
structure, consisting of an alternating series of frames with and without gyricity. The deformed shape of the structure
determined at f = 0.7 Hz is illustrated at the top. (Online version in colour.)

without gyricity and eight frames with gyricity, and it is modelled as a semi-infinite system by
inserting PML.

We again apply a harmonic displacement at the left end of the structure and we compute the
resulting displacement field. In figure 9, we plot the displacement amplitudes determined at four
different points, indicated by P1–P4, which are located after 16 frames, namely after one set of
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eight frames without gyricity and one set of eight frames with gyricity. The diagram reveals that,
apart from a small peak at f = 0.7 Hz, the displacement amplitudes are negligible, implying that
waves cannot travel in this structure. Further computations have shown that, if the number of
frames in each set is reduced, the frequency intervals where waves can propagate are increased.

The deformed shape of the structure at f = 0.7 Hz is illustrated in the top part of figure 9.
It is apparent that the displacement amplitudes are sizable only in the first set of frames with
h∗ = 0 N s, where they are given as the superposition of the incident waves and the waves reflected
at the interface between the two sets of eight frames. In the second set of frames, where h∗ =
50 000 N s, the displacement amplitudes are much smaller, because f = 0.7 Hz is within the stop-
band of the structure with zero gyricity.

6. Conclusion
A highly efficient wave filtering system, whose design includes gyro-elastic beam resonators,
has been proposed in this paper. It has been demonstrated that gyrobeams provide a new
tuning mechanism, different from the known high-contrast resonators or conventional tuned
mass dampers.

The analysis of the dynamic response of a single gyrobeam has shown that a large number
of eigenfrequencies tend to cluster within a low-frequency interval as the gyricity constant is
increased. In a periodic system made of an infinite array of elastic gyroscopic frames, gyro-
elastic beams contribute to very interesting new dispersion properties of waves and, in particular,
standing modes. We have proposed a novel design, in which two systems of gyrobeams rotating
with the same speed and in opposite directions are attached to the main structure, such as
a bridge. In this case, very narrow pass-bands corresponding to transverse modes have been
observed from the dispersion analysis. Accordingly, when determining the response of the same
system under an external excitation, we have found that the frequency intervals where waves
propagate are reduced significantly.

As discussed in §5a, dissipative structures are very important for the reduction of vibrations
initiated by seismic loads. We have also demonstrated in this paper that the role of gyrobeams
is primarily to create low-frequency ‘energy sinks’, in which waves generated by external
excitations are channelled. As a consequence, energy is diverted away from the main structure,
which undergoes smaller displacements and smaller stresses. Additional dampers may then be
attached to the gyrobeams to reduce their vibrations.

Gyrobeams offer a practical alternative to methods currently used to reduce the effects caused
by seismic waves. This work opens a new perspective in chiral metamaterial design and in a wide
range of applications in earthquake wave filtering.
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Appendix A. Dispersion curves for other values of the gyricity constant
In figure 10, we present the dispersion curves relative to the structural frame with quasi-
periodicity conditions shown in figure 4, calculated for the following values of the gyricity
constant: h∗ = 10 000 N s, h∗ = 20 000 N s, h∗ = 30 000 N s and h∗ = 40 000 N s. By comparing the
diagrams in figure 10, it can be seen that the number of dispersion curves increases and the
low-frequency pass-bands shrink as the value of the gyricity constant is increased.
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Figure 10. Dispersion curves for the periodic frame in figure 4, determined for different values of the gyricity constant h∗.
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Figure 11. Displacement amplitude of a point of a semi-infinite structure (point P in figure 6), due to an externally imposed
harmonic displacement, determined for different values of the gyricity constant h∗.

Appendix B. Structural response in the frequency domain for other values of the
gyricity constant
We plot in figure 11, the displacement amplitudes of the point P of the semi-infinite system
shown in the top part of figure 6, produced by a harmonic displacement of amplitude d0 = 0.01 m



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170136

...................................................

and frequency f applied at the left end of the system, computed for the following values of
the gyricity constant: h∗ = 10 000 N s, h∗ = 20 000 N s, h∗ = 30 000 N s and h∗ = 40 000 N s. As the
value of h∗ is increased, the low-frequency propagation ranges are reduced in size and move
to lower frequencies. Moreover, the high-frequency propagation range observed for the case
h∗ = 10 000 N s disappears for higher values of h∗, because it is shifted to higher frequencies.
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