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EXPERIMENTAL DETAILS:  

Materials and methods. 2,2’-bipyridine and Mo(CO)6 were purchased from Sigma and used 

as received. All electrolyte salts and solvents were purchased from Sigma Aldrich or VWR and 

used without further purification. Ar, N2 and CO2 were purchased from BOC at CP grade or 

higher. [Mo(bpy)(CO)4] was synthesised according to literature procedures1,2:  Mo(CO)6 (0.7 

g) and 2,2’-bypyridine (0.4 g) were refluxed in toluene for 90 minutes under argon and in the 

dark. Mo(bpy)(CO)4 precipitated as a deep red crystalline solid upon cooling of the reaction 

mixture. The complex was filtered and washed with cold toluene and diethyl ether, then dried 

under vacuum. Obtained 0.65 g, yield 72%. 1H NMR (400 MHz, CD3CN) δ 9.10 – 8.97 (m, 

1H), 8.33 (d, J = 8.2 Hz, 1H), 8.05 (td, J = 8.0, 1.6 Hz, 1H), 7.49 (ddd, J = 7.5, 5.4, 1.1 Hz, 

1H). Elem. Anal. Calcd.: C 46.17, H 2.21, N 7.69, found: C 45.68, H 2.16, N 7.55.   

Electrochemistry. For the spectroelectrochemical experiments a custom-made cell was used 

(Scheme S 1 in ESI), containing a CaF2 front window and a pathlength of ca. 50 μm. A Pt wire 

was used as the counter electrode and a Ag wire was used as the pseudo-reference electrode, 

the potential of which was referenced by adding ferrocene as an internal standard. The working 

electrode was either a gold or platinum polycrystalline disc (Ø = 16 mm). The electrodes were 

hand polished to mirror finish using decreasing sizes of diamond (15, 6 and 1 m) and alumina 

(0.5 m) slurry before every experiment. A palmsens3 potentiostat was used to carry out all the 

electrochemical experiments. 

SFG spectroscopy. The SFG experiments were carried out in the Central Laser Facility at the 

STFC Rutherford Appleton Laboratory using the Ultra B laser system. A single OPA-DFG unit 

driven with 5W from a 20W, 50 fs, 800 nm Ti:Sapphire amplifer system (Coherent) was used 

to pump a home-built white light seeded Optical Parametric Amplifier (OPA) based on two 

BBO stages and AgGaS2 difference frequency generation, producing tuneable IR light across 

a 500 cm-1 useable bandwidth at 10 kHz. 5W of the amplified 800 nm light was passed through 

two air-spaced etalons (SLS Optics, 21 cm-1 and 9.5 cm-1 transmission) to generate 

narrowband ps light which was then bandpass filtered to remove weak supercontinuum and 
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delivered to the sample via a computer controlled delay line. The time-asymmetric intensity 

profile of the 800 nm light allowed for enhanced discrimination of VSFG signals from NR-

SFG3 by using 0.4-1 ps delays between the IR and visible pulses. The IR and 800 nm beams 

were focussed at the electrode with spot sizes of ~200 and ~300 um and incident powers of <4 

uJ and <5uJ respectively, with the latter typically set at 1-3 uJ to ensure no laser heating or 

damage. The relatively diffuse SFG signal diverging from the rough electrodes was imaged 

with a 3 cm PCX lens, filtered (<750 nm shortpass, Semrock) and then focussed onto the 

entrance slit of an imaging spectrograph (Holospec) and dispersed onto a high sensitivity CCD 

array (Andor Idus).  

A typical experiment was carried out by recording one or two CVs to confirm that the 

electrochemistry was correct. It was then checked that the SFG signal from the electrode 

showed changes with applied potential, as electrode fouling or incorrect alignment of the SFG 

signal could lead to spurious signals with no dependence on potential. Having confirmed 

correct spectroelectrochemistry, the potentiostat could then be scanned whilst SFG spectra 

were continuously read-out. For CVs recorded at 50 mV s-1 the spectra were averaged for one 

second and read-out every second. For CVs ran at 5 mV s-1 the read-out / averaging time was 

varied between 1-5 seconds. 

 

 

Scheme S1. Side and top view of the spectroelectrochemical cell designed for the SFG 

experiments. Side and front pictures of the assembled SEC cell are shown in the bottom left 

corner. 
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Figure S1. CVs of a 1 mM solution of [Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6 

(Tetrabutylammonium hexafluorophosphate) as the supporting electrolyte on a Glassy Carbon 

Electrode (GCE), surface area = 0.071 cm2 under argon (black) and CO2 (red) scan rate = 

100 mV s-1; platinum counter electrode, silver wire quasi-reference electrode. 

 

Complex ν(CO), cm-1 
Applied 

potential Reference 

[Mo(bpy)(CO)4] 2015, 1905, 1875, 1832   this work (FTIR) 

  2012, 1900, 1882, 1840  [4] 

[Mo(bpy)(CO)4].- N/O, 1874, 1850, 1808 ca. -1.9 V this work (VSFG) 

  1991, 1871, 1843 1805   [4] 

[Mo(bpy)(CO)3]2- 1835, 1735, N/O ca. -2.8 V this work (VSFG) 

  1846, 1725, 1706  [4] 

[Mo(bpy-H)(CO)4]- N/O, 1870, N/O, 1790  ca. -2.8 V this work (VSFG) 

 1994, 1874, 1848, 1807  [4] 
 

Table S1. Assignment of υ(CO) modes measured in this work in CH3CN using Au electrode 

unless stated otherwise and relevant literature values (THF). The applied potential is given for 

SFG measurements only as the complexes show vibrational Stark shifting. 

Spectroelectrochemical experiments in reference [4] utilise a spectroelectrochemical cell 

where the signal will be dominated by the species in the bulk, away from the electrode surface. 

N/O indicates not observed in the VSFG experiment. 

 

 

Phantom transitions: It has been recently highlighted that potential dependent phantom 

transitions can arise in electrochemical VSFG studies which are not solely due to interfacial 

species.7,8 It is therefore important to identify if such features are contributing to the spectral 
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data reported here. We believe that the probability of the spectral features being due to phantom 

transitions is minimised as: 

(i) The transmission FTIR spectrum of [Mo(bpy)(CO)4] (1 mM, pathlength ~50 

μm, as used in the VSFG study, Figure 2a) shows that the strongest (CO) mode is A ~ 0.04. 

As these samples are optically thin in the IR region of interest it is unlikely that significant 

spectral distortion of the IR beam is occurring as it passes through the electrolyte, a requirement 

for the formation of phantom peaks.7,8 

(ii) We observe (CO) modes that are Stark shifted, including for [Mo(bpy)(CO)4] 

(see Figure 2, 5) which would be the most likely species to give rise to phantom peaks. The 

significant Stark shifts indicate that that the VSFG response is due to species experiencing a 

large electric field at or very close to the electrode surface.  

(iii) Figure S2 shows how VSFG responses can be nearly completely supressed by 

applied potentials. At -2.9 V the electrode appears sufficiently negative to prevent the sustained 

build-up of Mo complexes and the VSFG signal is greatly reduced (only a small quantity of 

[Mo(bpy-H)(CO)4]
- remains). If phantom transitions were dominating the SFG response then 

(assuming that the cell pathlength exceeded the diffusion layer thickness) the peak positions 

would appear constant and the intensity of the peak would be proportional to the NR intensity 

which is not observed to be the case here (figure S13). 

 

Figure S2: VSFG spectra of [Mo(bpy)(CO)4] (1 mM) in CH3CN and 0.1 M TBAPF6 under Ar 

on a gold working electrode at the applied potentials indicated. At -2.9 V minimal VSFG 

response is recorded during a fast (50 mV s-1) CV scan. 
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Figure S3. CVs recorded during the SEC-SFG experiment shown in Figure 2 of the main paper. 

1 mM solution of [Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6, Gold working electrode 

(surface area = 0.02 cm2), scan rate = 5 mV s-1; platinum counter electrode, silver wire quasi-

reference electrode. 

 

  

Figure S4. Multi-Lorentzian fitting for the VSFG spectrum of a 1 mM solution of 

[Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6, at a potential of -1.9 V. Peaks assignable 

to both [Mo(bpy)(CO)4] (1826, 1904, 2010 cm-1) and [Mo(bpy)(CO)4]
.- (1808, 1850 cm-1) are 

identifiable. Both [Mo(bpy)(CO)4] and [Mo(bpy)(CO)4]
.- are anticipated to have a υ(CO) mode 

at 1875 to 1870 cm-1  and a minimum of 1 lorentzian peak at 1874 cm-1 is required within this 

fitting. It is feasible that this single fitted peak comprises of the υ(CO) modes of both species 

but identification of this is beyond the spectral resolution of the experiment. 
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Figure S5. Multi-Lorentzian fitting for the SFG spectrum of a 1 mM solution of 

[Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6, recorded at a potential of -2.7 V. Peaks 

were set to a have a minimum width threshold (8 cm-1) to help discriminate from noise. The 

broad feature at 1914 cm-1 is due to residual NR signal. The feature at 1736 cm-1 is assigned 

to one of the modes of [Mo(bpy)(CO)3]
2-. 

 

 

 

Figure S6. CVs of a 1 mM solution of [Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6 on a 

gold working electrode (surface area = 0.02 cm2) under argon (black) and CO2 (red), scan 

rate = 5 mV s-1; platinum counter electrode, silver wire quasi-reference electrode. 
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Figure S7. VSFG spectrum at open circuit potential of a 1 mM solution of [Mo(bpy)(CO)4] in 

acetonitrile with 0.1 M TBAPF6 on a gold working electrode (surface area = 0.02 cm2) under 

CO2; platinum counter electrode, silver wire quasi-reference electrode, recorded prior to the 

SEC-SFG in figure 5 of the main paper. The presence of modes attributed to CO on Gold (2115, 

1932 cm-1) is due to some CO2 reduction occurred during a CV recorded to verify the successful 

construction of the SEC cell.5,6 

 

 

Figure S8. VSFG spectra at the potentials indicated of a 1 mM solution of [Mo(bpy)(CO)4] in 

acetonitrile with 0.1 M TBAPF6 on a gold working electrode (surface area = 0.02 cm2) under 

CO2; platinum counter electrode, silver wire quasi-reference electrode, recorded during the 

SEC-SFG in figure 5 of the main paper. Prior to the first reduction the CO mode at 1932 cm-1 

appears to disappear, leaving a single resonant mode of [Mo(bpy)(CO)4], however it is also 

feasible that the CO mode is stark shifting at different rate to the band of [Mo(bpy)(CO)4] 

leading to overlap of the spectral features. 
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Figure S9. SFG spectra of a 1 mM solution of [Mo(bpy)(CO)4] in acetonitrile with 0.1 M 

TBAPF6 on a gold working electrode (surface area = 0.02 cm2) under CO2 recorded between 

-1.68 and -1.92 V (scan rate = 5 mV s-1); platinum counter electrode, silver wire quasi-

reference electrode, recorded during the SEC-SFG in figure 5 of the main paper.  The spectra 

show a new resonant feature growing as the main resonant mode of [Mo(bpy)(CO)4] 

decreases, assigned to [Mo(bpy)(CO)4]
.-. 
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Figure S10. FTIR (a) and In-situ VSFG spectra (b-g) of [Mo(bpy)(CO)4] (1 mM) in CH3CN 

and 0.1 M TBAPF6 under Ar on a platinum working electrode. The FTIR is recorded at open 

circuit and the SF spectra at the potentials indicated. The intensity of the NR background 

(dashed line, h) of the cell recorded with 0 ps time-delay between the IR and 800 nm laser 

pulses provides an approximation of the spectrum of the broadband IR pulse. Spectra (b-g) are 

recorded with a 0.45 ps delay between the IR and 800 nm laser pulses. 
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Figure S11. CVs recorded during the SEC-SFG experiment shown in Figure 6 of the main 

paper. 1 mM solution of [Mo(bpy)(CO)4] in acetonitrile with 0.1 M TBAPF6, platinum working 

electrode (surface area = 0.02 cm2), scan rate = 50 mV s-1; platinum counter electrode, silver 

wire quasi-reference electrode. 

 

Figure S12. VSFG spectra of [Mo(bpy)(CO)4] (1 mM) in CH3CN and 0.1 M TBAPF6 under Ar 

on a platinum working electrode at the applied potentials indicated. [Mo(bpy)(CO)4] (stable 

at -1.5 V) is fully reduced to [Mo(bpy)(CO)4]
.- by -2.4 V.  
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Figure S13. (top) CV recorded during a VSFG experiment of 1 mM solution of [Mo(bpy)(CO)4] 

in acetonitrile with 0.1 M TBAPF6, Gold working electrode (surface area = 0.02 cm2), scan 

rate = 5 mV s-1; platinum counter electrode, silver wire quasi-reference electrode; (middle) 

peak intensity of the non-resonant background with the potential scanning and (bottom) 

Potential waveform of the CV in (top). 2030 and 1680 cm-1 are chosen as frequencies where 

resonant SFG responses are not anticipated and the IR and Vis pulses are temporally 

overlapped to maximise the NR signal. The NR response shows a large change from anticipated 

step change when [Mo(bpy)(CO)4] is reduced.  

 

-8

-6

-4

-2

0

2

4

0 10 20 30 40 50

-2.8

-2.4

-2.0

-1.6

-1.2

 

 

i 
/ 


A

i (in-situ)

 

 2030 cm
-1

 1680 cm
-1

S
F

 i
n

te
n

s
it
y
 (

a
.u

.)

Data point

 

 

V
F

c
/F

c
+

V
WE



S12 
 

 

Figure S14. Transmission FTIR spectrum of CH3CN, 50 μm pathlength 
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