

Simulation of long-acting administration of antituberculosis agents using pharmacokinetic modelling

Rajith KR Rajoli¹, Anthony Podany², Sue Swindells³, Charles Flexner⁴, Andrew Owen¹, Marco Siccardi¹

¹ Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, ² College of Pharmacy, University of Nebraska Medical Center, Omaha, NE ³ College of Medicine, University of Nebraska Medical Center, Omaha, NE ⁴ Johns Hopkins University, Baltimore, Maryland

9[™] INTERNATIONAL WORKSHOP ON

LIVERPOOL, UNITED KINGDOM • 24 OCTOBER 2016

Abst# O_13

Background

- Current anti-TB administration strategies are based on long-term oral dosing
- Oral administration is characterised by suboptimal adherence which represents a leading cause of treatment failure
- 20 to 50% of patients fail to complete existing tuberculosis treatment
- Injectable long-acting nano-formulations have been applied in numerous disease areas to simplify drug administration
- Long-acting administration of anti-TB agents could represent a valuable pharmacological strategy

- Design and validate a physiologically based pharmacokinetic (PBPK) model for existing oral anti-TB agents
- Simulate the pharmacokinetics of long-acting formulations of anti-TB agents in adult individuals

PBPK model

- Physiologically based pharmacokinetic (PBPK) modelling was used to inform the pharmacokinetics of anti-TB agents in adults
 - Mathematical description of absorption, distribution, metabolism and elimination processes defining pharmacokinetics
 - PBPK modelling integrates *in vitro* and clinical data to simulate drug distribution in virtual population

Parameter correlation

Population variability

Essential PBPK Parameters

Virtual population

Variability

Intramuscular release rate

Metabolic clearance

Volume of distribution

$$\begin{split} V_{\rm ss} &= (\Sigma V_{\rm t}^* P_{\rm t:p}) + (V_{\rm e}^* E : P) + V_{\rm p} \\ P_{\rm t:p\,nonadipose} \\ &= \frac{[P_{\rm o:w} \times (V_{\rm nlt} + 0.3 \times V_{\rm pht})]}{[P_{\rm o:w} \times (V_{\rm nlp} + 0.3 \times V_{\rm pht})]} \times \frac{f u_{\rm p}}{f u_{\rm t}} \\ &+ [1 \times (V_{\rm wp} + 0.3 \times V_{\rm php})] \\ &+ [1 \times (V_{\rm wp} + 0.7 \times V_{\rm php})] \end{split}$$

Clin Pharmacokinet (2015) 54:639–650 DOI 10.1007/s40262-014-0227-1

ORIGINAL RESEARCH ARTICLE

Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV

Rajith K. R. Rajoli · David J. Back · Steve Rannard · Caren L. Freel Meyers · Charles Flexner · Andrew Owen · Marco Siccardi

Study design

Validation

Prediction

- Existing available oral anti-TB formulations of bedaquiline, delamanid and rifapentine were validated in adults
- Mean simulated values from 100 virtual individuals (aged 18-60 years) were compared with available clinical data
 - Virtual IM depot was included in the model to simulate IM administration
 - Maximum feasible human IM dose of 2000 mg was assumed for pharmacokinetic predictions in the current study
 - Release rate was selected in order to obtain maximal exposure over the dosing interval

Validation against clinical formulations

	Clinical			Simulated		
Drug	C _{max} (μg/ml)	C _{min} (μg/ml)	AUC (µg.h/ml)	C _{max} (μg/ml)	C _{min} (μg/ml)	AUC (µg.h/ml)
Bedaquiline (450 mg OD, single dose) ¹	3.76 ± 1.17	-	[‡] 64.5 ± 26.9	3.59 ± 0.79	-	[‡] 63.1 ± 15.6
Delamanid (300 mg OD, day 10)²	0.41 ± 0.05	0.14 ± 0.04	⁺ 5.84 ± 0.99	0.45 ± 0.13	0.13 ± 0.08	⁺ 6.57 ± 2.31
Rifapentine (10 mg/kg OD, day 14) ³	21.7 (21.3-22.2)	-	⁺ 330 (284-340)	18.9 ± 2.4	8.6 ± 1.5	⁺ 327 ± 44

⁺AUC₀₋₂₄, [‡]AUC₀₋₁₄₄

¹van Heeswijk RP, Dannemann B, Hoetelmans RM., J Antimicrob Chemother. 2014 Sep;69(9):2310-8. ²Deltyba, Assessment report, EMA, 2014. ³Dooley KE et al. Clin Pharmacol Ther. 2012 May ; 91(5).

Release rate optimisation

representative

Prediction - Summary

IM Dose – 2000 mg/30 days

IM release rate – 0.0025 h⁻¹

Drug	AUC (Mean ± SD) (μg.h/ml)	C _{max} (Mean ± SD) (μg/ml)	C _{trough} (Mean ± SD) (μg/ml)	Cut-off limit (µg/ml)
Bedaquiline	271 ± 65	0.72 ± 0.16	0.14 ± 0.04	1.6 (ECOFF)
Delamanid	89 ± 16	0.23 ± 0.04	0.05 ± 0.01	0.04 (ECOFF)
Rifapentine	1639 ± 160	4.12 ± 0.38	0.88 ± 0.09	0.06 (MIC)

Limitations

- Activity of transporters can affect distribution and elimination patterns
- Drugs with high lipophilicity tend to diffuse through the lymphatic circulation rather than through blood
- The technological complexities associated with reformulation may constitute a barrier for some anti-TB agents
- Long term stability of anti-TB agents in potential long-acting formulations is unknown

Conclusion

- This theoretical approach could assist in informing the design of long-acting formulation for IM administration of anti-TB agents
- PBPK modelling represents a predictive tool to rationalise anti-TB agent pharmacokinetics and hypothesise potential applications of long-acting anti-TB therapy
- Lack of clear pharmacodynamics cut-offs and clinical validation of alternative combinations complicates the selection of suitable long-acting candidates
- Long-acting formulations could also find potential application in the treatment of latent TB or chemoprophylaxis

Acknowledgements

- Dr. Marco Siccardi
- Prof. Andrew Owen
- Prof. Charles Flexner
- Asst. Prof. Anthony Podany
- Prof. Sue Swindells
- Prof. David Back
- Prof. Saye Khoo
- Prof. Steve Rannard
- Dr. Paul Curley
- Dr. James Hobson

- Dr. Adeniyi Olagunju
- Dr. Lee Tatham
- Dr. José Moltó
- Dr. Catia Marzolini
- Dr. Neill Liptrott
- Dr. Adny Henrique Silva
- Christopher David
- Dr. Darren Michael Moss
- Dr. Owain Roberts
- Dr. Sharon Murphy

- Christina Chan
- Louise Tidbury
- Justin Chiong
- Rohan Gurjar
- Ana Jiminez-Valverde
- Megan Neary
- Rana Abutaima
- Gini Joshua
- Hannah Kinvig

 Colleagues in the department of Molecular and Clinical Pharmacology

Long-Acting/Extended Release Antiretroviral Resource Program

