

Transdermal delivery with microneedle patches using *in silico* modelling

Rajith KR Rajoli¹, Charles Flexner², Andrew Owen¹, Ryan F. Donnelly³, Marco Siccardi¹

¹ Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK, ² Johns Hopkins University, Baltimore, Maryland, USA, ³ School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.

Background

- Existing antiretroviral therapy (ART) is characterised by life-long daily administration
- Long-acting (LA) strategies could limit the problems associated with pill fatigue and sub-optimal adherence
- Antiretrovirals are currently developed for intramuscular injectable LA formulations
- Transdermal delivery through microneedle array patches represent an alternative strategy for LA administration

Microneedle array patches (MAPs)

- Consist of micron-sized needle arrays of varying sizes capable of disrupting stratum corneum
- Capable of local and systemic delivery, blood-free with painless application
- Provide patient friendly, low cost and minimally invasive route for drug delivery
- Deliver intact nanoformulations that form a depot in the upper skin layers
- Drug release from this nanoparticulate formulation is the rate limiting step to regulate pharmacokinetics
- Pharmacokinetics in humans was assessed using a physiologically based pharmacokinetic (PBPK) model

Hydrogel MAPs

Dissolving MAPs

PBPK modelling

- Mathematical description of absorption, distribution, metabolism and elimination processes defining pharmacokinetics
- Integrates in vitro data to simulate drug distribution in virtual population

Transdermal release rate

• Design a transdermal PBPK model to simulate pharmacokinetics of a model drug resulting from administration through microneedles

• Predict pharmacokinetics of a model drug across a range of dose and release rate in humans to identify optimal formulation characteristics

Transdermal model

P – permeability, PC – partition coefficient

PBPK model qualification for IM and transdermal formulations in Rat in vivo rats in vivo

	Observed			Simulated			% difference* simulated vs. observed		
Route and dose	C _{max}	AUC	C _{min}	C _{max}	AUC	C _{min}	C _{max}	AUC	C _{min}
Intramuscular (5 mg/kg, single injection) ¹	71	3840	-	55.9 ± 6.43	5.67 ± 1.25	-	-21.3	47.6	
Intramuscular (20 mg/kg, single injection) ¹	158	15300	-	222 ± 25.5	22.4 ± 4.64	-	40.5	46.3	-
Transdermal [†] (120 mg, microneedle patch) ²	416	-	26.5	481 ± 42.9	286 ± 28.1	38.7 ± 4.45	24.5	-	46.0

Values are represented as arithmetic mean \pm standard deviation where ever applicable, AUC – area under the concentration-time curve, C_{max} – maximum plasma concentration, C_{trough} – trough plasma concentration; C_{max} and C_{trough} are expressed as ng/ml and AUC is expressed as $\mu g \times h/ml$;* PBPK model is assumed to be qualified if % difference is less than 50, † Only 57.45 % of the total administered drug was assumed to be delivered using microneedle³

¹ van 't Klooster G, Pharmacokinetics and Disposition of Rilpivirine (TMC278) Nanosuspension as a Long-Acting Injectable Antiretroviral Formulation. 2010

² Darin Zehrung, Development of microarray patches for transdermal and vaginal delivery of long-acting HIV pre-exposure prophylaxis, 2016

³ Garland MJ et al. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. International Journal of Pharmaceutics. 2012;434(1):80-9.

Transdermal release predictions – plasma concentrations

- C_{trough} increases up to a certain release rate and then decreases
- C_{trough} was proportional to the increase in administered transdermal dose

Transdermal predictions – C_{trough} vs. penetration depth, pore radius

- Constant dose 720 mg, constant release rate 0.0015 h⁻¹
- No significant difference observed in C_{trough} (P > 0.05)

Pharmacokinetic summary at various needle lengths

Pharmacokinetic summary at various pore radii

¹ Garland MJ et al. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. International Journal of Pharmaceutics. 2012;434(1):80-9.

Limitations

- Immune response at the site of administration could alter the release rate
- Evaluation of long-term drug and excipients stability at the administration site is pivotal
- Modelled formulation release rate cannot be directly extrapolated to release rate *in vivo*
- Further qualification against transdermal PK from human data would improve the confidence of the PBPK model

- Transdermal delivery represents an attractive, minimally invasive and effective route for long-acting ART administration
- Design of the transdermal PBPK model was successfully qualified against observed data in rats
- Dose and release rate was optimised for a model drug for a monthly transdermal MAPs
- Transdermal PBPK model is a platform to rationalise selection of drug candidates for LA therapy using MAPs

Acknowledgements

- Marco Siccardi
- Prof. Andrew Owen
- Prof. Ryan F. Donnelly
- Prof. Charles Flexner
- Prof. David Back
- Prof. Saye Khoo
- Prof. Steve Rannard
- Paul Curley
- James Hobson
- Adeniyi Olagunju

- Lee Tatham
- José Moltó
- Catia Marzolini
- Neill Liptrott
- Adny Henrique Silva
- Christopher David
- Darren Michael Moss
- Owain Roberts
- Christina Chan
- Louise Tidbury

- Justin Chiong
- Rohan Gurjar
- Ana Jiminez-Valverde
- Megan Neary
- Rana Abutaima
- Gini Joshua
- Hannah Kinvig
- Helen Box
- Colleagues in the department of Molecular and Clinical Pharmacology

UNIVERSITY OF LIVERPOOL

Long-Acting/Extended Release

Antiretroviral Resource Program

