

Long-acting injectable formulations for children and adolescents using PBPK modelling

Rajith KR Rajoli¹, David J. Back¹, Steve Rannard², Caren Freel Meyers³, Charles Flexner⁴, Andrew Owen¹, Marco Siccardi¹

¹Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK,

²Department of Chemistry, University of Liverpool, Liverpool, UK,

³Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, USA, ⁴Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, USA

Background

- Current antiretroviral (ARV) formulations necessitate lifelong, daily dosing
- Suboptimal adherence in the clinical setting leads to high risk of treatment failure and ranges from 50 to 70 %
- Additional care and monitoring is necessary in special populations such as paediatric patients
- Injectable long-acting nano-formulations could represent a pharmacological option
- NIH funding call has been recently published to highlight the relevance of long-acting formulations in infants, children, young adults and pregnant women

Smriti Naswa, Y.S.M., *Indian J Sex Transm Dis* **32**, 1-8 (2011). Chesney, M.A., Clinical Infectious Diseases, **30**(Supplement 2): p. S171-S176 (2000). Spreen, W.R., D.A. Margolis, and J.C.J. Pottage, Curr. Opin. HIV AIDS. **8**(6): p. 565-571 (2013). http://grants.nih.gov/grants/guide/notice-files/NOT-HD-16-022.html

Conventional vs Nanoformulation

Paediatric patients

- Current paediatric doses are scaled down based on weight from adult dose
- Development of anatomy and physiology is not linear with age

FIG. 9. Theophylline Vd and $t_{1/2}$ across the age groups.

de Wildt, S., et al., Clin Pharmacokinet., 1999. **37**(6): p. 485-505. Ginsberg, G., et al., Toxicological Sciences, 2002. **66**(2): p. 185-200.

- Design and validate a paediatric physiologically based pharmacokinetic (PBPK) model
- Identify the optimal doses for existing long-acting formulations of antiretrovirals according to weight categories of paediatric population

- Physiologically based pharmacokinetic (PBPK) modelling was used to inform the optimal dose of ARVs in children and adolescents
 - Mathematical description of absorption, distribution, metabolism and elimination processes defining pharmacokinetics
 - PBPK modelling integrates *in vitro* data to simulate drug distribution in virtual population

Parameter correlation

Population variability

Essential PBPK Parameters

Virtual population

Variability

Intramuscular release rate

Metabolic clearance

Volume of distribution

```
\begin{split} V_{\rm ss} &= (\Sigma V_{\rm t}^* P_{\rm t:p}) + (V_{\rm e}^* E : P) + V_{\rm p} \\ P_{\rm t:p\,nonadipose} \\ &= \frac{[P_{\rm o:w} \times (V_{\rm nlt} + 0.3 \times V_{\rm pht})]}{[P_{\rm o:w} \times (V_{\rm nlp} + 0.3 \times V_{\rm pht})]} \times \frac{f u_{\rm p}}{f u_{\rm t}} \\ &+ [1 \times (V_{\rm wp} + 0.3 \times V_{\rm php})] \end{split}
```


Clin Pharmacokinet (2015) 54:639–650 DOI 10.1007/s40262-014-0227-1

ORIGINAL RESEARCH ARTICLE

Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV

Rajith K. R. Rajoli · David J. Back · Steve Rannard · Caren L. Freel Meyers · Charles Flexner · Andrew Owen · Marco Siccardi

Study design

Validation

Prediction

Optimization

- Weights and blood flow rates of children/adolescents at different ages
- Existing available IM formulations of cabotegravir and rilpivirine in adults
- Release rates were kept similar to clinical formulations
- Pharmacokinetics in children and adolescents according to WHO weight categories
- Identify theoretical target dose for once monthly/quarterly administration such that the drug plasma concentrations are above the protein binding adjusted IC_{95} (PAIC₉₅) or MEC values

Validation against clinical formulations

[1] Spreen, W., et al., Jaids, 2014. **67**(5): p. 487-492.

Validation against clinical formulations

Intramuscularly administered rilpivirine (900 mg)

[1] Spreen, W., et al., Jaids, 2014. **67**(5): p. 487-492.

Prediction - Summary

Weight (kg)	Rilpivirine (1 st and 2 nd dose in mg)		Cabotegravir (mg)	
14 - 19.9	240, 180	960, 720	30	110
20 - 24.9	250, 190	960, 720	30	130
25 - 29.9	250, 190	970, 730	35	150
30 - 34.9	270, 200	980, 740	35	160
35 - 39.9	270, 200	1025, 770	45	170
40 - 44.9	280, 210	1050, 790	45	180
45 - 49.9	290, 220	1075, 810	50	190
50 - 54.9	300, 230	1100, 830	50	200
55 - 59.9	310, 230	1125, 840	55	210
60 - 64.9	310, 230	1150, 860	55	220
65 - 69.9	320, 240	1175, 880	60	240
Duration	4 weeks		12 weeks	
Cut-off limit (ng/ml)	20.3 (PAIC ₉₅)	80 (MEC)	166 (PAIC ₉₅)	664 (4*PAIC ₉₅)

Limitations

- The ontogeny and activity of transporters can affect distribution and elimination patterns
- Drugs with high lipophilicity tend to diffuse through the lymphatic circulation rather than through blood
- Physiological and metabolic variation of muscle composition in children compared to adults was not accounted

- This data could assist in dose optimisation of long-acting intramuscular antiretrovirals for paediatric patients improving adherence to therapy
- PBPK modelling represents a predictive tool to improve dosing strategies for use in selective population thus potentially simplifying antiretroviral therapy

Acknowledgements

- Marco Siccardi
- Prof. Andrew Owen
- Prof. David Back
- Prof. Saye Khoo
- Prof. Steve Rannard
- Paul Curley
- James Hobson
- Adeniyi Olagunju
- Lee Tatham
- José Moltó
- Catia Marzolini

- Neill Liptrott
- Adny Henrique Silva
- Christopher David
- Darren Michael Moss
- Owain Roberts
- Sharon Murphy
- Christina Chan
- Louise Tidbury
- Justin Chiong
- Rohan Gurjar
- Ana Jiminez-Valverde

- Megan Neary
- Rana Abutaima
- Gini Joshua
- Hannah Kinvig
- Colleagues in the department of Molecular and Clinical Pharmacology