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ABSTRACT
Circulation control via blowing over Coanda surfaces at transonic freestream Mach numbers
is investigated using numerical simulations. The performance and sensitivity of several cir-
culation control devices applied to a supercritical aerofoil are assessed. Different Coanda
devices were studied to assess the effect of; slot height to Coanda radius ratio, nozzle shape,
and Coanda surfaces with a step. The range of operating conditions for which a supersonic
Coanda jet remained attached at transonic freestream conditions were extended by increasing
the radius of curvature at the slot exit for Coanda devices with a converging nozzle. Additional
improvements were found by: reducing the strength of shock boundary layer interactions on
the Coanda surface by expanding the jet flow using a converging-diverging nozzle, and also
by introducing a step between the Coanda surface and the nozzle exit. The performance
when using a converging-diverging nozzle can be matched using a simple stepped Coanda
device. It is shown that circulation control has the potential to match the performance of tradi-
tional control surfaces during regimes of attached flow at transonic speeds, up to an equivalent
aileron deflection angle of 10◦. In addition, lift augmentation ratios∆Cl/Cµ of over 100 were
achieved.
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NOMENCLATURE
A Wing Surface Area
AOA Angle of Attack
c Chord Length
CC Circulation Control
Cd Sectional Drag Coefficient
CFD Computational Fluid Dynamics
Cl Sectional Lift Coefficient
Cm Sectional Pitching Moment Coefficient
Cµ Momentum Coefficient, ṁ jU j

q∞A
Cp Pressure Coefficient
∆Cl/Cµ Lift Augmentation Ratio
EXP Experiment
h Jet Slot Height
HMB Helicopter Multi-Block CFD Code
M Mach Number
ṁ j Jet Mass Flow Rate
NPR Nozzle Pressure Ratio,P0/P∞
P0 Plenum (Total) Pressure
P∞ Freestream (Static) Pressure
q∞ Freestream Dynamic Pressure
r Coanda Radius
Re Reynolds Number
s Step Height
SARC Spalart-Allmaras Rotation/Curvature
t Skin thickness
TDT Transonic Dynamics Tunnel
UAV Uninhabited Air Vehicle
U j Jet Velocity
U∞ Freestream Velocity Magnitude
y+ Non-Dimensional Wall Distance

Greek Symbol

α Angle of Attack
δ Aileron Deflection

1.0 INTRODUCTION
In aircraft, ailerons have traditionally been used to alterthe circulation around the wings for
flight control. Flaps employ a similar principle and are usedas high lift devices for take-off
and landing. An alternative method is circulation control (CC) using the Coanda effect; a jet of
air is blown over a rounded trailing edge of a wing. CC using blowing offers advantages over
devices such as flaps and ailerons, removing the necessity ofmoving parts, possibly leading
to a reduction in aircraft weight(1).
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(a) Trailing edge CC(2).
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Figure 1: Schematic of flows at trailing edge.

The Coanda effect describes the behaviour of a fluid moving tangentially toa convex (typ-
ically circular) surface. The flow adheres to the curved surface as a result of the pressure
gradients within the jet flow (see Fig. 1a). The position of the separation and stagnation
points at the trailing and leading edges of the aerofoil are altered due to blowing a jet over the
Coanda surface, causing a change in lift.

CC usually requires a high speed jet of air up to 4 times the freestream speed(2), which
attaches to the Coanda surface. As this high speed jet meets the relatively lower speed air in
the freestream, the jet entrains the fluid within the freestream which is then also turned around
the Coanda. The entrainment is due to the mixing within a shear layer between the jet and
the freestream travelling at significantly different Mach numbers. Figures 1b and 1c show
simplified schematic diagrams of the flows that occur at the slot exit and just downstream of
the slot. The momentum of the jet influences the boundary layer and accelerates the local
freestream flow.

For aerofoils in the transonic regime, a supersonic Coanda jet is necessary to achieve a
significant change in lift. In addition to shear layers thereis a possibility of shock boundary-
layer interactions occurring on the surface of the Coanda devices, if the jet becomes under-
expanded(3). Depending on the severity of the shock boundary layer interaction, the jet can
detach completely from the Coanda surface(4). At transonic speeds, the shock on the upper
surface of the aerofoil also alters the boundary layer flow leading to the CC device at the
trailing edge (Fig. 1b), which can affect the behaviour of the Coanda jet flow(5).

For an aircraft to successfully use a CC system it would need to be effective over a wide
range of flight conditions, including different altitudes. Changes in altitude as well as engine
settings will create differences in the pressure ratio the Coanda device is operatingat. There-
fore, it is crucial to consider the CC device for a wide range of pressure ratios, mainly a range
of conditions with under-expansion and, for cases where a converging-diverging nozzle is
used, also over-expansion cases.

Studies on transonic CC have shown that the shape of the Coanda surface plays an important
role in the effectiveness of the CC device at transonic speeds(6,7,2,5). Parameters such as the
slot height to (local) Coanda radius ratio affect the attachment of the Coanda jet, and the
range of blowing rates (and nozzle pressure ratios) for which the jet remains attached to the
Coanda. Experimental investigations into elliptical Coanda surfaces have concluded that more
eccentric ellipses and smaller slot heights perform most favourably in transonic flows(6,7,2).

Alternative methods of promoting supersonic Coanda jet attachment have been studied
in conditions without a freestream flow. Converging-diverging nozzles have been shown to
increase the detachment pressure ratio(8,9) by expanding the jet flow further than a converging
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nozzle and limiting under-expansion. The introduction of astep between the Coanda surface
and the jet exit of a converging nozzle also increased the detachment pressure ratio(9,8).

There is a lack of research on supercritical CC aerofoils; only subsonic studies have been
conducted to date(10). For this reason, in this work, the performance of a supercritical aerofoil
at transonic conditions with a CC device will be investigated. We aim to assess the aerody-
namic feasibility of replacing ailerons for transonic flight control on a typical supercritical
section. The feasibility of using devices such as converging diverging nozzles and stepped
Coanda surfaces for circulation control with a transonic freestream will be investigated. The
abilities and limitations of such devices have not previously been considered for transonic
circulation control.

In the present work, we focus on the effectiveness of CC devices for a range of nozzle
pressure ratios on a supercritical aerofoil in a transonic cruise condition. Comparisons against
the characteristics of the supercritical CC aerofoil with an aileron deflection, and also with
published experimental results form part of this study. In addition, a design study will be
performed to examine the effect of various CC device configurations. We consider the effects
of: Coanda radius to slot height ratio, converging-diverging nozzles, and stepped Coanda sur-
faces , which will be investigated for increasing CC effectiveness for a transonic supercritical
CC aerofoil.

Increasing the Coanda radius (r) to slot height (h) ratio increased the NPR that caused
detachment of the jet, with a marginal increase in lift. The use of a simple step was found
to extend the NPR and momentum coefficients range for which the jet remains attached. An
increase in usableCµ = 0.004 was found when using the step, this extension increased the
lift authority available to the circulation control systemby Cl = 0.1 compared with a similar
device without a step. A converging-diverging nozzle designed for the conditions at which a
jet from a converging nozzle with the samer/h separated was found to be equally effective as
the stepped Coanda device.

The current paper first reviews related work in CC and supersonic Coanda flows, followed
by a description of the numerical methods employed. A validation exercise of the solver
against experimental results of a supercritical aerofoil with aileron deflection will be pre-
sented. The same aerofoil section was modified into a supercritical CC aerofoil, and forces
and moments for blowing over several Coanda devices were compared with those from using
an aileron. Finally, a summary of the findings and conclusions are made with recommenda-
tions for future research.

2.0 REVIEW OF RELATED WORK
CC using the Coanda effect for use as a means of generating an increase in lift over anaerofoil
has been in consideration for at least 60 years(11). Significant focus was invested on improving
the lift of rotor blades with elliptical sections amid development of the X-Wing CC concept in
the early 1980s(12). More recently, with concerns over aircraft efficiency and environmental
impacts, CC has been studied to improve the lifting capabilities of fixed wing aircraft while
keeping within the capabilities of existing airport infrastructures(13). On fixed wing UAVs,
it has been shown in subsonic flight that CC has the potential to replace moving parts for
manoeuvrability control(14). Other active flow control systems are also being studied, such as
to allow for a reduction in the vertical tail size of commercial aircraft(15,16).

Much of the CC research to date has investigated flow control devices on aerofoils in the low
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speed subsonic flight regime. As a result, modern numerical studies on CC have heavily relied
on these subsonic freestream circulation control experiments(17,10,18,19), such as those at the
Georgia Tech Research Institute, which were intended specifically for CFD validation and had
a trailing edge radius of approximately 10% chord(20). LDV measurements of the subsonic
jet around the Coanda were made with a freestream Mach numberof M = 0.12. Momentum
coefficients up toCµ = 0.150 were investigated, however it must be noted thatCµ is inversely
proportional to the square of the freestream Mach number viathe dynamic pressure. This
experiment demonstrated significant wall interference andangle of attack corrections to be
suitable for CFD validation simulations(20).

Research on higher speed transonic CC has produced a handfulof experiments and numer-
ical studies, which mostly took place in the 1980s on aerofoil sections intended to be used
for helicopter blades on the X-Wing CC concept(6,21,22,5). Such experiments were conducted
in moderate size wind tunnels, which introduced significantwall interference effects(23). The
elliptical X-Wing type sections typically had maximum thicknesses of approximately 15%
chord, which do not have the characteristics of a supercritical aerofoil, as would be used on
a fixed wing aircraft. A supercritical CC aerofoil has been developed(10), however transonic
experiments on this section have not yet been published.

The difference between CC at subsonic and transonic speeds is highlighted in Fig. 2, show-
ing the lift obtained by Englar(6) for an elliptical CC aerofoil over a range of Mach numbers.
At low speeds, the “Rounded Ellipse” CC aerofoil outperformed the purely elliptical section,
however at high speeds this was not the case. Schlecht and Anders(7) found that an ellipti-
cal Coanda surface was superior to a biconvex surface for both low subsonic and transonic
freestreams, since the separation point of the jet is fixed bythe sharp profile of the biconvex
Coanda.

Alexanderet. al. (2) recognised a void in the public domain of data for transonic CC aero-
foils, specifically those intended for fixed wing aircraft. Aseries of experiments were pub-
lished in 2005 on a 6% thick elliptical aerofoil with a 0.75% circular camber(7) in the NASA
Transonic Dynamics Tunnel over a range of Mach numbers up toM = 0.84. Three differ-
ent Coanda designs were considered, each with a range of slotheights. Coanda surfaces with
larger major to minor axes performed more favourably than smaller elliptical Coanda surfaces;
a greater maximum lift was achieved and detachment of the jetwas delayed until higher mo-
mentum coefficients. A maximum sectional∆Cl = 0.25 was achieved at a peakCµ = 0.008
using an elliptical Coanda device with a 2.98 : 1 aspect ratio. The same slot height but with a
1.78 : 1 elliptical Coanda device had a maximum∆Cl = 0.2 at a peakCµ = 0.005. Following
these peak values a “Cµ-stall” was observed, whereby further increases in blowingreduced
∆Cl as the jet detached from the Coanda surfaces.

In 2006, Swansonet. al. (24) performed two dimensional RANS simulations of the 16%
thick, elliptical 103RE aerofoil(21), however the simulations were limited toM = 0.6 at
α = 0.0. At these conditions, the flow over the aerofoil remained subcritical. It was found
that each turbulence model tested (Spalart-Allmaras, Menter SST, Spalart-Allmaras with Cur-
vature Correction (SACC) and EASM-k-ω) failed to predict the pressure distribution over the
aerofoil surface atM = 0.6. In addition, the separation point of the jet from the Coanda sur-
face was poorly predicted. The SACC model gave reasonable results but only after unrealistic
a-posteriori modifications to the baseline model constants(24). This highlights that even with
modern CFD methods, accurate predictions of CC remain a challenge.

Following the previous numerical studies on transonic CC discussed above, the understand-
ing of the modeling requirements is improving due to increasing capabilities and experience
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Figure 2: Maximum lift obtained by Englar with different Coanda geometries at range of
Mach numbers forCµ ≤ 0.08.(6).

with improved turbulence modelling approaches. Due to the lack of available experimen-
tal data for CFD validation of CC at transonic conditions, itis difficult to fully address and
identify shortcomings in current CFD approaches. Despite this, however, CFD is the only
currently feasible way to conduct a design investigation onCC devices in conditions relevant
to transonic flight of aircraft.

To limit the detachment due to under-expansion of the jet, a converging-diverging nozzle
can be used to expand the flow to the ambient pressure. In experiments on supersonic Coanda
jets in still air, Cornelius and Lucius(25) showed that a simple converging-diverging nozzle
extends the range of operating pressures at which the Coandajet remains attached. Bevilaqua
and Lee(26) reported on a method of characteristics design approach which skews the velocity
and pressure profile along the jet exit such that the pressureand velocities at the Coanda
surface are lower and higher, respectively. Using the radial velocity and pressure profiles of
an irrotational vortex at the slot exit, jet attachment was promoted(26).

Other experimental studies have shown that introducing a step between the jet exit and
Coanda surface can promote attachment at higher pressure ratios by preventing shock induced
separation(8,9). Carpenter and Smith(8), and Gregory-Smith and Senior(9) have studied the
effect of using a step to mitigate the effects of the under-expansion. By introducing a step,
the shock waves due to under-expansion interact with the shear layer formed as a result of the
step. The step also aids attachment by providing a region of low pressure which turns the jet
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(a) NPR below detachment ratio(b) NPR above detachment ratio(c) NPR above unstepped detach-
ment ratio

Figure 3: Schlieren of unstepped(27) (a and b), and stepped(9) (c) supersonic Coanda jets near
detachment.

towards the surface(8). Figure 3 shows three Schlieren images from experiments by Gregory-
Smithet. al. (27,9), where the nozzle pressure ratio (NPR) is close to the value at which the jet
detached from the surface. Shown in Figs. 3a and 3b are unstepped results before and after jet
detachment, an increase in plenum pressure caused the jet todetach. For the same slot height
and Coanda radius, including a step increased the detachment pressure ratio by 25%.

Summarising the findings from this review of the literature,we find that all transonic cir-
culation control studies considered previously have been limited to elliptical aerofoil sections.
In addition investigations into the effect of different Coanda devices for transonic circulation
have essentially only studied the change of curvature at theslot exit. This work instead con-
sidered the use of CC on a supercritical aerofoil. We also aimto identify that the use of a
stepped supersonic Coanda jet can be used effectively with a transonic freestream.

3.0 NUMERICAL METHODS
3.1 Navier-Stokes Solver

The Helicopter Multi-Block (HMB) CFD code(28,29,30,31)is used for this work. The code has
been validated for a number of applications, including helicopters; wind turbines; turboprops;
and high-speed unmanned combat aerial vehicles(31,32,33). In addition, validation of the solver
and boundary conditions for CC has been conducted by Hoholis(34).

HMB solves the compressible, unsteady Reynolds-averaged Navier-Stokes equations on
block-structured grids using a cell-centred finite-volumemethod for spatial discretisation. The
convective fluxes are evaluated using Osher’s upwind schemefor its robustness, accuracy, and
stability properties. MUSCL variable extrapolation is used to provide second-order accuracy
with the Van Albada limiter to prevent spurious oscillations around shock waves. An implicit
time-integration method is employed, and the resulting linear systems of equations are solved
using a pre-conditioned Generalised Conjugate Gradient method. For unsteady simulations,
an implicit dual-time stepping method is used, which is based on Jameson’s pseudo-time
integration approach.

The solver has a library of turbulence closures which includes several one- and two- equa-
tion turbulence models(35,36,37,38)and also non-Boussinesq versions of thek-ω model(39,40).
Turbulence simulation is also possible using Large-Eddy and Detached-Eddy Simulation.
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3.2 Momentum Coefficient

The supply of air for the plenum for circulation control is often taken from bleed air from the
jet engine of the aircraft(14). As a result of this the efficiency of the circulation control device
is critical; mass flow taken from the engine reduces the poweravailable for forward thrust.
The jet momentum coefficient (Cµ) is often used as a measure of blowing over a circulation
control device, which is defined as

Cµ =
ṁ jV j

q∞A
. . . (1)

where ˙m j is the mass flow rate through the slot exit andA is the surface area of the aerofoil.
In circulation control experiments, ˙m j is usually measured using a flow venturi meter andV j

calculated from isentropic equations using the plenum pressure. Here, the plenum pressure ra-
tio is fixed and the momentum coefficient is calculated a posteriori by integrating the solution
along the slot exit.

An important and widely used metric for defining the efficiency of a CC system is the lift
augmentation ratio∆Cl/Cµ. Alexanderet. al. state that circulation control performance is
considered as “good” for∆Cl/Cµ > 50(2). In their experiments on the 6% thick elliptical
wing they found a maximum augmentation ratio of 37 forM = 0.8. In addition Abramson
and Rogers(5) achieved∆Cl/Cµ = 27 atM = 0.7 and∆Cl/Cµ = 10 atM = 0.8 on their 16%
thick elliptical aerofoil.

3.3 Reservoir Boundary Condition

A reservoir boundary condition is used to fix the desired pressure and density ratios based on
the assumption that the supply has been isentropically compressed. The stagnation pressure
and density are fixed by NPR at the reservoir boundary while velocities at the face are allowed
to vary with the condition that no gradients form across the boundary.

Force contributions of pressure andCµ from this internal reservoir boundary face are in-
cluded in the calculation of the total forces and moments, following the approach presented
by Min et. al. (41). The pressure and viscous terms are calculated on the external and internal
solid surfaces of the wing, while other surfaces such as end plates are excluded. Contributions
due to the pressure force and momentum addition of the jet areconsidered at the reservoir
boundary. Figure 4 shows an illustration of the surfaces considered for the calculation of the
forces and moments.

Figure 4: Diagram of trailing edge of circulation control aerofoil. The solid lines are consid-
ered as external surfaces, dotted lines are the internal no-slip plenum surfaces and the dashed
line is the reservoir boundary condition.
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Figure 5: Douglas DLBA032 geometry(42).
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Figure 6: Effect of grid refinement on lift and drag for simulations of the DLBA032 with and
without (dashed lines) aileron deflection. HereM ≈ 0.715,Re = 5 × 106 at angles of attack
of α = 1.183◦ with a 3◦ deflection andα = 1.342◦ without aileron deflection.

4.0 TRANSONIC FLOW OVER A SUPERCRITICAL
AEROFOIL WITH AILERON DEFLECTION

The supercritical McDonnell Douglas DLBA032 aerofoil section (Fig. 5) was chosen from
the AGARD CFD validation database(42) due to the availability of experimental data with an
aileron deflection in a transonic freestream. The DLBA032 isa supercritical aerofoil with a
thickness of 12% chord and an aileron of 25% chord length. Experiments were conducted at
a Reynolds number range ofRe = 5× 106 to Re = 25× 106, an aileron deflection ofδ = −5◦

to δ = 5◦ andM ≈ 0.72. To promote transition in the experiments, a boundary layer trip was
placed atx/c = 0.15 andx/c = 0.28 on the upper and lower aerofoil surfaces, respectively.
This trip was not taken into account for the present simulations, where a fully turbulent flow
was assumed.

Two dimensional simulations were conducted on this geometry since the original dataset
was reported to be suitable for such modelling approaches(42). The data presented in the
AGARD report included corrections regarding the wind tunnel interference. Grids were built
using mesh densities and refinement strategies using conclusions from preliminary grid re-
finement studies of the DLBA032 with flap deflection, which is summarised in Fig. 6. The
conclusions of this grid refinement study, indicated that approximately 300,000 cells were suf-
ficient to produce grid independent results for both deflected and undeflecte aileron cases. The
following cases apply these findings with grids generated such thaty+ ≈ 1 initial grid spac-
ing in the wall normal direction is applied, as required by the k − ω-type turbulence models
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Figure 7: Experimental and predicted pressure distribution for the DLBA032 with and without
aileron deflection atM ≈ 0.715,Re = 5× 106.

employed.
Figure 7 shows the pressure distributions for the DLBA032 with an un-deflected aileron

(Fig. 7a) and a deflection of 3◦ (Fig. 7b). Without the deflection the lower surface pres-
sure distribution predictions agree well with the experimental data, and the shock location
is within 5% chord (Fig. 7a). The upper surface suction is greater than the experiment, how-
ever the overall trend agrees. Table 1 shows that with the SSTmodel, the change in lift is
approximately 3% above the measured lift from the experiment.

With the deflected aileron, the suction near the leading edgeis over-predicted, and the shock
is predicted approximately 15% aft of the experiment, as shown in Fig. 7b. A similar finding
was found by Londenberg(43) for Re = 5× 106 with a 2◦ aileron deflection. The agreement in
the lift coefficient as shown in Table 1 is approximately 11% above the experimental data, due
to the poor prediction of the shock location. It is emphasised however in the AGARD report
that there is some uncertainty about the correction methodsemployed and that the dataset
should be taken for qualitative trends(42).

Table 1: Comparing sectional lift, drag, and pitching moment behaviour of the DLBA032 at
M ≈ 0.715 andRe ≈ 5× 106 with and without aileron deflection.

Configuration Turbulence model Cl Cd Cm

EXPα = 1.342◦ δ = 0◦ 0.7311 0.01044 -0.1518
CFDα = 1.342◦ δ = 0◦ k-ω 0.7823 0.0167 -0.1614
CFDα = 1.342◦ δ = 0◦ SST 0.7593 0.0158 -0.1567
CFD Unblown Coandaα = 1.342◦ k-ω 0.8251 0.0183 -0.1710
CFD Unblown Coandaα = 1.342◦ SST 0.8071 0.0175 -0.1672

EXPα = 1.183◦ δ = 3◦ 0.8931 0.01416 -0.1787
CFDα = 1.183◦ δ = 3◦ k-ω 1.0460 0.0236 -0.2073
CFDα = 1.183◦ δ = 3◦ SST 0.9942 0.0221 -0.1962
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5.0 EVALUATION OF COANDA DESIGNS IN TRANSONIC
FLOW

The DLBA032 was modified to include a Coanda device by increasing the thickness of the
trailing edge along the camber line. The rear 30% of the aerofoil was thickened symmetri-
cally around the camber line, changing the trailing edge thickness from 0.55% in the baseline
aerofoil to 1.23% to accommodate a Coanda surface. Figure 8 shows the modified aerofoil
geometry with a CC device.

The first CC device considered used a circular Coanda surfacewith a 0.5% chord radius
and 0.05% chord slot height (10:1 Coanda radius to slot height ratio). The design allowed for
slots on the upper and lower surface, however the current investigations use upper slot blowing
exclusively, see inset Fig. 8. Between the slot and upper surface of the aerofoil, a thickness of
t = 0.06% chord was applied as a skin thickness. This skin thickness was maintained for all
subsequent shape modifications to ensure comparisons between geometries which were not
affected by a change in this parameter.

This sensitivity study considers four different Coanda designs to evaluate the effects of
shock boundary layer interactions and the radius of curvature induced detachment of the jet.
To assess the influence of the curvature at the slot exit, a Coanda geometry was designed
with a larger Coanda radius to slot height ratio (21:1). Converging and converging-diverging
nozzles were used to assess the effects of underexpanded and fully expanded Coanda jets
on CC. In addition, a stepped geometry with a converging nozzle was investigated to assess
whether findings by Gregory-Smith and Carpenter(8,9) can be applied to CC with a transonic
freestream. The descriptions of the Coanda devices used in this study are summarised in
Table 2 and Fig. 9, all other geometric features remain the same between the four designs.

To establish that the modifications made to the DLBA032 did not significantly change the
behaviour of the aerofoil, the unblown case was compared with the un-deflected aileron over
a range of angles of attack. Figure 10 shows the pressure coefficients and drag polars for the
DLBA032 without aileron deflection and with an unblown CC device fitted as shown in Fig. 8.
The shock position of the CC geometry is slightly further aftwhich induces greater lift than
the original shape as shown in Table 1. The shape of the lift-drag polar in Fig. 10b suggests
that the effects of the thickened trailing edge and CC device are small, with an approximate
0.001 increase in the drag coefficient. However the characteristics of the lift-drag polar from
the original aerofoil geometry were effectively maintained.

Each CC case considered below was simulated at a freestream value ofα = 1.342◦, M∞ =
0.716 andRe = 5.028× 106.

5.1 Grid Refinement

Four grids were built with cell counts between approximately 100,000 and 900,000. Each
finer grid was uniformly refined across the entire domain. An initial grid spacing ofy+ ≈ 1

Figure 8: Modified geometry with CC device.
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Table 2: Trailing edge device details (dimensions in % chord).
CC Device Radius Slot Height Step Height Skin Nozzle Type

(r) (h) (s) (t)

10:1 Convg 0.500% 0.050% 0.000% 0.060% Converging
21:1 Convg 0.525% 0.025% 0.000% 0.060% Converging
21:1 Condi7 0.525% 0.025% 0.000% 0.060% Converging–diverging

designed for NPR=7
20:1:1 Step 0.500% 0.025% 0.025% 0.060% Converging with step

10:1 Convg

t

h

r

21:1 Convg

h

t

r

21:1 Condi7

t

h

r

20:1:1 Step

t

h
s

r

Figure 9: Diagrams of trailing edge devices.
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Figure 11: Effect of grid refinement on the 21:1 Coanda device atNPR = 4.0.

in the wall normal directions was used for all grids, wherey+ was calculated based on the
freestream Reynolds number. For a circular Coanda shape with a 21:1 radius to slot height
ratio, the effect of grid refinement on the lift and drag on the aerofoil was assessed at the
conditions described above with blowing atNPR = 4.0

Figure 11 shows the effect of the grid size on the DLBA032 section with CC. Figure 11a
shows the Mach profile of the jet and aerofoil boundary layer at the trailing edge, taken 3.0h
from the slot exit. Minor differences occur in the jet profiles between the “Fine” and “V.
Fine” grids with 400,000 and 900,000 cells, respectively. These differences, however, do not
have a significant effect on the surface pressures on the Coanda nor the main aerofoil surface
(Figs. 11b and 11c). As a result the Fine grid is within 0.01% of the lift and 0.1% of the drag
coefficients from the solution using the finest grid (V.Fine on Fig.11), as shown in Fig. 11d,
suggesting that the 400,000 cell grid produces sufficiently grid-independent results.
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Figure 12: Predicted pressure coefficients for Douglas DLBA032 atα = 1.342◦, M = 0.716
andRe = 5.028× 106 for an aileron deflection and with blowing atCµ ≈ 0.003,Cµ ≈ 0.004
andCµ ≈ 0.005 for the 10:1 configuration. Symbols here represent the simulated pressure
distribution of the deflected aileron case at the same freestream conditions and turbulence
model.

5.2 Converging nozzle with 10:1 radius to slot ratio (10:1 Co nvg)

The simulated pressure coefficients for the DLBA032 aerofoil with a circular Coanda device
with 10:1 radius to slot ratio are compared with an aileron deflection of 3◦ in Fig. 12. As
with the NASA 6% elliptical CC aerofoil results, the shock moves aft with blowing which
is consistent with an increase in lift and circulation. The symbols in Fig. 12 represent the
simulated results of the aileron deflection case at the same conditions.

Comparing the predicted results of the aileron deflection and blowing over the 10:1 con-
figuration atCµ = 0.003, the lower surface and the front section of the aerofoil have similar
pressure distributions. The rear section of the aerofoil with blowing has more suction, and
does not have the characteristic peak in suction at the hingeline. This additional suction to-
wards the trailing edge generates an increase in the ’nose down’ pitching moment compared
to that of a 3◦ aileron, Fig. 13.

With increased blowing, the sectional lift, drag and pitching moment coefficients on the
aerofoil increase. Figure 13 shows the behaviour of the loads due to blowing, also shown
are predicted loads for the aerofoil at a range of aileron deflection angles. At a similar lift
coefficient to that of a deflected aileron of 3◦, blowing over the 10:1 configuration atCµ =
0.003 resulted in a smaller drag increase.

Additional blowing results in separation of the jet from theCoanda surface, due to the
increased underexpansion of the jet. ForCµ = 0.004 the jet separated from the Coanda
surface, however in this case the jet re-attached to the surface. This re-attachment may be
due to the low pressure within the separated bubble, as shownin Fig. 14a. In Fig. 14b, Mach
contours using a moderately higher blowing rate ofCµ = 0.005 are shown, where the jet is
detached. The shock impinging on the Coanda surface is too strong for the flow to re-attach to
the Coanda. As seen in Fig. 14b, the separation bubble does not form and so the mechanism
to re-attach the jet is not present.
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The lift characteristics for blowing atCµ = 0.003 suggest that it is possible to replicate the
lift achieved with a 3◦ aileron deflection using CC in this flight regime, with a reduction in
the drag and an increase in the pitching moment, as shown in Fig. 13. For this configuration,
a blowing rate ofCµ = 0.005 caused detachment of the jet. While the jet remains attached, a
lift augmentation ratio of∆Cl/Cµ = 84 was achieved.

5.3 Converging nozzle with 21:1 radius to slot ratio (21:1 Co nvg)

The effect of changing the slot height to radius ratio was investigated by halving the slot height
of the 10:1 Coanda trailing edge device, resulting in a surface with a radius and slot height of
0.525% and 0.025% chord lengths respectively, and a 21:1 Coanda radius to slot ratio. Using
the plenum pressure ratio of 5.0 was found to detach the jet from the 10:1 geometry, while
with the 21:1 radius the jet remained attached.

Figure 13 shows that atCµ = 0.002 (NPR=4.0), the SST predictions gave comparable per-
formance to the convergingnozzle over the 10:1 surface atCµ = 0.003 (NPR=3.0) and also the
aileron deflection of 3◦. For the same blowing rate, the 21:1 device produced approximately
50% higher lift augmentation ratio than the 10:1 CC device, resulting in a∆Cl/Cµ = 134.

Similarly to the 10:1 configuration, further blowing detached the jet due to the strongly
under-expanded jet flow atCµ = 0.0035 (NPR=7.0).

By increasing the radius of curvature near the slot exit, theboundary layer within the jet
experiences a weaker adverse pressure ratio. As a result thejet boundary layer is able to cope
with a stronger shock assosciated with underexpansion at a higher pressure ratio when using
the 21:1 configuration compared with the 10:1, above.

5.4 Converging-diverging nozzle with 21:1 radius to slot ra tio (21:1 Condi7)

Bevilaqua and Lee’s(26) method of characteristics approach fixes a desired irrotational vortex
profile along the slot. The two dimensional characteristicsequations are solved to determine
the nozzle wall profiles from the slot exit to the nozzle throat for a given pressure ratio and
Coanda radius. This method of characteristics procedure was applied to the nozzle walls
of the 21:1 configuration to design a nozzle to perform atNPR = 7.0. At this pressure
ratio, flow from a purely converging nozzle failed to attach,as described in Section 5.3 above.
The resulting asymmetrically contoured converging-diverging nozzle is shown in Fig. 9. In
designing the nozzle, the exit slot height from the 21:1 Convg device is retained at 0.025%
chord. The contouring of the nozzle gave an effective throat height of 0.015% chord, resulting
in an expansion ratio of 1.67. For choked conditions, this results in a reduced mass flow rate.

Figure 14c shows the converging diverging nozzle operatingat the design conditionNPR =
7. A relatively weak shock occurs at the slot exit, followed by a small separation bubble on
the Coanda surface at approximatelyx = 1.004.

Although the nozzle was designed to fully expand the jet, theused method of characteristics
did not account for the boundary layer. The effective nozzle contour as seen by the flow, due
to the displacement thickness, was found to significantly reduce the expansion rate and so the
jet was under-expanded. This can be seen from the Mach numberprofile at a station at the
slot exit in Fig. 15, where the theoretical irrotational vortex profile is also shown. The SST
model predicted a thinner boundary layer than that of thek-ω, however both models gave a
slope similar to the idealised profile at a reduced value for the mean Mach number.
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For a pressure ratio of 9.0, the jet emanating from the converging-diverging nozzle under-
expands, however the magnitude of under-expansion is lessened by the nozzle. This allows the
jet to adhere to the Coanda surface and gives a lift incrementof ∆Cl = 0.4077 using the SST
model. An approximate linear change in the lift and drag coefficients using the converging-
diverging Coanda untilCµ ≈ 0.004 is shown in Fig. 13. Again, due to underexpansion, the jet
eventually detached from the Coanda atCµ ≈ 0.006 (NPR=13.0).

Figure 16 shows the differences between the jet profiles using the converging and the
converging-diverging nozzles atNPR = 4 andNPR = 7 both with a 21:1 Coanda radius
to slot height ratio. AtNPR = 4, theCµ of the converging nozzle was approximately 10%
higher than that from the converging-divergingnozzle, however the∆Cl was 54% higher using
the converging nozzle as shown in Fig. 13. The reduction in∆Cl at the same NPR is possi-
bly due to the reduction in mass flow rate through the shorter throat height of the converging
diverging nozzle. The underexpansion of the jet from the 21:1 Convg device appears to en-
train more of the freestream than when using the 21:1 Condi7 nozzle at the same conditions.
This underexpansion is an impediment at higher nozzle pressure ratios however, since it also
brings about shock induced separation of the Coanda boundary layer. By expanding the flow,
the extent of the separation is reduced and detachment occurs later.

Figure 14d shows contours of Mach number for an over-expanded nozzle on the DLBA032.
Although the flow separated inside the nozzle, the jet remained largely attached to the Coanda
surface for NPR=3.0 (Cµ = 0.0014). In all over-expanded cases (Cµ < 0.003) using this
nozzle designed for NPR=7, a reduction in lift augmentation ratio and thus efficiency was
observed. Comparing this with the same radius to slot heightratio,∆Cl/Cµ with 21:1 Condi7
was 75% of the augmentation ratio achieved from the convergent only nozzle 21:1 Convg.

In contrast to the other designs, the gradient of the∆Cl vs Cµ plot for the 21:1 Condi7 in
Fig. 13 initially increases asCµ increases. Up until the design condition atCµ = 0.0032 a
maximum∆Cl/Cµ = 105 was found. Following from the design point, the slope of∆Cl vsCµ
begins to diminish.

5.5 Converging nozzle with a 20:1:1 radius to slot to step rat io (20:1:1 Step)

Using the initial 21:1 purely converging configuration as described above (Section 5.3), the
radius of the Coanda was decreased by 0.025% chord to give a radius of slot height of 0.5%
chord while maintaining the 0.025% chord slot height. This produced a step between the exit
of the converging nozzle and the Coanda surface.

Figure 14e shows the behaviour of the under-expanded jet atCµ = 0.0027, the shock cell
structure can be seen which begins to follow the Coanda surface. At NPR = 7 (Cµ = 0.0035),
the flow from the same nozzle caused the jet to detach from the 21:1 configuration (described
above), while including the step promoted attachment to theCoanda surface. Attachment of
the jet remains up toNPR = 11.0 (Cµ = 0.0057). As shown in Fig. 13, the behaviour of the
jet over the stepped Coanda follows the same behaviour as that of the converging-diverging
nozzle. A maximum∆Cl/Cµ = 108 up toCµ = 0.0038 was found when using the stepped
Coanda. Below the design point of the 21:1 Condi7 nozzle, thestepped geometry gave a
greater∆Cl/Cµ. At NPR = 11.0, the jet underexpands such that a shock boundary layer
interaction with the Coanda is strong enough to separate thejet, despite the step (Fig. 14f).
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(a) 10:1 circular Coanda with converging noz-
zle, NPR=4. Cµ = 0.0040.

(b) 10:1 circular Coanda with converging noz-
zle, NPR=5. Cµ = 0.0050.

(c) 21:1 circular Coanda with con-di nozzle de-
signed for NPR=7, at design.Cµ = 0.0032.

(d) 21:1 circular Coanda with con-di nozzle de-
signed for NPR=7, NPR=3. Cµ = 0.0014.

(e) 20:1:1 circular Coanda with step and con-
verging nozzle, NPR=5. Cµ = 0.0027.

(f) 20:1:1 circular Coanda with step and con-
verging nozzle, NPR=11. Cµ = 0.0057.

Figure 14: Contours of Mach number for various Coanda designs using thek-ω SST turbu-
lence model.
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5.6 Effect of angle of attack

To assess the range of operability of CC in transonic flow, tworepresentative CC cases are
compared here with a deflected aileron case. The effect of increasing shock strength on the
upper surface of the aerofoil is investigated by operating at steeper angles of attack. Fig-
ure 17 shows the effect of varying the angle of attack on the lift characteristics of CC and a 3◦

aileron deflection. The two CC cases shown are the 21:1 Convg and the 20:1:1 Step running at
Cµ = 0.0020 andCµ = 0.0027, respectively. Independent of trailing edge geometryeach case
undergoes a stall asα increases, due to the stronger shock on the upper surface causing the
boundary layer to separate and so a progressively smaller∆Cl asα increased. This gradual
reduction in∆Cl is due to a strong shock wave separating the boundary layer onthe upper
surface of the aerofoil. The rate at which∆Cl degraded was approximately constant between
the CC and aileron deflection cases as shown in Fig. 17b, wherethe difference between circu-
lation control cases and the 3◦ aileron are presented. These results suggest that the behaviour
of CC is similar to that of a deflected aileron at the higher angles of attack considered. At
higher angles of attack, degredation of the mean flow rather than the CC system appears to
be the limiting factor in retaining control of the forces andmoments. Such a result may mean
that the well understood principles of using ailerons in transonic flows could be applied to the
use of CC.

Figure 18 shows the effect of the aileron deflection and CC have on the flowfield at the
trailing edge of the aerofoil. In both cases a strong shock boundary layer interaction occured
at approximately 55% chord, with the shock further aft for the CC case from the increased
circulation generating additional lift. With CC the trailing edge separation is reduced in sever-
ity due to the additional boundary layer momenentum from jetentrainment and a favourable
pressure gradient due to blowing. Although not investigated here, it may be possible that CC
may offer some shock buffet onset alleviation.
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(a) 3◦ aileron deflection. (b) 21:1 Convg at NPR=4.

Figure 18: Mach contours at the trailing edge of aileron deflection and CC cases atα = 5◦,
M = 0.716 andRe = 5 × 106. Inset shows detail of the trailing edges, at the same scale in
both images.

5.7 Summary of results

An increase in the ratio between the radius of curvature and the slot height increased the CC
effectiveness by providing an increase in total lift and also the lift augmentation ratio. This
finding is in line with conclusions from experimental studies described in Section 2, where the
local radius of curvature at the slot exit was increased by altering the eccentricity of elliptical
Coanda devices(6,2). Here we have shown that an increase in the ratio between the Coanda
radius and slot height resulted in an increase in overall lift achievable.

The limiting detachment pressure ratio can be extended by using a suitably designed
converging-diverging nozzle. In the cases considered in this paper, the converging-diverging
nozzle was designed for the operating condition for which the jet detached using a convergent
only Coanda device at the same radius to slot height ratio. Further extension may be possible
by designing the converging-diverging nozzle for higher pressure ratios, however a further
reduction in efficiency is likely be observed.

Introducing a step between the Coanda surface and the slot exit also promoted a delay in
detachment for CC with a transonic freestream. This was due to the shock boundary layer in-
teraction being replaced by a shock shear interaction. For very highly underexpanded stepped
Coanda jets, the reattachment shock was the cause of separation.

As shown in Fig. 13 each of the designs can be compared to an aileron deflection angle,
the 10:1 Convg and 21:1 Convg devices achieved a maximum∆Cl equivalent to that of ap-
proximately 4◦ and 5◦ aileron deflection, respectively. Both converging-divergingand stepped
devices gave an equivalent aileron deflection of approximately 7.5− 8◦ before detachment.
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6.0 CONCLUSIONS AND FUTURE WORK

The current work investigated the simulation of transonic CC for the supercritical DLBA032
aerofoil section. Results showed how, for a supercritical section in transonic conditions, flu-
idic circulation control can achieve similar performance as the aileron with moderate deflec-
tion angles.

The design study involved different nozzles, nozzle exit geometries and Coanda surfaces
to investigate which design performs most consistently over a range of blowing coefficients.
It was found that replicating the lift, drag and moment characteristics of a 25% chord aileron
at δ = 4.0◦ is possible with a converging nozzle and a Coanda radius to slot height ratio of
10:1. However, a wider range of operating pressure ratios was found for a 21:1 ratio. For the
converging nozzle the limiting factor is the strong shock-induced separation created by the
under-expansion of the nozzle flow.

The results for converging-divergingnozzles showed that,as expected, the under-expansion
related shock-induced separation can be delayed to higher pressure ratios. Furthermore, for
the converging nozzle, it was found that the shock-induced separation can be delayed by
applying a small step in the geometry between the nozzle exitand the Coanda surface. It
was shown that using either the converging-diverging or thestepped Coanda geometry can
perform equivalently to an aileron deflection angle of up to 8◦.

The effects of angle of attack were in addition considered with a comparison between cir-
culation control and a 3◦ deflected aileron. The performance of the CC devices at a constant
blowing rate performed similarly to the deflected aileron. Each device considered lost effec-
tiveness at the same rate, due to the mean flow and upper surface boundary layer separating
from a strong shock boundary layer interaction.

The present study did not investigate the effects of different slot heights, nor a converging–
diverging CC device with a step. Further work regarding these design choices is ongoing. In
addition, an investigation into the effectiveness of the sizing of Coanda devices in transonic
flows is recommended for future studies. In doing so it may be possible to minimise further
the drag penalty due to the bluntness of the Coanda device.

For the Coanda device to replace flaps and ailerons completely, the system must be able
to operate over the full flight regime, including take–off and landing and blowing over the
lower Coanda surface. It is recommended that future studieswould focus on actuation for
all flight conditions and manoeuvre requirements, including the use of CC as a yaw control
effector. Full system analysis to include the necessary air supply and its effects on engine
bleed air and vehicle weight should form part of a future integration study. For the system
to be considered for use on an aircraft, the effect of failure of one or more Coanda devices
should be investigated. Initial tests may possibly includethe combined use of flaps and CC
devices, however this would result in an increase of weight.The design and integration of
fluidic control devices such as CC via the Coanda effect are currently being studied as part of
the NATO Science and Technology Organisation task group, AVT-239(44).
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