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Abstract—A non-autonomous second-order memristive chaotic circuit is considered in this paper, which is comparatively simple, only consisting of a memristor, a capacitor, a resistor, and a sinusoidal voltage source. Based on the descriptive equation of the memristive circuit, the dynamical behaviors are investigated by theoretical analyses and numerical simulations. It is noted that the number of AC equilibrium points changes with the evolution of the time and the circuit exhibits striking dynamical features including period, chaos, forward period-doubling, reverse period-doubling, tangent bifurcation and crisis scenarios. Furthermore, a hardware circuit is set up by off-the-shelf discrete components, where hardware experiments are performed to verify the numerical results. The most significant feature of the proposed memristive circuit is the inductor-free realization with simplified topology, which makes the circuit much simpler and more intuitive in physical realization.
Index Terms—Memristive circuit, non-autonomous, chaos
I. INTRODUCTION
A
S the fourth basic circuit element, memristor, described by flux and charge [1], brings completely new development space in various interdisciplinary areas. Specially, many researchers started to exploit memristor based application circuits due to the unique feature of memristor in the past few years [2]–[16]. Summarily, memristors with versatile nonlinearities are conveniently integrated into some existing linear or nonlinear electronic circuits to build various novel memristive chaotic circuits [17]. Some rich dynamics, such as chaotic and hyperchaotic behaviors [3], [4], hyperchaotic multi-wing attractors [2], [5], coexisting multiple attractors [6], [7], hidden attractors [8], complex transient chaotic and hyperchaotic behaviors [9]–[11], chaotic and hyperchaotic beats [10], [12], to mention a few, have been revealed from
these memristive chaotic circuits and analyzed by numerical simulations and hardware experiments. However, due to technical drawbacks and high cost in fabricating nanoscale devices, most of the memristors in those application circuits are equivalently realized by operational amplifiers and analog multipliers [7], [8], [13], [14], as well as memristive diode bridges cascaded with RC, LC or RLC filters [6], [15], [16].
Nonlinear electronic circuits have attracted appreciable attention because they can provide powerful experimental and analytical platforms for people to understand dynamical behaviors in physics [18], engineering [19], [20], electronic [21] and neurology [22]. Considering that a simple nonlinear electronic circuit can serve as a paradigm for better understanding of bifurcation and chaos, it is a significant research topic to simplify chaotic circuits by minimizing the number of dynamic elements and physical components [23]–[27]. Statistically speaking, non-autonomous circuits, one of the main forms of chaotic circuits, contain fewer dynamic elements than autonomous chaotic circuits since externally driven signals can replace a dynamic element or an oscillating unit in autonomous chaotic circuits [25]–[26]. Just like many autonomous chaotic circuits, non-autonomous nonlinear circuits can also exhibit many interesting dynamical phenomena [10]–[12]. 
However, in relevant literatures, most of those memristive chaotic circuits are at least fourth-order autonomous [15] or third-order non-autonomous [10], [12]. Additionally, when inductor-free realization without manually winding inductor is presented, the circuit can be regarded as a gadget, which is more suitable for IC design [27]–[29]. Motivated by those considerations, by replacing the passive LC filter with a standard sinusoidal voltage source in the existing memristive Chua’s circuit [7], the simplest second-order non-autonomous inductor-free memristive circuit is proposed in this paper. Dynamical behaviors of limit cycles and strange attractors are fortunately obtained by numerical simulations and hardware experiments. The aim of the present work is to reveal the unknown features in the proposed memristive chaotic circuit. 
II. Non-autonomous memristive circuit
The schematic diagram of a new non-autonomous second- order memristive circuit and a memristor equivalent realization circuit are shown in Fig. 1. The proposed circuit is physically realizable and only consists of a capacitor C1, a resistor R, a sinusoidal voltage source vs, and a voltage-controlled W. Compared with the non-autonomous memristive circuits in
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Fig. 1. Second-order non-autonomous inductor-free memristive chaotic circuit. (a) Circuit schematic diagram. (b) Equivalent circuit of memristor.
[10]–[12], the newly proposed circuit is second-order and inductor-free realization with a simplified topological structure outstandingly. Also, the comparisons of some non-autonomous memrisitve chaotic circuits are given in Tab.1.
Memristor is a nonlinear circuit element, which can be used to realize nonlinearity of the circuit in Fig. 1(a). According to [7], the equivalent realization circuit of the memristor is depicted in Fig. 1(b), which is mathematically modeled as
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where v and i are the voltage and current at the input terminal of the memristor with memductance W(v0), respectively. v0 is the voltage across the integral capacitor C0, and g is the total gain of the two multipliers M1 and M2. 

The proposed circuit in Fig. 1(a) only has two dynamic elements, which are the capacitor C1 and the active voltage- controlled memristor with memductance W(v0), corresponding to two state variables of v1 and v0, respectively. Thus, the proposed circuit in Fig. 1(a) can be modeled as
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where vs = Asin(2πft), and A is the amplitude and f indicates the frequency.
Taking advantage of the state equations modeled by (2), theoretical analyses and numerical simulations can be performed for the proposed non-autonomous memristive circuit. The typical circuit parameters in Fig. 1 are given as R1 =
8 kΩ, R2 = 4 kΩ, R3 = 1.4 kΩ, R4 = R5 = 2 kΩ, C0 = 4.7 nF, and g = 0.1 V–2, R = 2.6 kΩ, C1 = 6.8 nF, A = 2 V, and f = 7 kHz.
Tab. 1 Comparison of non-autonomous memristive chaotic circuits.
	Items
	Ref. [10]
	Ref. [11]
	Ref. [12]
	Proposed circuit

	Linear element
	1 capacitor
1 resistor
1 inductor
	2 capacitor

1 resistor

1 inductor
	2 capacitor

2 resistor

1 inductor
	1 capacitor
1 resistor

	Memductance function
	Piecewise linear 
	Absolute value
	Piecewise linear
	Quadratic

	Complexity of emulator
	Complex
	Simple
	Complex
	Simple

	Inductor-free
	No
	No
	No
	Yes
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Fig. 2. Cradan discriminant and equilibrium points vary with the evolution of the time under different resisters of R. (a) Cradan discriminant. (b) Number and values of equilibrium points.
III. Equilibrium points and their stabilities 
By setting the left-hand side of model (2) to zero, an AC equilibrium point is easily obtained as 
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where 
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where 
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According to Cardan discriminant [30], when Δ > 0, there exists a real root and two complex roots. Since the equilibrium point cannot be complex number, one equilibrium point is obtained from (5). However, when Δ = 0, the two complex roots in (4) and (6) evolve to one real root, leading to the fact that two real roots appear in (3). Therefore, the proposed circuit has two equilibrium points. Similarly, when Δ < 0, there are three real roots in (3), which manifests that the proposed circuit has three equilibrium points and can be obtained from (4) – (6). For the specified circuit parameters, when R varies from 1.9 kΩ to 2.8 kΩ, Cardan discriminant Δ and the number of equilibrium points with the evolution of the time are presented in Fig. 2. It can be seen from Fig. 2(a) that Δ is a periodic function of the time, and the sign of Cardan discriminant varies with the evolution of the time for each R, leading to the situation that the number of the equilibrium points changes from three to two, to one, to two and then to three in a half period of vs between the two dotted lines, as shown in Fig. 2(b). 

By linearizing (2) around AC equilibrium points, the Jacobian matrix is given by
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The characteristic equation associated with (7) is
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Depending on the eigenvalues at the AC equilibrium points, the stabilities are determined by the sign of Δ.
(i) When Δ < 0, there are two pairs of complex conjugate roots with negative real parts and two real roots with opposite signs for the three equilibrium points.
(ii) When Δ = 0, there are a pair of complex conjugate roots with negative real parts for one equilibrium point, and one zero root and one negative real root for the other.
(iii) When Δ > 0, there is a pair of complex conjugate roots with negative real parts for the unique equilibrium point.
It can be summarized that two stable foci and one unstable saddle point exist for Δ < 0, one stable focus and a fold bifurcation point (FBP) appear for Δ = 0, and one stable focus remains for Δ > 0. The red line denotes the unstable saddle point and the dots colored in cyan are FBPs in Fig. 2(b) specially. Note that the characteristic equation for FBP has one zero root and one negative real root.
In particular, when vs = 0, the circuit in Fig. 1(a) is degraded into a second-order autonomous circuit. Thus, three DC equilibrium points for R > R3 are yielded as
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The stability of each DC equilibrium point is derived by solving the characteristic equation of (7) with 
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which indicate that 
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IV. Numerically simulated dynamics
In our next work, typical circuit parameters given in Sec. II are employed and the initial states are taken as v1(0) = 0 V and v0(0) = 0 V. Furthermore, MATLAB ODE45 algorithm with time step 10-6 is utilized to draw bifurcation diagrams and phase portraits, and Wolf’s method proposed in [31] is used to calculate Lyapunov exponents.
A. Dynamics Depending On Parameter R 
With R increasing from 1.9 kΩ to 2.8 kΩ, single-parameter bifurcation diagram of the state variable v1 and Lyapunov exponent spectra are presented, as shown in Fig. 3, from which the striking dynamical features including period, chaos, forward period doubling bifurcation (FPDB), reverse period doubling bifurcation (RPDB), tangent bifurcation (TB), and crisis scenarios (CSs) are observed. In the considered parameter range of R, the dynamics starts from period-1, to period-2, to period-4, and then enters into chaos via the forward period doubling bifurcation route. Finally, the dynamics settles into period-1 via the reverse period doubling bifurcation. In the chaotic region, some periodic windows with different periodicities occur. When 1.9 kΩ ≤ R ≤ 1.98 kΩ, 2.19 kΩ ≤ R ≤ 2.46 kΩ, 2.51 kΩ ≤ R ≤ 2.58 kΩ or 2.69 kΩ ≤ R ≤ 2.8 kΩ, the circuit shows various periodic behaviors with the first Lyapunov exponent less than zero. However, when 1.98 kΩ < R < 2.19 kΩ, 2.46 kΩ < R < 2.51 kΩ or 2.58 kΩ < R < 2.69 kΩ, the first Lyapunov exponent is mainly positive, but it is less than zero in some narrow parameter ranges, which indicates the occurrence of chaotic behaviors with periodic windows. Note that the crisis scenarios happen at R = 2.19 kΩ and R = 2.58 kΩ with sudden appearance or disappearance of the chaotic behaviors, and the tangent bifurcation occurs in a periodic window with the chaotic state suddenly turning into period-5 at R = 2.51 kΩ.
For the arbitrary values of R and same initial states used in bifurcation diagrams, the trajectories of (2) on the v1 − v0 plane are numerically simulated, as shown in Fig. 4, respectively. The line colored in red denotes the trajectory of the unstable AC equilibrium point, and the lines colored in cyan denote the trajectories of stable AC equilibrium points. These numerical results just emulate the striking dynamical features of period
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Fig. 3. Single-parameter bifurcation diagram of v1 and Lyapunov exponent spectrum with R increasing.  
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Fig. 4. Numerical trajectories under different values of R on the v1 – v0 plane. (a) Period-1 limit cycle at R = 1.9 kΩ. (b) Chaotic attractor at R = 2.1 kΩ. (c) Period-3 limit cycle at R = 2.4 kΩ. (d) Period-5 limit cycle at R = 2.55 kΩ. (e) Double-scroll chaotic attractor (R = 2.6 kΩ). (f) Chaotic spiral attractor (R = 2.66 kΩ).
and chaos emerging from the proposed circuit. From Fig. 4, it is found that the proposed circuit in Fig. 1 can generate chaotic attractors with three different topological structures, which implies that the proposed circuit is chaotic genuinely.
B. Bifurcation Behaviors Depending On Sinusoidal Source 
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Fig. 5. Single-parameter bifurcation diagram of v1 and Lyapunov exponent spectrum with f increasing. 
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Fig. 6.  Single-parameter bifurcation diagram of v1 and Lyapunov exponent spectrum with A increasing.
With f increasing from 4 kHz to 9 kHz and A increasing from 1.5 V to 3.5 V, single-parameter bifurcation diagrams and Lyapunov exponent spectra are depicted in Figs. 5 and 6, respectively, which clearly indicate that the dynamical behaviors exist in the proposed circuit, including period, chaos, periodic window, forward period doubling bifurcation (FPDB), reverse period doubling bifurcation (RPDB), tangent bifurcation (TB), crisis scenario (CS), and so on.
   In Fig. 5, there are periodic behaviors with the first exponent less than zero and chaotic behaviors with positive first Lyapunov exponent in the considered parameter range of the frequency f. The crisis scenario happens when f = 5.37 kHz and the tangent bifurcation occurs when f = 5.65 kHz. Nevertheless, when the amplitude is selected as a variable, the tangent bifurcation happens when A = 2.02 V and the crisis scenario occurs when A = 3.41 V, as shown in Fig. (6). It is interested that when 2.79 V ≤ A ≤ 3.41 V, the first Lyapunov exponent crosses the zero line alternately, which indicates that dynamical behaviors vary between periodic cycles and chaos as A increases.
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Fig. 7.  The experimental circuit of the proposed circuit, the left is a overviewed graph and the right is an enlargement of circuit breadboard.
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Fig. 8. Attractors observed by digital oscilloscope under different values of R in the v1 – v0 plane. (a) Period-1 limit cycle at R = 1.9 kΩ. (b) Chaotic attractor at R = 2.1 kΩ. (c) Period-3 limit cycle at R = 2.4 kΩ. (d) Period-5 limit cycle at R = 2.55 kΩ. (e) Double-scroll chaotic attractor (R = 2.6 kΩ). (f) Chaotic spiral attractor (R = 2.66 kΩ).
V. Hardware experiments and captured attractors
With the circuit schematic in Fig. 1, an analogue electronic circuit is practically set up by some commercially available components, as shown in Fig. 7, where potentiometers and monolithic capacitors as well as operational amplifiers AD711KN and multipliers AD633JN with bipolar ±15 V supply are adopted. The circuit parameters used during numerical simulations are employed in hardware experiments and Tektronix AFG 3102C is taken as the sinusoidal voltage source. All of the resistors in our hardware experiments are replaced by precision potentiometers and their values are measured by Tonghui TH2816A Precision LCR Meter. Additionally, the experimental results are captured by a Tektronix TDS 3034C digital oscilloscope in XY mode with 1.8 V/ div in X direction and 1 V/div in Y direction. Note that one auxiliary voltage follower circuit realized by an operation amplifier AD711KN U0 is hired in experimental measurements to isolate the applied sinusoidal voltage source. 

A precision potentiometer is utilized for the adjustable R and its resistance is gradually tuned. For different values of R used in numerical simulations, the attractors observed by the digital oscilloscope in the v1 – v0 plane are shown in Fig. 8. Remark that ignoring the minor deviations caused by parasitic circuit parameters and active device non-idealities, the experimental results shown in Fig. 8 are well consistent with the numerical results in Fig. 4, which illustrates the existence of striking dynamics in the second-order non-autonomous inductor-free memristive chaotic circuit.
VI. Conclusion

By driving a parallel memristor and capacitor filter with a sinusoidal voltage source, a simple second-order non- autonomous inductor-free memristive chaotic circuit is presented in this paper. Numerical simulations and the corresponding hardware experiments are performed, which indicate that the simple circuit has dynamical behaviors of limit cycles with different periodicities and chaotic attractors with three different topological structures. It is notable that the dynamical behaviors must be induced by the time-evolutional equilibrium points. Specially, compared with the pioneering works of non-autonomous chaotic circuits, the significant features of the proposed memristive circuit are that the circuit only contains two dynamic elements and is an inductor-free realization with hardware gadget, which is suitable for IC design. 
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