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Abstract. Previously published admissibility conditions for an element of {0, 1}Z to be the itinerary

of a point of the inverse limit of a tent map are expressed in terms of forward orbits. We give necessary

and sufficient conditions in terms of backward orbits, which is more natural for inverse limits. These

backward admissibility conditions are not symmetric versions of the forward ones: in particular, the

maximum backward itinerary which can be realised by a tent map mode locks on intervals of kneading
sequences.

1. Introduction

Inverse limits of tent maps have been much investigated, not only because of their intrinsic interest

as topological spaces, but also because they are closely related to other topics in dynamical systems

such as hyperbolic attractors and Hénon maps. A recent highlight is the proof by Barge, Bruin, and

Štimac of the Ingram Conjecture [2], which states that the inverse limits of distinct tent maps are

non-homeomorphic.

Kneading theory is widely used in the study of the dynamics of unimodal maps, and has been

extended to and applied in the context of inverse limits of tent maps by several authors (e.g. [3, 4]).

A key starting point for the application of such symbolic techniques is understanding the admissibility

conditions under which a sequence of symbols is realised as the itinerary of a point of the inverse limit.

In previous works, such admissibility conditions have been adapted from those for kneading theory of

unimodal maps, and as such are based on the forward itineraries of points. This is somewhat unnatural

in the context of inverse limits, where the main focus is on backward orbits.

In this paper we develop admissibility conditions for inverse limits which are based on backward

itineraries. One might näıvely expect these conditions to be symmetric versions of the forward ones

but, with the exception of certain special cases (tent maps of irrational or rational endpoint type), this

is not the case. The essential content of the forward conditions is that every forward sequence must

be less than or equal to the kneading sequence of the tent map f , in the unimodal order. For the

backward conditions, the kneading sequence is replaced by two sequences, so that backward sequences

are bounded by a stepped line. Moreover, these two sequences mode-lock on intervals in parameter

space — what changes as the parameter varies within such an interval is the location of the step

between the two sequences.

In Section 2 we review the forward admissibility conditions. This theory is well established, but

we make some minor modifications which enable us to give admissibility conditions which are strictly

necessary and sufficient (Lemmas 3 and 5), which seem not to have appeared before. The basis of

the backward admissibility conditions is the stratification of the space of unimodal maps by height, a
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number in [0, 1/2] which is associated to each unimodal map [8]. This theory is reviewed in Section 3.1,

before the main results are stated and proved. Theorem 14 gives necessary and sufficient backward

admissibility conditions in the symmetric case; Theorem 16 is the analogous result in the non-symmetric

case; and Theorem 17 provides a striking illustration of the asymmetry of forward and backward

itineraries: the maximum backward itinerary which can be realised by a tent map mode locks on

intervals of kneading sequences.

2. Forward admissibility

2.1. Basic definitions. Throughout the paper, I = [a, b] is a compact interval and f : I → I is a tent

map of slope λ ∈ (
√

2, 2): that is, there is some c ∈ (a, b) such that f has constant slope λ on [a, c]

and constant slope −λ on [c, b]. Moreover, we assume that I is the dynamical interval (or core) of f ,

so that f(c) = b and f(b) = a.

Let {0, 1}N and {0, 1}Z denote the spaces of semi-infinite and bi-infinite sequences over {0, 1}, with

their natural product topologies. We denote elements of the former with lower-case letters, and of

the latter with upper-case letters. We write σ : {0, 1}N → {0, 1}N and σ : {0, 1}Z → {0, 1}Z for the

corresponding shift maps. If S ∈ {0, 1}Z, we denote by
−→
S and

←−
S the elements of {0, 1}N defined by

−→
S r = Sr and

←−
S r = S−1−r for r ≥ 0: therefore

−−−→
σr(S) = SrSr+1 . . . and

←−−−
σr(S) = Sr−1Sr−2 . . . for

each r ∈ Z. We say that S does not end 0∞ (respectively does not start 0∞) if infinitely many of the

entries of
−→
S (respectively

←−
S ) are 1.

If n ≥ 1 then a word of length n is an element of {0, 1}n. We say that a word W is even (respectively

odd) if it contains an even (respectively odd) number of 1s. If s ∈ {0, 1}N and W is a word of length n,

then we write s = W . . . to mean that si = Wi for 0 ≤ i ≤ n− 1.

We denote by � the unimodal order on {0, 1}N (also known as the parity lexicographical order),

which is defined as follows: if s and t are distinct elements of {0, 1}N, then s ≺ t if and only if the word

s0 . . . sr is even, where r ≥ 0 is least with sr 6= tr. An element s of {0, 1}N is said to be shift-maximal

if σr(s) � s for all r ≥ 0.

There are several different approaches to assigning itineraries in {0, 1}N to points of I under the

action of f . Those differences which are not cosmetic are concerned with the straightforward but

vexed question of how to code the critical point c, and therefore affect the itineraries of only countably

many points. One may introduce a third symbol C; make an arbitrary choice of 0 or 1 as the code

of the critical point; allow either of these symbols, leading to multiple itineraries for certain points –

an approach whose ramifications are compounded when the critical point is periodic; or take limits à

la Milnor-Thurston [9]. The approach which we adopt here is to code c with a choice of 0 or 1 which

depends on f in the case where c is periodic; and to allow either code for c if c is not periodic. This

convention, as well as being ideal for our results, has the added benefit – quite independent of the main

results of the paper – of leading to admissibility conditions for itineraries which are strictly necessary

and sufficient (Lemma 3), at least in the case of tent maps or other unimodal maps which admit no

homtervals (i.e. for which distinct points have distinct itineraries).

Suppose first that c is a periodic point of f , of period n, and define ε(f) = 0 (respectively ε(f) = 1)

if an even (respectively odd) number of the points {fr(c) : 1 ≤ r < n} lie in (c, b]. Then define the

itinerary j(x) ∈ {0, 1}N of x ∈ I by

j(x)r =


0 if fr(x) ∈ [a, c),

1 if fr(x) ∈ (c, b],

ε(f) if fr(x) = c

for each r ∈ N.
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Define the kneading sequence κ(f) ∈ {0, 1}N of f by κ(f) = j(b). By construction, κ(f) =

(Wε(f))∞, where Wε(f) is an even word of length n.

In the case where c is not a periodic point of f , we say that s ∈ {0, 1}N is an itinerary of x ∈ I if

fr(x) ∈ [a, c] whenever sr = 0, and fr(x) ∈ [c, b] whenever sr = 1. Therefore each x ∈ I has a unique

itinerary unless c ∈ orb(x, f) = {fr(x) : r ≥ 0}, in which case it has exactly two itineraries.

Define the kneading sequence κ(f) ∈ {0, 1}N of f to be the itinerary of b (which is unique since

b = f(c) and c is not periodic). Therefore if fr(x) = c for some r ≥ 0, then the two itineraries of x are

s0 . . . sr−1
0
1κ(f) for some s0, . . . , sr−1 ∈ {0, 1}.

Remark 1. If s is an itinerary for x ∈ I, then σr(s) is an itinerary for fr(x) for each r ≥ 0, regardless

of whether or not c is a periodic point. It is standard (see for example [5, 7]) that the unimodal order

on itineraries reflects the usual order on the interval I. Since f is uniformly expanding on each of its

two branches, distinct points x, y ∈ I cannot share a common itinerary. If s and t are itineraries of x

and y, we therefore have that x < y =⇒ s ≺ t; while if s ≺ t, then either x < y, or s and t are the

two itineraries of x = y in the case where c is not periodic.

Let

jf = {s ∈ {0, 1}N : s is an itinerary of some x ∈ I}.

An element of jf is said to be admissible (for f).

The inverse limit Î of f : I → I is defined by

Î = {x ∈ IZ : f(xr) = xr+1 for all r ∈ Z},

topologized as a subspace of the product IZ. This definition differs from the standard one, in which

only indices r ≤ 0 are considered, but is homeomorphic to it, since x0 determines xr for all r > 0, and

is more convenient for our purposes. Let f̂ : Î → Î be the shift map defined by f̂(x)r = xr+1 for all r,

a homeomorphism which is called the natural extension of f . The projection π0 : Î → I defined by

x 7→ x0 is a semi-conjugacy from f̂ to f .

We define itineraries of elements of Î, lying in {0, 1}Z, in the same way as itineraries of points of I

under f : they provide symbolic representations of the points of Î which are not directly related to the

dynamics of f̂ . Thus if c is a periodic point of f , then each x ∈ Î has a unique itinerary J(x) defined

by

J(x)r =


0 if xr ∈ [a, c),

1 if xr ∈ (c, b],

ε(f) if xr = c

for each r ∈ Z.

On the other hand, if c is not a periodic point of f , then we say that S ∈ {0, 1}Z is an itinerary of x ∈ Î
if xr ∈ [a, c] whenever Sr = 0, and xr ∈ [c, b] whenever Sr = 1. Therefore x has a unique itinerary if

xr 6= c for all r; and has exactly two itineraries if xr = c for some r, which are . . . Sr−2 Sr−1
0
1κ(f).

Note that if S is an itinerary for x ∈ Î and r ∈ Z, then
−−−→
σr(S) is an itinerary for xr ∈ I under f .

Let

Jf = {S ∈ {0, 1}Z : S is an itinerary of some x ∈ Î}.

An element of Jf is said to be admissible (for Î). If S is admissible, then it is the itinerary of only

one x ∈ Î, since each xr is determined by its itinerary
−−−→
σr(S). The map g : Jf → Î which sends

each itinerary to the corresponding element of Î is a semiconjugacy (at most two-to-one) between the



4 PHILIP BOYLAND, ANDRÉ DE CARVALHO, AND TOBY HALL

subshift σ : Jf → Jf and the natural extension f̂ : Î → Î of f . For this reason we refer to σ : Jf → Jf
as the symbolic natural extension of f .

Remark 2. The condition that λ >
√

2 is equivalent to the tent map f ’s not being renormalizable;

which is equivalent in turn to the condition κ(f) � 101∞.

The condition that λ < 2 is equivalent to κ(f) ≺ 10∞. We exclude the case λ = 2 to avoid

having to treat it separately in lemma and theorem statements: since every element of {0, 1}N (respec-

tively {0, 1}Z) is admissible for f (respectively Î) when λ = 2, there is no loss in so doing.

2.2. Admissibility conditions. The following result, which gives conditions under which an element

of {0, 1}N is admissible for f , is well known. We nevertheless provide a proof (following those of [5]

and [7]), since it is a key result in the paper and our definition of itineraries is slightly non-standard.

Lemma 3 (Admissibility conditions for f). Write κ(f) = κ. Let s ∈ {0, 1}N. Then s ∈ jf if and only

if the following three conditions hold:

(a) σr(s) � κ for all r ≥ 0;

(b) σ(κ) � s; and

(c) if c is periodic and σr(s) = κ for some r > 0, then sr−1 = ε(f).

Proof. Let s be an itinerary of x ∈ I. Since a and b have unique itineraries σ(κ) and κ, s must satisfy (a)

and (b) by Remark 1. Moreover, if c is periodic and r > 0, then σr(s) = κ =⇒ fr(x) = b =⇒
fr−1(x) = c =⇒ sr−1 = ε(f), so that (c) holds too.

For the converse, let s ∈ {0, 1}N satisfy (a), (b), and (c). We shall show that s is an itinerary of

some x ∈ I. We can suppose that σ(κ) ≺ s ≺ κ, since otherwise s is the itinerary of either a or b.

Suppose first that c is not periodic. Define

L = {x ∈ I : all itineraries t of x have t ≺ s},
R = {x ∈ I : all itineraries t of x have t � s}.

Then a ∈ L and b ∈ R. We shall show that L and R are open in I, so that there is some x 6∈ L∪R. It

is impossible for such a point x to have one itinerary smaller than s and one larger than s, since if s

lies strictly between t0 . . . tr−10κ and t0 . . . tr−11κ then σr+1(s) � κ, contradicting (a). Therefore s

is an itinerary of x, as required.

Let x ∈ L. We need to show that if y > x is sufficiently close to x, then any itinerary of y is smaller

than s. If c 6∈ orb(x, f) then this is obvious. If c = fr(x) for some (unique) r ≥ 0 then x has itineraries

t0 . . . tr−1
0
1κ. We can suppose that si = ti for 0 ≤ i ≤ r − 1, since otherwise the result is obvious. If

t0 . . . tr−1 is even then, since both of the itineraries of x are smaller than s, we have s = t0 . . . tr−11u

for some u ∈ {0, 1}N with u ≺ κ. Let j ≥ 0 be least with uj 6= κj . Pick z > x sufficiently close to x

that if y ∈ (x, z) then f i(y) 6= c for 0 ≤ i ≤ r + j + 2. Then any y ∈ (x, z) has all itineraries of the

form t0 . . . tr−11κ0 . . . κj . . ., and the result follows. The argument is analogous if t0 . . . tr−1 is odd.

The proof that R is open in I is similar.

Now suppose that c is periodic of period n. Write ε = ε(f) and ε = 1− ε(f). Let W ∈ {0, 1}n−1 be

such that κ = (Wε)∞. Define

L = {x ∈ I : j(x) ≺ s},
R = {x ∈ I : j(x) � s}.

Since a ∈ L and b ∈ R, it suffices to show that L and R are open in I.
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Let x ∈ L. We need to show that, for all y > x sufficiently close to x, we have j(y) ≺ s. If

c 6∈ orb(x, f) then this is obvious, so we suppose that there is some least r ≥ 0 with fr(x) = c.

Therefore
t := j(x) = t0 . . . tr−1 ε (Wε)∞.

We can suppose that si = ti for 0 ≤ i ≤ r − 1, since otherwise the result is obvious. We distinguish
two cases:

Case A: t0 . . . tr−1 ε is an even word. Since t ≺ s and σr+1(s) � (Wε)∞ by (a) we have that

s = t0 . . . tr−1 ε u for some u ∈ {0, 1}N, which satisfies u ≺ (Wε)∞ by (c). Write u = (Wε)k v

for k ≥ 0 as large as possible, so that v ∈ {0, 1}N satisfies v ≺ (Wε)∞ and does not have Wε as

an initial subword. In particular, v ≺ w for any w ∈ {0, 1}N which does start with Wε. We have

s = t0 . . . tr−1 ε (Wε)k v.

Pick z > x sufficiently close to x that if y ∈ (x, z) then f i(y) 6= c for 0 ≤ i ≤ (k+ 1)n+ r+ 1. Then

j(y) = t0 . . . tr−1 ε (Wε)k+1 . . . for all y ∈ (x, z). This is because fr(y) is less than c (respectively

greater than c) if t0 . . . tr−1 is odd (respectively even); and fr+1(y) < b. Since t0 . . . tr−1 ε (Wε)k is

an odd word, it follows that j(y) ≺ s for all such y, as required.

Case B: t0 . . . tr−1 ε is an odd word. Since t ≺ s we have s = t0 . . . tr−1 ε u for some u ∈ {0, 1}N with

u ≺ (Wε)∞ (this last statement again since t ≺ s). Write u = (Wε)k v for k ≥ 0 as large as possible:

then s = t0 . . . tr−1 ε (Wε)k v, where v ≺ (Wε)∞ does not have Wε as an initial subword.

As in Case A, if y > x is close enough to x then j(y) = t0 . . . tr−1 ε (Wε)k+1 . . .. This is be-

cause fr(y) is less than c (respectively greater than c) if t0 . . . tr−1 is odd (respectively even). Since

t0 . . . tr−1 ε (Wε)k is an odd word, the result follows.

The proof that R is open in I is analogous: in this case, the argument when t0 . . . tr−1 ε is even is

similar to case B, while the argument when t0 . . . tr−1 ε is odd is similar to case A. �

The following straightforward lemma enables us to convert these conditions into admissibility con-

ditions for Î.

Lemma 4. Let S ∈ {0, 1}Z. Then S ∈ Jf if and only if
−−−→
σr(S) ∈ jf for all r ∈ Z.

Proof. If S ∈ Jf , then S is an itinerary of some x ∈ Î. For each r ∈ Z,
−−−→
σr(S) is an itinerary of xr ∈ I,

and hence lies in jf .

Conversely, suppose that
−−−→
σr(S) ∈ jf for all r ∈ Z. Then for each r ∈ Z there is a unique xr ∈ I

which has
−−−→
σr(S) as an itinerary. Now if s ∈ {0, 1}N is an itinerary for x ∈ I, then σ(s) is an itinerary

for f(x): hence f(xr) = xr+1 for each r. Therefore x = (xr) is an element of Î with itinerary S. �

Lemma 5 (Forward admissibility conditions for Î). Write κ(f) = κ. Let S ∈ {0, 1}Z. Then S ∈ Jf if

and only if the following three conditions hold:

(A)
−−−→
σr(S) � κ for all r ∈ Z;

(B) S does not start 0∞; and

(C) If c is periodic and
−−−→
σr(S) = κ for some r ∈ Z, then Sr−1 = ε(f).

Proof. Suppose that conditions (A), (B), and (C) hold. Let r ∈ Z. By Lemma 4, we need to show that
−−−→
σr(S) satisfies the conditions of Lemma 3. Conditions (a) and (c) of Lemma 3 are immediate from (A)

and (C). For (b), suppose for a contradiction that
−−−→
σr(S) ≺ σ(κ). By (B), there is some greatest i < r

with Si = 1. Then
−−−→
σi(S) = 10r−i−1

−−−→
σr(S) � κ, which contradicts (A).
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For the converse, suppose that
−−−→
σr(S) satisfies the conditions of Lemma 3 for each r ∈ Z. We need

to show that S satisfies conditions (A), (B), and (C). Conditions (A) and (C) are immediate from (a)

and (c) of Lemma 3. For (B), suppose for a contradiction that there is some R ∈ Z such that Sr = 0

for all r ≤ R. Since κ ≺ 10∞, there is some k > 0 with κ = 10k1 . . .. Then
−−−−−−→
σR−k(S) = 0k+1 . . . ≺ σ(κ),

contradicting (b) of Lemma 3. �

3. Backward admissibility

3.1. Height. In order to establish backward admissibility conditions we will use the height function

q : {0, 1}N → [0, 1/2] introduced in [8]. Here we recall the definition of this function, and state those of

its properties which we will use.

Convention 6. All rationals m/n will be assumed to be written in lowest terms.

Let q ∈ (0, 1/2]. We associate to q a sequence (ki(q))i≥1 in N as follows. Let Lq be the straight line

y = qx in R2. For each i ≥ 1, define ki(q) to be two less than the number of vertical lines x = integer

which Lq intersects for y ∈ [i− 1, i].

If q = m/n is rational, then define the word cq ∈ {0, 1}n+1 by

cq = 10k1(q)110k2(q)11 . . . 110km(q)1.

On the other hand, if q is irrational, then let cq = 10k1(q)110k2(q)11 . . . ∈ {0, 1}N. (These sequences cq
are closely related to Sturmian sequences of slope q, which can also be defined as cutting sequences

of Lq, see for example [1].)

Example 7. Figure 1 shows the line L5/17 for x ∈ [0, 17]. The numbers of intersections with vertical

coordinate lines for y ∈ [i − 1, i] are 4, 3, 4, 3, and 4 for i = 1, i = 2, i = 3, i = 4, and i = 5

respectively. Hence k1(5/17) = k3(5/17) = k5(5/17) = 2, while k2(5/17) = k4(5/17) = 1. Therefore

c5/17 = 100110110011011001, a word of length 18.

More generally, if q = m/n then the word cq is evidently palindromic, and contains n−2m+1 zeroes

divided ‘as even-handedly as possible’ into m (possibly empty) subwords, separated by 11. For example,

for each n ≥ 2 we have c1/n = 10n−11; c2/(2n+1) = 10n−1110n−11; c3/(3n+1) = 10n−1110n−2110n−11;

and c3/(3n+2) = 10n−1110n−1110n−11.

3

3

4

4

4

(0,0)

(17,5)

Figure 1. c5/17 = 100110110011011001

The following statement, which is Lemma 2.7 of [8], is essential for the definition of height.

Lemma 8. The function (0, 1/2] ∩ Q → {0, 1}N defined by q 7→ (cq0)∞ is strictly decreasing with

respect to the unimodal order on {0, 1}N. �
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We now define the height q(s) ∈ [0, 1/2] of s ∈ {0, 1}N by

q(s) = inf ({q ∈ (0, 1/2] ∩Q : (cq0)∞ ≺ s} ∪ {1/2}) .

By Lemma 8, the height function q : {0, 1}N → [0, 1/2] is decreasing with respect to the unimodal

order on {0, 1}N and the usual order on [0, 1/2].

In order to state the properties of height which we require, we need some additional notation. For

each rational q = m/n ∈ (0, 1/2), let wq ∈ {0, 1}n−1 be defined by (wq)i = (cq)i for 0 ≤ i ≤ n− 2; and

let ŵq be the reverse of wq, so that (ŵq)i = (wq)n−2−i for 0 ≤ i ≤ n− 2. We therefore have cq = wq01

for each q. Since cq is an even word, wq and ŵq are odd words.

Define lhe(q) and rhe(q) to be the shift-maximal elements of {0, 1}N given by

lhe(q) = (wq1)∞ and rhe(q) = cq(1ŵq)∞.

The first three statements of the following lemma characterize those elements of {0, 1}N which have

given height. Most significant, from the point of view of this paper, is that irrational heights are

realised by single elements of {0, 1}N, while rational heights q other than 0 are realised on intervals in

{0, 1}N with left and right hand endpoints lhe(q) and rhe(q). Note (cf. Remark 2) that, by (a), the

condition λ ∈ (
√

2, 2) is equivalent to q(κ(f)) ∈ (0, 1/2).

Lemma 9 (Properties of height).

(a) Let s ∈ {0, 1}N. Then q(s) = 0 if and only if s = 10∞; and q(s) = 1/2 if and only if s � 101∞.

(b) Let s ∈ {0, 1}N and q ∈ (0, 1/2) be rational. Then q(s) = q if and only if lhe(q) � s � rhe(q).

(c) Let s ∈ {0, 1}N and q ∈ (0, 1/2) be irrational. Then q(s) = q if and only if s = cq.

(d) Let q = m/n ∈ (0, 1/2), and 1 ≤ r ≤ m. Then the word 10kr(q)+1110kr+1(q)11 . . . 110km(q)1

disagrees with cq within the shorter of their lengths, and is greater than it in the unimodal order.

(e) Let q ∈ (0, 1/2) be rational, and let s = cq . . . ∈ {0, 1}N. Then q(s) ≤ q.
(f) Let s ∈ {0, 1}N with q = q(s) ∈ (0, 1/2) rational. Then either s = lhe(q), or there is some k ≥ 0

and t ∈ {0, 1}N such that s = (wq1)k t, and either t = cq . . . or q(t) < q.

(g) Let κ be the kneading sequence of a tent map, with q = q(κ) rational. Then either κ = lhe(q), or
κ = cq . . ..

Proof. For (a), the characterization of height 0 is immediate from the definition of height and the fact

that c1/n = 10n−11; and the characterization of height 1/2 is Lemma 3.3 of [8]. (b) is Lemma 3.4 of [8],

and (c) follows from the definition of height and that Lq does not pass through any integer lattice

points other than (0, 0). (d) is Lemma 63 of [6]. For (e), we need only observe that if s = cq . . . then

s � lhe(q), and use (b).

For (f), if s 6= lhe(q) then s � lhe(q). Let k ≥ 0 be greatest such that s starts with the word (wq1)k:

then s = (wq1)k t, where t � lhe(q) does not start with wq1. Since t � lhe(q) we have q(t) ≤ q. If

q(t) = q then, by (b) (and recalling that cq = wq01) we have (wq1)∞ ≺ t � wq01(1ŵq)∞. Therefore,

since t does not start with wq1, it must start with wq0; moreover, since wq0 is an odd word, t must

start with wq01 = cq, or it would be greater than rhe(q). This also proves (g), using the observation

that if s = κ is a kneading sequence then, by Lemma 3, we must have k = 0, since otherwise we would

have σnk(κ) � κ. �

Example 10. Let q = 1/3, so that cq = 1001, wq = 10, and ŵq = 01. Then lhe(q) = (101)∞ and

rhe(q) = 1001(101)∞ = 10(011)∞. Therefore q(s) = 1/3 if and only if (101)∞ � s � 10(011)∞.
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We will say that f is of irrational type if q(κ(f)) is irrational; that it is of rational (left hand or

right hand) endpoint type if κ(f) is equal to lhe(q) or rhe(q) respectively for some rational q; and that

it is of rational interior type otherwise.

The following result is the essential fact which makes it possible to relate heights of forward sequences

to heights of backward sequences. The real content of the lemma is the final sentence — the infimal

height forward is equal to the infimal height backward, for any bi-infinite sequence S which does not

start or end 0∞.

Lemma 11. Let S ∈ {0, 1}Z.

(a) If S does not end 0∞ then infr∈Z q(
←−−−
σr(S)) ≤ infr∈Z q(

−−−→
σr(S)).

(b) If S does not start 0∞ then infr∈Z q(
−−−→
σr(S)) ≤ infr∈Z q(

←−−−
σr(S)).

In particular, if S neither starts nor ends 0∞, then infr∈Z q(
−−−→
σr(S)) = infr∈Z q(

←−−−
σr(S)).

Proof. To prove (a), suppose for a contradiction that S does not end 0∞ and that infr∈Z q(
−−−→
σr(S)) <

infr∈Z q(
←−−−
σr(S)). Let q = m/n be a rational with infr∈Z q(

−−−→
σr(S)) < q < infr∈Z q(

←−−−
σr(S)). Then there

is some k ∈ Z with q(
−−−→
σk(S)) < q: replacing S with one of its shifts, we can assume without loss of

generality that k = 0, so that q(
−→
S ) < q. We will show that there is some r ∈ Z with q(

←−−−
σr(S)) ≤ q,

which will be the required contradiction to q < infr∈Z q(
←−−−
σr(S)).

Since q(
−→
S ) < q, Lemma 9(b) gives that

−→
S � rhe(q) = cq(1ŵq)∞. If

−→
S = cq . . ., then, since cq

is palindromic, we have
←−−−−−
σn+1(S) = cq . . ., and hence q(

←−−−−−
σn+1(S)) ≤ q by Lemma 9(e). We therefore

suppose that cq is not an initial subword of
−→
S , so that there is some i with 1 ≤ i ≤ m and some ` ≥ 1

with
−→
S = 10k1110k211 . . . 110ki−1110ki+`1 . . . (we write kj = kj(q) and use the fact that S does not

end 0∞ to get the final 1). Writing r for the length of this initial subword of
−→
S , we have

←−−−
σr(S) = 10ki+`110ki−111 . . . 110k2110k11 . . .

� 10ki+1110ki−111 . . . 110k2110k11 . . .

= 10km+1−i+1110km+2−i11 . . . 110km−1110km1 . . . (since cq is palindromic)

� (cq0)∞ (by Lemma 9(d)),

so that q(
←−−−
σr(S)) ≤ q by the definition of height, as required.

Statement (b) follows by applying (a) to the reverse of S. �

Remark 12. It is possible for one of the infima to be a minimum, and the other not to be attained.

Consider, for example, the sequence S with
−→
S = (101)∞ = lhe(1/3), and

←−
S = 1∞. Then q(

−→
S ) = 1/3,

but q(
←−−−
σr(S)) > 1/3 for all r ∈ Z.

3.2. Backward admissibility conditions. In this section we will state and prove ‘backward’ admis-

sibility conditions: that is, admissibility conditions which are expressed in terms of
←−−−
σr(S) rather than

−−−→
σr(S). We do this first in the symmetric case (Theorem 14), where they are analogous to the ‘forward’

conditions of Lemma 5; and then in the non-symmetric case (Theorem 16), where they take a quite

different form. We start with a lemma which will be the main part of the proof of necessity for both

theorems.
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Lemma 13. Write κ = κ(f) and q = q(κ). Let S ∈ Jf .

(a) If q is irrational, then
←−
S � κ.

(b) If q = m/n is rational, then
←−
S � rhe(q). Moreover, if either κ = lhe(q) or

−→
S � σn+1(κ), then

←−
S � lhe(q).

Proof. By Lemma 5, S does not start 0∞.

(a) Suppose for a contradiction that q is irrational and that
←−
S � κ. Then q(

←−
S ) < q, since, by

Lemma 9(c), κ is the unique element of {0, 1}N with height q. By Lemma 11(b) there is some r

with q(
−−−→
σr(S)) < q, so that

−−−→
σr(S) � κ, again by Lemma 9(c). This contradicts Lemma 5.

(b) Now let q = m/n be rational. If
←−
S � rhe(q) then q(

←−
S ) < q, and we get a contradiction to

Lemma 5 as in (a). We will therefore suppose that
←−
S � rhe(q) in the remainder of the proof.

To prove the ‘moreover’ statement, consider first the case where κ = lhe(q), and assume for

a contradiction that
←−
S � lhe(q) = (wq1)∞. By Lemma 9(f), we can write

←−
S = (wq1)kt, where

k ≥ 0, and either q(t) < q or t = cq . . .. If q(t) < q then we get a contradiction as in (a). On the

other hand, if t = cq . . . then
−−−−−−−−−−→
σ−(k+1)n−1(S) = cq . . . � κ (since cq is palindromic), contradicting

Lemma 5.

It remains to show that if lhe(q) ≺ κ � rhe(q) and σn+1(κ) ≺
−→
S � rhe(q), then

←−
S � lhe(q).

Using Lemma 9(g), we write κ = cqu, where u = σn+1(κ). Suppose for a contradiction that
←−
S � lhe(q). In particular, q(

←−
S ) = q since

←−
S � rhe(q).

By Lemma 9(f) we have
←−
S = (wq1)kt for some k ≥ 0, where either q(t) < q or t = cq . . .. If

q(t) < q then we get a contradiction to Lemma 5 as in (a), so we can assume that t = cq . . ..

Then
−−−−−−−−−−→
σ−(k+1)n−1(S) = cq(1ŵq)k

−→
S � cq(1ŵq)ku, since

−→
S � u by assumption. By Lemma 5 we

therefore have cq(1ŵq)ku ≺ κ = cqu, so that k > 0 and (1ŵq)ku ≺ u. However this inequality gives

u � (1ŵq)∞, so that κ = cqu � cq(1ŵq)∞ = rhe(q), which is the required contradiction.

�

Theorem 14 (Backward admissibility conditions for Î: symmetric case). Suppose that f is either of

irrational type, or of rational endpoint type. Write κ(f) = κ. Let S ∈ {0, 1}Z. Then S ∈ Jf if and

only if the following three conditions hold:

(a)
←−−−
σr(S) � κ for all r ∈ Z;

(b) S does not end 0∞; and

(c) If f is of left hand endpoint type and
−−−→
σr(S) = κ for some r ∈ Z, then Sr−1 = 1.

Proof. Suppose that S ∈ Jf . Then σr(S) ∈ Jf for all r ∈ Z, and so (a) is a consequence of Lemma 13.

If (b) did not hold then (since some Sr = 1 by Lemma 5(B)), there would be an r with
−−−→
σr(S) = 10∞,

contradicting Lemma 5(A). Condition (c) is immediate from Lemma 5(C).

For the converse, suppose that S 6∈ Jf , so that one of conditions (A), (B), and (C) of Lemma 5 fails.

We must show that one of conditions (a), (b), and (c) is false. We write q = q(κ).

If (A) fails, then let r ∈ Z with
−−−→
σr(S) � κ. Suppose first that q(

−−−→
σr(S)) < q (which must necessarily

be the case if q is irrational or q is rational and κ = rhe(q)). By Lemma 11(a), either (b) is false or

there is some i with q(
←−−−
σi(S)) < q, so that

←−−−
σi(S) � κ, and (a) is false. It remains to consider the case

where q = m/n, κ = lhe(q) and q(
−−−→
σr(S)) = q. By Lemma 9(f), we have

−−−→
σr(S) = (wq1)kt, where either
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q(t) < q or t = cq . . .. If q(t) < q then, by Lemma 11(a), either (a) or (b) is false; while if t = cq . . .

then
←−−−−−−−−−−−
σr+(k+1)n+1(S) = cq . . . � κ, and (a) is false.

If (B) fails, then either Sr = 0 for all r, in which case (b) is false; or there is some r with
←−−−
σr(S) = 10∞,

in which case (a) is false. Clearly if (C) fails then (c) is false. �

Remark 15. It is immediate from Lemma 5 and Theorem 14 that if f is of irrational type, or

if κ(f) = rhe(m/n) for some m/n, then the reversing function ρ : {0, 1}Z → {0, 1}Z defined by

ρ(S)r = S−r restricts to a homeomorphism Jf → Jf , which conjugates the symbolic natural ex-

tension σ : Jf → Jf to its inverse. On the other hand, if κ(f) = lhe(m/n), then ρ does not restrict

to a self-homeomorphism of Jf . For example, if κ(f) = lhe(1/3) = (101)∞, then the sequences with
←−
S = (101)∞ and

−→
S = 0

11∞ are both admissible (and hence correspond to different points of Î); while

the sequence with
−→
S = (101)∞ and

←−
S = 01∞ is not admissible: and, even if our conventions were

changed so that it were, it would represent the same point as the sequence with
←−
S = 1∞.

Theorem 16 (Backward admissibility conditions for Î: non-symmetric case). Suppose that f is of

rational interior type. Write κ(f) = κ and q = m/n = q(κ). Let S ∈ {0, 1}Z. Then S ∈ Jf if and only

if the following four conditions hold:

(a)
←−−−
σr(S) � rhe(q) for all r ∈ Z;

(b)
←−−−
σr(S) � lhe(q) for all r ∈ Z for which

−−−→
σr(S) � σn+1(κ);

(c) S does not end 0∞; and

(d) If c is periodic and
−−−→
σr(S) = κ for some r ∈ Z, then Sr−1 = ε(f).

Proof. The argument that if S ∈ Jf then conditions (a) – (d) hold proceeds in the same way as in the

proof of Theorem 14, using Lemmas 5 and 13.

Suppose, then, that S 6∈ Jf , so that one of conditions (A), (B), and (C) of Lemma 5 fails. As in

the proof of Theorem 14, if (B) fails then either (c) or (a) is false, and if (C) fails then (d) is false. To

complete the proof, we show that if (A) fails then one of (a), (b), or (c) is false. We therefore assume

that there is some r ∈ Z with
−−−→
σr(S) � κ. Since f is of interior type, we have κ = cq . . . by Lemma 9(g).

If q(
−−−→
σr(S)) < q, then by Lemma 11(a), either (c) is false, or there is some i with q(

←−−−
σi(S)) < q, so

that
←−−−
σi(S) � rhe(q), and (a) is false.

If q(
−−−→
σr(S)) = q, then

−−−→
σr(S) = cq t for some t ∈ {0, 1}N. Write κ = cq u, where u ∈ {0, 1}N. Since

−−−→
σr(S) � κ we have

−−−−−−−→
σr+n+1(S) = t � u = σn+1(κ). On the other hand we have

←−−−−−−−
σr+n+1(S) = cq . . . �

lhe(q): so condition (b) is false. �

At this stage it is conceivable that the conditions of Theorem 16 are in fact a symmetric version

of those of Lemma 5, expressed in a different way. Our final result establishes that this is not the

case, by showing that the maximum backward itinerary which can be realised by a tent map with

given kneading sequence mode locks on rational height intervals. This contrasts with the maximum

admissible forward itinerary, which is the kneading sequence itself.

Theorem 17 (Mode-locking of maximum backward itinerary). Suppose that f is of rational interior

type, with q(κ(f)) = q ∈ Q. Then s = rhe(q) is the greatest element of {0, 1}N with the property that

there is some S ∈ Jf with
←−
S = s.
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Proof. It is immediate from Theorem 16 that
←−
S � rhe(q) for all S ∈ Jf . It is therefore only necessary

to exhibit an element S of Jf with
←−−−
σr(S) = rhe(q) for some r ∈ Z.

Let S ∈ {0, 1}Z be given by
−→
S = (wq0)∞ and

←−
S = (1ŵq)∞, so that

←−−−−−
σn+1(S) = 10ŵq(1ŵq)∞ = cq(1ŵq)∞ = rhe(q),

where q = m/n, using cq = wq01 = 10ŵq (as it is palindromic). We will show that
−−−→
σr(S) ≺ κ(f) for

all r ∈ Z, so that S ∈ Jf by Lemma 5.

The sequence (wq0)∞ is shift-maximal, since it is the saddle-node pair of (wq1)∞ = lhe(q). Moreover,

there do not exist shift-maximal sequences s with (wq1)∞ ≺ s ≺ (wq0)∞. For such a sequence s would

necessarily have initial subword wq. If s = wq1 . . ., let k ≥ 1 be greatest such that s = (wq1)kt for some

t ∈ {0, 1}N. Then t � (wq1)∞, as s � (wq1)∞, and since wq1 is not an initial subword of t we have

t � s, contradicting the shift-maximality of s. On the other hand, if s = wq0t for some t ∈ {0, 1}N,

then t � (wq0)∞, as s ≺ (wq0)∞ and wq0 is odd, and so t � s, again contradicting shift-maximality.

Since (wq0)∞ is not the kneading sequence of a tent map (its minimal repeating word being odd)

and κ(f) � lhe(q) is shift-maximal, we have κ(f) � (wq0)∞. Hence, for any r ≥ 0, we have
−−−→
σr(S) =

σr((wq0)∞) � (wq0)∞ ≺ κ(f), establishing the result in the case r ≥ 0.

For the case r < 0, write ki = ki(q) for 1 ≤ i ≤ m, so that we have wq = 10k1120k212 . . . 120km−1120km−1.

Let r < 0. If
−−−→
σr(S) does not have initial subword 10, then clearly

−−−→
σr(S) ≺ κ(f). If it does have initial

subword 10, then there is some 1 ≤ i ≤ m such that

−−−→
σr(S) = 10ki120ki+112 . . . 120km−11 . . . ≺ 10ki120ki+112 . . . 120km−10 (wq0)∞,

which is a shift of the shift-maximal sequence (wq0)∞. Therefore
−−−→
σr(S) ≺ (wq0)∞ ≺ κ(f) as required.

�
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