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ABSTRACT 

 

Occupancy-driven intelligent control of HVAC based 

on thermal comfort 

 

Nowadays, the building sector is a substantial consumer of world’s energy. The 

dominant energy share of Heating, Ventilation and Air-Conditioning (HVAC) systems, 

makes it the focus of research for saving energy. Current air conditioning systems often 

rely on maximum occupancy assumptions and fixed schedules to maintain sufficient 

comfort level. Having information regarding occupancy situation may lead to significant 

energy-savings. On the other hand, focusing on the reduction of energy only, may lead 

to sacrificing the thermal comfort of the occupants in a building. Moreover, due to the 

difference of preference of thermal comfort of individuals, particularly in a shared space, 

a fixed set point for HVAC systems, can cause discomfort. Therefore, a comprehensive 

technique is required to save energy while maintaining thermal comfort.   

The present research proposes an occupancy-driven HVAC control system based on 

thermal comfort analysis. A ZigBee-based indoor localization system is developed to 

monitor the location of occupants inside the buildings. Algorithms are used to improve 

the accuracy of positioning system, which include Near Neighbour Area (NNA), 

Principle Component Analysis (PCA) and Exponential Moving Average algorithms 

(EMA). Computational Fluid Dynamics (CFD) is used to simulate the thermal comfort 

through modelling the indoor air distribution and flows. Wind velocity and temperature 

are simulated in several scenarios and the Predicted Mean Vote (PMV) and the Predicted 

Percentage Dissatisfied (PPD) are computed. The simulation results are verified through 
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a survey asking for occupants’ real feelings and consequently thermal comfort zones are 

identified with associated occupants, which are used for possible energy saving while 

providing satisfied level to all the occupants.  

To investigate different satisfaction feeling of occupants, a personalized thermal profile 

is created for individuals inside the test bed area. A fuzzy based approach is used to 

develop a fuzzy map of each occupant and as a result, a personal thermal preference 

profile is created. Based on the present occupants in the room, the minimum and 

maximum preferred temperatures are estimated and used for controlling the HVAC 

system.  

The Semi-hidden Markov chain method is used to create the occupants’ behavioural 

pattern which can reduce the frequencies of turning ON or OFF the HVAC systems.  The 

real-time locations of the persons, estimated based on the NNA and MA localization 

method, are combined with their behavioural patterns and thermal preference profiles 

and their comfort zones to control the corresponding HVACs.  

The proposed method has been implemented to a shared office occupied by nine users 

and equipped with two individual air conditioners. The comparison of different control 

strategies show that the proposed intelligent control has a significant potential of saving 

energy and at the same time maintaining occupants in a reasonable thermal comfort 

range.  

 

 

  



 

iv 

 

DECLARATION 

 

I hereby certify that this dissertation constitutes my own product, that where the 

language of others is set forth, quotation marks so indicate, and that appropriate credit is 

given where I have used the language, ideas, expressions or writings of another. 

I declare that the dissertation describes original work that has not previously been 

presented for the award of any other degree of any institution. 

 

Signed, 

Mehdi Pazhoohesh 

 

  



 

v 

 

 

ACKNOWLEDGEMENTS 
 

Thanks to Almighty God for giving me strength and ability to understand, learn and 

complete this thesis.  

 I would like to express my sincere gratitude to my supervisor, Dr. Cheng Zhang for her 

consistent guidance, support and patience in last three years. She always trusted and 

encouraged me during the ups and downs of my research duration. 

I also admire the help and guidance of Prof. Dr. Sai Gu, my previous supervisor. 

I owe an enormous debt of gratitude to my wife, Elaheh. Through the struggles and trials 

of this thesis, she has been a constant source of energy. Thank you. 

Last but not least, my parents, Robab and Hossein, receive my deepest gratitude and love 

for their dedication and the many years of support during my education career. 

 

   



 

  1 

TABLE OF CONTENT 

 

 Page 

Occupancy-driven intelligent control of HVAC based on thermal comfort .......................... i 

ABSTRACT ......................................................................................................................... ii 

TABLE OF CONTENT ........................................................................................................ 1 

LIST OF TABLES ................................................................................................................ 4 

LIST OF FIGURES .............................................................................................................. 5 

LIST OF PUBLICATIONS .................................................................................................. 9 

Chapter 1: Introduction ...................................................................................................... 10 

1 Introduction ................................................................................................................... 10 

1.1 Energy demand and buildings ............................................................................... 10 

1.1.1 Energy Demand of HVAC systems .................................................................. 14 

1.1.2 HVAC systems and thermal comfort ................................................................ 16 

1.2 Problem Statement ................................................................................................ 18 

1.3 Objectives .............................................................................................................. 19 

Chapter 2: Literature review............................................................................................... 21 

2 Indoor Localization systems ......................................................................................... 21 

2.1 Overview of Technologies ..................................................................................... 23 

2.1.1 Infrared sensor .................................................................................................. 24 

2.1.2 Laser Scanners .................................................................................................. 24 

2.1.3 ZigBee sensors ................................................................................................. 25 

2.2 Positioning Methods .............................................................................................. 26 

2.3 HVAC systems and thermal comfort ..................................................................... 29 

2.3.1 Description of general HVAC systems ............................................................. 30 

2.3.2 Self-Tuning and Artificial Intelligence ............................................................. 31 

2.3.3 Energy Management Techniques...................................................................... 32 

2.3.4 Thermal comfort ............................................................................................... 34 

2.3.5 Summary .......................................................................................................... 36 

Chapter 3: Methodology ..................................................................................................... 38 

3.1 Indoor localizations .................................................................................................. 39 

3.1.1 PCA ....................................................................................................................... 39 

3.1.2 Exponentially-weighted moving average (EWMA) .............................................. 43 

3.1.3 Near Neighbour Area (NNA) ................................................................................ 48 



 

  2 

3.2 Occupancy-driven and thermal comfort ................................................................ 50 

3.2.1 Creating CFD model ........................................................................................ 52 

3.2.2 Detecting occupants location............................................................................ 53 

3.2.3 Predicting behavioural based on historical pattern ........................................... 53 

3.2.4 Creating thermal preference profile ................................................................. 62 

3.2.5 Complementary control approach .................................................................... 71 

Chapter 4: Implementation ................................................................................................. 73 

4.1 Indoor Localization system development .............................................................. 73 

4.1.1 Testing of NNA ................................................................................................ 77 

4.1.2 Testing of PCA algorithm ................................................................................. 79 

4.1.3 EMA testing...................................................................................................... 84 

4.1.4 Summary .......................................................................................................... 91 

4.2 Intelligent control based on thermal comfort and occupancy-driven .................... 93 

4.2.1 Thermal comfort modelling.............................................................................. 93 

4.2.2 Thermal Zone identification ........................................................................... 100 

4.2.3 Thermal preference profile ............................................................................. 110 

4.2.4 Occupancy pattern .......................................................................................... 114 

4.2.5 Intelligent Control .......................................................................................... 121 

4.3 Performance evaluation ....................................................................................... 127 

4.3.1 Comparison and Discussions ......................................................................... 134 

4.3.2 Validation ....................................................................................................... 139 

4.3.3 Additional Observations from users’ study .................................................... 161 

Chapter 5: Conclusions, limitations and future work ....................................................... 163 

References ........................................................................................................................ 169 

Appendix A ...................................................................................................................... 176 

Appendix B ...................................................................................................................... 180 

Appendix C ...................................................................................................................... 183 

Appendix D ...................................................................................................................... 187 

1.1 Indoor spatial description .................................................................................... 188 

 Laser scanning-based system ......................................................................... 188 

 Image-based system ....................................................................................... 188 

2.1 As-built plan ........................................................................................................ 191 

2.1.1 Onsite data collection ..................................................................................... 193 

2.1.2 Image processing ............................................................................................ 193 



 

  3 

2.1.3 Raster cell analysis ......................................................................................... 195 

2.1.4 BIM model updating ...................................................................................... 196 

3.1 Thermal Image based spatial modelling .............................................................. 197 

3.1.1 Feasibility analysis and experimental measurement ...................................... 197 

3.1.2 Case study ...................................................................................................... 206 

3.1.3 Conclusion and limitations ............................................................................. 214 

Appendix E ....................................................................................................................... 217 

Appendix F ....................................................................................................................... 218 

Appendix G ...................................................................................................................... 220 

Appendix H ...................................................................................................................... 225 

 

                     



 

  4 

LIST OF TABLES 

 

 Page 

Table 1: Overview of indoor positioning technologies............................................................ 23 

Table 2: Z-stack message format ............................................................................................. 49 

Table 3: Event codes ................................................................................................................ 56 

Table 4: Comparison of NNA and CC2431 positioning engine .............................................. 79 

Table 5: Evaluation the CC2431, PCA and EMA methods ..................................................... 89 

Table 6: CFD Boundary Conditions ........................................................................................ 95 

Table 7: Solar load model input ............................................................................................... 97 

Table 8: Thermal sensation grades and corresponding objective response ........................... 100 

Table 9: Thermal Zones for persons ...................................................................................... 109 

Table 10: Hourly room temperature range from 3 Dec. to 16 Jan. 2017 ............................... 111 

Table 11: Resulting of patterns .............................................................................................. 119 

Table 12: Pattern of one occupant based on days of week .................................................... 119 

Table 13: Outside temperature ............................................................................................... 129 

Table 14: Accumulated number of hours based on the indoor temperature for baseline ....... 130 

Table 15: Accumulated number of hours based on the indoor temperature for intelligent 

system ............................................................................................................................ 133 

Table 16: Energy consumption and potential saving for different strategies ......................... 138 

Table 17: Comparison of Intelligent control and Purely occupancy control ......................... 144 

Table 18: Comparison between BL and POC ........................................................................ 148 

Table 19: Comparison of actual feeling and thermal preference profiles .............................. 152 

Table 20: Comparison of actual feeling and thermal comfort profiles .................................. 155 

Table 21: User General Information ...................................................................................... 161 

Table 22: Percentage of confirmed raster cell per object for Case I, Zone 1 ......................... 208 

Table 23: Percentage of confirmed raster cell per object for Case II, Zone 2 ....................... 211 

Table 24: Percentage of confirmed raster cell per object for case III .................................... 214 

 

 

 

  

file:///C:/Users/Mehdi/Desktop/My%20thesis/Minor%20revision/last%20day/Modified%20Dissertation%20Final%207%20Sep.docx%23_Toc492535455


 

  5 

LIST OF FIGURES 

 

 Page 

Figure 1: : World primary energy consumption in 2014 ......................................................... 11 

Figure 2: Energy consumption by sectors in EU ..................................................................... 12 

Figure 3: Energy consumption by sectors in USA in 2016 ..................................................... 13 

Figure 4: Building site energy consumption by end use in the USA ....................................... 14 

Figure 5: Residential site energy consumption by end use in the USA ................................... 15 

Figure 6: Non-residential site energy consumption by end use in the USA ............................ 15 

Figure 7: Schematic overview of the main problems, the approaches followed to find the 

solutions ........................................................................................................................... 19 

Figure 8: Intersection of three spheres in 2D .......................................................................... 27 

Figure 9: Time-Programmed Commands ................................................................................ 32 

Figure 10: Duty cycling method .............................................................................................. 33 

Figure 11: : Overview of Methodology ................................................................................... 38 

Figure 12:Principal Component Analysis flowchart for RSSI signals .................................... 42 

Figure 13: Mobile node input data from reference nodes ....................................................... 48 

Figure 14: Process flowchart of NNA localization .................................................................. 49 

Figure 15: Diagram of intelligent control ................................................................................ 51 

Figure 16: A signal model of an occupant in different areas ................................................... 55 

Figure 17: An overview of the occupancy pattern detection approach ................................... 55 

Figure 18: Periodicity detection using time window ............................................................... 59 

Figure 19: General Markov chain model ................................................................................. 61 

Figure 20: The process of thermal preference profile and room’s temperature calculation .... 64 

Figure 21: Temperature preference form ................................................................................. 65 

Figure 22: Mapping time series data to fuzzy sets .................................................................. 66 

Figure 23: Thermal preference of an occupant and associated temperature ............................ 68 

Figure 24: Fuzzy sets membership function for thermal preference profile ........................... 68 

Figure 25: Fuzzy map for two persons in the same thermal zone ........................................... 71 

Figure 26: CC2430 covered by a box ...................................................................................... 74 

Figure 27: Overview of test-bed area ...................................................................................... 76 

Figure 28: 3D model of test-bed area ...................................................................................... 77 

Figure 29: Near Neighbor Area analysis ................................................................................. 78 

Figure 30: Raw RSSI data from one node in different distances ............................................ 80 



 

  6 

Figure 31: Output RSSI data by utilizing PCA filter ............................................................... 80 

Figure 32: Comparison of X-coordinates for different methods ............................................. 81 

Figure 33: Comparison of Y-coordinates for different methods .............................................. 81 

Figure 34: 3D model of office room ........................................................................................ 81 

Figure 35: 2D model of test-bed area ...................................................................................... 82 

Figure 36: Error distribution of two systems in different speeds ............................................ 83 

Figure 37: Moving average and RSSI values .......................................................................... 85 

Figure 38: Moving Average filter implemented on both RSSI and distance values ................ 86 

Figure 39: Comparison of X coordinate for different methods ............................................... 87 

Figure 40: The localization error using CC2431, PCA and EMA methods ............................. 88 

Figure 41: The distance error based on the number of tests .................................................... 89 

Figure 42: The architecture of sensors and test-path ............................................................... 90 

Figure 43: Errors for all methods at different speeds .............................................................. 91 

Figure 44: The geometry of office room with nine occupants ................................................ 94 

Figure 45: Sample thermal images from different walls of the office ..................................... 95 

Figure 46: Grid generation in Airpak ...................................................................................... 99 

Figure 47: The location of four planes for analysis in the CFD ............................................ 101 

Figure 48: Verified model results based on temperature and air-velocity ............................. 103 

Figure 49: Indoor airflow streamlines from the air conditioning to outlet window .............. 104 

Figure 50: Iso-surface result of indoor airflow with speeds higher than 0.25 m/s ................ 105 

Figure 51: Predicted Mean Vote (PMV) model ..................................................................... 106 

Figure 52: Predicted Percentage Dissatisfied (PPD) model .................................................. 106 

Figure 53: Analysis of the room with four occupants and HVAC-1 ...................................... 107 

Figure 54: Analysis of the room with five occupants and HVAC-2 ...................................... 109 

Figure 55: Room temperature from 3 Dec. to 16 Jan. ........................................................... 111 

Figure 56: Temperaure distribution 3 Dec. to 16 Jan. ........................................................... 112 

Figure 57: Temperature distribution 3 Dec. to 16 Jan. for working hours ............................ 112 

Figure 58: Thermal comfort preference and the calculated comfort profile fuzzy sets for each 

user: (a) data set and comfort profile for user 1 (b) data set and comfort profile for user 2

 ....................................................................................................................................... 113 

Figure 59: Room temperature and average preference boundary .......................................... 114 

Figure 60: One day occupancy monitoring of the office for nine persons ............................ 115 

Figure 61: Occupancy number of office during one week .................................................... 116 

Figure 62: One month occupancy recorded in the office ...................................................... 117 



 

  7 

Figure 63: One week occupancy pattern for person 3 ........................................................... 118 

Figure 64: Markov model of behavioural patterns ................................................................ 120 

Figure 65: Semi-Markov model of behavioural patterns ....................................................... 121 

Figure 66: The process of intelligent control ......................................................................... 122 

Figure 67: Energy consumption based on Baseline strategy ................................................. 130 

Figure 68: Energy consumption based on Duty cycle strategy ............................................. 131 

Figure 69: Hourly temperature and occupancy ..................................................................... 132 

Figure 70: HVAC power consumption for IC ....................................................................... 133 

Figure 71: HVAC power consumption for purely occupancy strategy .................................. 134 

Figure 72: Comparison of accumulated number of hours based on the indoor temperature for 

baseline and intelligent cotrol ........................................................................................ 135 

Figure 73: HVAC power consumption for baseline and intelligent control .......................... 137 

Figure 74: HVAC loads for POC and IC ............................................................................... 138 

Figure 75: Intelligent HVAC controller results ..................................................................... 140 

Figure 76: Comparison of IC and POC ................................................................................. 144 

Figure 77: Comparison of BL and POC ................................................................................ 147 

Figure 78: Estimated and measured saving energy ............................................................... 148 

Figure 79: HVACs keep on for one month based on POC .................................................... 149 

Figure 80: Thermal comfort preference test for user 3 .......................................................... 151 

Figure 81: Thermal comfort preference test for user 7 .......................................................... 151 

Figure 82: Comparison of actual feeling and thermal preference profiles ............................ 152 

Figure 83: Thremal preference range when one 1 is fully occupied ..................................... 153 

Figure 84: The second survey votes from four occupants in the same thermal zone ............ 154 

Figure 85: Daily thermal sensation vote for baseline method ............................................... 156 

Figure 86: Daily thermal sensation vote for duty cycle method ............................................ 157 

Figure 87: Thermal sensation vote for the POC method ....................................................... 158 

Figure 88: Thermal sensation vote for the IC strategy .......................................................... 159 

Figure 89: Thermal sensation vote for all methods ............................................................... 160 

Figure 90: Thermal image-based automated progress monitoring procedure ....................... 192 

Figure 91: Image processing method .................................................................................... 195 

Figure 92: Cell-by-Cell Encoding of raster cell .................................................................... 196 

Figure 93: Optical (a) and thermal (b) images of concrete beams ........................................ 199 

Figure 94: Temperature variation of concrete and environment for six consecutive days .... 200 

file:///C:/Users/Mehdi/Desktop/My%20thesis/Minor%20revision/last%20day/Modified%20Dissertation%20Final%20version%20Mehdi%20Pazhoohesh%207%20September.docx%23_Toc492546176


 

  8 

Figure 95: Temperature differences of concrete and environment within 6 consecutive days

 ....................................................................................................................................... 202 

Figure 96: Different temperature areas on the surface of concrete columns and stairs ......... 203 

Figure 97: Different temperature areas on the surface of concrete columns ......................... 203 

Figure 98: Different humidity areas on the surface of concrete columns .............................. 204 

Figure 99: Identify areas from poor lighting condition image .............................................. 205 

Figure 100: Identify objects from a noisy environment ........................................................ 206 

Figure 101: A partial BIM model of the construction site ..................................................... 207 

Figure 102: Case study for zone 1 ......................................................................................... 209 

Figure 103: Case study for zone 2 in a  noisy environment .................................................. 211 

Figure 104: Image processing for optical, thermal and humidity images ............................. 213 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Mehdi/Desktop/My%20thesis/Minor%20revision/last%20day/Modified%20Dissertation%20Final%20version%20Mehdi%20Pazhoohesh%207%20September.docx%23_Toc492546185


 

  9 

 

 

 

 

 

LIST OF PUBLICATIONS 

 M. Pazhoohesh and C. Zhang, “ Investigating Occupancy-driven Air Conditioning 

Control based on Thermal Comfort Level,” ( In Press) 

Journal of Architectural Engineering, American Society of Civil Engineers (ASCE) 

 C. Zhang, M. Pazhoohesh, R. Shahmir Nazim, A. Hammad, “Quick construction 

progress monitoring for concrete structure using thermal imaging techniques,” 

Submitted to  Journal of Construction engineering and management, American 

Society of Civil Engineers  (ASCE), Second round revision 

 C. Zhang and M. Pazhoohesh, “Construction progress monitoring based on thermal-

image analysis,” in ICCBEI & CCACHE, Taipei, Accepted 

 

 C. Zhang and M. Pazhoohesh, “Thermal Comfort based Occupancy-driven Building 

Energy Saving Control Strategies,” in WSBE17, Hong Kong, Accepted 

 

 M. Pazhoohesh, C. Zhang, R. Shahmir Nazim, “Investigating thermal comfort and 

occupants position impacts on building sustainability using CFD and BIM,” in 49th 

International Conference of the Architectural Science Association( ANZAScA), 

Australia, 2015 

 

 M. Pazhoohesh and C. Zhang, "A Practical Localization System Based on principal 

component analysis," in 2nd World Congress on Computer Applications and 

Information Systems, Hammamet, Tunisia, 2015. 

 

 M. Pazhoohesh and C. Zhang, "Building Energy Management based on occupant 

location," in Sustainable Buildings and Structures: Proceedings of the 1st 

International Conference on Sustainable Buildings and Structures, Suzhou, P.R. 

China, 2015. 

 

 M. Pazhoohesh and C. Zhang, "Automated construction progress monitoring using 

thermal images and wireless sensor networks," in CSCE 2015, Building on Our 

Growth Opportunities, Regina, Canada, 2015. 

 



 

  10 

 

 

 

Chapter 1: Introduction 

1 Introduction 
 

Heating, Ventilation, and Air-Conditioning (HVAC) systems are widely used to control the 

indoor environment to provide comfortable conditions in homes, offices, and commercial 

buildings. While there are many arguments in the favour of HVAC systems such as having 

healthier life and a more productive environment, there are some critical issues. For example, 

HVAC systems use a large portion of energy and occupants in a shared space will experience 

different levels of satisfaction. Hence, the challenge of saving energy while maintaining comfort 

motivates further research to find a solution to these problems.  

 

1.1 Energy demand and buildings 

The global market energy usage is increasing continuously and is predicted to keep an almost 

50% upward trend from 2009 to 2035. Developing economies outside the Organization for 

Cooperation and Development (OECD), non-OECD Asia in particular, is where this growth mostly 

occurs. Over the predicted period, the energy use by developed OECD nations rises by 14%, while 

entire non-OECD energy consumption rises by 84%. Figure 1(a) illustrates the trend of world 

primary energy consumption from 1990 to 2014. A sharp rise in the energy consumption of the 

Asia and Oceania can be observed which is due to the rapid economic growth of these regions. As 
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Figure 1(b) indicates, in 2014 China and USA were leading countries of global energy use with 

23% and 18% energy usage, respectively [1]. 

 

 

(a) Total Primary Energy Consumption 

 

  

 (b) Total Primary Energy Consumption for selected countries 

 

Figure 1: : World primary energy consumption in 2014 
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To investigate where the most energy is consumed, energy consumption can be divided into 

four principle categories: commercial, transportation, industrial, and buildings. Energy 

consumption in buildings has the greatest share and is a remarkable contribution in most regions 

based on pay levels, climate, and resources. 

 In 2014, the entire energy usage of residential and non- buildings in Europe was approximately 

40% of total energy consumed [2]. Considering all end-use divisions, buildings are the leading 

division, and transportation follows it with 33% as Figure 2 represents.  

In building sectors, European households consumed 38% more electricity in the last 20 years. 

In addition, during the same duration, non-residential buildings were responsible for 74% more 

electricity consumption in the last 20 years. 

 

 

 

Figure 2: Energy consumption by sectors in EU 
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From Figure 3, in the USA, 41% of energy consumption is in building sectors, 36% more than 

in transportation and industrial sectors [3]. 

 

  

 

Figure 3: Energy consumption by sectors in USA in 2016 
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1.1.1 Energy Demand of HVAC systems 

 

HVAC systems have the greatest end use energy consumption in buildings. Investigations 

indicate that 10% to 60% of the total building energy consumption is due to air-conditioning 

systems [6]. From Figure 4, it can be concluded that HVAC systems in buildings are responsible 

for 50% of the on-site energy consumption in the USA [7]. The share of HVAC energy use in 

residential and non-residential buildings is 54% and 43% of on-site energy consumption, 

respectively. (Figure 5 and Figure 6 ).  

 

Figure 4: Building site energy consumption by end use in the USA 
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Figure 5: Residential site energy consumption by end use in the USA 

 

 

 

Figure 6: Non-residential site energy consumption by end use in the USA 
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Despite various energy efficiency guidelines and programs in the EU, electricity usage has 

continued to increase in recent decades.  In the period of 1999-2004, the total electricity usage in 

building sector increased by 10.8% [8].  

The demand of air conditioning in UK buildings also increased dramatically to respond to the 

increased demands of comfort by occupants in the buildings. It is expected that about 40% of 

commercial floor-space will be covered by air conditioners by 2020 compared with 10% coverage 

in 1994. In a typical office, over 30% of the annual electricity usage is referred to the air 

conditioning systems [9]. 

Presented statistic data from different regions of the world indicates the importance and 

potential for energy savings in building sectors. In addition, the role of HVAC systems in buildings’ 

energy consumptions makes it a key factor in the world energy savings.  

1.1.2 HVAC systems and thermal comfort  

 

Well-designed building ventilation systems not only lead to a reduction in energy consumption, 

but should also provide satisfaction for building occupants. A good indoor environment is essential 

for good productivity, less vacancy, and better health [10]. The assessment of thermal comfort in 

offices showed that good thermal comfort level delivered more satisfaction for the occupants, and 

also improved their performance [11].  

Thermal comfort is an important factor that is considered to evaluate the indoor environment 

quality [11]. The American Society of Heating, Refrigeration and Air-Conditioning Engineers 

(ASHRAE) defines Thermal Comfort as the condition of the mind which expresses satisfaction 

with the thermal environment. Thermal comfort is determined by several factors: temperature (air, 

radiant, and surface), humidity, air speed, outdoor temperature design conditions, outdoor 
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humidity design conditions, clothing, and expected activity [12]. According to Kan et al., bad 

indoor environments may lead to upper-respiratory symptoms, headaches, fatigue and rashes, 

known collectively as Sick-Building syndrome [13]. 

The scientific community has been gathering knowledge on comfort level in indoor 

environments and the significant findings are now in the form of international and national 

standards and solutions.  For example, results of a study in Germany on workplace occupants’ 

satisfaction in 16 office buildings showed that the effect of occupants’ intervention and control 

may influence their thermal satisfaction and productivity [14]. Cena and Dearhave analysed the 

thermal comfort in 22 air-conditioned office buildings in different climates. They concluded that 

job satisfaction has a relationship with thermal comfort level [15]. Huizenga et al. provided a 

survey in 215 buildings in the US, Canada and Finland and concluded that 61% of occupants were 

not satisfied with the adjusted temperature in their office [16]. Above research observes the 

importance of thermal comfort and the difficulties in satisfying all persons in the same workspace. 

However, performing a survey is not accurate enough to evaluate the thermal comfort in a building.  

Meanwhile, simulations based on relevant parameters are used to analyse and improve thermal 

comfort. Computational Fluid Dynamics (CFD) is known as the most reliable method for 

simulation and evaluation in industry sectors, especially for indoor environment. The main 

advantage of CFD is in dealing with complex flows within built environments where it can provide 

safe, healthy and comfortable conditions, test energy-efficient designs, or employ specific 

environmental requirements. On the other hand, the accuracy of its predictions is a main challenge 

as the simulation is based on the highest capacity of thermal loads in each environment and some 

other variables such as occupied areas during a working day are also needed to be considered [10] 

[17] [18] [19]. 
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Furthermore, the CFD simulation results can be used to draw a guideline for an automated 

control system to meet the requirements of both thermal comfort satisfaction and energy saving. 

For example, Kan et al., proposed a computational intelligence approach to reduce power 

consumption while providing occupants' comfort satisfaction [13]. 

1.2 Problem Statement 

 

Despite various attempts at energy consumption reduction, the HVAC system remains a very 

large portion of the total energy usage in building sectors. 

 In addition, the location of occupants is a significant parameter to be considered to provide a 

better thermal comfort and reduce unnecessary energy. Current air conditioning systems often rely 

on maximum occupancy assumptions and fixed schedules to maintain sufficient comfort level. 

Having knowledge regarding the occupancy situation may lead to significant energy-savings in a 

building. However, due to unpredictable locations of the occupants during the design stage, the 

fixed locations of ventilation systems, outlets, doors, and windows give little options to the 

occupants during operation stage. Therefore, more focus should be put on methods that can 

maintain the comfort level to occupants with minimum energy usage. 

In addition, the ‘feeling comfortable’ range was very personal and could not be characterized 

objectively due to the differences, both physiological and psychological, of individuals.  Hence, 

providing satisfaction for share rooms is still challenging.  

Although the Predicted Mean Vote (PMV) model has extensively utilized for thermal comfort 

modelling, this model has some drawbacks including its limitation to consider behavioural and 

thermal variations.  
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An automated occupancy-driven HVAC system may lead to reduction of energy in buildings. 

However, it is essential to consider the occupants’ comfort level for such systems.  

The overview of problems and related approach is depicted in Figure 7. 

 

 

Figure 7: Schematic overview of the main problems, the approaches followed to find the solutions 

 

1.3 Objectives 

The aim of this research is to propose an innovative approach of intelligent control of HVAC 

system to meet both energy saving and providing satisfaction for the occupants in a shared space.  

The main objectives are as follows 
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 To customize and enhance the accuracy of an indoor localization system for the goal of 

real-time tracking of occupants and identification of the unoccupied areas and providing 

data to create occupants’ behavioural patterns; 

 To define thermal zones in the share space based on thermal comfort level assessments and 

create an individual thermal profile for occupants; 

 To develop an algorithm that optimizes energy consumption while maintaining comfort 

level with knowledge about current temperature, thermal zones, real-time and historical 

occupancy data, and thermal preference profiles of users; and 

 To investigate the performance of the proposed approach through practical testing and 

show that the method can achieve valuable energy savings while attaining occupants’ 

satisfactions. 

 

 

This work is structured as follows. 

Chapter 2: Literature review: a comprehensive description of the various areas that are relevant 

to this project is presented in this chapter.  

Chapter 3: Methodology: This section outlines the problems presented in Figure 7  and the 

approach taken to find the solution.  

Chapter 4:  Implementation: This section presents the   developed approach and corresponding 

results and validation of the proposed approach.  

Chapter 5: Conclusion: This section summarizes this research and discusses the implications for 

future research and development. 
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Chapter 2: Literature review 

In this chapter, a comprehensive description of the various areas that are relevant to this project 

work are introduced. An overview of localization systems and different technologies are presented. 

The Received Signal Strength Indicator (RSSI) based technique and trilateration model are 

explained. Indoor spatial modelling techniques are discussed. Next, the general description of 

HVAC systems is presented. Finally, a review of relevant related works carried out by other 

researchers in the thermal comfort areas is provided. 

 

2 Indoor Localization systems 
 

After the success of the satellite-based localization services for outdoor environment, location 

services for indoor environments have become a focus of research. As the GNSS (Global 

Navigation Satellite System) cannot perform well within buildings, indoor localization systems 

have become more attractive topic of research. However, locating people and objects in the indoor 

environment is a significant challenge. This has left indoor positioning applications waiting for a 

feasible technical solution. Enhancing the performance of indoor localization systems, has the 

potential to create unprecedented new commercial and scientific opportunities. 

Most positioning systems should theoretically work in both environments. However, 

practically, system performances differ significantly because indoor environments are challenging 

for position finding for several reasons such as: Non‐Line‐of‐Sight (NLoS) conditions, Signal 

reflection from walls and furniture which creates a multipath problem, Signal scattering and 

attenuation due to greater density of obstacles and high demand for precision and accuracy in 
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indoor environment. However, indoor environments facilitate positioning in other ways such as: 

Small coverage areas, low weather impact, infrastructure such as electricity, internet access, walls 

suitable for target mounting, lower dynamics and fixed geometric constraints from planar surfaces 

and orthogonality of walls.  

There are various applications for indoor positioning system. For example, in indoor 

environment, Location-Based Service (LBS) can provide information to find a specific store in a 

large mall or a specific office in a public building. LBS applications include navigation to the right 

terminal at the airport or train station.  Home applications of indoor positioning systems include 

physical gesture games, lost object search, and all location based services. For instance, Ambient 

Assisted Living (AAL) systems focus on IT support for elderly people in their homes and indoor 

positioning functionality is an essential part of the system.  As an example, Lin et al.  [20] provided 

a wireless health care service system for elderly with dementia and family members can identify 

the real-time positions of missing elderly using mobile phone through the service platform. Indoor 

positioning systems have become increasingly important for medical applications in hospital. For 

example, it is essential to track the location of medical personnel in emergency situations or fall 

detection of patients. Jihong [21] utilized a ZigBee based network to facilitate the monitoring and 

managing patient in the hospital.  He considered the RSSI value to develop positioning system on 

the platform of G2455 module. To check some phenomenon such as temperature, pressure, 

humidity, and deformation of objects and structures, environmental monitoring is used. A group of 

nodes are designed as Wireless Sensor Network (WSN) to observe such parameters. Deshmukh 

and Shinde [22] discussed an environmental monitoring system using open source hardware 

raspberry pi and ZigBee to gather the data of different environmental parameters. One of the 

applications of indoor localization system can be defined as the smart parking. For this purpose, it 
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is essential to detect the parking space occupation and provide navigation data. Yuan et al. [23] 

utilized a WIFI system for navigation and geomagnetic sensors as a wireless sensor network to 

provide a smart parking system. There are various applications of localization systems in 

construction sites such as tracking workers for safety purposes or monitoring the progress of 

constructions. We introduced an automated progress monitoring system in construction sites using 

a ZigBee network and infrared camera [24] . 

2.1 Overview of Technologies 

 

High-level sensor technologies are characterized in Table 1. Specific accuracy and coverage 

values are given in interval form wherein most approaches reside, though there are many 

exceptions. The table only mentions the main measuring principles and applications. 

Table 1: Overview of indoor positioning technologies 

 

Technology Typical 

Accuracy 

Typical 

Coverage(m) 

Typical Measuring 

Principle 

Typical Application 

Cameras 0.1mm-dm 1-10 Angle measurements from 

images 

Metrology, robot 

navigation 

Infrared cm-m 1-5 Thermal imaging, active 

beacons 

People detection, tracking 

Tactile & Polar 

Systems 

µm-mm 3-2000 Mechanical, 

interferometry 

Automotive, metrology 

Sound cm 2-10 Distances from time of 

arrival 

Hospitals, tracking 

WLAN/WiFi M 20-50 Fingerprinting Pedestrian navigation, 

LBS 

RFID dm-m 1-50 Proximity detection, 

fingerprinting 

Pedestrian navigation 

Ultra-wideband 

 

cm-m 1-50 Body reflection, time of 

arrival 

Robotics, automation 

High Sensitive 

GNSS 

10m ‘global’ Parallel correlation, 

assistant GPS 

Location based services 

Pseudolites cm-dm 10-1000 Carrier phase ranging GNSS challenged pit 

mines 

Other Radio 

Frequencies 

m 10-1000 Fingerprinting, proximity Person tracking 
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Inertial 

Navigation 

1% 10-100 Dead reckoning Pedestrian navigation 

Magnetic 

Systems 

mm-cm 1-20 Fingerprinting and ranging Hospitals, mines 

Infrastructure 

Systems 

cm-m building Fingerprinting, 

capacitance 

Ambient assisted living 

 

The description of some popular technologies is provided in the following sections. 

2.1.1 Infrared sensor 

 

The infrared (IR) spectral region has been commonly used for detecting or tracking objects or 

persons. IR wavelengths are longer than visible light wavelengths, but shorter than those of 

terahertz radiation. IR light is invisible to the human, so this technology is less intrusive compared 

to visible light positioning. Exploiting infrared signals has three general methods: a) use of active 

beacons [25], b) infrared imaging using natural (i.e. thermal) radiation or c) artificial light sources 

[26].  

Artificial IR light sources can be detected by systems using high resolution infrared sensors at 

sub-mm accuracy. However, systems that contain active beacons or natural radiation are used to 

detect the presence of an individual in a room or for rough position estimation. 

2.1.2 Laser Scanners 

 

Terrestrial laser scanners use a non‐contact ranging technology for 3D point measurement and 

3D point cloud acquisition. Combining readings at a horizontal and a vertical circle, Cartesian 

coordinates are developed from the polar coordinates of measured points, generating a so‐called 

point cloud of the scene. Optical triangulation, phase and pulse measurements are the major 
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methods of distance estimation. Close range scanning captures an area of less than 100 m or up to 

3 km. Registration can be used to combine scans from multiple stations, making laser scanning a 

scalable technique. An example of laser scanner for indoor localization can be mentioned as 

Khoshelham [27] in which during multiple scans, he matched planar objects such as walls. If two 

scans exhibit at least 3 correspondences of intersecting planes, it is possible to determine relative 

scanner positions with an accuracy of a few centimetres. Due to the long acquisition times for 

capturing large 3D point clouds, this method is not viable as a real‐time method for indoor 

positioning.  

2.1.3 ZigBee sensors 

 

ZigBee is a standard of wireless technology, which can be regarded as a low rate Wireless 

Personal Area Network (WPAN). It is most useful in applications with demanding low‐power 

consumption without large data throughput. A ZigBee node has a signal range of up to 100 m in 

free space, but only 20 m to 30 m indoors. RSSI values are used to calculate distance between two 

ZigBee nodes. Unfortunately, radio communication can be disrupted using ZigBee since it operates 

in the unlicensed ISM (Industrial, Scientific and Medical ) bands and affect by interference from 

a wide range of signal types of the same frequency. Two types of nodes are used in a ZigBee-based 

localization network; reference nodes and blind nodes. Reference nodes are installed in places with 

known coordinates. Blind nodes are carried with targets whose locations need to be tracked. The 

position of the target can be estimated from the RSS value and Trilateration or Triangulation 

methods. Larrañaga et al. [28]  installed a ZigBee network using 8 reference nodes in an office 

space, where a mobile ZigBee node was located. They reported an average accuracy of 3 m for 

positioning the target. 
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2.2 Positioning Methods 

 

The RF localization techniques can be categorized in three major groups: proximity, sense 

analysis, and Trilateration. In the proximity method, sensors detect and measure reflected infrared, 

visible light, or RF waves to recognize the presence of an object or person in certain areas [29]. 

Sense analysis (fingerprinting) consists of two phases; offline and online. During the offline phase, 

a radio map database is created based on the radio signal behaviours. In the online phase, the 

location of the target is estimated according to the similarity between the received signal strength 

and the database. Trilateration is a method based on measuring the distance between a mobile 

target and reference nodes. For this method, at least three reference nodes are required. Different 

techniques can be utilized to estimate the position of the mobile target: Time of Arrival (ToA) [30], 

Phase of Arrival (PoA) [31], Time Difference of Arrival (TDoA) [32], Received Signal Strength 

(RSS-based) [33], hop-based and Reverse Time of Flight (RTOF) [34].  

The main concept of indoor and outdoor positioning can be summarized as follows. Signal 

packets are sent from reference nodes (fixed anchor) to mobile nodes. Afterward, the characteristic 

of the received signal based on the Resieved Signal Strength Indicator (RSSI), the time of arrival 

(ToA), the link quality indicator (LQI) [35], or the angle of arrival (AoA) [36], is analysed. By 

utilizing any position detection algorithms, the location of the mobile target is estimated. Due to 

the simplicity of measuring RSSI or its relative LQI, RSSI-based localizations have attracted 

considerable attention. In RSSI-based systems, the distance between the transmitter and the 
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receiver is computed utilizing the received signal strength by considering the signal propagation 

model. 

Equation (1), represents the most popular form of propagation model proposed by Rappaport 

[37]. 

 

 

where d denotes the distance between transmitter and receiver,  𝑑0 is the reference distance, 𝑃𝑟(𝑑) 

is the received power, 𝑃𝑟(𝑑0) the received power of the point with a reference distance 𝑑0, n is path 

loss exponent factor which is environment dependence, 𝑥σ is Guassian random variable which 

shows the change of power when distance is fixed. To simplify the computation, the Guassian 

random variable is ignored and 1 meter distance is replaced as 𝑑0 as 

 

 

 

where A is the received signal power of receiver for one meter. 

 

Figure 8: Intersection of three spheres in 2D 

(1) 

) 

(2) 

) 
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By the use of trilateration model, the position of target will be calculated. Figure 8 illustrated 

the three reference nodes (a, b and c) that have three distances (𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐) to the blind point. The 

formula for all spheres equals to: 

2 2 2

2 2 2

2 2 2

: ( ) ( )

: ( ) ( )

: ( ) ( )

a a a

b b b

c c c

SphereA d x x y y

SphereB d x x y y

SphereB d x x y y

   

   

            

Applying Dixon method results in achieving the radical plane for sphere intersection. 

2 2 2 2 2 2

2 2 2 2 2 2

( ) .( ) (( ) ( ) ( )) / 2

( ) .( ) (( ) ( ) ( )) / 2

c b c b b c b c b c a

a b a b b a b a b a b

x x x y y y d d x x y y k

x x x y y y d d x x y y k

         

              

Therefore, the position based on X-Y can be found from  
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For n reference nodes, equations can be written in the form of matrix; 
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Or 

A[
𝑋
𝑌
] = 𝐵 

And,  

   
1

*  T
X

A A A B
Y

 
 

                                                          

 

 

The diversity of various technological solutions for indoor positioning indicates how 

significantly interdisciplinary the field is. Despite the abundance of approaches, it is important to 

choose the most suitable technology for a given application. For this research, ZigBee technology 

has been selected due to factors such as availability, minimal costs, coverage range and simplicity 

of installation and programming.  In addition, the importance of user identification in this project 

is another reason to utilize the ZigBee technology.  

 

2.3  HVAC systems and thermal comfort 

 

Energy efficiency can be evaluated from different perspectives, such as that of an HVAC-

system, a building, or human behaviour. Investigating the energy efficiency of HVAC systems can 

either concentrate on the performance of the system in total or the efficiency of sub components. 

For instance, the target can be focused on the electrical efficiency of components such as the pump 

(7) 

) 

(8) 

) 
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or fans, or settle on an arrangement of how to schedule the overall workloads of the components. 

If the objective is to focus on the building, minimizing thermal losses should be the target.  

Another type of analysis is to focus on the demand side where the occupants’ behaviours play 

an important role in the study. Occupancy is amongst the most critical elements affecting energy 

efficiency of HVAC systems as it determines loads on the demand side. 

2.3.1 Description of general HVAC systems    

 

A Heating, Venting and Air Conditioning (HVAC) system is used to control the temperature, 

humidity and CO2 level. Typically, the capacity of an HVAC system is designed based on the space 

that needs to be conditioned and controlled. In most cases, the designed capacity is greater than 

the actual load [38]. Therefore, the lack of a well-designed control system may result in overheat 

or overcool spaces. 

The main classification of HVAC systems can be defined as central systems and self-contained 

unit packages. The central systems utilize the primary energy source (electricity or fuel), which is 

placed in a central location. A combination of the central subsystem and multiple end-use 

subsystems provide heating or cooling and distribute this throughout the building [38]. 

The combination of central hot and chilled water and fan systems or terminal units can be 

labelled as a frequently used system. A VAV box is used as a mixing box where the multiple end-

use spaces are considered. A single unit that utilizes a primary energy source (electricity or gas) 

and generates heating or cooling to the space can be defined as the unit package. The rooftop 

HVAC systems and air-to-air heat pumps are referred to as the self-contained unit packages. 
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The starting, regulation and stopping, HVAC systems can be defined as the term control. These 

controls also measure variables and collect data, processing data and inducing a control action are 

distinct functions which are needed to be controlled [38]. The sensor, controller, controlled device, 

and source of energy are the essential elements needed from the simplest room thermostat to the 

most complicated computerized control.  Sensors measure the controlled variables such as 

humidity, temperature, or airflow and transfer this data to the controller. The controller processes 

the data and provides output for the controlled device. The controlled device minimizes the error 

of controlled variables to keep the controlled variable (air temperature) to some predefined value, 

defined as the set point. The source of energy provides power for the control system.  

2.3.2 Self-Tuning and Artificial Intelligence  

 

As tuning is known to be a time consuming and complicated process in HVAC systems, many 

investigators have focused on this area. The basic classification of tuning methods can be defined 

as follows: 

1) Auto-tuning – modern buildings are equipped with computer software to control and 

monitor mechanical and electrical equipment such as HVAC systems. The software is 

known as Building Management Systems (BMS) or Building Automation systems (BAS). 

The software can be adjusted to control air conditioners based on different schedules.   

2) Adaptive Techniques – The capability of BMS software to monitor the changing conditions 

and choose different settings based on new sensed conditions.  

3) Artificial Intelligence- This type of control is designed to make a decision based on the 

various inputs or previous data. The intelligent control can generate the output signal using 

fuzzy logic, neural networks or machine learning algorithms.   
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2.3.3 Energy Management Techniques  

 

There are various strategies can be used to save energy in HVAC systems such as Timed 

Programmed Commands,   Duty Cycle and Optimum Start / Stop.  Following is the explanation of 

most popular techniques. 

Time-Programmed Commands 

 

Despite the high potential for energy savings using this strategy, this method is only effective 

for buildings with long unoccupied periods. For instance, when the building had a certain 

occupancy schedule, the heating or cooling setpoint adjusted to a specific temperature. At night, 

lights and HVAC components such as fans, chillers, and other mechanical components are 

deactivated.  There are various temperature setpoints for this strategy.  

On the other hand, for the occupants who enter the building outside the scheduled time, the 

comfort level will be insufficient.   

    

 

Figure 9: Time-Programmed Commands 
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Duty Cycling  

 

Duty cycling (Figure 10) is a strategy that performs based on cycles of specific loads [39]. For 

example, each component may be cycled “On” for 20 minutes and then “Off” for a period of 10 

minutes. A different cycling schedule can be implemented for occupied and unoccupied periods. 

Despite the simplicity of the method, cost effectiveness and a lower thermal level are the main 

differences in this strategy. 

 

 

Figure 10: Duty cycling method 

      

Optimum Start / Stop  

 

Optimum start/stop are the main feature of Time-Programmed Commands. In this method, the 

computer calculates the best or optimum time to start or stop HVAC systems based on the 

occupants’ regular schedules [40]. However, this strategy can be useful if there is a long 

unoccupied period in the building.  
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2.3.4 Thermal comfort   

 

The Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) models are 

widely used to measure and assess occupants’ thermal comfort.  Several strategies have been used 

to integrate the PMV and PPD models with HVAC systems to obtain optimized energy 

consumption. Some of these methods focus on the setpoint adjustment based on the existing HVAC 

control logics [41], while others act as a go-between for existing HVAC control logics. For 

instance, fuzzy controllers [42] [43], genetic algorithm [44], and neural network based controllers 

[45] are utilized as different approaches. 

Kan et al. proposed a computational intelligence approach to reduce power consumption while 

providing occupants' comfort satisfaction [13] .Intelligent control on an HVAC system was applied 

to improve the thermal comfort, visual comfort, and air quality comfort. Yu and Lin also proposed 

an intelligent control system based on wireless sensing technology, prediction models, and fuzzy 

theory [46]. That system was able to analyse and forecast the indoor working environment and 

efficiently provide comfortable air while optimizing energy consumption. The dynamic matrix 

control (DMC) and generalized predictive control strategies were compared by Nowak et al. by 

utilizing a simulation to optimize energy consumption and maintain PMV values between -0.5 and 

0.5 on the PMV index [47]. 

Freire et al. [48] investigate the possibility of saving energy while maintaining thermal comfort 

by considering two strategies; one based only on comfort level and the other based on both energy 

use and comfort assessment. They used simulation-based predictive control laws to minimize 

energy consumption and maintain the comfort level in an acceptable range. In other work, Ferreira 
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et al. [49] create an actual building model and evaluate a neural network based control strategy 

results. They report the potential of 50% energy savings while maintaining thermal comfort.  

In spite of the fact that researchers have broadly utilized the PMV model for thermal comfort 

assessment, there are some arguments against the PMV model. Some arguments include the 

inability of PMV to account for the dynamic behaviour of occupants or the difficultly for occupants 

to adapt to the thermal environment [50]. Additionally, several parameters have to be monitored 

in real-time from the environment and from occupants, which make this a complex and expensive 

process [51]. Researchers recently used personalized and real-time comfort sensing approaches to 

address these challenges. [52] [53] [54] [55].  

These methodologies focus on occupant’s comfort levels, which are modelled individually in 

order to develop comfort driven HVAC systems. A participatory approach for adjusting room 

temperature is used by Erickson and Cerpa, [55]. Results show a reduction of 10.1% in comparison 

with existing HVAC controls while all occupants were satisfied. Murakami et al., [56] proposed a 

method to collect votes by a group of 50 occupants and estimate the daily HVAC set points. They 

report a 20% reduction of energy usage when compared with a constant set point of 26 °C. 

Occupancy is another significant factor impacting the energy efficiency of HVAC systems. 

Occupancy data will reshape the energy demands of HVAC systems, which can minimize the 

difference between actual consumptions and demands. Numerous studies have focused on energy 

savings based on occupants’ locations. Varick  et al [57] show the potential of 42% saving energy 

based on sensor network occupancy model prediction. Marshall et al. investigated different 

occupancy patterns and calculated energy savings based on these patterns in residential buildings 

[58]. Their research revealed the importance of occupancy data for saving energy in buildings but 

ignored the occupant’s comfort levels. A real-time occupancy measurement system was integrated 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Varick%20L.%20Erickson.QT.&newsearch=true
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with an intelligent control of HVAC systems. Klein et al. introduced a multi-agent based system 

which also considers the location of users by using RFID tags [59]. They modelled the energy 

consumption based on thermal zones, temperature, and occupants’ preferences and schedules. 

They concluded that a 12% reduction in buildings’ energy use was reached by taking the occupant’s 

position data into consideration. However, the above mentioned research did not evaluate the 

thermal comfort level of individual occupants. 

2.3.5 Summary 

 

Based on the literature review, it can be observed that most of existing HVAC systems only 

work based on the maximum scheduled loads which may lead to huge waste of energy during 

unoccupied periods.  Real-time occupancy data is a suitable solution for this problem. However, 

control HVAC systems only based on pure real-time occupancy information may not be efficient 

and economical due to the increase of maintenance costs.  

Developing the occupancy pattern based on historical data has the potential to solve this issue. 

However, unpredictable locations of the occupants need a suitable and feasible pattern to be used 

by HVAC controllers.  

Although PMV model has extensively utilized for thermal comfort modelling in many 

research, this model has some drawbacks including its limitation to consider behavioural and 

thermal variations. In addition, several parameters are required to be collected using different type 

of sensors to implement PMV model which could be complex and costly to be deployed in 

buildings. Consequently, purely simulation based methods cannot answer the problem of comfort 

level assessment. Hence, the combination of occupant’s thermal profile including feedback from 
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users and simulation results has a great potential to solve such problems and make the comfort 

level accountable.  
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Chapter 3: Methodology 

This section outlines the main research processes, including localization, CFD modelling, and 

energy savings. The proposed methodology is based on simulations and qualitative design methods 

that include surveys of occupants and real-time experiments. The purpose is to collect qualifying 

data from occupants’ thermal preferences and historical behavioural patterns of their presence. The 

overall process of the methodology is depicted in Figure 11. 

  

Figure 11: : Overview of Methodology 

 

 

In the first step, two techniques for removing the unwanted signals and noise, and consequently 

improving the technological accuracy are introduced: Principle Component Analysis and Moving 

Average. Afterward, to customize the technology for energy saving purposes, the Near Neighbour 

Area technique is used to show the location of occupants. Details are provided in Section 3.1.   
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In the second step, the process of creating the CFD model and extracting the corresponding 

thermal zones are explained in detail in Section 3.2. 

For the final stage of this chapter it is explained how to collect thermal sensation votes and 

organize them to provide the thermal preference profile of building occupants. Next, the 

description of the Markov chain and the method of extracting the possible pattern from occupants’ 

historical behaviours were discussed. Finally, the complementary control approach based on all 

parameters is explained. Section 3.3 provides details regarding thermal comfort approach.  

 

3.1 Indoor localizations 

 

Estimating the position of a target in the indoor environment with high accuracy is the main 

challenge for investigators. Interference and attenuation from multi-path, reflection, deflection and 

diffraction are the main sources of error.  In this research, the author customized the indoor 

positioning technique for the specific objective of saving energy. Therefore, the location of an 

occupant in a specific room is an important parameter used to find out the exact area with the 

corresponding HVAC outlet. Three methods are utilized to achieve the targets, which are explained 

below. 

 

3.1.1 PCA 

 

Moving the mobile nodes can cause rapid changes in the RSSI values which leads to significant 

reduction in the accuracy of estimating the position of the target. Therefore, factor analytic 
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technique is utilized to increase the accuracy of the position. We have clustered the received signals 

(packets) from mobile node into 10 signals to introduce one representative signal for each cluster 

using PCA. This gives us an approximation signal for each cluster, and hence we obtain a ‘noise-

free’ coordinates of the target.  For each cluster we are able to identify the representative signal in 

the order of importance, i.e. the received signals are ranked and weighted by the relative change 

in their cluster at the specific time point.  

The main applications of factor analytic techniques are: (1) to reduce the number of variables and 

(2) to detect structure in the relationships between variables, that is, to classify variables. 

Therefore, factor analysis is applied as a data reduction or structure detection tool [60] . Principal 

component analysis (PCA) is a widely used method for factor extraction, which is the first phase 

of exploratory factor analysis. PCA reduces the number of variables of the data, by maintaining as 

much variance as possible. PCA technique transforms a d-dimensional sample vector into a lower 

dimensional vector i.e. x=(𝑥1, 𝑥2, … , 𝑥𝑑)T  into y=(𝑦1, 𝑦2, … , 𝑦𝑘)T  , where d represents the number 

of variables (signals) and k is the number of selected components. Therefore, the k x d matrix V 

provides the PCA transformation, such that 

 

𝑦 = 𝑉𝑥 

 

 

 with population variance-covariance matrix:  

                   

          var (X)=      

2

1 12 1

2

21 2 2

2

1 2

p

p

p p p

  

  

  

 
 
 
 
 
 
 

(9) 

) 

(10) 

) 



 

  41 

Consider the linear combinations 

                       

Each of these can be thought as a linear regression, predicting  from . There is 

no intercept, but  can be defined as the regression coefficients. In order to draw out the 

maximum possible variance, with successive factoring continuing, factor weights are calculated 

until no meaningful variance remains.  

PCA is used to develop a filter to reduce unwanted signals that may result in a higher accuracy 

of the tracking system. The process of this filter is depicted in Figure 12. According to the number 

of received packets, the first 10 packets are considered the initial input data. By utilizing PCA, the 

number of packets is reduced to a single packet representative of the 10 initial packets [61]. The 

target location is estimated based on the representative packet instead of all received packets. 

Therefore, unwanted signals will be removed from the position calculation. The PCA and 

estimating the position codes are provided in Appendix E. 
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Figure 12:Principal Component Analysis flowchart for RSSI signals 

 

Based on the experimental results described in Section 4.1.2, this filter is suitable for targets 

with low speed and provides high accuracy. However, as the walking speed is usually normal or 

high, another filter is used for monitoring occupants inside buildings, explained in Section 3.1.2.  
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3.1.2 Exponentially-weighted moving average (EWMA) 

 

The principle challenge in the RSSI-based localization system is its high affectability to the 

environmental progressions. For instance, different signal strengths can be obtained even if the 

mobile target does not move. Therefore, the Moving Average algorithm is utilized to reduce the 

dynamic fluctuation of radio signals received so as to obtain essential patterns in the data, while 

ignoring noise or other rapid phenomena.  

In statistics, the Simple Moving Average (SMA) is known as a mathematical method to analyse 

a data point by exploiting a series of averages from different subsets of the data. By applying more 

weight to recent data, the lag can be reduced which this method is known as Exponential Moving 

Average(EMA) or Exponentially Weighted Moving Average (EWMA). 

In this section, the EMA has been utilized to predict the next location of the user. Also it is 

used to smooth the RSS values and remove the unwanted signals according to a logical pattern. 

This method is based on the fact that there is a relationship between present positions and past 

locations. By using this method, it is possible to extrapolate the future position of the users. If the 

estimated and calculated positions are far from each other, the system will consider the result as a 

noise and try to smooth these differences. Following is the mathematical definition of MA 

algorithm. The notations are as follows: 

Notations: 

𝑃 ̂𝑡+1= Forecast position for period (t+1) made by time t  

𝑃𝑡   = Actual position in period t 

𝑃 ̂𝑡 = Forecast position for period t made by (𝑡 − 1) 
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𝛼 = Constant  (0 < 𝛼 < 1) 

The mathematical relationship between the past, present and future positions can be explained as:  

𝑃 ̂𝑡+1 = 𝑃 ̂𝑡 + 𝛼(𝑃𝑡 − 𝑃 ̂𝑡) 

On the other hand, 

𝑃 ̂𝑡+1 = 𝛼𝑃𝑡 + (1 − 𝛼)𝑃 ̂𝑡 

By substituting past forecasting values we have 

𝑃 ̂(𝑡+1)= 𝛼𝑃𝑡 + (1 − 𝛼)[𝛼𝑃(𝑡−1) + (1 − 𝛼)𝑃 ̂(𝑡−1)] = 𝛼𝑃𝑡 + 𝛼(1 − 𝛼)𝑃(𝑡−1) + (1 − 𝛼)2𝑃 ̂(𝑡−1) 

By keeping on substituting past forecasting values we have: 

𝑃 ̂(𝑡+1)= 𝛼𝑃𝑡 + 𝛼(1 − 𝛼)𝑃 ̂𝑡 + 𝛼(1 − 𝛼)2𝑃 ̂(𝑡−1) + ⋯+ 𝛼(1 − 𝛼)(𝑡−1)𝑃1+(1 − 𝛼)𝑡𝑃0 

Which can be written in the more compact sigma notation as 

𝑃 ̂(𝑡+1)=𝛼 ∑ (1 − 𝛼)𝑘𝑡−1
𝑘=0 𝑃 ̂(𝑡−𝑘) + (1 − 𝛼)𝑡𝑃0 

It is clear that there are exponentially declining values; 𝛼(1 − 𝛼), 𝛼(1 − 𝛼)2 on 𝑃𝑡, 𝑃𝑡−1, …. . 

Before the algorithm process to create our forecasting, we need to consider 

 The initial value of 𝑃0 

 Determine the value of 𝛼 

The coefficient 𝛼 is a constant smoothing factor between 0 and 1 that represents the degree of 

weighting decrease. 

 To find the best value, the notation N needs to be explained. N can be considered the un-weighted 

mean of the previous n data points. On the other hand, N represents the number of past predictions 

(12) 

) 

(13) 

) 

(14) 

) 

(15) 

) 

(16) 

) 
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that we want to use to smooth and predict the future point. One of the recommended relationships 

between 𝛼 and N is as follows [62] 

𝛼 =
2

(𝑁 + 1)
 

Moreover, 𝑃0 represents the initial position of the user which can be assumed to be a specific point 

by the operator or researcher. This algorithm is extended for both prediction of future distance and 

prediction of next received RSSI. Therefore, for RSSI values we have 

𝑹 ̂(𝒕+𝟏) = 𝜶𝑹𝒕 + (𝟏 − 𝜶)𝑹 ̂𝒕  

 

where 𝑅 ̂(𝑡+1) represents the forecast RSSI value for t+1 and 𝑅𝑡 represents the actual RSSI value 

with period t. 

To calculate the exponential moving average (EMA), three steps are required.  

First, The SMA which is used for the initial EMA value as the previous period's EMA in the first 

calculation. Second, the weighting multiplier. Finally, the exponential moving average is 

calculated for each data (i.e. RSSI value) between the initial EMA value and the current data, using 

current value, the multiplier, and the previous period’s EMA value. For instance, the formula 

below is for a 10-period EMA. 

1) Initial SMA  10-period sum/10 

2) Multiplier: (2/Time periods+1)) = (2/ (10+1) =0.1818 (18.18%) 

3) EMA: {current value - EMA(previous value)} x multiplier + EMA(previous value) 

The value of 18.18% means that a 10-period exponential moving average applies an 18.18% 

weighting to the most recent data. 

(17) 

) 

(18) 

) 
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 The localization error of this algorithm is calculated by 

Localization Error (LE) = √(𝑥𝑝𝑟𝑒𝑑−𝑥𝑎𝑐𝑡𝑢𝑎𝑙)
2 + (𝑦𝑝𝑟𝑒𝑑−𝑦𝑎𝑐𝑡𝑢𝑎𝑙)

2  

After calculating the estimated points, LMS fitting was applied to reduce the final estimation error. 

If we consider coordinates (𝑥𝑠, 𝑦𝑠) as the initial estimation of the mobile node, then 𝑑𝑖 represents 

the distance between the blind node and the reference node according to the following model 

𝑑𝑖 = √(𝑥𝑠−𝑥𝑖)
2 + (𝑦𝑠−𝑦𝑖)

2 

It is possible to calculate the difference between the measured and estimated distance by 

|𝑓𝑖(𝑥, 𝑦)| = |𝑑𝑖 − √(𝑥−𝑥𝑖)
2 + (𝑦−𝑦𝑖)

2| 

It should be mentioned that 𝑑𝑖  can be considered the measured distance without implementing 

the algorithm. Consequently, we obtain a system of N nonlinear equations, which can be solved 

with the LMS fitting method. However, if an initial estimation(𝑥𝑠, 𝑦𝑠), is close to(𝑥, 𝑦), a linear 

system can be find from (20) and calculated, obtaining the Best Linear Unbiased Estimator 

(BLUE) for these type of problems [63]. 

Applying the LMS method by considering (𝑥𝑠, 𝑦𝑠)  as our initial values providing as algorithm 

starting point. Then we have 

∆𝑥 = 𝑥 − 𝑥𝑠  

∆𝑦 = 𝑦 − 𝑦𝑠  

and 

𝜕𝑓𝑖(𝑥, 𝑦)

𝜕𝑥
|
𝑥 = 𝑥𝑠

𝑦 = 𝑦𝑠
=

(𝑥𝑠−𝑥𝑖)

√(𝑥𝑠−𝑥𝑖)
2 − (𝑦𝑠−𝑦𝑖)

2
 

(22) 

) 

 

(23) 

) 

(19) 

) 

(20) 

) 

(21) 

) 
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𝜕𝑓𝑖(𝑥, 𝑦)

𝜕𝑦
|
𝑥 = 𝑥𝑠

𝑦 = 𝑦𝑠
=

(𝑦𝑠−𝑦𝑖)

√(𝑥𝑠−𝑥𝑖)
2 − (𝑦𝑠−𝑦𝑖)

2
 

Then, to calculate the positions we can rearrange into the following linear model 

𝐻𝜃 = 𝐵 + 𝑊 

where 

𝜃 = [∆𝑥, ∆𝑦]𝑟  

𝐻 = [𝐻1
𝑇 , 𝐻2

𝑇] 

and 

𝐻1 = [𝐻1,0 , … , 𝐻1,𝑁−1], 𝐻2 = [𝐻2,0 , … , 𝐻2,𝑁−1] 

𝐻1,𝑖 =
𝜕𝑓𝑖(𝑥,𝑦)

𝜕𝑥
|𝑥=𝑥𝑠
𝑦=𝑦𝑠

      , 𝐻2,𝑖 =
𝜕𝑓𝑖(𝑥,𝑦)

𝜕𝑦
|𝑥=𝑥𝑠
𝑦=𝑦𝑠

 , 𝑖 = 0,… ,𝑁 − 1 

𝐵 = [𝑏0, 𝑏𝑁−1],    𝑏𝑖 = 𝑓𝑖,    𝑊 = [𝑤0, … , 𝑤𝑁−1] 

and 

𝜃 ̂ = 𝐻−1𝐵 

[𝑥 ̂, 𝑦 ̂] = [𝑥𝑠, 𝑦𝑠] + 𝜃 ̂𝑇 

𝜃 ̂𝑇 may be computed by doing iterative and this calculation continues to obtain an acceptable 

error. 

Finally, the new position can be found by 

𝑥𝑠 = 𝑥𝑠 + ∆𝑥 

𝑦𝑠 = 𝑦𝑠 + ∆𝑦 

(25) 

) 

(27) 

) 

(28) 

) 
(29) 

) 

(30) 

) 

(26) 

) 

(24) 

) 
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3.1.3 Near Neighbour Area (NNA) 

 

The Near Neighbour Area (NNA) method is also known as a clustering technique. NAA 

considers the cases where nodes are deployed in more than one room. The concept of this method 

is to ignore drifting effects. As the signals can pass through the wall, the accuracy for estimating 

the user’s position inside the buildings would be decreased. This method is based on the fact that 

every reference node sends its RSSI and X and Y coordinates to the mobile node where they can 

communicate with each other. Figure 13 shows the concept of this method. 

 

 

Figure 13: Mobile node input data from reference nodes 

 

 

    To implement this technique, two principles are considered. First, it is essential to describe 

the architecture of signals to implement NNA in a network. Z-Stack is TI's ZigBee-compliant 

protocol stack for a growing portfolio of IEEE 802.15.4 products and platforms. Z-Stack supports 

CC2430/CC2431, which is the hardware utilized in this research. The architecture of received 

sample signals is depicted in Table 2. The packet start point and command ID is denoted by SOP 

and CMD, respectively. The number of bytes in data field and data information is introduced by 
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LEN and Data as well. FCS refers to the frame check sequence. From the received signal, it is 

possible to extract information regarding the address and RSSI value of the nearest reference node 

to the mobile node. Hex numbers for example, in parenthesis of Table 2, show the values of X and 

Y, while the RSSI values correspond to the nearest reference node with coordinates (0, 0).  This 

information is utilized for the proposed NNA algorithm. The predefined zones are introduced 

based on the X and Y values.  Each specific zone can be defined according to the fixed nodes with 

known coordinates in that area. By the confirmation of the RSSI value from the nearest reference 

node in any predefined zone, other signals received from outside the zone nodes can be ignored in 

further calculations. 

 

 

Figure 14: Process flowchart of NNA localization 

 

   Figure 14 shows a flowchart of the proposed algorithm bringing out the process clearly: (1) 

A neighbour list from reference nodes, within the communication range, in accordance with their 

coordinates is created; (2) Any similar aspects between the created list and any other predefined 

Table 2: Z-stack message format 

SOP CMD LEN DATA FCS 

1 BYTE 2 BYTES 1 BYTE VARIES IN SIZE 1 BYTE 

 

02 1018 14 CB F550 D3 1400 0D 0009 0005 0004 7B 28 (0000 0000 28) CB 
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list is identified. (3) When a predefined zone is recognized, the coordinates of the nearest reference 

node will be extracted from the received packets (i.e.  refer to parenthesis of Table 2). 

(4) The algorithm makes a confirmation if that particular node has its location in the zone. (5) The 

outlier nodes (nodes not located in the zone but that had communication with mobile node) are 

removed from the calculation. (6) For the final stage, the position of the target will be computed 

and if the total nodes are not listed in the neighbouring areas (stage 2 or 4), the system continues 

calculating the regular position. In the presence of moving objects, stages 3 and 4 significantly 

reduce the drifting error and therefore increase the accuracy of the user’s location estimation. 

 

3.2 Occupancy-driven and thermal comfort 

 

Figure 15 illustrates the overview of the process of intelligent control.  The overall procedure 

takes two major aspect for consideration which are comfort and energy parts. 

As mentioned in the literature review section, different persons have different thermal 

perceptions and it is difficult to make all of them satisfied in a shared space. Therefore, a survey 

should be done to collect persons’ thermal preference. The feedback data are used to develop a 

thermal preference profile for each user. A boundary of temperature preference can be addressed 

based on minimum and maximum thermal preferences of all persons present in a room. 
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Figure 15: Diagram of intelligent control 

 

The second step is to create the thermal model of the room. Thermal zones can be defined after 

investigation of the satisfied and dissatisfied areas. Commonly, a thermal zone is the space where 

all heat loads will be served by the same HVAC system or by the same kind of HVAC system and 

mostly users located in the comfort area.  However, in this research, the thermal zone is redefined 

as the group of occupants located in similar comfort areas during different thermal conditions.  

In another word, the thermal zones introduces in this research is not only based on the space 

and location of users and their distances to the HVAC outlets. But also considering the satisfied 

and dissatisfied areas during different scenarios extracted from modelling.  Therefore, each user is 
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associated with one or more thermal zone and each thermal zone is associated with a corresponding 

HVAC outlet. 

 In reality, thermal zones may change seasonally due to changing weather conditions. 

Therefore, the seasonal thermal modelling combined with users’ thermal preference profile is used 

to provide a reasonable input to control the HVAC systems accordingly.   

For the energy part, the positions of occupants inside a building will be monitored in real-time. 

Such data can provide historical occupancy data, which is then used to create historical behaviour 

patterns for each person. In addition, the real-time data is utilized to identify the location of 

occupants inside buildings and their presence in the corresponding thermal zones define from 

previous step. All the information are used to develop rules to control HVAC systems for the 

purpose of achieving efficient energy consumption while maintaining occupants comfort level. 

Details of each step are explained as following sections. 

 

3.2.1 Creating CFD model 

 

CFD has a history back to the 1930s as a computer modelling technology, which compounds 

computer sciences, numerical techniques and physical sciences. At present, CFD modelling has 

been applied in various fields. It can evaluate the original and continuous physical quantity fields 

in space and time by adopting a series of finite discrete points and a set of variable data. Solving 

the algebraic equation sets provides a field variable approximation. In reality, thermal zones can 

be a dynamic or static area. On the other hand, the modelling and calculating of a thermal zone is 

a time consuming process. Hence, it is difficult to model a dynamic thermal zone specifically for 
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a real-time control purpose. Therefore, in this research, seasonal modelling is applied to evaluate 

satisfied and dissatisfied areas for each season of the year and this method consequently defines 

thermal zones in the test bed area. 

To develop the model and identify thermal zones, the geometry data of the area were retrieved 

from an as-built BIM model, which is explained in Section 3.2. Indoor and outdoor temperatures 

are collected and all the data are imported to the CFD model. A simulation is then performed to 

analyse the comfort level at different areas in the room. Based on the HVAC performances, the 

most common scenarios and corresponding controls can be modelled. 

3.2.2 Detecting occupants location 

 

One of the most popular approaches to estimate the locations of mobile targets in both indoor 

and outdoor environments is RSS. Among them, the ZigBee-based wireless sensor network is a 

technology that can be utilized for this project, which is explained in detail in the literature review. 

The X and Y coordinates of the targets are recorded in real time while they are inside the 

building. Furthermore, it is possible to identify each person and the place where they are located 

by identifying the unique ID associated with each tag and the BIM model. This information will 

be used not only for real-time monitoring, but also for creating a historical behaviour pattern for 

individual occupants to predict their positions.  

3.2.3 Predicting behavioural based on historical pattern 

 

The proposed data acquisition system in Section 3.1 can collect the occupancy data from a 

single or multiple occupant environment. The PhD research office occupied with nine users in the 
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environment building at Xian Jiaotong-Liverpool University is an example of a multiple 

occupancy situation in which the proposed indoor localization system was installed. 

Although the occupancy data collection during a long period is not impossible, it is subject to 

some restrictions. For example, suitable office with enough number of occupants, the number of 

volunteers who accept to carry the mobile nodes during the experiment’s period,  the restrictions 

in the number of hardware equipment such as ZigBee nodes and the required resources for the 

maintenance of sensor network. All the restrictions can make the occupancy data collection fairly 

limited. 

The nature of identifying the occupancy behavioral pattern and make it in a mathematical 

format is somewhat complicated. However, it is possible to simplify the occupants’ behaviour and 

mainly focus on a particular places which can reduce the computational process.  

Therefore, in this research, each occupant has a routine work life which includes five unique 

locations: 1) The office, which is considered the fixed working place for the occupants. 2) Short 

temporary locations such as the coffee room. 3) Long-stay locations outside of the office room. 

For example, classrooms and meeting rooms. 4) The elevator, where occupants leave the current 

floor and is denoted Lift. 5) Outside the building [64].  

In the current stage of this research, the focus is only on the fifth floor of the building. When 

the occupants use the lift and the exit/entrance sensor out of the building does not identify them, 

this can be assumed as a long-term leave of the office without considering the position of occupants 

in the other floors. In the future, this will be considered. These different situations are considered 

in to predict the periods of time when each person leaves the office.  
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For one occupant in a typical day, the number of movements between different predefined 

areas is called transition and the time spent in each area is introduced as duration. 

A typical example of one occupant is depicted in the form of a signal-graph in Figure 16. 

 
 

 

Figure 16: A signal model of an occupant in different areas 

 

 

Figure 17 shows an overview approach of the occupancy pattern detection. Following is the 

description of proposed approach. 

 

Figure 17: An overview of the occupancy pattern detection approach 
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Event Detector 

A symbol denotes the significant position of occupants and called “the event” and the sequence 

of symbols are considered as an “episode”.  Table 3 represents symbol assignments based on 

different situations. 

 

Table 3: Event codes 

Place of sensors State 

Transitions 

Code 

 

Office 

1. Enter a 

2. Stay b 

3. Left c 

Coffee room ( short-term 

stay place) 

1. Enter d 

2. Left e 

Meeting room/Classroom        

( long stay place) 

1. Enter f 

2. Left g 

Lift/Elevator Detect h 

Outside Detec i 

 

Episode Discovery 

The more frequently repeated an episode, the more likely it is that the episode is a regular 

behaviour pattern.  Hence, based on the method introduced in [65], the important patterns are 

discovered. First, the candidate sequences are generated and the important sequences are purified.  
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Using the sliding time window, the time series position event sequences are created. Afterward, 

the minimum description length (MDL) criteria and periodicity detection (PD) are applied to 

determine the most significant behavioral mode.  

 

Minimum description length (MDL) method 

In the MDL method, the dataset are encoded alphabetically to reduce the description length 

and constraints are applied to discover event models with the shortest description lengths [66]. 

 

Frequent pattern ={𝜑1 , 𝜑2, 𝜑3…𝜑𝑛},  

Where 𝜑𝑛 is the 𝑛𝑡ℎ episode. 

1. Ordering  based on  

I. Frequency  

II. Length 

 

2. Compress () 

 

CodeTable = allsingletonpatterns; 

minDBsize = computeSize(CodeTable) 

Foreach 𝜑𝑖  in ; ( in order) 

CodeTable.add (𝜑𝑖) 

newsDBsize =computesize (CodeTable); 

IF (newDBsize < minDBsize) 

minDPsize=newDBsize; 

else 

CodeTable.remove (𝜑𝑖); 

Return CodeTable; 

 

 

Algorithm 1: MDL Method 
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Periodicity detection (PD) 

 

Often, occupants’ behaviour can be detected in the form of a pattern exhibiting periodicity. For 

instance,    

At 10:00Am on Monday, Wednesday, and Friday of every week, User 3 left the work office 

and went to the classroom. 

In a time series T, both the symbol and the periodic episode can be detected. For example, if a 

symbol, “s”, with a period, “p”, exists almost every p time-stamps can be considered as a periodic 

event.  

To filter out short-stay occupants and temporary behaviour of occupants in different areas, the 

occupancy resolution 𝑡𝑅 was set as 5 min and 15 min were chosen as the length of time window, 

since this duration is sufficient to smooth the fluctuation. However, for selecting the proper time 

window further investigation is required in future. 

As shown as Figure 18 when one user is detected in the office, short-term stay places or long-

term stay places, the number of times that user stays in one window is calculated as 
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Figure 18: Periodicity detection using time window 

 

𝑙∆𝑡
𝑗

= 𝑙(𝑛+1)
𝑗

⃒𝑡=𝑡𝑛+∆𝑡 − 𝑙𝑛
𝑗
⃒𝑡=𝑡𝑛 

In one window 

𝑙∆𝑡
𝑗

→ 𝑛∆𝑡 = 1 

𝑁∆𝑡 = ∑𝑛∆𝑡 

where  

j shows the particular areas ( office =1,short-stay place=2,long-stay place=3) 

tn represents the star time in the new area; 

∆𝑡 is the length of a time window; 

𝑙𝑛
𝑗
 𝑎𝑛𝑑 𝑙(𝑛+1)

𝑗
 show the number of times that user is detected from T=0 to tn and tn+∆𝑡 in the 

specific area of j; 

(33) 

) 

(32) 

) 

(31) 
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𝑙∆𝑡 is the number of times the user is detected in one time window; 

𝑛∆𝑡 = 1 means at least one occupant is in the time window; 

𝑁∆𝑡 counts the total number of occupants in the time window;  

∆𝑇 = (𝑙∆𝑡
𝑗

− 1) ∗ 𝑡𝑅 

where ∆𝑇 shows the duration of staying an occupant in the area within a time window 

The duration time function 𝑓𝑝
𝑗
 (t) in one day for a specific area (j) for one user (p)can be defined 

as 

𝑓𝑝
𝑗
 (t) = ∑ ∆𝑇

𝑘=
24∗60

∆𝑇

𝑖=1
= ∑ (𝑘

𝑖=1 𝑙(𝑛+1)
𝑗

⃒𝑡=𝑡𝑛+∆𝑡 − 𝑙𝑛
𝑗
⃒𝑡=𝑡𝑛 − 1) ∗ 𝑡𝑅   

 

The hidden semi-Markov model (HSMM) 

 In the occupancy-driven based applications, it is important to investigate the duration of 

occupancy in the room. Therefore, it is essential to predict the current state’s duration for each user 

in order to find the daily occupancy pattern. Hence, from the event patterns, the occupancy 

behaviour of all users in the room is modelled.  

To model the stochastic processes the Markov chain is a popular technique in which through 

analysing the transitions from one state to another the process can be modelled. The transition is 

measured by two input parameters: the initial status and transfer probability. In this research, when 

the occupant detected in a room, the model introduces he/she as “Enter” status and when he/she 

identified in another place, the model consider the person as  “Left” status as shown in Figure 19. 

 

(34) 

) 

(35) 
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Figure 19: General Markov chain model 

 

A hidden semi-Markov model is utilized to determine the duration of each state before 

transition to the next state. For instance, Duong et al. investigated human activity patterns using 

the HSMM [67]. In the present research the proposed algorithm for the occupancy pattern 

recognition is trained by a forward-backward algorithm [68]. 

To develop a historical pattern for the attendances of each person of a specific day in a week, 

it is essential to record two types of data: their entrance/exit time to the test-bed area and their 

corresponding destinations. Moreover, the fixed schedule of each person is also useful to develop 

the pattern. Therefore, the probabilistic of short-term and long-term leave is calculated based on 

the historical pattern by using the Markov Chain method [69].  

For the two initial statuses of “Enter” and “ Left” , the transition probability matrix at the time 

t of one occupant can be defined as 

 

𝑇𝑃𝑀𝑡
𝑖 = [

𝑝𝑡
𝐸−𝐿 𝑝𝑡

𝐸−𝐸

𝑝𝑡
𝐿−𝐿 𝑝𝑡

𝐿−𝐸] 

where 

𝑇𝑃𝑀𝑡
𝑖 means the transition probability matrix for user i at the current time t; 

(36) 

) 
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𝑝𝑡
𝐸−𝐿 presents the observed probability that this user change his/her status from “Enter” to 

“Left” in the next time window; 

𝑝𝑡
𝐸−𝐸 denotes the probability of status staying in “Enter”; 

𝑝𝑡
𝐿−𝐸 and 𝑝𝑡

𝐿−𝐿 show the possibility of changing from “ Left” to “Enter” and remaining “Left” 

at the current time t. 

 

Using the identified conditional probability from historical data, the probabilities are 

computed. For instance, 𝑝𝑡
𝐿−𝐸 is calculated as 

𝑝𝑡
𝐿−𝐸 = 𝑃 (𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 = Enter⃒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 = 0) (𝑡 > 1) 

 

 

The pattern is developed based on the probability of existence of users in the room at a specific 

time and on a specific day of the week. In other words, locations of users for one month are used 

to calculate the probability of presence and absence for each 15 minutes.  

The developed pattern of each person’s historical behaviour is combined with that person’s 

real-time location and corresponding thermal zones for energy saving analysis. 

3.2.4 Creating thermal preference profile 

 

Upon the development of a thermal-comfort-based HVAC controller, acquiring personal 

thermal preference profiles is essential. By analysing the feedback from persons in the room about 

their perception of the environment in different seasons, a satisfactory thermal condition can be 

obtained for individual occupants. To assess the occupants’ perceptions of the environment, 

(37) 

) 
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different thermal comfort sensation scales, such as the ASHRAE thermal sensation scale, the 

Bedford comfort scale, the McIntyre 3-point preference scale, and the acceptability scale can be 

used. Although the combination of these scales will provide an accurately representative occupant 

comfort, it requires a multi-thread interface, which may complicate data analysis [70]. Therefore, 

a user-led decentralized thermal comfort method, introduced by Jazizadeh et al. [52], was utilized 

in this research, where both the functionality of the thermal sensation scale and the preference 

scale were integrated into one scale with a range of intensity.  

The process of thermal preference profile is depicted in Figure 20. The whole process is divided 

into the offline and online phases. During the offline period, occupants submitted their votes 

regarding their preferences based on the current zone temperature. The setpoints of HVACs were 

changed at different values so that the occupants could react in different temperature ranges. 

Afterward, the personal comfort data of occupants are utilized to create the individual comfort 

pattern based on the fuzzy map.   

During the online phase, occupancy data included the personal identifications and corresponding 

thermal zones where identified. Consequently, from the combination of preference votes of 

presented occupants, the associated fuzzy pattern was extracted.  Finally, the range of satisfied 

temperatures were computed and applied to the HVAC system. Details of each part are provided 

as follows. 
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Figure 20: The process of thermal preference profile and room’s temperature calculation 

 

Data collection 

A data collector is designated in the present research to collect thermal preference scales from 

the occupants. As shown in Figure 21, the slider contains three major points: cooler, neutral and 

warmer. The range of the slider varies between -50 to +50 from the cooler side to warmer side. 

When a user moves the slider to -25, it means that his/her perception of the current ambient 

condition is hot/warm and he/she prefers colder conditions. Simultaneously, his/her perception of 

the thermal environment, time, and his/her location are stored in a database for further analysis, as 
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described in Section 3.1. The feedback values associated with the slider are called thermal 

perception index (TPI), which indicates the intensity related to a person’s vote. 

 

 

Figure 21: Temperature preference form 

 

Fuzzy map profile 

 

In the fuzzy classification methods, the grid positioning technique is used for different 

applications such as pattern recognition, decision making and data mining.  In this method, it is 

assumed that a small number of fuzzy sets can be considered as representatives of all variables 

[71].  To automatically generate the fuzzy rules with the low complexity and with good 

classification rates and no redundant rules, the Wang-Mendel (VM) fuzzy pattern recognition is a 

well-known technique which produces relatively small rule bases  [72]. In this method, the 

number of training pairs is utilized to limit the number of generated rules.  

Consider 𝑥𝑖 as input with (i=1, 2,…,n) and y as output, given a set of input-output pairs: 

 

(𝑥1
(1)

, 𝑥2
(1)

, … , 𝑥𝑛
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

, … , 𝑥𝑛
(2)

; 𝑦(2)),…. 
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the VM method provides a mapping as 

 

𝑓: (𝑥1, 𝑥2, … , 𝑥𝑛) → 𝑦 

 

The region of occurrence of the variable is defined by each input and output in the ‘domain 

intervals’ and included a number of fuzzy sets with triangular membership functions. To 

interpret the fuzzy sets, they may have labeled like cold 

(𝐶1, 𝐶2, 𝐶3), 𝑁𝑒𝑡𝑢𝑟𝑎𝑙 (𝑁)𝑎𝑛𝑑 𝑤𝑎𝑟𝑚(𝑊1,𝑊2,𝑊3) as shown in Figure 22. 

 

 

Figure 22: Mapping time series data to fuzzy sets 

 

By mapping from the time series to the pre-specific fuzzy sets, membership functions are 

specified to individual variables. Considering the (𝑥1, 𝑥2) as inputs and (𝑥3) as the output in 

Figure 22, a sample rule is  

         If  𝑥1 is 𝑊1⃒𝑊2 and 𝑥2 is 𝐶1⃒𝐶2 then 𝑥3is 𝐶2⃒𝐶3 

i.e. 𝑥1, 𝑥2 and 𝑥3 are relating to fuzzy sets 𝑊1and 𝑊2 ; 𝐶1 and𝐶2; 𝐶2 and 𝐶3 , respectively. 

(38) 

) 
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Consequently, each variable belongs to the fuzzy set with the maximum membership 

function. 

If 𝑥1 is 𝑊1 and 𝑥2 is 𝐶2 THEN 𝑥3is 𝐶1 

To remove the rules with similar antecedents and different consequents, each rule is assigned 

by a degree D based on their membership functions𝜇(𝑥).  

𝐷𝑅𝑢𝑙𝑒 = 𝜇𝐴1(𝑥1)…… 𝜇𝐴𝑚(𝑥𝑚) 𝜇𝐵(𝑦) 

The selected rules with the highest degree are then used to populate the fuzzy rule base. 

 

In this research, to identify the temperature ranges, fuzzy sets are assigned to the preference 

votes collected from occupants using Wang–Mendel fuzzy pattern recognition approach and the 

code is provided in Appendix G. 

 

Figure 23 shows scatter graphs extracted from collected data of one person located in a thermal 

zone. The horizontal axis represents the value of the thermal preference index (TPI values) and the 

vertical axis illustrates the associated temperature. Each vote is associated with a range of 

temperatures and those data have a fuzzy pattern, which is used to develop a fuzzy map. The fuzzy 

map includes hundreds of fuzzy rules represented by a function of (f∶tp→ t) to create the thermal 

preference profile for all users.  

 

 

(39) 

) 
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Figure 23: Thermal preference of an occupant and associated temperature 

 

 

 

 

Figure 24: Fuzzy sets membership function for thermal preference profile 

 

 

The thermal perception index (TPI) and associated temperature are categorized as (𝑡𝑝𝑖, 𝑡𝑖) 

,where 𝑡𝑝𝑖 represents the thermal perception index, and 𝑡𝑖 is the associated temperature.  

Figure 24 illustrates five fuzzy sets, which are very cold, cold, neutral, warm and very warm, 

based on collected data points. The fuzzy sets are introduced between minimum and maximum 𝑡𝑝𝑖. 

Zero value, which represents the neutral feeling of occupants, is considered the center of the fuzzy 
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set and equal intervals are defined for the right and left side of the neutral fuzzy set. For each (𝑡𝑝𝑖, 

𝑡𝑖), by selecting the maximum membership function for 𝑡𝑝𝑖, an IF-THEN rule is generated. 

 Next, 𝑡𝑎𝑣 is defined as the canter of the THEN part. There is a high possibility that the same 

condition (IF part) will result in different events (THEN part). A weight 𝑤𝑖 is considered for each 

fuzzy rule, which represents the membership value of 𝑡𝑝𝑖. The rule weights combined the similar 

IF part rules with THEN parts entered at average weights of the 𝑡𝑖
𝑘. Here, k represents the group 

of rules in which  

 

𝑡𝑎𝑣
𝑘 =

∑ 𝑤𝑖
𝑘.𝑡𝑖

𝑘𝑙
𝑖=1

∑ 𝑤𝑖
𝑘𝑙

𝑖=1

       

 

𝑡𝑎𝑣
𝑘  denotes the weighted average of 𝑡𝑖 for each combined rule k, and l equals the number of 

rules with the same IF parts. Finally, the combined rules create a predictive model for the fuzzy 

map, utilizing the singleton fuzzifier and centre-average defuzzifier [73]. 

 

𝑓(𝑡𝑝) =
∑ 𝑡𝑎𝑣

𝑘 .𝑀𝑘(𝑡𝑝)𝐿
𝑘=1

∑ 𝑀𝑘(𝑡𝑝)𝐿
𝑘=1

   

 

where L is the total combined rules and 𝑀𝑘 represents the membership value of each combined 

fuzzy rules. The fuzzy sets and corresponding predictive model lead to the thermal preference 

profiles. 

(40) 

) 

(41) 

) 
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For instance, considering the neutral temperature to be the middle of the thermal preference 

profile (Figure 25), 23.5ºC is the neutral temperature with the minimum and maximum 

temperatures of 22.7 ºC and 24.3 ºC respectively.  

The temperatures for the lower and upper preference boundaries in specific thermal zones are 

calculated based on the thermal profile of the occupants who are present in that zone. If the 

occupants are from different zones, there is no need for combination of their thermal profiles. 

Figure 25 shows and example of the case which two persons in the same zone are attended in the 

office. The individual profile of user 3 shows the prefer temperature range between 23.1 ºC with 

25.2 ºC, and for user 7 this range is between 21.5 ºC with 22.7 ºC. The fuzzy map extracted from 

the combination of their thermal preference profile shows the accepted range between 22.8 ºC with 

23.8 ºC for both occupants. As the estimated boundary is less than 1.5 ºC which is the minimum 

acceptable range for boundaries, system will extend the boundary to the minimum and maximum 

range of the combination fuzzy map which is between 22.17 ºC with 24.23 ºC.  

 

(a) Thermal preference profile for two occupants in the same thermal zone 
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(b)Fuzzy map for user 3                                                         (c) Fuzzy map for user 7 

 

 

 

 (d) Fuzzy map from the combination of thermal profiles of user 3 and 7  

 

Figure 25: Fuzzy map for two persons in the same thermal zone 

 

3.2.5 Complementary control approach 

 

Based on the occupancy behaviour pattern, thermal preference profiles, the real-time location 

of users, and current zone temperatures the intelligent control approach is proposed. The existence 

of users in specific thermal zones is identified and the temperature of that zone is kept as close as 

possible to the user’s preferred temperature. If the room temperature is within the boundaries, no 

action is needed to control the HAVC based on his or her movement. Otherwise, specific rules will 

be triggered to turn on/off the corresponding HAVC which will be explained in details in section 

4.2.5. 
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In summary, Any exit/entrance from/to the room will be monitored. When one person enters 

or leaves the room, the information of that person and related thermal zone is identified. 

Afterwards, the corresponding behavioural patterns are considered to predict the duration of these 

changes. Thermal preferences of occupants and current temperature will be evaluated. Sensors are 

installed in each zone and the zone temperature is calculated based on the average of those sensors 

(𝑡𝑧). Once the users are recognized in a specific thermal zone, their thermal preference profiles 

(𝑡𝑝𝑖 , 𝑡𝑖 ) are taken into account and (𝑡𝑝𝑖 , 𝑡𝑖 ) from all existing users are utilized to create the 

boundary of their thermal preference and make all the users as comfortable as possible. The 

preference boundaries will be updated based on occupants’ attendances in real-time.   All the 

information about the zones’ temperature, thermal preference profiles, historical behaviour of 

occupants, and their real-time locations are used to develop rules to control HVAC systems for the 

purpose of achieving efficient energy consumption while maintaining occupants’ comfort levels. 

Details of each step are explained in following Section. 
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 Chapter 4: Implementation 

The implementation process based on the introduced methodology is presented in this section. 

Section 4.1, presents the implementation of localization algorithms to customize the indoor 

localization system for the energy saving purposes. In Section 4.2, thermal comfort of the test bed 

area during different scenarios based on CFD modelling is investigated. Seasonal PMV and PPD 

models are developed and the satisfied and dissatisfied areas are identified. Furthermore, the fuzzy-

based thermal preference profile of occupants and the extracted occupancy data and patterns are 

presented. For this section, data recorded for six months and consequently the last month of winter 

are considered for the test based on the patterns extracted from collected data.  The performance 

of the proposed method is evaluated in section 4.3. For the energy saving part of the method, 

different strategies are compared with the intelligent technique. The second survey conducted to 

verify the computed personal thermal preference profiles and subsequently the comfort level of 

occupants. 

 

4.1 Indoor Localization system development 

 

The CC2431 is TI's system-on-a-chip (SoC) equipment included in a hardware-based 

positioning engine to address the issues of low-power ZigBee/IEEE 802.15.4 wireless sensor 

networks. The chip’s positioning engine has the capability to calculate and estimate the location 

of relevant nodes with unknown locations based on the received signal strength indicator (RSSI) 

from nodes with known positions. It then transfers the position information to the server. RSSI 

function has the potential to decrease the network communication delay and traffic. Under standard 
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conditions, it can accomplish a location precision of 3 ~ 5 m with 0.25 m resolution. CC2431 offers 

128 KB flash memory, 8 KB Ram, ultra low-power utilization, and other powerful features. The 

CC2430 is also SoC solution for IEEE 802.15.4 and ZigBee projects which have a low cost, 128 

KB flash memory, and 8 KB Ram. It has outstanding sensitivity and vigour to interferers (Figure 

26). The main difference of CC2431 with CC2430 is that CC2431 module equipped with a 

positioning engine which can calculate the position of target and can demonstrate the position on 

their framework which is called the Z-engine. 

 

Figure 26: CC2430 covered by a box 

 

The experiments were conducted in the realistic ZigBee (2.4 GHz RF communication system) 

sensor networks located on the fifth floor of the environment building at Xian Jiaotong-Liverpool 

University, (Figure 27). The highlighted area represents the experimental zones (Figure 27(a)). 

The Texas Instrument CC2431 nodes are adopted as the mobile target and CC2430 nodes are 

implemented as reference nodes. In addition, to analyse the proposed algorithms, mobile nodes are 

programmed to obtain the raw RSSI values, which are then sent to the server for further 

computations. According to our architecture, all reference nodes (CC2430) in the office transmit 
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their coordinates and RSSI values to the mobile tag. Note that CC2431 was used as a bench mark 

for the comparative experimental study and CC2430 was utilized as a mobile node for the proposed 

algorithms. The Trilateration method is used to calculate the estimated position during the 

experiment. The code is provided is Appendix F. 

 

 

 

(a) The fifth floor of Xian Jiaotong-Liverpool University (b) Fixed reference nodes installed in an office 

 

 
 

(c) Fixed reference nodes installed in the room EB547 (d) Fixed reference nodes installed in the coffee room 
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To investigate the impact of the NNA method, a ZigBee network was implemented in a test-

bed area. The difference between the NNA method and the default approach is investigated in 

section 4.1.1. The static and movement scenarios for the PCA method and the EMA method were 

analysed and compared in sections 4.1.2 and 4.1.3, respectively. To simplify the analysis, the 3D 

model of test-bed is designed as Figure 28. 

 

 

  

 
 

 

(e) Fixed reference nodes installed in the meeting room (f) Fixed reference node installed in the lift 

 

 

(g) Fixed reference nodes installed at the entrance 

 

Figure 27: Overview of test-bed area 
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(a) Whole test-bed area 

 

 
 

(b) Coffee room (c) Office room 

Figure 28: 3D model of test-bed area 

 

4.1.1 Testing of NNA 

 

Rooms EB575, EB577 and EB575A on the fifth floor were selected to be the test bed, 

represented. For the first scenario, a mobile node (red star) was associated with a particular person 

present in room EB575. In this situation, the communication was triggered between the target and 

two reference nodes from room EB577, four nodes from room EB575A, and three nodes for 
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EB575, as shown in Figure 29 (b). The location of the target was estimated as the blue square in 

room EB575A, as shown in Figure 29 (b). This may result in wasting energy when expected to 

control HVAC systems and lighting systems based on occupants’ location. Therefore, the NNA 

method was applied to the same situation, and it was found that the communication information 

from the reference nodes in room EB575A was disregarded and the location of the target was 

estimated instead as the green circle, as shown in Figure 29 (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Near Neighbor Area analysis 

 

Several tests are implemented in different positions of the fifth floor based on the NNA method 

and the CC2431 positioning engine which results are indicated in Table 4. It is obvious that places 

where the occupants have a fix position for longer period, the results of both systems are more 

accurate than places where the occupants have to move. For example, for corridor test, the CC2431 

   

 

(a) Location of reference 

nodes 

(b) Results without 

NNA 

(c) Results with NNA  

 Reference node           Communicated node        Target        Estimated location          

 Estimated location with NNA 
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and NNA show the correct positions by 55% and 70%, respectively. However, for the meeting 

room, the results increase by   75% and 95% for CC2431 and NNA method, respectively. NNA 

method shows an enhancement of 95% for the office room compare with 60% of the CC2431 

positioning engine. For the lift, where the installed sensor is far from the other sensors, both 

systems show an accurate result by 95%. For the coffee room where occupants may have a short-

term stay, results of NNA method are significantly more accurate than the CC2431 positioning 

engine.  

To sum up, the implementation results show the improvement of the indoor localization 

accuracy while using NNA.  

 

Table 4: Comparison of NNA and CC2431 positioning engine 

 Number of 

tests  for each 

method 

Correct 

CC2431 

position 

Correct NNA 

position 

Percentage of 

correct position 

for CC2431 

Percentage of 

correct position 

for 

NNA 

Corridor 20 11 14 55 % 70% 
Office room 20 13 19 60% 95% 

Lift 20 19 19 95% 95% 
Meeting 

room 
20 15 19 75% 95% 

Coffee room 20 10 18 50% 90% 

 

4.1.2 Testing of PCA algorithm 

 

Figure 30Error! Reference source not found. illustrates a sample of RSSI data collected from 

ne node at different locations during a period of 100 seconds. The RSSI packets were divided into 

10 groups and a PCA was implemented on group one to choose a representative value as the best 

value for that group. Therefore, the calculated position is based on the best representative value. 

Figure 31 illustrates the modified RSSI values after applying the PCA algorithm. As an example, 
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Zone 5 includes a noise level of -35 dBm. By comparing with other signal values in the zone, this 

noise was isolated and filtered. Figure 32 and Figure 33 show the comparison of the coordinates 

with and without the PCA algorithm. Figure 32 represents the x-coordinate values for the actual 

position of x = 15 during a period of 400 seconds.  Initially, both methods faced a delay in 

calculating the estimated location. The CC2431 positioning engine shows the estimated position 

after 20 seconds. This is faster than the PCA method, which shows the estimated position after 75 

seconds. However, after the transient situation, the PCA method calculated the exact position 15 

times while the CC2431 engine could not show the real position more than 3 times. Furthermore, 

the mean error for PCA algorithm is about 1.5 meters for a duration of 400 seconds for the x-axis. 

This error for the positioning engine of CC2431 is about 2.25 meter for the same coordinates. 

Figure 33 displays the y-coordinate values for y = 10 during 400 seconds. Same as the x-

coordinate, the CC2431 engine reached the estimated value earlier than the PCA method. However, 

in stable situations, the mean error for PCA and CC2431 are 1.75 and 2.5 meters, respectively. 

Therefore, the y-axis data show that the PCA performs noticeably better than the CC2431.  

 
 

Figure 30: Raw RSSI data from one node in 

different distances 

 

 

 

Figure 31: Output RSSI data by utilizing PCA filter 
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Figure 32: Comparison of X-coordinates for 

different methods 

Figure 33: Comparison of Y-coordinates for 

different methods 

 

Comparing the PCA with the CC2431 positioning engine, the PCA has a large delay when it 

begins. However, the estimated position is more accurate than CC2431 during the stable situations. 

The results represent improvement in terms of real distance in the fixed position. Figure 34 and 

Figure 35 represent the experiment platform with 2D and 3D plans of the test-bed area. The yellow 

circles illustrate the reference node and green circles show the position of the mobile target during 

the test.  

 

Figure 34: 3D model of office room 
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Figure 35: 2D model of test-bed area 

 

The above mentioned tests are for static locations only. However, the dynamic location of 

occupants are also important for this research.  The preferred walking speed is defined as the speed 

at which humans choose to walk. Many people prefer to walk at about 1.4 m/s 

(5.0 km/h). However, particularly for short distances, people are capable of walking at speeds 

upwards of 2.5 m/s (9.0 km/h). The Nike + iPod Sport Kit is utilized for measuring the speed of 

walking as the shoes includes a pedometer sensor that can communicate with iPhone wirelessly 

using 3G and 4G networks. The mobile node moved along the path with five different speeds (0.5, 

1, 1.5, 2 and 2.4 m/s). The estimated positions using the CC2431 positioning engine and the PCA 

method were calculated based on their corresponding RSSI value. 

Figure 36 illustrates the error distribution in a spider chart. The PCA method leads to high 

degree of accuracy in slow and regular motion. There is a trend in which an increase in speed leads 

to an increase in the error. However, even at maximum speed, the error in the PCA method remains 

lower than that of the CC2431 method. For CC2431, an increase in speed leads to an increase of 

the distance error, but the slope of the curve is much steeper than that of the PCA method.  This 
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implies that as the speed is increased, the error has a dramatic upward trend for CC2431. The chart 

showed the fact that higher speed leads to lower accuracy in both CC2431 and the PCA algorithm. 

However, for speeds below 1.5 m/s, the error is lower than 1.5 meters, which is accurate enough 

for positioning mobile targets. 

To sum up, when the target is fixed or moving with a speed less than 1.5 m/s, the results of 

PCA are more accurate than CC2431. However, the error increases with speed. Therefore, the PCA 

algorithm may not be suitable for high-speed movements such as emergency navigation, but it is 

good for estimating the location of occupants inside buildings.   

 

Figure 36: Error distribution of two systems in different speeds 
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4.1.3 EMA testing 

 

As proposed in the methodology, to cope with the lower accuracy of the localization system 

during movement, the mobile target transferred the raw signals to the server, and the moving 

average algorithm was applied on the received signals. Based on the number of packets, two 

groups, consisting of five packets and ten packets, received signal data are considered for the 

evaluation.  Figure 37 shows the results of the two scenarios.  The red line shows the smoothed 

noise based on the behaviour of past packets. It shows that the unwanted signals are smoothed well 

in both scenarios.  For instance, at time stamps 65s and 85s  significant noise is detected. Both five 

and ten moving average smoothed the noise which results in higher accuracy of position 

estimation. It should be noted that in this method we need to manually input a number for P0 (16), 

when the estimation starts. A significant distance between the real and smoothed RSSI can be 

recognized in Figure 37.  

The smoothed signal should be at a reasonable range. If the signal smooth too much, small 

changes cannot be distinguished. Therefore, the value of 10 packets is considered in this research 

for the implementation parts.  
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(a) Moving Average for 10 Packets (b) Moving average for 5 packets 

Figure 37: Moving average and RSSI values 

 

 

The concept of moving average is extended from RSSI value to the estimated positions as well. 

Based on the fact that there is a relationship between present positions with past locations, it is 

possible to estimate the near future position of the users. If the estimated and recorded positions 

are far from each other, the system will consider the value as a noise and try to smooth these 

differences. 

To investigate the impact of a moving average on the calculated position, another experiment 

is conducted. The EMA filter is implemented on both RSSI and the estimated locations, separately. 

The average time to receive one signal is about 100 ms. Therefore, smoothing based on 10 signals 

gives the result within one second which is sufficient for a real-time estimation purpose in order 

to calculate the position in real-time. 

Figure 38 depicts the errors for 300 seconds, based on Equation 18 in Section 3.1.2. When the 

filter was implemented on RSSI values (Figure 38(a)), the maximum error is less than 3 meters, 
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which is about 2 meters smaller than what was based on the estimated position values. The average 

error is less than 0.85 meter when the filter is applied to RSSI values, which is a good performance 

in terms of accuracy and capability. Therefore, to save processing time, the EMA filter was applied 

to RSSI values in this research.  

  

(a)Error Analysis for MA applied on RSSI 

values 

(b) Error Analysis for MA applied on distance 

values 

Figure 38: Moving Average filter implemented on both RSSI and distance values 

 

A moving test was also carried out to evaluate the EMA method, the mobile target moved from 

the location A (0, 0) to location B (70, 70). Figure 39 presents the comparison of estimated 

coordinate X ,  computed by using the EMA filter, and the embedded position engine in CC2431. 

Two remarkable noises are illustrated at 44s and 47s in the case of CC2431 engine. However, they 

are well smoothed in the EMA method.   
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Figure 39: Comparison of X coordinate for different methods 

 

Two remarkable noises are illustrated at 44s and 47s in the case of CC2431 engine. However, 

they are well smoothed in the EMA method. Comparison showed that at the beginning, the 

CC2431 positioning engine provide better accuracy than the EMA method. However, after the 

transient situation, the EMA method provides more accurate results than the CC2431. The 

explanation is that the EMA algorithm smoothed and estimated new values based on the last 10 

packets which takes few seconds to receive packets and calculate the estimated result. It is clear 

that the distribution from EMA 

  

To compare the EMA, PCA and CC2431 positioning engine together, another test is 

implemented. The user has to distribute the mobile node over interested tracking area, and then 
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record the data at several points which is called as reference points. A total number of 25 

measurement points are identified for each method. The experimental test-bed was defined as room 

EB547 in the 5th floor of the building. Its area has dimension of ( 24.5×12.5m).  

As shown in Figure 40, 25 measurement points are the target of estimating the errors.  

 

Figure 40: The localization error using CC2431, PCA and EMA methods 

 

Figure 41 shows the localization error for all three methods. The maximum error were 3.5, 2 

and 2 meters for CC2431, PCA and EMA, respectively. 
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Figure 41: The distance error based on the number of tests 

 

Table 5 compares the error of different methods. The PCA achieved the lowest error by the 

mean error of 0.83 meter and the CC2431 positioning engine showed the highest mean error by 

1.39 meter. The standard error and standard deviation of each method are depicted in the table. 

 

Table 5: Evaluation the CC2431, PCA and EMA methods 

 Mean of Error 

(m) 

STANDARD ERROR 

(STANDARD DEVIATION OF THE 

MEAN) 

STANDARD 

DEVIATION 

CC2431 1.39 ±0.16 ±0.83 

PCA 0.83 ±0.11 ±0.58 

EMA 0.99 ± 0.08 ±0.44 
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As mentioned before, the EMA method is based on the historical data of signals. In the case 

that the received signals change dramatically, the previous signal patterns can be helpful to smooth 

outlier signals. This situation may occur when the mobile target changes its location at a high 

speed. To investigate the effect of speed on the accuracy of the system, tests were implemented 

with five different speeds (0.5, 1, 1.5, 2 and 2.4 m/s).  The estimated locations for the CC2431 and 

EMA method are calculated based on their RSSI value. Figure 42 represents the test bed area and 

path and Figure 43 illustrates the distribution error of all methods in the form of a spider chart. 

This figure shows that in the case of moving speeds lower than 1.5 m/s the PCA method is the 

most accurate one, which has a maximum error of 1.4 m. in the case of speeds higher than 1.5 m/s, 

the EMA method is the most accurate one with the maximum error of 3.5 m. 

 

 

Figure 42: The architecture of sensors and test-path 
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Figure 43: Errors for all methods at different speeds 

 

As shown in Figure 43, concluded that higher speeds result in less accurate position estimation 

for all methods. However, the EMA method recovers from this situation better than other methods. 

For low and normal speeds, PCA method shows a more accurate estimation. 

To examine the influence of antenna orientation, the received signal strengths were checked 

by rotating the antenna of the mobile nodes. No specific changes were observed on the 

performance. 

4.1.4 Summary 

 

In this research, the Indoor localization system is customized for the objective of the research 

by applying three algorithms: NNA, PCA and EMA based on RSSI values in a ZigBee-based 

sensor network. First, the drifting phenomenon which causes estimating the position in another 
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room is removed by utilizing NNA method. Second, the PCA trilateration approach in a non-

offline phase analysis localization method is implemented. The filter has the capability of 

eliminating unwanted signals and noise. In this technique, each 10 signals were grouped together 

to extract a representative signal for computing the positions of the target. From the results, there 

is an indication of accuracy improvement. In a case whereby the user is placed in a specific location 

the error is noted to reduce. However, there is still need for more improvement as per the 

observations made from experiments conducted using high speeds. However, all experiments 

resulted in more accuracy compared with CC2431. Finally, the historical data of RSSI are 

considered as a guideline to predict the future data. For moving targets with different speeds, the 

proposed method showed more accurate results than the positioning engine embedded in CC2431. 

To sum up, The NNA algorithm is an essential method while the location of mobile target is 

required to be considered as a zone area (one room). Both PCA and EMA methods showed the 

potential of more accurate result than CC2431 position engine. However, PCA is suitable for 

moving targets with speed lower than normal walking speed. EMA showed better results for 

moving targets with higher speeds such as fast robots or running situation.  

In this research, for evaluation of the position of occupants inside the building, the combination 

of EMA and NNA method is used as it is important to estimate the location in the exact room of 

the building for energy saving purpose. However, an application of PCA method is presented in 

Appendix D. 
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4.2 Intelligent control based on thermal comfort and occupancy-driven  

4.2.1 Thermal comfort modelling 

 

There are several platforms of CFD, such as Fluent, Airpak, and Phonics.  In this research, 

Airpak is selected due to its simplicity and capacity to model temperature, air velocity, PMV and 

PPD. The physical model of this research for analysis is a public office at a university building 

with two individual ceiling HVAC outlets, as shown in Figure 44. The parameters of the model are 

described as follows: 

(1) Local coordinate system: starting point coordinates (0,0,0) and ending points (8.5,3,10.4); 

(2) Room dimension: 8.5 𝑚 × 10.4 𝑚; 

(3) Two external windows facing south with dimensions: 1.6𝑚 × 3𝑚; 

(4) Dimension of office door: 2𝑚 × 1.3𝑚; 

(5) Two ceiling HVAC air supply outlets: Dimensions: Each outlet is considered as four 

squares with the dimension of 0.9𝑚 × 0.09 𝑚 ; air velocity: 2.5 m/s; air temperature: 18 

℃; 

(6) Vent: The direction is along the Y axis with the dimension of 0.3𝑚 × 0.3𝑚 .The air velocity 

is 2.5 m/s and air temperature has an ambient value. 

(7) Indoor heating sources: seven sitting men (persons 1 to 7) with a calorific value of   75 w; 

two sitting women (persons 8 and 9) with calorific value of  60 w; nine LCDs with calorific 

value of 19.5 w; nine computer cases with calorific value of 220 w; and nine florescent 

lamp sets with total power of 100 w  for each set, depicted as 0.4 m × 1.2 m0.4 m × 1.2 m 

squares 
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Figure 44: The geometry of office room with nine occupants 

 

 Setting boundary conditions 

 

The temperature buoyancy condition for the CFD simulation was provided by thermal camera 

images which is shown in Figure 45. Indoor and outdoor temperatures are gathered by a group of 

DHT11 Arduino temperature and humidity sensors. As it was mentioned in the methodology 

section, seasonal based modelling are used in this research. The winter modelling are provided in 

Appendix B. The data for the CFD model were collected during the field measurements of a typical 

summer day as follows: 

  

a) North wall b) South wall 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CEoQFjAB&url=http%3A%2F%2Fwww.adafruit.com%2Fproduct%2F386&ei=h3L2VODfD4LVoATN84GAAg&usg=AFQjCNEOcH7pJZrNEErRMeSdcZyzgAoHGQ&sig2=J26mBalyD2qNV86uKRZSZQ&bvm=bv.87269000,d.cGU
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c) East wall d) West wall 

Figure 45: Sample thermal images from different walls of the office 

 

Table 6: CFD Boundary Conditions 

Input Value 

Indoor measured parameters  

Relative humidity  

 

40% 

Dry-bulb temperature 

 

21℃ 

External wall inside surface temperature Front wall (South) 

 

24.9 ℃ 

Internal wall inside surface temperature East wall 

 

19.9℃ 

Internal wall inside surface temperature West wall 

 

20.7℃ 

Internal wall inside surface temperature Back wall (North) 

 

21℃, 

Floor 

 

19 ℃ 

Ceiling 

 

21.2 ℃ 

Air Supply  

Buoyancy density(1) 1.173 

kg/𝑚3 
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Airflow supply rate 2.5 m/s 

Outdoor measured parameters  

Dry-bulb temperature 33 ℃ 

Wet-bulb temperature 30 ℃ 

 

(1)The air was considered as an ideal gas  

In this research two models of radiation are considered, which are the surface-to-surface 

radiation model and the solar load model [74]. The surface-to-surface model allows us to specify 

all or any objects which exchange radiative energy with other objects or with a specified remote 

temperature. The heat transfer rate of objects is defined as 

Q=𝜺𝝈𝑭(𝑻𝒔𝒖𝒓𝒇𝒂𝒄𝒆
𝟒 − 𝑻𝒓𝒆𝒎𝒐𝒕𝒆

𝟒 )                       

 

where Tsurface represents the surface temperature of object, Tremote is the surface temperature to 

which the object radiates heat, σ is the Stefan-Boltzmann constant, F represents the view factor 

and ε shows the emissivity of the surface of the object of a given material. To model the radiation 

objects, Airpak calculates the view factors and computes the radiative heat flux based on calculated 

object temperatures. In this research, the calculation of radiation is specified in heat sources to 

account for radiation from objects such as computers, lightings and human bodies. 

To include the effects of direct solar illumination as well as diffuse solar radiation, a solar load 

model is utilized. The model performs a ray tracing and shading for all boundary surfaces by 

providing the geometry and terrestrial location, date, and time. The following information is used 

as the input for Suzhou, China, where the building is located: 

 

(42) 

) 
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Table 7: Solar load model input 

Input Value 

height 10 m above sea 

Latitude 31º 18’ 14” N 

Longitude 120º 35’ 43” E 

Time 14:00 

Date June 15th, 2015 

Sunshine fraction 1 

Ground reflectance 0.23 

 

 Illumination parameters are specified as Sunshine fraction and Ground reflectance. Sunshine 

fraction is affected by clouds, which may reduce the direct solar irradiation. This fraction is a number 

between 0 and 1, where 1 is clear sky and 0 is complete cloud cover. Ground reflectance values are 

associated with the ground surface materials such as concrete, grass, rock, gravel, or asphalt. All objects 

in the solar radiation model are defined by their properties and specific material compositions. 

Mathematical model 

 

To calculate momentum conservation, mass conservation and energy conservation equations, 

a low Reynolds number turbulence model (RNG k-ε model) is implemented [75]. A grid model is 

generated to design the mathematical model of the room, depicted in Figure 46. 
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Turbulence is displayed through the use of different levels of two-equation k-ε models, i.e. the 

Standard k-ε, the RNG k-ε and the Realizable k-ε model. Further explanation for the mathematical 

formula of the k-ε models can be found in [76]. 

The standard k-ε model is widely utilized because it has a lower computation requirement and 

it is easier to converge. In the ε-equation, the RNG varies from the standard k-ε model introduced 

which displays a parameter that is the ratio between turbulence time scales and the mean flow. 

Hence, it results in predominant RNG model responses for the fast strain and a streamlined 

curvature in comparison with the standard k-ε model. For the standard k-ε model, it fulfils certain 

numerical requirements on the Reynolds stresses, which is based on the physics of turbulent flows.  

Simultaneously, the influence of the heat radiation from each heat source is also considered. 

In addition, three assumptions are taken into consideration for the physical model. First, indoor air 

flow is estimated as steady turbulent flow. Second, to confirm the Boussinesq theory which says 

that the buoyancy lift is only influenced when changing the fluid density, it is assumed that there 

is good air tightness in the room. Therefore, the leakage effect is not considered in the simulated 

room. Finally, to simplify the model, the door of the office is ignored from the calculation and it 

is assumed that all windows are closed. 

The modified mesh for simulation is set as the normal type and the coordinates of x, y, and z 

were set to 0.21, 0.1 and 0.07m, respectively. 
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Figure 46: Grid generation in Airpak 

 

Comfort and discomfort areas 

 

The PPD and PMV identify cold and warm discomfort ranges for occupants. The PMV is 

expressed by the thermal sensation scale which is indicated in Table 8 [77]. The PPD refers to 

occupants who would vote according to the thermal sensation scale on which 0% represents totally 

satisfied and 100% represents completely dissatisfied.  CFD has the capability to model these 

parameters using color-coding which can be seen in Section 4.3. 

In order to analyse the thermal comfort level of occupants and identify the corresponding 

thermal zone they belong to, three location-based scenarios (with respect to the thermal zones and 

location of the occupants) are developed. Based on the simulation of comfort and discomfort areas, 

corresponding thermal zones are introduced in the office room. Details of selected thermal zones 

are explained in the following Sections.  

 



 

  100 

 

Table 8: Thermal sensation grades and corresponding 

objective response 

PMV Thermal sensation 

+3 Hot 

+2 Warm 

+1 Slight Warm 

0 Normal 

-1 Slight cool 

-2 Cool 

-3 Cold 

 

4.2.2 Thermal Zone identification 

 

Scenario 1 

 

In this scenario, the room is occupied with nine individuals and both HVAC outlets are kept 

on, which is a typical situation in the room. Therefore, a comprehensive analysis is done for this 

scenario. To analyse all occupied areas of the room, four planes are considered in the CFD model, 

as shown in Figure 47.  Vertical planes A, B and C are depicted through the occupant’s position. A 

horizontal plane D covers the whole room at Y=0.6 m, which is approximately the height of the 

occupants when sitting in the office. It should be noted that the locations of occupants are separated 

by partitions in this office. 
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Figure 47: The location of four planes for analysis in the CFD 

 

Figure 48 illustrates the airflow distribution and the air temperature stratification inside the 

modelled room. The results demonstrate that the air flow inside the room is wind-driven. Figure 

48(a) does not show any discomfort condition for persons 4, 5, 6 and 7. However, the air velocity 

between occupants 6 and 7 is relatively high. Also, as shown in the air velocity of Figure 48(b), it 

is found that airflow is extremely high for person 1 which may result in local discomfort for this 

person. Figure 48(c) shows that the heat plume above person 8 are relatively high which might 

cause a local discomfort for this person. The air velocity between occupants 8 and 9 is relatively 

high.  Figure 48(d) shows a good distribution of heat in the office. The red boxes shown in Figure 

48(d) represent the heat surfaces of computers. From those figure, it is found that the average air 

velocity at the height of 0.6 meter is less than 2 m/s, which is considered as comfortable.  There 

are two high speed airflow areas in the middle and north-eastern parts of the room. Fortunately, no 

occupants are located in those areas. 
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(a) 
 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 
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(d) 

 

 

 

Figure 48: Verified model results based on temperature and air-velocity 

 

To investigate the comfort and discomfort areas in terms of air speed, further analysis is applied 

using an iso-surface. And iso-surface is a three-dimensional surface which shows points of a 

constant value (e.g. temperature, velocity, pressure) within a volume of space. Airflow speed of 

0.25 m/s or lower does not affect occupants’ thermal acceptability at preferred temperatures. The 

airflow streamlines exit the HVAC through four separate channels at an angle of 45 degrees, as 

depicted in Figure 49. The iso-surface result of indoor airflow, for air speeds higher than 0.25 m/s, 

has been illustrated in Figure 50. The airflow jet omitted most occupants except persons 1, 2, and 

3 which may result in a local discomfort for them. Most of the areas with an airflow speed higher 

than 0.25 m/s are located in upper part of the room due to their proximity to the HVAC outlets. 

Person 7 may also feel discomfort as he is close to the iso-surface result. According to the model, 

the middle and northern parts of the room have a higher sensitivity to discomfort level. 
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Figure 49: Indoor airflow streamlines from the air conditioning to outlet window 

 

  

 

(a) 
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(b) (c) 

Figure 50: Iso-surface result of indoor airflow with speeds higher than 0.25 m/s 

 

 

Figure 51 and Figure 52 illustrate the PMV and PPD results, respectively. Both images confirm 

that locations near windows are not suitable for occupants. Persons 3, 7 and 8 are located close to 

the 25% dissatisfaction area, which can be identified from the PPD results. The PMV model 

confirms the possibility for discomfort for person 8 as this user is located in a warm area; however, 

it does not confirm any dissatisfaction issues for persons 3 and 7. The simulation does not show 

any discomfort issue for other persons in the room. Results of the survey for this scenario showed 

that persons 3 and 7 didn’t feel any discomfort, but person 8 did feel discomfort. Most of the 

dissatisfaction areas are identified to be close to the windows. 

In summary, when the room is fully occupied with all persons and both HVAC outlets are 

turned on, areas close to the windows are identified as discomfort areas. Persons 3, 7 and 8 are 

close to the 25% dissatisfaction areas. However, survey results showed that only person 8 felt 

discomfort. Other occupants felt comfort in this scenario based on simulations and survey results. 



 

  106 

 

 

 

Figure 51: Predicted Mean Vote (PMV) model 

 

Figure 52: Predicted Percentage Dissatisfied 

(PPD) model 
 

 

Scenario 2 

 

In this scenario, while the room is considered fully occupied, the HVAC-1 is kept on and 

HVAC-2 is off. The corresponding airflow streamlines are depicted in Figure 53. It is deduced that 

the south-western area has worse air distribution than other areas. The air-velocity is depicted in 

Figure 53(b), which shows that the southern area (near the off HVAC outlet) has lower airflow. 

The PMV and PPD analyses are illustrated in Figure 53(c) and (d), respectively. From PMV 

illustration, it is obvious that persons 1, 2, and 3 are located in the comfort areas. The PDD figure 

illustrates that persons 1, 2, and 3 are placed in the reasonable area in terms of lower dissatisfaction 

percentage. Modelling shows that persons 5, 6, 7 and 8 are located in the dissatisfaction areas. In 

addition, person 9 is located on the boundary of comfort and discomfort areas, which may result 

in discomfort. However, the survey results for this scenario show that person 9 feels comfortable 

in this condition. 
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(a) (b) 

 

  

(c) (d) 

Figure 53: Analysis of the room with four occupants and HVAC-1 

 

In summary, persons 1, 2, 3, 4 and 9 are located in the comfort areas and it is possible to 

consider them as in the same thermal zone. In addition, same as scenario 1, the location of person 

8 was also identified as a dissatisfaction area.  
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Scenario 3 

 

For the third scenario, it is assumed that the HVAC-2 is turned on while HVAC-1 is off. Figure 

54(a) presents the airflow streamlines. The north-eastern region receives less air distribution than 

other regions. As shown in Figure 54(b), this region does not show any significant points for the 

airflow. Figure 54(c) and (d) show the comfort and discomfort areas for this scenario. From PMV 

model, it is seen that persons 1, 5, 6, 7, and 9 are located in a comfort area. Persons 2, 3, 4, and 8 

may feel discomfort in this scenario. The PDD results show that persons 1, 5, 6, 7, and 9 are placed 

in the satisfaction area, while Persons 2, 3, 4 and 8 are placed in the dissatisfaction areas, which is 

confirmed by their thermal sensation vote. 

 

 

 

(a) (b) 
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(c) (d) 

Figure 54: Analysis of the room with five occupants and HVAC-2 

 

Table 9: Thermal Zones for persons 

Zone # Person Person Person Person Person Person 

Zone 1  2 3 4 8* 9* 

Zone 2 1 5 6 7 

 

To sum up, based on all scenarios that have been analysed, person 8 is located in a discomfort 

area in all scenarios and this person should be allocated to a better place. In addition, two thermal 

comfort zones are identified based on the analysis to relate the occupants’ location with the control 

of HVAC outlets. This is shown in Table 9. 

Zone 1 is considered for persons 2, 3, 4, 8 and 9 while Zone 2 is considered for persons 1, 5, 

6, 7, 8, and 9. Persons 8 and 9 can be considered in either Zone 1 or Zone 2, depending on the 

presence of other persons in those two zones. However, the location of person 8 is not confirmed 

as a satisfied place and should be re-allocated. 
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4.2.3 Thermal preference profile 

 

Figure 55 shows the room temperature measured for the period of December 3rd, 2016 to 

January 16th, 2017, counted as 1080 hours in total. This room was occupied by PhD students 

whose working hours were counted from 8:00 AM to 8:00 PM. This is about 540 hours during the 

45 days.   

 Based on the survey results, it was found that in the most of the situations, occupants felt 

discomfort when the temperature was above 25 ºC or below 20 ºC. Temperatures between 21 ºC 

with 23 ºC recorded as the neutral feeling temperature which most of the people felt comfort.  

Temperatures in the range of 23 ºC with 25 ºC and 20 ºC with 21 ºC were the critical temperature 

ranges which means the temperature depends on the occupant’s preference. This range of 

temperature can be considered as a comfort or discomfort temperature range. Therefore analysis 

of temperatures are grouped based on these ranges.  

Table 10 shows the number of hours at a specific temperature range. From the table, it can be 

observed that there are 211 hours, around 21% of the whole time period, during which the room 

temperature is above 25 ºC. Among the 211 hours, 58% of the time occurred during the working 

hours and 42% occurred during non-working hours. Temperatures between 23 ºC and 25 ºC 

contributed to 28% of the total hours.  56% of this occurred during working hours and 44% 

occurred during non-working hours.  

 To sum up, during working and non-working hours, the room was heated by HVAC systems 

without considering the demand. There was a huge amount of energy wasted during non-working 

hours which could otherwise be saved by considering the occupancy of the room. In addition, 

There was no need to heat the room to reach the range of discomfort temperatures (above 25 ºC ) 
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and consequently can be saved if this is avoided. Moreover, the range of temperatures between 20 

ºC with 21 ºC and 23 ºC with 25 ºC are the boundaries where by considering the individual thermal 

preferences of occupants, it may be possible to save energy between these temperatures. Therefore, 

data are collected from occupants to predict their thermal preference and implement the results for 

HVAC controlling phase. Fuzzy set is used to organized the data and develop such profiles. 

 

Figure 55: Room temperature from 3 Dec. to 16 Jan. 

 

 

Table 10: Hourly room temperature range from 3 Dec. to 16 Jan. 2017 

Hours Temperat

ure over 

25ºC 

Temperature 

between 23-

25ºC 

Temperature 

Between 

21 -23 ºC 

Temperature 

between 20-

21ºC 

Temperature 

below 20ºC 

Total(1080 h) 211 h 301 h 297 h 176 h 76 h 

Working(540 h) 

8:00AM-

8:00PM 

124 h 169 h 107 h 80 h 53 h 
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Figure 56: Temperaure distribution 3 Dec. to 16 Jan. 

 

 

Figure 57: Temperature distribution 3 Dec. to 16 Jan. for working hours 

 

Figure 58 represents the scatter plots collected from two users and the calculated comfort 

profile fuzzy sets. Figure 58 (a) and (b) show the scatter plots of comfort preference indices and the 

corresponding ambient temperature. Figure 58 (c) and (d) indicate the fuzzy sets of comfort profile 

for each user. The temperature associated with neutral feeling (Zero) is considered as the preferred 

temperature for each user. The blue area represents the region where occupants felt cool and the 

red areas show the region where occupants felt warm. Based on the present occupants in the office, 

the minimum and maximum preferred thermal boundaries for all the users are calculated. For 
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instance, Figure 58(c) shows that the middle preference temperature for user 1 is 23.6ºC with the 

minimum and maximum preference temperatures of 22.9 ºC and 24 ºC, respectively. From Figure 

58 (d) it can be observed that middle preference temperature for user 2 is 22.4 ºC with the minimum 

of 21.9 ºC and maximum of 22.7 ºC. 

 

 

Figure 59 illustrates the room temperature and estimated thermal boundary for one working 

day based on the real occupancy data without considering the unoccupied time. It can be 

discovered that for most of the day, the room was heated above the preferred thermal boundary, 

which lead to uncomfortable and energy waste as well. Alternatively, keeping the room 

temperature between the thermal preference boundaries may increase the thermal comfort level of 

 
 

(a) (b) 

 
 

(c) 
(d) 

Figure 58: Thermal comfort preference and the calculated comfort profile fuzzy sets for each user: (a) data set 

and comfort profile for user 1 (b) data set and comfort profile for user 2 
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the occupants. Adding thermal comfort zones based on modelling, occupancy data, and individual 

occupants’ behaviour, may increase the potential of saving energy while maintaining comfort 

level. This is investigated in the Section 4.4.3. 

 

Figure 59: Room temperature and average preference boundary 

4.2.4  Occupancy pattern 

 

Occupant location data are for collected a period of six months by a real-time location system 

using ZigBee nodes, which are installed inside the room of the office.  Figure 60 illustrates the 

occupancy distribution of the office with the nine persons during a typical working day. The 

recorded data for one week occupancy behaviour of persons are presented in Appendix C. The red 

colour shows absent periods while green colour shows present periods. Each column represents 

data of one of the room’s occupants.  
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Figure 60: One day occupancy monitoring of the office for nine persons 
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Figure 61: Occupancy number of office during one week 

 

 

Figure 61 represents the number of persons in the office during one week. From data extracted 

by these figures there were no days where the office was fully occupied by all 9 occupants. Monday 

had the maximum occupied period with eight individuals. The maximum occupancy number for 

both Wednesday and Friday is seven individuals. The maximum occupancy number for Tuesday 

and Thursday is four throughout the entire day. The recorded data shows that the office is rarely 
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occupied as much as 80%. The average occupancy for the five working days of the week from 

8:00 AM to 7:00 PM is less than four persons. 

Moreover, in that week, there were about 17.16 hours during the working period in which the 

room was unoccupied, indicating that for about 31% of the total working hours during a given 

week, the room was empty. These data show the capability of saving energy while considering 

occupancy information. 

In addition, Figure 62 shows the extracted data of one-month occupancy graph of the office 

with nine persons from 6 AM to 8 PM from the period of six months. For example, each Monday, 

all occupants were absent from the office for two hours (e.g., for lunch) and left the office before 

6 PM.  

 

Figure 62: One month occupancy recorded in the office 

 

Figure 63 depicts an individual’s working schedule in the room during one week. Such 

information provides data to calculate the possibility of key behaviours that allow the development 

of the behavioural pattern of that person’s presence for a specific time and day. 
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Figure 63: One week occupancy pattern for person 3 

 

Results of semi-Markov model 

 

In the university buildings, the probability that occupants have the same schedule during each 

day of a week is higher than for other types of buildings. For example, a lecturer may have a class 

at 11:00 AM each Monday. Therefore, the individual occupants’ data based on the day of the week, 

is considered for behavioural pattern recognition process. For each season, two months occupancy 

data are recorded and the important patterns for each individual are extracted.  

Considering the defined events code from Table 3 in Methodology section, a summary of 

important patterns for all occupants and a summary of important patterns for one occupant based 

on the day of the week in the winter season are shown in Table 11 and Table 12. It is noted here 

that some very long patterns are discarded due to a highly infrequent occurrence (once a week or 
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month). If a pattern repeated for more than one day of the week, then it is weighted as higher 

probability or being considered as a behavioural habit. For example “acde” is repeated three 

different days of the week for a single person, and is therefore assumed to be a regular behaviour 

of this person. However, a movement such as “cfgde” is only repeated on Mondays, suggesting 

that this can be based on the schedule of or regular Monday behaviour for that person. 

Table 11: Resulting of patterns 

 Shortest 

Pattern 

Longest 

Pattern 

Most 

repeated 

pattern 

hi acdeabcde cdeabc 

# of 

Patterns 

114 54 400 

 

Table 12: Pattern of one occupant based on days of week 

Day of Week Most repeated pattern 

Mon deabc 

cfgde 

fghi 

Tue acde 

Wed acde 

Thu achi 

acde 

Fri deabc 

cdehi 
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Figure 64 shows the resulting Markov chain model for important patterns from historical 

behaviour data. Transitions are represented as solid arrows with numbers indicating the transition 

probability between states. The dashed arrow shows the automatic transitions, which is always 

made when the source node is reached. The transitions with probabilities less than 10% are 

discarded from the model. As shown in Figure 64, state “a” has a 40% transition probability to 

state “c” and a 60% probability to state “bc” during the month.  

In Figure 65, the duration of the model is also included. The significant duration distributions 

are denoted as X~(time), where time is the expected duration of the model. For instance,“bc” has 

a minimum expected duration of 48 minutes before it transitions to the next state. State “de” has 

an expected duration of 19 minutes when it comes from state “bc”. The red-arc and blue-arc 

indicates typical scenarios for specific days of a week.  

 

Figure 64: Markov model of behavioural patterns 



 

  121 

 

Figure 65: Semi-Markov model of behavioural patterns  

 

 

 

 

 

4.2.5  Intelligent Control 

 

A prototype system is developed based on previously mentioned methods and technologies. A 

ZigBee network is developed to collect data about temperature, occupancy, and energy 

consumption, and send the data to the server. These data are saved in a log file for further 

computations. The general process of intelligent control system for winter season is depicted in 

Figure 66. 
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Figure 66: The process of intelligent control 

 

 

The abbreviations in this algorithm are defined as: 

NZi  : number of occupants in the thermal zone i 

Tbimin   & Tbimax: The minimum and maximum preference temperature of occupants in 

zone i 

TZi : The temperature of zone i 

HVACi : The air conditioner in zone i 
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To explain the algorithm of intelligent control, three main parts are labeled.  

Part A: in this subsection, the new person who just came to the office with his/her known 

corresponding thermal zone will be identified. Subsequently, his/her fuzzy map based thermal 

preference profile will be used to calculate the best range of temperature for this person if he/she 

is alone in the zone. For the case that other persons attended before him/her in the same thermal 

zone, the new fuzzy map of all persons will be computed and the range of Tbimin   & Tbimax   for 

presence persons will be calculated.  

Part B: the zone temperature will be compared with the minimum and maximum preference 

temperature of persons in a specific zone. If the temperature is below or equal the Tbimin , the 

corresponding HVAC will be turned ON.  

However, this subsection will be triggered each 15 min to turn OFF the HVAC if the zone 

temperature is equal or more than Tbimax . 

 

Part C: this subsection is developed to turn OFF HVACs based on the occupancy pattern of 

persons or based on the “Leave the building” signals from the lift and/or outside sensors. 

 To clarify the process of the intelligent algorithm, different scenarios will be disscussed. 

Scenario I:  The first person (i.e. user 1 from thermal zone 1), comes to the office at 8:00 am. 

As soon as detecting the person in the office, the value of NZi  is changed to 1. Since the 

previous occupancy number was zero, occupancy change is confirmed as “true” in part (1*). 

Therefore, part A would be activated and the Tbimin  & Tbimax  will be extracted from the 
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person’s profile. After reading the temperature of zone 1, the zone temperature will be controlled 

by HVAC1. As the room is occupied and NZ1 is more than zero, the zone temperature will be 

checked and controlled each 15 min. 

Scenario II:  The second person (i.e. user 4 from thermal zone 1), comes to the office at 9:00 

am. 

 As soon as detecting the change in the occupancy number and confirmation from the 

occupancy changes ( number 1→ 2 ), Part A will be activated and the new Tbimin   & Tbimax  

will be computed based on the combination of thermal preference of users 1 and 2. After reading 

the zone 1 temperature, Part B will be applied.   

 Scenario III:  The third person (i.e. user 8 from thermal zone 1 and 2) comes two the office. 

From CFD analysis, it was found that this user can be allocated to both zones. At the current 

time, zone 2 is empty. Therefore in the identification of thermal zone at the moment, this person 

will be considered in zone 1 and consequently the new Tbimin   & Tbimax  will be computed 

based on three users in the same thermal zone. 

Scenario IV:  At 10:00 am, TZ1 shows the temperature above Tbimax but still NZ1 =3. 

Part B of the algorithm will turn OFF the HVAC1 to keep the zone temperature between the 

preference ranges. 

Scenario V: At 12:30 pm, last person in zone 2 leaves the office (i.e. user 6) and HVAC2 is 

ON. 

 NZ2 =0 and the occupancy change is “true”. Therefore, the occupancy pattern of user 6 will 

be checked but the probability does not confirm that this leaving is a long-term condition. In 
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addition, lift and outside sensors did not detect this person. The HVAC2 still keeps ON for 10 

minutes. If there is no change in the NZ2 value during this period, HVAC 2 will be turned OFF 

after 10 minutes.  

In addition to the general intelligent process, some specific rules are defined to increase the 

efficiency of the control and reduce the frequency of temperature change. The following shows 

two sample rules of the intelligent control. 

Check Tz1 and Tz2   % 15 min 

If Nz1>1  

And  

If Tz1 <= Tbmin, and HVAC z1=OFF,  Then ON HVAC1 

Or 

IF Tz1 >= Tbmax, and HVAC z1=ON, Then OFF HVAC 1 

 

If Nz2>1  

And 

If Tz2 <= Tbmin, and HVAC z2=off,  Then ON HVAC 2 

or 

IF Tz2 >= Tbmax, and HVAC z2=ON, Then OFF HVAC 2 

Algorithm 2: Control  of Zones’ temperature 

 

Tz1 and Tz2 represent the zone temperatures which will be recorded each 15 minutes. 

Tbmin and Tbmax show the minimum and maximum thermal preference boundary which are 

calculated based on the presence of occupants. For instance, when a zone is occupied, the zone 

temperature will be checked. If it is below the Tbmin then the corresponding HVAC will be 

activated.  
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The second rule is implemented to reduce the duration of period for heating the zone. After the 

identification of occupancy changes, the probability of that change will be checked and if the value 

is above 10%, it can be considered as the possible long-term situation for occupants and 

consequently the related zone will be identified. Then, the new temperature boundary will be 

calculated based on the current presence occupants in the room. Next, the zone temperatures will 

be checked. If the differences between current temperature and the minimum or maximum 

computed boundaries, is more than 1.5 degree, both HVACs will be activated if they are in the 

“OFF” mode to reduce the period that the zone temperature reach between the boundaries.   

If Nz1>1 And Occupancy change=true 

If P>0.1 Then  

Calculate Tbmax and Tbmin 

Check Tzi 

If  Tzi<= Tbmin, and HVACi=off,   

If (𝑡𝑝𝑖𝑚𝑖𝑛 − 𝑡𝑧𝑖) > 1.5 Then On HVAC 1 and 2 

Else 

 ON HVACi 

Algorithm 3: Speed up heating the room when it is too cold 

 

For instance, for a winter case, if the difference of zone temperature and preference temperature 

boundary of the present users was higher than 1.5 degree( (𝑡𝑝𝑖𝑚𝑖𝑛 − 𝑡𝑧𝑖) > 1.5℃) , both HVACs 

are activated without considering the occupancy of the other thermal zone until the next occupancy 

change is identified or the room temperature exceeded the maximum  boundary. Alternatively, 

when (𝑡𝑧𝑖 − 𝑡𝑝𝑖𝑚𝑎𝑥 > 1.5℃), then both HVACs are deactivated to reduce the time spent in heating 

the room. 
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However, simple ON/OFF HVAC activation based on occupancy may not be cost effective for 

large HVAC systems. This is because starting up large fan motors require large current draw, 

potentially offsetting the money saved during the OFF period. Hence, a reasonable period (at least 

10 minutes) [52] should be considered for changing the condition of HVAC systems. In addition, 

while saving energy using occupancy information, some comfort may be compromised and a 

complementary strategy to overcome this issue may be needed. Therefore, individual occupants’ 

behavioural data are considered in order to create a historical prediction pattern and increase the 

possibility of having a cost effective controlling HVAC system.    

 

4.3 Performance evaluation 

 

Different methods can be applied to measure and assess the energy usage and savings, such as 

whole-building meter data, sub-metered data, and model-based data from the compliances and the 

facilities. Whole-building metering can give an overview to energy efficiency when comparing the 

energy consumption pattern to a baseline but investigating the impact of small changes regarding 

the individual behaviour of occupants can easily be overshadowed.  On the other hand, Sub-

metered data have the potential to provide more accurate measurements of individual impact. 

For energy assessment based on modelling, different strategies can be applied in the simulation 

model to investigate the impact on energy saving. However, the real situation should be 

investigated by collecting energy consumption data and user behaviour data so as to be compared 

with the simulation results  

In this research, as the individual behavioural pattern played an important role, data regarding 

the occupancy and thermal preference patterns from the occupants’ regular behaviour were 



 

  128 

collected. Additionally, sub-metered data were collected to compare the energy savings under 

different scenarios to the simulation model. Implementing different strategies simultaneously may 

not be possible and consequently limited the research to provide much comparative analysis. 

Hence, the combination of real and static data was utilized to evaluate and compare different 

conditions. 

For the analysis of changes in energy consumption regarding ceiling mounted splits, four 

methods are applied in this section: Measure 1: Baseline HVAC method (BL) (measured), Measure 

2: Duty cycle strategy (DC) (measured), Measure 3: Purely Occupancy-driven control (POD) 

(estimated) and Measure 4: Intelligent control (IC) (measured). 

According to the Facility management office’s schedules, all HVAC systems are programmed 

to turn on at 6:00 AM and turn off at 8:30 PM. However, users can manually control the HVAC 

systems if needed. This condition is referred to as the BL. The energy consumption data of each 

individual air-conditioning system in the room is recorded by using two ZigBee-based smart plug-

ins, which wirelessly transmit this data to the server. Measure 2 is independent of the occupants’ 

behaviour and room temperature. Therefore, this method is applied on a separate day of the week, 

considered to be the First Day test. It is difficult to compare energy consumption for HVAC across 

multiple days. On the other hand, it was not possible to track Measures 1 and 4 simultaneously due 

to the temperature dependency of Measure 4. As the HVAC loads are influenced by the 

temperature and solar radiation and different days have different weather patterns, three Mondays 

in the month with the same approximate temperature range are selected for the test. Therefore, 

Measures 1 and 4 are applied each Mondays of a month. Second and the third days test are 

considered for measure 1 and measure 4, respectively.  
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Measure 3 is only based on the occupants’ behaviour but the users’ behaviour could vary during 

different days. Hence, Measure 3 was created using information from real-time occupancy data 

and (I/O) HVAC control of third day test to make it comparable with measure 4. The source code 

of Measure 3 is provided in Appendix H. 

Table 13 shows the outside temperature range for three days test. 

Table 13: Outside temperature 

Days Day  test1 

(DC) 

Day  test2 

(BL) 

Day  test3 

(IC and POC) 

Outside 

temperature 

2ºC -7ºC 4ºC-9ºC 3ºC-8ºC 

 

Aside from these differences, it is still possible to make a reasonable comparison. As the 

second day was warmer, the energy consumption was somewhat conservative and would have 

been higher than the recorded results for the first and third day Energy consumption based on 

different control strategies 

 

Baseline method 

 

The BL energy consumption (Figure 67) is obtained by considering the combination of 

prescheduled working hours and manual user control of HVAC systems. The maximum load is 

recorded as 17kW for both HVACs. In addition, the energy consumption for this typical day is not 

exactly the same as for the other days due to the different behaviour of occupants for manual 

control of the HVACs. Therefore, the energy consumption for this day is considered to be an 
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approximate energy consumption for comparison with other methods. The total power 

consumption for the baseline was 142.83 kW-H. 

 

Figure 67: Energy consumption based on Baseline strategy 

 

Table 14 summarizes the accumulated number of hours based on the indoor temperature. The office 

with BL stood out with nearly 180 minutes of the hours above 25 ºC, and 240  minutes between 23 ºC   

to 25 ºC and only 300 minutes of 21 to 23 ºC and zero minutes below 15 ºC. 

 

Table 14: Accumulated number of hours based on the indoor temperature for baseline 

Hours Temperature 

over 25ºC 

Temperature 

between 23-

25ºC 

Between 

21 -23 

ºC 

Temperature 

below 21ºC 

Working 

8:00 AM-

8:00PM 

(720 min) 

180 min 240min 300 min 0min 

 

0

2

4

6

8

10

12

14

16

18

0
:0

0

0
:5

0

1
:4

0

2
:3

0

3
:2

0

4
:1

0

5
:0

0

5
:5

0

6
:4

0

7
:3

0

8
:2

0

9
:1

0

1
0

:0
0

1
0

:5
0

1
1

:4
0

1
2

:3
0

1
3

:2
0

1
4

:1
0

1
5

:0
0

1
5

:5
0

1
6

:4
0

1
7

:3
0

1
8

:2
0

1
9

:1
0

2
0

:0
0

2
0

:5
0

2
1

:4
0

2
2

:3
0

2
3

:2
0

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

kW
)

Time



 

  131 

 Duty cycle strategy 

 

Figure 68 shows the hourly plan for the DC method that was implemented. As this method for 

each season has approximately the same energy consumption due to the fixed set point of 26 ºC 

and same schedule, it is not necessary to trace the power consumption within a single day. 

Therefore, this strategy is implemented on the first day without considering the temperature. The 

blue columns show the Off period and the brown columns show the On period of HVACs during 

a day. The total power consumption for the DC method was 132 kW-H. 

 

Figure 68: Energy consumption based on Duty cycle strategy 

 

 Intelligent control strategy 

 

On the third day test, the IC method was applied. The HAVCs were controlled based on the 

historical and real-time occupancy, and the thermal preferences of occupants in the room that had 

0

10

20

30

40

50

60

70

1
:0

0

2
:0

0

3
:0

0

4
:0

0

5
:0

0

6
:0

0

7
:0

0

8
:0

0

9
:0

0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

0
:0

0

Ti
m

e
 (

m
in

)

Daily Hour

Off On



 

  132 

been recorded for two months. Figure 69 shows the temperature and the occupancy data. The mean 

temperature boundary for all occupants is depicted as two boxes at bottom and top of the graph. 

The maximum number of occupants was recorded as six persons, illustrated as bar charts. When 

the system recognized any occupancy number or boundary temperature changes, the control will 

respond and necessary rules will be applied to them. 

 

Figure 69: Hourly temperature and occupancy 

   

Table 15 shows the duration of working hours in terms of temperature range. Implementing the 

IC method leads to keeping temperatures between 23 ºC and 25 ºC most of the time. Temperatures 

above 25 ºC    and below 20 ºC were recorded as the shortest periods.  
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Table 15: Accumulated number of hours based on the indoor temperature for intelligent system 

Hours Temperature 

over 25ºC 

Temperature 

between 23-

25ºC 

Temperatu

re between     

21 -23 ºC 

Temperature 

between  20-

21ºC 

Temperature 

below 

20ºC 

Working 

8:00 AM-

8:00PM 

(720 min) 

41 min 129 min 520 min 30min 0 

 

Figure 70 shows the HVAC power consumption traces for the IC method. The first occupant 

presented at 8:00AM and the program reacted by turning on both HVACs. During the day when 

the system distinguished the possibility of a long term vacancy, it deactivated both HVACs. For 

instance, from 12:40 to 13:40 the HVACs were turned off. The maximum power consumption for 

that day recorded as 17kW and the total HVAC loads were calculated to be 84.16 kW-H.  

 

 

Figure 70: HVAC power consumption for IC 
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 Purely occupancy-driven control 

 

To investigate the differences in terms of power consumption between the POC and IC 

methods, the estimated power consumption of HVACs was computed based solely on occupancy 

data recorded from the third day test. Figure 71 illustrates the response activity of HVACs while 

only considering occupancy data. The total HVAC power consumption was computed to be 100.66 

kW-H for that typical day. Although energy consumption from POC method is lower than that of 

the BL method, it should be considered that energy savings may not necessarily lead to the 

satisfaction and comfort of the occupants. Moreover, turning HVAC systems on or off in a short 

period will increase maintenance costs.  

 

Figure 71: HVAC power consumption for purely occupancy strategy 
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The comparison of accumulated number of hours based on the indoor temperature for BL and 

IC is depicted in the form of a bar chart in Figure 72. For the temperatures above 25ºC, the BL 

method shows higher values than the IC method. This implies that the IC method reduced the 

period of time during which the temperature was above 25 ºC. On the other hand, the period during 

which the temperature was kept between 21 ºC to 23 ºC was increased for the systemic method. 

This shows the potential of achieving higher comfort levels for the IC method. In addition, for the 

BL method, room temperature did not decrease below 21 ºC even during unoccupied time which 

indicates a waste of energy. This is because while the room is unoccupied, there is no need to keep 

the room temperature above 21 degrees.  

 

Figure 72: Comparison of accumulated number of hours based on the indoor temperature for baseline and 

intelligent cotrol 

 

A comparison of power consumption for both the BL and IC methods during the day is 
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for both methods. The BL started from 6:30 AM based on the prescheduled program but the IC 

started from 8:00AM when the first occupant presented into the room. The same situation 

happened at the end of the day. The HVAC continues working based on BL strategy until 20:30, 

but intelligent control turned off the HVACs after 19:00. At the start of the day, it may be better 

to activate HVACs in order to maintain temperature at the comfort level before the occupants enter 

the room. However, there are many days that the room may be unoccupied for the entire morning. 

Therefore, it is better to predict the room’s occupancy probability during the weekdays, and add a 

passive heating/cooling schedule. This can be considered in the future work. While the power 

consumption of the IC method was higher than that of the BL method during some periods, the 

overall energy consumption shows a significant reduction by using the intelligent control strategy.  
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Figure 73: HVAC power consumption for baseline and intelligent control 

 

Figure 74 shows the comparison of HVAC loads for the IC and POC where there are 

occupancy-driven based. Based on the experimental tests, there is an approximate duration of 7 

minutes to change the room temperature. Moreover, the short-time occupancy behaviour of 

occupants caused a high fluctuation. However, It can be seen that the blue line, indicating the IC, 

has a significantly smooth behaviour, and the POC fluctuation is higher than the IC fluctuation.  

In addition, turn on and off HVAC systems regularly at intervals of less than five minutes will 

increase the maintenance costs. Therefore, the IC is more efficient than POC in terms of both 

comfort and cost. 
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Figure 74: HVAC loads for POC and IC 

 

Table 16 shows the energy saving potential for different strategies comparing to the BL 

method.  

The total observed electricity savings for IC are higher than for DC and POC. In addition, 

POC has the potential to be implemented based on the offline data based on occupants’ positions 

and historical behaviours. Moreover, the energy savings percentage from POC is close to that of 

IC. Therefore, for a longer period of energy savings analysis and a more accurate comparison, it 

is possible to utilize the combination of BL data and occupancy pattern, which is explained in 

validation section 4.4.3.  

Table 16: Energy consumption and potential saving for different strategies 

Method Baseline 

(BL) 

Duty cycle 

(DC) 

Purely 

Occupancy 

(POC) 

Intelligent Control 

(IC) 

Energy 

Consumption (kW-

H) 

142.83 132 100.66 84.16 
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Saving Energy  5.25% 29.5% 41% 

 

 

4.3.2  Validation  

 

It is not possible to implement the BL and IC method simultaneously in the same room. In 

addition, different days test results may not be a good comparison for these two methods due to 

the different weather conditions and varying occupants’ behaviours. Therefore, the comparison of 

IC and BL energy consumptions may not provide an accurate result. On the other hand, POC 

method has the capability to be implemented in the offline mode which means it can be applied on 

the same day that BL was tested. Therefore, same occupants’ behaviour and same weather 

condition can provide more accurate comparison.  

In addition, if we show that the energy saving from IC and POC is in the same range or even 

better results collects for IC, it is possible to compare the BL and POC for a longer period of time 

and achieve more accurate results. Therefore, in the first part of this section, IC and POC will be 

compared and if the results show similar saving achievement, the POC will be used instead of IC 

for comparison with BL.  

To evaluate the accuracy of   fuzzy map approach in predicting the satisfied temperature range, 

another survey based on occupants’ feeling in different temperatures is conducted. For the second 

survey, different voting scale is designed to avoid the similarities and psychological impacts.   

During another survey which is considered as the third survey, the performance of whole 

intelligent system, will be analysed. In this stage, the survey is done by the occupants during 

different predefined strategies and the results are compared.   
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Energy optimization 

 

To evaluate the performance of IC in details, data from a typical day are selected. Figure 75 

represents the results of IC. The mean temperature of the room and ambient temperature are 

depicted. The mean lower and mean upper thermal preference of all users are calculated. The 

working duration of the HVACs are depicted at the top of the graph.   

 

 

Figure 75: Intelligent HVAC controller results 
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At the beginning of the day, user 2 arrived at the office at about 7:00 AM while outdoor 

temperature and indoor temperatures were recorded as 15℃ and 18.3℃, respectively. The zone 1 

temperature also was recorded as 19.2℃.The calculated thermal preference for this user is in the 

range of [21.3-24℃]. The intelligent controller decided to turn on HVAC 1 at 7:15 AM as this 

person is identified in zone 1 for a long-term stay with the probability of 0.35. Although there was 

no person in zone 2, the intelligent controller system turned on HVAC 2 because the difference of 

zone temperature and preference temperature of user 2 was bigger than 1.5 degrees (𝑡𝑝𝑖𝑚𝑖𝑛−𝑡𝑧𝐼𝐷 >

1.5℃) (21.3℃-19.2℃ > 1.5℃), which was defined as a rule for the intelligent controller. After 

the time that temperature reached the lower boundary of the user’s thermal preference, HVAC 2 

was turned off. This happened around 8:00 AM while that time the temperature was recorded as 

21.8℃.  

We have a fluctuation of temperature between 8:30 AM to 9:30 AM when other users arrived 

at the room and the door is opened frequently. This is the normal period of user attendance.  The 

Intelligent system reacted by turning on both HVAC 1 and 2 based on the occupancy data. 

However, the system turned off HVAC 2 at about 9:20 AM to hold the temperature between the 

boundaries of present users in zone 2.  Zone 2 was unoccupied from 11:00 AM until 2:00 PM. The 

system evaluated this situation as a long-term condition. Consequently, HVAC 2 was inactive.  All 

persons left the room before 12:30 PM. The intelligent controller kept both HVACs off until about 

2:00 PM due to the real-time occupancy data.  Around 2:10 PM two users from different zones 

came back to the office. The system activated both HVAC systems. There are some dramatic 

changes in the temperature. For example, at 16:10 when the last user left the building, the 

temperature reduced sharply. The reason could be explained as the transfer of outdoor air into the 

room from open door or windows in the office. Although both HVACs were off from 11:20 to 
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14:10, the temperature maintained approximately constant. This is due to heat transferred from 

computers.  

User 6 from zone 2 came back to the office around 16:55 but the system did not react at that 

time and considered that case as a short-stay based on the probability. However, after 10 minutes 

the system turned on both HVACs to compensate for the difference between zone temperature and 

preference temperature of the user based on the 1.5 degree rule (|𝑡𝑧𝐼𝐷 − 𝑡𝑝𝑖𝑚𝑖𝑛| > 1.5℃). If the 

user could control the HVACs manually, he would turn them on in less than 10 minutes. In other 

words, 10 minutes is a long period for the user to stay in the office with low temperature, which is 

the drawback of decision-making systems. These systems can make predictions based on the 

previous data and react based on new data patterns, but require enough time to be confirmed.  

To investigate the difference of energy consumption, IC is compared with POC. After 

confirming that saving energy for IC is in a reasonable range compared with POC, it is possible to 

implement the POC on the offline data to estimate energy savings. Hence, it is more accurate to 

be compared with the same time and day of that when BL is implemented.  
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Figure 76: Comparison of IC and POC 

 

 

Figure 76 illustrates a five working days’ performance of an HVAC system based on IC and 

POC. It can be observed that the IC method consumed about 4.5% less energy than the POC 

method during the same test period, based on the same occupancy behaviour but provide more 

comfort to the occupants.  

Table 17 shows the detailed daily energy savings percentage. 

Table 17: Comparison of Intelligent control and Purely occupancy control 

 Mon Tue Wed Thu Fri 

Saving IC compare 

with POC 

6.59% 5.68% 8.64% 0% -1.6% 

 

The maximum energy savings occurred on Wednesday which is 8.64% less energy used. On 

Friday, the POC used 1.6% less energy compared with that of IC. On Thursday, the approximate 

energy consumption for both strategies were same. Considering the data from Table 16, it is 
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concluded that the average energy savings for IC is about 4.5% to 6% higher than for the POC 

method. Therefore, the POC method can be applied on the BL data, allowing a comparison of 

results. 

Figure 77 shows the comparison between the BL and POC methods for five working days. The 

summary of extracted data is shown in Table 18. On day 5, the energy savings from POC was 

extremely high which was 68.97%. On that day, the last occupants forgot to turn off HVACs. 

Therefore, a huge amount of power was wasted. However, in the POC, the HVACs were turned 

off them based on real occupancy data, resulting in large energy savings. Although, day 3 shows 

the lowest energy savings with a value of 28.19%, this is still considered as a significant amount 

of savings. The average energy savings for the whole testing period shows the potential of 40% 

energy savings while utilizing the POC strategy. However, ignoring day 5, the average energy 

savings was calculated as 32.76%, which remains a considerable value. 
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Figure 77: Comparison of BL and POC 
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Table 18: Comparison between BL and POC 

 Day 1 Day 2 Day 3 Day 4 Day 5 

POC Energy 

Consumption 

98.8 

(kW-H) 

69.28 

(kW-H) 

53.29 

(kW-H) 

55.96 

(kW-H) 

29.97 

(kW-H) 

BL Energy 

Consumption 

141.09 

(kW-H) 

103.93 

(kW-H) 

74.21 

(kW-H) 

92.6 

(kW-H) 

96.606 

(kW-H) 

Savings for 

POC strategy 

29.97% 33.33% 28.19% 39.56% 68.97% 

 

Figure 78 shows the energy consumption comparison of POC, IC and BL for five working 

days. The yellow areas represent the energy savings by using the POC strategy. The green line 

depicts the BL strategy’s energy savings. The estimated energy savings for the IC method are 

illustrated as a dash line. It is clear that day 5 contains the maximum difference in savings between 

the BL and POC methods, and that day 3 contains the minimum energy savings. 

 

Figure 78: Estimated and measured saving energy 
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Figure 79 shows one month of the HVACs operation when kept on due to the POC method. 

According to the BL data, the HVACs operated from 6:00AM to 8:30 PM with the manual control 

of occupants. The total operational hours for HVAC1 and HVAC2 are recorded as 201 and 163 

hours, respectively. In the case of POC strategy, it is showed that HVAC 1 worked for 131.96 

hours, equalling about 5.5 days, and HVAC 2 operated for 97.81 hours, equalling about 4.07 days. 

 

Figure 79: HVACs keep on for one month based on POC 

 

The results for monthly analysis indicate an approximate savings of 34.38% during working 

hours for HVAC1 and 39.99% for the operation of HVAC 2.  Considering the results of Table 16, 

analysis shows the potential to save about 30-40% energy for the POC approach and 35-48% for 

the IC approach. However, the thermal comfort and occupant satisfaction level need to be 

evaluated for the IC, which are examined in the following section.  
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Thermal comfort and fuzzy map evaluation 

 

To verify the extracted data from fuzzy maps, another survey was conducted. During a 5-day 

period, the room temperature is manually changed by the operator to one of the randomly selected 

temperatures. Afterward, a survey is conducted to collect the thermal votes of occupants. At the 

end, the pattern of thermal comfort areas extracted from fuzzy maps is compared with the second 

survey.  

As an example, Figure 80 illustrates the comparison of fuzzy map comfort areas and the 

specific thermal comfort evaluation for user 3. The blue curve indicates the neutral area from the 

fuzzy graphs. The two-dash line shows the minimum and maximum of the neutral areas. The 

minimum, maximum, and middle of the neutral areas are extracted from the fuzzy map as 20.7, 

21.5 and 22.8ºC, respectively. The vertical axis shows the range of votes by 8 ranges. The range 

[0 1] is considered as the natural range, indicated by the oval in the graph.  From the 40 votes 

recorded at different temperatures, 19 votes fall in this range with the minimum and maximum 

temperatures of 20 ºC and 23.5 ºC. Comparing with the minimum and maximum computed range, 

extracted from the fuzzy map, a reasonable range of thermal preference is validated. For user 7, 

the same test has been done and results are depicted in Figure 81. The minimum, maximum, and 

middle of the neutral areas are computed as 22, 24.5 and 23.5ºC, respectively. From the 40 votes 

cast at different temperatures, 26 votes fall in the range of [0 1], with minimum and maximum 

temperatures of 20.7 ºC and 25 ºC. The computed and the current test both confirm that this person 

prefers a wide range of temperatures not exceeding 25ºC.  
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Figure 80: Thermal comfort preference test for user 3 

 

 

Figure 81: Thermal comfort preference test for user 7 

 

The results of test for all nine occupants are presented in Table 19. Details of each person’s 
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results confirm that fuzzy map method provide a reliable range for the occupants’ thermal 

preferences to be utilized as one of the input parameters in our intelligent control. 

Table 19: Comparison of actual feeling and thermal preference profiles 

Users Number of 

total satisfied 

votes (between 

[0 1]) 

Range of Temperature 

for total satisfied votes 

( between [0 1]) 

ºC 

Number of votes between 

[0 1]  and inside thermal 

preference range 

Range of thermal 

preference 

ºC 

1 22 21-24.5 19 21.3-24 

2 20 20 -23.6 15 21-22.5 

3 19 20 -23.5 12 20.7 -22.8 

4 28 21-25 17 23-25 

5 18 20.6-24.5 8 21.7-23.5 

6 20 20-24.5 12 20-23.5 

7 26 20.7-25 17 22 -23.5 

8 15 21-24 10 22.1-24.2 

9 19 21-25 11 21.5-23.5 

 

 

Figure 82: Comparison of actual feeling and thermal preference profiles 



 

  153 

To evaluate how the system calculate the situation when all users in the same thermal zone 

present in the office, zone 1 is selected.   

The related fuzzy map of all four users extracted from fuzzy survey is depicted in Figure 83. 

 

(a) Scatter graph when zone 1 is fully occupied 

 

(b) Fuzzy pattern 

Figure 83: Thremal preference range when one 1 is fully occupied 

 



 

  154 

The fuzzy map shows the minimum, neutral and maximum range of temperatures as 21 ºC , 

21.7 ºC and 23.4 ºC respectively.  

To evaluate the accuracy of the fuzzy map approach, data extracted from the second survey 

are depicted in the form of a scatter graph as Figure 84. 

 

Figure 84: The second survey votes from four occupants in the same thermal zone 

 

The total 178 votes are collected  from four occupants located in the same thermal zone. Table 

111 summarised the extracted results. 45 percent of total votes (81 votes) are collected in the range 

between 0 and 1 which represents the satisfied thermal feeling. The range of satisfied temperatures 

are 21 ºC and 22.8 ºC.  However, in terms of percentage, 72 percent of the satisfied votes are located 

in the area between 21 ºC and 23.5 ºC. 
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Table 20: Comparison of actual feeling and thermal comfort profiles 

 

Number of 

total satisfied 

votes 

(between 

[0 1]) 

Percentage 

 

Number of votes 

between [0 1]  and 

inside thermal 

preference range 

21-23.5ºC 

 

Percentage 

 

81 45% 59 72% 

 

Comparing the results of fuzzy maps and the second survey shows that the fuzzy map could 

calculate the satisfied range of temperature while four occupants located in their thermal zones. 

 

In the next stage of experiment, the performance of intelligent system will be analysed. 

To evaluate whether occupants feel comfortable or not utilizing different HVAC strategies, the 

thermal sensation votes were recorded via another survey (third survey) for a period of five 

working days for each method. The rate of 1 to 7 corresponding to very cold to very hot should be 

considered. The number 4 represents the neutral point; neither hot nor cold. 

Figure 85 illustrates the daily thermal sensation vote of nine occupants for the BL method 

during the measuring period. From the figure 85, the thermal sensation vote at the arrival time was 

mainly around neutral (number 4), indicating occupants feel neither hot nor cold when they arrive. 

The votes in the morning were gradually increased because of the rise of indoor air temperature 

and showed the thermal sensation vote to be very hot in the afternoon, which may be a result of 

direct sunlight in the afternoon and longer working period of HVACs. 
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Figure 85: Daily thermal sensation vote for baseline method 

 

Figure 86 shows the daily thermal sensation vote for duty cycle strategy. It can be observed 

that at the arrival time, except day 5, occupants vote as slightly cold or cold. While the morning 

and afternoon votes show a slight increase in the thermal sensation vote, the average remains in 

the cold regime. Days 3 and 4 recorded the lowest vote rate, which is likely due to the fact that 

these days were the coldest days during the test period.  
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Figure 86: Daily thermal sensation vote for duty cycle method 

 

The thermal sensation vote for the POC method is depicted in Figure 87. This figure shows a 

clear cold feeling at the arrival time. However, a significant increase was recorded in the morning. 

Even in the afternoons of the test period, occupants felt hot. The trend shows an improvement of 

the comfort feeling. However, occupants experienced a wide range of temperatures from cold to 

hot during the day, as this method was only based on occupancy data, ignoring room temperature.  
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Figure 87: Thermal sensation vote for the POC method 

 

 

Figure 88 shows the thermal sensation vote for the intelligent control method. At the arrival 

time, occupants vote for a slightly colder temperature. However, in the morning and afternoon 

time, the thermal sensation vote shows a significant enhancement with an average around the 

neutral point. In this method, there were no votes for warm and hot, showing the capability of 

control the temperature around the occupants’ preference temperature. 
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Figure 88: Thermal sensation vote for the IC strategy 

 

The average thermal sensation vote for all methods is depicted in Figure 89. At the arrival time, 

the baseline strategy shows the best method to provide occupant satisfaction. The POC and IC 

strategies show the weakest results as these strategies were performed when the first occupant 

entered the room.  Therefore, to achieve better thermal comfort level results for these approaches, 

a passive HVAC schedule is required to keep the temperature within the satisfied area before the 

occupants’ attendance. The DC shows the cold feeling at arrival time as well. In the morning vote, 

all votes were improved slightly. However, the duty cycle still remains in the cold area and the BL 

shows a feeling from slightly warm to hot. The POC and IC strategies keep the temperature around 

the neutral point of neither hot nor cold. 

In the afternoon records, occupants clearly felt hot in the BL method. The DC strategy shows 

a smooth increase, but still remains in the cold area. The thermal sensation for the single occupancy 
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method was recorded as warm but the IC strategy accurately kept the thermal sensation in the 

neutral zone.  

 

Figure 89: Thermal sensation vote for all methods 

 

To sum up, the BL strategy provided a better comfort feeling at the arrival time. On the other 

hand, The IC strategy provided a good satisfaction during the morning and afternoon. By 

considering the energy consumption of four strategies, the IC strategy shows the highest potential 

of saving energy while maintaining comfort for occupants.  
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4.3.3 Additional Observations from users’ study 

During the experimental tests, the general occupants’ information are collected from users 

who are participated in this research. The data are provided through the interview and survey 

from the users. Table 21 shows the information.  

 

Table 21: User General Information 

User 

# 

Gender Age  Type of 

Work/Research 

Activity 

Level 

Weight acoustic 

quality 

Average Temperature 

preference range for 

winter 

 (min-Max) 

ºC 

1 M 26 Computer work A 65 1 21.3-24 

2 M 28 Research C 66 1 21-22.5 

3 M 31 Research/Lab D 69 2 20.7-22.8 

4 M 30 Research/Lab A 64 3 23-25 

5 M 32 Research C 65 2 22.5-23.5 

6 M 29 Research/Lab C 61 3 20.5-23.5 

7 M 34 Research A 77 2 22-24.5 

8 F 29 Research B 59 1 22.1-24.2 

9 F 24 Research/Lab B 79 1 21.5-23.5 

 

The activity level of occupants collected based on the following scales: 

Activity Level: 

(A) Not very Active: Spend most of the day time sitting 

(B) Lightly Active:  Spend good part of the day on your feet 

(C) Active: Spend good part of the day doing some physical activity 

(D) Very Active: Heavy physical activity 

 

The acoustic quality scales are formed as (1) noisy (2)Normal (3)Silent 
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Analyzing these data can provide some assumptions and patterns which can be a guideline 

for future research. However, due to the small size of population, verification of findings 

need more investigations and a bigger population size. 

 

1) Users 4, 7 and 8 are assigned for the highest temperatures in the maximum 

preference range. The age of these users are above 29 year old.   In addition, users 

4 and 7 rated for the activity level as “Not very active” and user 8 answered as 

“Lightly Active”.  Although, the age of users 3,5 and 6 are above 29 year old but 

their activity levels are “Very Active” , “Active” and “Active”. 

It can be concluded that higher ages with lower activity level may lead to the 

higher preference temperature during the winter. Particularly, for user 4, the 

minimum and maximum preference temperatures are 23 ºC and 25 ºC which are 

the highest minimum and maximum preference temperatures compared with other 

users.   

 

2) Users 2 and 3 prefer the lowest maximum temperatures by 22.5 ºC and 22.8 ºC.  

Their activates rate show the “Very Active” level. Therefore, the higher activity 

level may result in lower preference temperature.  They also prefer the mostly 

lowest minimum temperatures by 21 ºC for user 2 and 20.7 ºC for user 3. This can 

be explained as their higher metabolism rate due to the activity level of them. 

 

3) User 1 as the youngest person in the office has the maximum flexibility to the 

temperature changes with satisfaction range between 21.3 ºC to 24 ºC.  Also this 
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user introduced his activity as computer work which is different with the other 

users in the office.  

 

4) Users 1,2,8 and 9 are placed in the areas beside and in front of the office’s door 

which can be a reason for their “noisy” votes. 

 

5) Users 3,4,6 and 9 are introduced their works as research /Lab . Comparing their 

minimum temperature preferences show that except user 4, the minimum 

temperature preferences for the other ones are computed below 21.5 ºC.  

 

 

Chapter 5: Conclusions, limitations and future work 

 In the present research a novel method is proposed to provide occupancy-driven intelligent 

control of HVAC based on thermal comfort. Air conditioners consume a significant part of energy 

consumption in buildings. An automated occupancy-driven HVAC system lead to reduction in 

energy usage in buildings. However, it is essential to consider the occupants’ comfort level for 

such systems.  

Occupancy information is a significant factor that influences the energy efficiency of HVAC 

systems. Real-time monitoring of occupants’ positions provides information to avoid heating or 

cooling unoccupied areas in buildings. Therefore, a localization system based on ZigBee 

technology is utilized to collect such data. Three algorithms were used to further improve the 
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accuracy of the data. The near neighbour area (NNA) method was used to identify occupants in 

the exact room in real-time by filtering the communication signals from nodes which were not 

installed in the same room. Using the principle component analysis (PCA) method as a filter 

allowed us to remove unwanted signals and consequently achieved higher precision in monitoring 

results for low speed mobile targets. In static situations, the mean error after applying the PCA 

method was 0.83 meters, which is less than that of the original CC2431 positioning engine (1.39 

meters). However, for the moving targets with high speed, PCA could not achieve the expected 

accuracy. Hence, the Exponential Moving Average (EMA) method was used for the moving 

targets in higher speed, which predict the next position based on the 10 last signals. By applying 

EMA filter, the significant noises from signals were removed which lead to more accurate 

estimating of the position.  

The PCA, EMA and the default position engine in the CC2431 were compared in different 

speeds. The collected data indicate that a higher speeds, result in less accurate position estimation 

for all methods. However, the EMA method recovers from this situation better than other methods. 

For low and normal speeds, PCA method shows a more accurate estimation. 

Based on the actual geometry of the building, a Computational Fluid Dynamics (CFD) model 

was built for the test bed area. The air distribution and flow, the Predicted Mean Vote (PMV) and 

the Predicted Percentage Dissatisfied (PPD) were calculated. Areas with a higher potential of 

discomfort and comfort were then identified. To verify the simulation results, surveys were carried 

out to investigate the real feelings of the occupants under different conditions. Consequently, 

different thermal zones with associated occupants were identified for the test bed area.   

In addition, a personalized thermal profile was created for individuals by analysing the 

feedback from persons in the room about their perception of the environment in different 
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temperatures. Based on the presence occupants in the room, the minimum and maximum preferred 

temperatures are estimated and the current room temperature was checked to see if any actions 

were needed. 

To avoid frequently turning ON and OFF HVAC systems, an occupancy pattern was created 

for each individual based on historical data. Semi-hidden Markov chain was used to develop the 

pattern and forecast the short-term or long-term of leave the office condition for each occupants. 

 An intelligent control was developed based on the real-time locations of the persons, 

occupancy pattern of individuals, thermal preference profile of occupants and the current zone 

temperatures. 

To evaluate the proposed methodology, four control strategies were applied to a shared office 

occupied by nine users and equipped with two individual air conditioners: Baseline, duty cycle, 

purely occupancy-driven and intelligent control. The comparison of the energy consumption 

resulted from the baseline and IC showed that intelligent control achieved a high percentage of 

saving energy by 41% while maintaining the thermal comfort level. The purely occupancy-driven 

and duty cycle strategies showed a reduction of 29.5% and 5.25% energy usage, respectively. 

However, different days have different weather condition with various occupants’ behaviour, 

which make it difficult to compare intelligent control by the baseline, accurately. Therefore, offline 

data were used to do further comparisons among BL, POC and IC. The results showed that the 

intelligent control strategy saved more energy than purely occupancy-driven strategy for about 6% 

based on one week data. Consequently, the purely occupancy-driven strategy was applied on the 

offline data extracted from the baseline strategy and showed the average reduction of about 38% 

from one month evaluation.  
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The thermal comfort level corresponding to different strategies has been evaluated as well. The 

results indicated that, at the arrival time, the baseline strategy provided the highest occupants 

satisfaction while the purely occupancy-driven and intelligent control strategies had the weakest 

results. Therefore, a passive heating/cooling schedule was required for these two methods to keep 

the temperature within the satisfied area before the occupants’ attendance. From the occupants’ 

vote, duty cycle strategy achieved a low level of satisfaction as well.  In the morning, all four 

strategies slightly improved based on occupants’ vote. The purely occupancy-driven and 

intelligent control strategies kept the thermal comfort around the neutral point of neither hot nor 

cold. However, the duty cycle strategy achieved slightly cold votes. In the afternoon records, 

baseline strategy showed a clear feeling hot votes. The duty cycle strategy showed a smooth 

increase but still remained in the cold votes. The thermal sensation for purely occupancy-driven 

was recorded as warm but intelligent control strategy kept the thermal sensation in the satisfied 

votes.  

To sum up, the intelligent control strategy showed a significant energy saving while 

maintaining the thermal comfort level.  However, in large scale buildings, developing thermal 

comfort model to investigate thermal zones could be a challenging task, which requires huge 

amount of computation. Based on the experience of the author, it is possible to categorize different 

rooms based on their functionality and apply the same analysis method. For example, to group 

rooms based on individual, shared offices and common rooms. Common rooms can be considered 

as classrooms, meeting rooms, coffee rooms and laboratories, which have lots of temporary 

occupants. The approach to control HVAC systems for such rooms is to focus on schedules and 

real-time occupancy detection of areas and CO2 aggregations, which can be considered as our 

future work. In addition, to reduce modelling work load of individual and shared offices, it is 
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possible to group rooms with approximately same solar illumination based on their orientations. 

If there is not a big difference in terms of decoration and occupants’ location, it is possible to use 

the same model for similar office rooms.  

The methodology for the study has following limitations: 

i. The prototype tracking sensor which is used for positioning the occupants inside the 

building in this research had an inconvenient size. Therefore, it was difficult for occupants 

to carry it for the whole day which could affect the occupancy data and the behavioural 

pattern.  

ii. Two patterns were needed to be extracted through the occupancy data and thermal sensation 

votes. In addition, those patterns are seasonal based and collecting such data require enough 

time. However, due to the limitation of time, adequate data may not be collected to develop 

accurate patterns and analyse the system in different seasons. 

iii. Accurate assessment of thermal comfort level requires other parameters such as humidity 

and air flow rate. However, in this research, only temperature is considered for assessment 

purpose. 

iv. Applying the proposed approach in a larger scale test area can provide more accurate 

comparison with existence control strategies but can also increase the cost. In this research, 

the test bed area with corresponding occupants are selected based on the availability and 

budget limitations.  

In view of research work and conclusions, the following aspects provide the directions of future 

work for further enhancement of the proposed methodology. 

i. Develop different layer for fuzzy map to consider the humidity and air flow rate 
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ii. Extend the investigation of the intelligent control for proportional control of HVAC systems 

and not only “ON” and “OFF” method. 

iii. Individual user study can provide valuable information which needs more investigations. 
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Appendix A 

Comparison of thermal preference profile and actual feeling of nine occupants 
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Appendix B 

Winter room CFD modelling: 

Scenario 1: Both HVACs are turned ON 

 

Predicted Mean Vote (PMV) model 

 

 

 Predicted Percentage Dissatisfied (PPD) model 
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Scenario 2: HVAC 1 is turned ON 

 

 Modelling of the room when HVAC-1 is ON 

 

 

 

 

 

 



 

  182 

 

Scenario 3: HVAC 2 is turned ON 

 

 

 

  

 Modelling of the room when HVAC-2 is ON 
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Appendix C 

One week occupancy data based on individuals: 

 

User 1: 
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User 2: User 3: User 4: 

   
 

 

User 5: User 6: User 7: 
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User 8: User 9: 

  
 

 

One week office room occupancy data: 

 

Monday: 
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Tuesday: Wednesday Thursday 

 
  

 

Friday 
 

Saturday 

 

Sunday 
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Appendix D 

Quick construction progress monitoring for concrete structure 

using thermal imaging techniques 

Abstract: 

Construction progress monitoring ensures the construction project is consistent with the schedule and 

enables the detection of any deviations in the geometry and/or any variation in the schedule. The traditional 

progress monitoring requires specialized personnel to walk around on the construction site to manually 

collect data and verify the progress of activities, which is time consuming, costly and/or error prone. Image-

based technology is effective for recording on-site data geospatially and chronologically. It has gained 

increasing attention in the construction field for progress monitoring, work space analysis and quality 

assurance. However, a notable downside of image processing is the light condition, particularly for noisy 

environments such as construction sites. Poor or undesirable ambient light conditions produce low quality 

images which significantly affect the accuracy of data extracted from related images and lead to a high level 

of errors. Much research strives to reduce the level of errors in image-based monitoring methods but it still 

has remained a challenging technique. This paper presents an innovative approach based on thermal image 

analysis to overcome problems related to the image quality. This method includes acquiring the thermal 

and optical images by utilizing an infrared-camera, estimating the location of captured images with wireless 

sensor networks, analyzing the image for progress identification and finally updating a building information 

model. Numerous tests have been implemented to show the feasibility of inferring the actual state of 

progress by the use of thermal images. It is finally concluded that the proposed method has a great potential 

to overcome the limitation of image-based monitoring and can be used to automate construction progress 

monitoring. 

Introduction 
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Indoor spatial description 

There are two major systems being used to model the actual state of construction progress and 

consequently model the building: laser-scanning-based and image-based. Both systems conduct 

the process of collecting data from the site, identifying existing components, and generating 3D 

models to be integrated into existing models.   

Laser scanning-based system 

 

In a laser scanning-based system, a laser range scanner is utilized to collect point clouds and 

merge them into a 3D model. Recent applications of this method can be construction quality 

control [78], conditions assessment [79], health monitoring [80] and component tracking [81]. For 

progress monitoring purposes, Bosche et al [82], for example, have presented a semi-automated 

registration method for aligning the as-built and as-planned models, in which the point cloud is 

generated based on manually selecting at least three pairs of corresponding points in the two data 

sets. Laser scanning is also integrated with other data such as schedules. Turkan et al. [83] have 

proposed a progress tracking system which fuses 3D laser scans with 4D models to automate 

construction progress monitoring. Their system is tested for a concrete building construction 

project and the results indicate the importance of the planning of scan. However, temporary 

occlusions lead to low level object identification. Despite the accuracy of laser-scanning-based 

techniques, costs, resolutions, the mixed-pixel issues, regular sensor calibrations and slow warm-

up times are noted as the main drawbacks of this method [81] [84]. 

Image-based system  
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Image-based systems are considered an affordable method for many construction companies 

to collect data. Numerous studies have been conducted to utilize and improve the image data for 

construction project monitoring and management purposes. Neto et al. [85] have proposed a 

colour-edge-detector algorithm to identify the construction components, in which a predefined 

library based on the RGB ranges for different materials is created. Zou and Kim [86] have 

developed a method based on HSV (hue, saturation, and value) and colour to compute the idle time 

of hydraulic excavators automatically. Golparvar-Fard et al. [87] have proposed an image-based 

approach to estimate project status information using daily photographs captured from a 

construction site. In their research, time-lapsed images have been created with all building 

components to specify whether or not specific areas have expected appearances and the 

construction progress can therefore be monitored. 

Braun et al. [88] have introduced photogrammetric point clouds to facilitate the as-planned 

versus as-built comparison. In this method, a dense point cloud is reconstructed from the images, 

which is compared to an existing 4D building model. However, due to the numerous obstructions 

found on a construction site, only a small subset of building elements are successfully detected. 

Zhang et al, [89] and Lukins & Trucco, [90] have presented a similar automated method with a 

different recognition stage. In their method, a comparison is made between pre-calibrated images 

and previous photos. Specific areas of interest are analysed by focusing on pixel changes to detect 

any differences from past photos, creating a time-lapsed image. The time-lapsed images method 

has the highest level of automation reported so far. However, it has many limitations: (1) The fixed 

camera has limited the analysis to only the closest structural frame to the camera. (2) Lighting 

conditions and shadow issues significantly affect the image processing. (3) Dynamic occlusions 
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make it difficult to analyse the components, and (4) Static occlusion may result in false detection 

[87]. 

Infrared thermography is the technique of measuring infrared radiation emitted by bodies, 

proportionally dependent on their superficial temperature [91]. The use of this technique has been 

usually limited to three types of applications in the construction related research. The first includes 

obtaining the thermographs of an existing building for analysing the heating or cooling energy 

requirement of the building envelop taking into account the local climate [92] [93]. The second 

relates to the real-time defect detection (air infiltrations, thermal bridges and moisture areas) in 

retrofitting existing building system in terms of energy efficiency for heating or cooling loads [94] 

[95]. The third use is associated with material detection of the existing [96]. However, very few 

studies have indicated its utility in the application of photogrammetric principles for the 

measurement of geometry directly from thermographs [97] [98], or from a combination of visible 

and thermographic images looking for an improvement in the geometric resolution [99]. Lagüela 

[95] investigated the extent of thermographic images to represent the as-built geometry and 

successfully extracted height, width and openings of the structure.  

The traditional progress monitoring requires specialized personnel to walk around on the 

construction site to manually collect data and verify the progress of activities, which is time 

consuming, costly and/or error prone. Image-based technology is effective for recording on-site 

data geospatially and chronologically. It has gained increasing attention in the construction field 

for progress monitoring, work space analysis and quality assurance. However, a notable downside 

of image processing is the light condition, particularly for noisy environments such as construction 

sites. Poor or undesirable ambient light conditions produce low quality images which significantly 

affect the accuracy of data extracted from related images and lead to a high level of errors. Much 
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research strives to reduce the level of errors in image-based monitoring methods but it still has 

remained a challenging technique. 

 

Methodology 

 

As-built plan 

 

The real geometry data is a significant parameter for creating a simulation within a building. 

As mentioned in the literature review, the as-built plan does not always follow the exact as-planned 

form. Hence, it is important to utilize a method to monitor the construction progress and provide 

an as-built model after the building is constructed. A novel approach is proposed in this research 

to create an as-built plan specifically for concrete structures by integrating thermal image 

processing and localization [100]. The kernel point of this stage is to take thermal pictures of the 

construction site at designated locations, identify elements with different construction stages, and 

update the 4D Building Information Modelling (BIM) model. The process is based on the 

following assumptions: (1) The 3D BIM model and the construction schedule are available; (2) 

The structure is composed of reinforced concrete components; and (3) The location and orientation 

of the IR-camera can be tracked accurately in real time. As shown in Figure 90Error! Reference 

ource not found., the overall procedure for thermal image-based automated progress monitoring 

is divided into four major steps, which are: 4D BIM acquisition, onsite data collection, image 

processing, and model updating.  

First, daily photos are taken from the construction site. Simultaneously, the location and 

orientation of the camera are identified by using a wireless sensor network installed on the site 
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(Figure 90(a)). As the image should be taken while the camera is fixed, the PCA method, which 

has a higher accuracy for low speed targets, can be used. By using the same location and 

orientation, the images of the as-planned model are extracted from the 4D BIM model (Figure 90 

(b)). The purpose of the image-processing step is to identify whether the scheduled components 

have been constructed or not. By applying a colour-based filter on the thermal images, 

environment noise such as occlusion can be removed. However, there may be some other dynamic 

occlusions (e.g. workers, moving vehicles), but these will be removed in the next step.  

 

Figure 90: Thermal image-based automated progress monitoring procedure 

 

The edge detection filter and superimpose method are both utilized to remove further noises. 

Next, the raster cell method is applied on the output to confirm the presence of newly built 

components (Figure 90 (c)). Finally, the confirmation obtained through the image processing is 
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used to update the 4D BIM model using the date recorded in the thermal images and the 

constructed components (Figure 90(d)). 

Onsite data collection 

 

In the proposed method, it is assumed that the construction schedule and 3D BIM model are 

available. The ideal location and orientation of the camera is based on consideration of the 

effectiveness of capturing appropriate progress details. A plug-in is developed to retrieve the 

coordinates of the target components in the model and create a bounding box for that area, then 

identify the four corners as suggested locations for the camera. Preliminary camera-view images 

are obtained from those locations to determine which locations should be used. A location system 

based on the ZigBee wireless sensor network is used in this research to capture the location of the 

IR-Camera while capturing images on site. In Section 3.1.1, the principal component analysis 

(PCA) approach was used to smooth the unwanted signals in a noisy environment, which lead to 

a more accurate position estimation for lower speed targets. By utilizing the same methodology, 

X and Y coordinates are recorded for the IR-camera when pictures are taken. The orientation data 

are manually recorded while taking each image on site, and will be used together with the 

coordinates to extract the corresponding 3D camera-view image from the BIM model. Based on 

the image captured, three types of images need to be processed for progress monitoring: optical, 

thermal, and camera-view images. Optical and thermal images are taken simultaneously from the 

construction site by using IR-Cameras.  Camera-view images are extracted from the 4D BIM 

model based on the location and orientation of the camera. 

Image processing 
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The details of the thermal-image-processing are shown in Figure 91. The difference in surface 

temperature between elements (e.g., concrete elements and scaffoldings) leads to different colours 

in thermal images. These differences are considered a valuable point to remove unnecessary 

objects from thermal images. However, some objects may have the same temperature as concrete 

elements. Hence, camera view images and the superimpose method are used to recognize the area 

of interest.  

The occlusions are removed by applying a colour-based filter on the thermal image for 

removing unnecessary areas. Afterwards, the edges of components in the camera view image are 

identified. In addition, the superimpose method is applied on both images to recognize the areas 

of interest. Non-overlap areas are removed from the superimposed image using what is called the 

final noise removal filter. Next, the raster cell method has been utilized to confirm the object’s 

existence. 

At the same time, the same image processing method is applied to the optical image, as shown 

in the right-hand side part of Figure 91, and a grayscale image is generated to detect the edges of 

the components. The non-overlap areas are removed from the superimposed image based on 

optical pictures and camera view images. After that, the raster cell method is applied to recognize 

the newly constructed components. The combination of the results from both thermal and optical 

image processing will lead to more accurate results for the identification of components. 
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Figure 91: Image processing method 

 

Raster cell analysis 

 

Raster cell analysis is utilized to identify the percent match between two images. A raster 

comprises a matrix of cells or pixels composed into rows and columns where each cell possesses 

a state representing information. In our case, the state of a cell represents the existence of the 

concrete components. The images are rasterized with proper cell size for further processing. The 

cell size, or spatial resolution, of the raster depends on the level of detail (or number of features). 

The cell must be sufficiently small to show the required detail. However, smaller cells are not 

necessarily better because they require greater storage space, which often results in longer 

processing times. 
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Two states are considered for each cell: occupied and free. For instance, a cell can be defined 

as free when there are no points in it, which means that part does not exist. When it is not possible 

to make a statement or few points are detected in the cell, it can be marked as potentially exists.  

For encoding raster data from scratch, a cell-by-cell raster encoding method is utilized (Figure 

92), also referred as Exhaustive Enumeration [101]. This technique encodes a raster by making 

records for every cell magnitude by row and column. This strategy could be considered as an 

extensive spreadsheet wherein every cell of the spreadsheet represents a pixel in the raster picture. 

By doing so, an overlapped region can be identified between two images and existing components 

can be confirmed if the overlapped percentage exceeds a certain threshold.  

 

 

 

 

Figure 92: Cell-by-Cell Encoding of raster cell 

 

BIM model updating 

 

Once the image-processing step is finished, the results are interpreted by the plug-in in the 

form of binary variables associated with the completion (or absence) of respective building 

elements. These variables correspond to the schedule in the form of an as-built schedule and thus 

Row 1: 8,9 

Row2: 8,9 

Row3: 2,3;8,9 

Row4: 2,3;8,9 

Row5: 2,9 

Row6:2,9 

Row7:2,9 

 



 

  197 

the 4D model is updated. However, if any deviations are present in the as-planned and as-built 

model, these will not be incorporated in the updated model but may instead result in reporting an 

absence of the as-planned element. When the newly constructed element is confirmed by the raster 

cell method, the date is updated on the elements’ descriptions in the 4D BIM model. 

 

 

 

Thermal Image based spatial modelling 

 

As mentioned in the literature review, the as-built plan may not be exactly as same as the as-

planned form in the construction phase. Therefore, the thermal image-based approach introduced 

in the methodology section will be examined in this section. First, the feasibility of utilizing 

thermal images for modelling the real geometry of the building is discussed. Next, several case 

studies based on the new approach are conducted.  

Feasibility analysis and experimental measurement 

 

Infrared-camera, which is also known as IR-camera, is acting as a non-contact sensor absorbing 

the heat energy from surfaces of objects and giving an illustration in the form of thermal images. 

This device allows users not only to measure temperature, but also to detect and evaluate any heat-

related parameters such as humidity. Due to the existence of blackbody radiation, objects produce 

electromagnetic wave radiation to the external environment [102]. Wavelength that is between 

2~1000 micron is called thermal infrared. Thermal infrared images are based on thermal infrared 

sensitive Charge-Coupled Device (CCD) imaging of objects. These images reflect the temperature 
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field of the object surface. Different colours will be presented based on the surface temperature of 

the objects.  

Concrete is the most widely used material in construction projects. As the key constituents of 

concrete, cement releases heat when in contact with water, which is known as cement hydration.  

Three stages are involved in the hydration process. The first stage is a dormant period, where at 

the initial moment of reaction, water contacts cement particles, and the heat starts to be released. 

However, due to the existence of gypsum in cement, a thin film is produced and covers around 

cement particles. The reaction rate decreases due to the filming and heat release rate decreases 

correspondingly. The second stage is phase-boundary reaction stage, which is characterized by the 

highest heat release rate. Cement particles are continuously produced by reaction and the 

production rate increases quickly. Therefore, the heat produced by the hydration is the highest 

among the three stages. The third stage is diffusion control stage, where the cement particles are 

incessantly accumulated from previous stages and the reaction rate decreases; therefore, the heat 

released decreases gradually because the hydration is complete. 

Based on the significant temperature changes during the hydration process of concrete, IR-

camera is used to take thermal pictures of the concrete components on construction sites so as to 

investigate the feasibility of using the proposed method. Figure 93Error! Reference source not 

ound. shows the optical and thermal images taken by using an IR-Camera. The relative 

environmental temperature and humidity are 26.5℃ and 44%, respectively. The elements shown 

in the pictures are concrete beams precast manually. Beams in Zone 1 were casted 7 days prior to 

the photo being taken, while beams in zone 2 were casted 5 days prior to the photo being taken. 

The beams in zone 3 were casted in the morning and beams in zone 4 were casted 10 minutes 

before the photo being taken. The beams in Zone 4 can be regarded as fresh concrete. It is obvious 
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from the thermal image that temperatures of these beams were different based on the colours and 

the shape of the beams can be easily identified by colours. In general, without considering the 

weather conditions, the surface temperatures of fresh and short term concrete are higher than that 

of more aged concrete due to the hydration reaction. The surface temperature of the 7-day concrete 

is similar to that of the surrounding environment. Heat is absorbed by water evaporation so that 

the surface temperature of 5 days concrete is lower than that of fresh concrete. According to 

temperature differences and varied colour shown in the thermal images, the casting sequence of 

the beams can be estimated.  

 

 Further analysis has been done to evaluate the feasibility of using IR-camera for 

construction progress monitoring. Images of a selected concrete beam were taken for 6 consecutive 

days with time intervals of 0min, 30min, 60min, 120min and 240 min for each day. Images were 

taken at 9:00 AM, 9:30 AM, 10 AM, 11 AM and 1 PM. Environmental temperature and humidity 

were recorded by using a thermometer at the moment when the thermal images were captured and 

the surface temperatures of concretes are extracted from thermal images. Figure 94 shows the 

temperature variation tendency of concrete along time. The relationship between environmental 

temperature and concrete surface also can be observed from these figures. 

Figure 93: Optical (a) and thermal (b) images of concrete beams 

(b) (a) 
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(a) Fresh concrete (Day 1) (b) One-day old concrete (Day 2) 

  

(c) Two-day old concrete (Day 3) (d) Three-day old concrete (Day 4) 

  

(e) Four-day old concrete (Day 5) (f) Five-day old concrete (Day 6) 

 

Figure 94: Temperature variation of concrete and environment for six consecutive days 
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For fresh concrete, the maximum environmental and element temperatures are 34℃ and 31℃, 

respectively, as shown in Figure 94(a). Environmental temperature is a bit higher than concrete 

temperature for fresh concrete. The reason can be that IR-Camera only measures the surface 

temperature of concrete, where water evaporation on the surface of concrete absorbs a large 

amount of heat. This process results in the lower surface temperature of concrete compared with 

environmental temperature. Water is a significant reactant for cement hydration. Water 

evaporation restrains hydration reaction and thus decreases the amount of heat generation from 

hydration reaction.  

As shown in Figure 94 (b), surface temperature of one-day concrete is higher than 

environmental temperature because the water has been evaporated after one day curing. Cement 

hydration continuously proceeds and heat is produced, therefore, the surface temperature of 

concrete is higher than environmental temperature. In addition, solar radiation also influences the 

surface temperature of concrete. The longer time of solar radiation, the higher surface temperature 

of the concrete compared with environmental temperature. When solar radiation is screened, the 

surface temperature of concrete will decrease.  

Surface temperature variations of two, three, four and five days concrete are depicted in Error! 

eference source not found.(c), (d), (e) and (f), respectively, showing that the surface temperature 

mostly remains above the environmental temperature, which supports the hypothesis that the 

temperature differences can be captured in the thermal image obviously. In some cases, as shown 

in Figure 94 (c) and (f), the temperature differences between the surface and environment are small 

due to the rainfall that occurred the day before. The evaporation process of water particles covering 

the surface of the concrete absorbed the heat, which led to the surface temperature decrease and 

close to the environmental temperature.  
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Figure 95 presents the variation of temperature differences between concrete surface and 

environment within the 6 consecutive days. The positive temperature variation increases 

continuously in the six days because of the heat generated continuously from the hydration 

reaction. Two peaks occurred on day two and day five with two sags appeared on day three and 

day six, which can be explained by the rainfall.  

The important finding from Figures 2 and 3 is that surface temperature of concrete is 

significantly higher than the environment, especially in sunny days. While in rainy days, the 

difference is not so obvious.  

 

Figure 95: Temperature differences of concrete and environment within 6 consecutive days 

 

 To further investigate the feasibility of using thermal images, more pictures were taken on site 

in complex situations for structures under construction. Figure 96 and Figure 97 illustrate the 

temperatures on the surface of concrete columns, stairs and scaffoldings. The areas with different 

temperatures can be identified clearly; even concrete components inside a formwork are 

detectable, as shown in Figure 96 
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(a) Optical image (b) Thermal Image 

Figure 96: Different temperature areas on the surface of concrete columns and stairs 

 

 

 

 

 

(a) Optical image (b) Thermal Image 

Figure 97: Different temperature areas on the surface of concrete columns 

 

Besides temperature, humidity is another parameter which should be taken into account since 

the temperature differences are not so obvious in rainy days. Using the Humidity filter available in 

the IR-camera, images taken show extra information besides the temperature. As shown in Figure 

98 zones with different humidity can be identified in different colours, which can be used as 

supplementary information to identify different elements on construction site.  
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As mentioned in the literature review section, lighting conditions are known as a big challenge 

in photometric image processing. To show how good that the thermal-images-based method can 

solve such problems, pictures were taken under a poor lighting condition, as shown in Figure 99 

It is nearly impossible to detect columns from the optical pictures (Figure 99 (a) and (c)). However, 

in the thermal images, they are easily detected, as shown in Figure 99(b) and (d).  

In some cases, due to the high congestion of scaffoldings or other occlusions, it is very difficult 

to identify the existence of elements from the images taken. Thermal images can be really useful 

in such cases. A messy construction environment is shown in Figure 100(a) with a thermal image 

shown in Figure 100 (b), which shows how significant the thermal images can be used for 

identifying the existence of elements in such a noisy environment. 

  

(a) Optical image (b) Thermal Image with humidity filter 

Figure 98: Different humidity areas on the surface of concrete columns 
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(a) Optical image with poor lighting condition (b) Thermal image from with poor lighting 

condition 

  

(c) Optical image with poor lighting condition (d) Thermal image with poor lighting condition 

Figure 99: Identify areas from poor lighting condition image 
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(a) Optical image from a noisy environment 

 

(b) Thermal Image from a noisy environment 

Figure 100: Identify objects from a noisy environment 

To sum up, based on the feasibility analysis and experimental measurements, it is applicable 

to identify newly built concrete components on construction site based on thermal images taken 

by IR-Camera and develop an automated progress monitoring system. Hence, the proposed 

methodology is explained in the next section. 

Case study 

 

A construction site, located in Suzhou, China, was chosen to investigate the proposed method 

(Figure 101). An IR-camera, NEC TH7102, was used to take pictures on site. The camera had a 

resolution of 320 × 240 with 76,800 pixels. The thermal sensitivity of the camera was less than 

0.07 °C with the accuracy of ±2°C. Utilizing a data cable, captured images were saved to the server 

in the JPEG image format for further processing. The time of image capturing was used as the file 

name. For instance when the image was captured at 14:23:29 on October, 24, 2015, the file name 

of thermal and optical images would be “T2015101124142329.jpg” and 

“O2015101124142329.jpg”, respectively. This information was used to identify the location data 
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when connected to the location system mentioned previously. The coordinates of the camera were 

extracted from the tracking data recorded. It should be noted that a time boundary of 5 seconds is 

considered for each image and its correspondence location. This boundary reduced the error of 

mismatching images and positions. The orientation of the camera was added to the image data 

manually. A more accurate method, such as using a total station, could be applied in the future to 

improve the accuracy. These location data were utilized to extract the camera view image for the 

corresponding position in the 3D BIM model. Two test areas were selected to conduct the case 

studies, as shown in Figure 101. Zone 1 was a typical area with two columns and a wall in between. 

Zone 2 was an area with noisy environment where scaffoldings are around the columns.  

 

 

Figure 101: A partial BIM model of the construction site 

 

 

Case I, Zone 1 
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The optical and thermal images are depicted in Figure 102(a) and (b), Figure 102(c) presents 

the camera-view image extracted from the BIM model based on coordinates and orientation of the 

IR-camera. Matlab R2010 is used for developing the image processing method. The applied edge 

detection on the camera-view image is depicted in Figure 102(d). 

An initial noise removal was implemented on the thermal image to remove the orange areas, 

as shown in Figure 102 (e). The superimposed image Figure 102 (f) shows the overlapping of 

thermal and camera-view images. After final removing the useless areas which are shown as the 

black areas in the figure, raster cell method was implemented on the superimpose image and the 

results are shown in Table 22.  Part 2 has a rate of 97% while part 1 has the minimum confirmed 

raster cells by 79% as it is occupied by occlusions. Parts 3 and 4 have the confirmed raster cells 

by 90% and 82%, respectively.  It is clear that both images do not fully cover each other which 

can be explained by the slight differences of coordinates between real and estimated position due 

to accuracy. However, the percentage of objects confirmation for all parts has a successful range. 

Table 22: Percentage of confirmed raster cell per object for Case I, Zone 1 

 

Part Percentage 

confirmation 

1 79% 

2 97% 

3 90% 

4 82% 
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(a) Optical Image (b) Thermal Image 

(c) Camera View Image in BIM (d) Edge Detection Result from Camera View Image 

(e) Initial Noise Removal (f) Superimposed Image and final Noise Removal 

Figure 102: Case study for zone 1 
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 Case II, Zone 2 

Figure 103(a) and (b) show the thermal image and initial noise removal image, respectively. 

The camera-view image extracted from the BIM model based on the related position and 

orientation is shown in Figure 103(c). The result of edge detection is illustrated in Figure 103 (d). 

Figure 103Error! Reference source not found.(e) and (f) show the superimpose and the final 

oise removal stages. 

 

a) Thermal image b) Initial noise removal 

 

                        c) Camera-view image in BIM             d) Edge-detection result from camera-view 

image 
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            Figure 103: Case study for zone 2 in a  noisy environment 

 

Table 23: Percentage of confirmed raster cell per object for Case II, Zone 2 

 

Part Percentage confirmation 

Left Column 57% 

Right Column 80% 

Left behind column 0% 

 

Since the depth of two columns in the back side are the same, the camera-view image shows 

three columns in this position. However, only two columns are distinguished from thermal image.  

The depth of camera view image is another factor which is needed to investigate further in our 

future research. The left column has a raster confirmation of 57% and right column is confirmed 

             e)  Superimposed image f)  Final noise removal 
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by 80%.  The results of raster cell method shows that thermal image-based technique has the 

potential to identify new constructed components even in a noisy environment. 

Case III 

In the previous two case studies, Rainbow filter was used to take thermal images. However, 

elements of the building built several months ago would not show significant temperature 

difference from the environment.  In that case, Rainbow filter which only focuses on surface 

temperature may not be suitable or detecting existing elements. Therefore, other filters available 

in the IR-camera were investigated to further demonstrate the feasibility of applying the proposed 

method. For example, Humidity filter can be used to capture images showing the humidity of 

objects. A third case study was carried out by using the combined information captured using both 

Rainbow and Humidity filters in the IR-camera.   

 

 

(a) Optical image                                          (b) Thermal image 
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(c) Humidity image                                  (d) Raster cells on elements surface 

Figure 104: Image processing for optical, thermal and humidity images 

 

Figure 104 (a), (b) and (c) illustrate the optical, thermal and humidity images taken for the 

concrete frame structure. The same image processing method introduced before was implemented 

in this case study to identify existing building elements. Figure 104(d) illustrates the results based 

on the combination of optical, thermal and humidity images. Fifteen parts of the building were 

identified manually based on the structure in the raster cell plot. The grey areas represent the 

confirmed raster cells. As shown in Table 23, Part 13 has a rate of 95% of confirmed raster cell, 

while part 11 has not any confirmed raster cells as it is still under construction. Parts 14 and 15 

can be identified by 66% and 72%, respectively. Parts 3, 4 and 5 could be detected easily from the 

humidity image as there are not covered by formworks. Parts 6, 7, 8 and 9 have few confirm raster 

cells and Part 10 is confirmed by a high percentage. 
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Table 24: Percentage of confirmed raster cell per object for case III 

Part 

number 

Existing 

elements 

Part 

number 

Non-existing 

element 

13 95% 15 72% 

3 79% 14 66% 

5 75% 11 0% 

10 71%   

4 68%   

1 67%   

2 56%   

12 55%   

6 24%   

9 20%   

7 13%   

8 8%   

 

Conclusion and limitations 

 

This section presents an innovative approach to monitor construction progress projects using 

infrared camera and thermal image analysis. In the proposed approach, images can be of low 

quality or taken in a noisy environment. Characterized by concrete surface temperature, thermal 

image filter, colour-based noise removal, and the location calculation, image processing played an 

essential role in providing the necessary information for 4D BIM model updating. Thermal images 

offer more data than traditional digital photos. Temperature and humidity differences are the main 

parameters that are utilized to improve the quality of images for image processing. To identify the 

orientation and location of taken photos, a ZigBee wireless sensor network based on PCA method 

is utilized. 

The main contribution of this study is that the proposed methodology succeeded in automating 

almost the entire process of 4D BIM updating using image processing. This methodology included 

site images acquisition, image analysis for progress identification, and 4D BIM model 
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development. To the best of the author’s knowledge, this study is one of the first comprehensive 

efforts to use IR-Camera for progress identification of construction sites. 

Several case studies involving a construction site showed that there is a greater accuracy can 

be achieved than in traditional methods of progress identification and updating project schedule 

automatically. However, all existing elements could not be verified ambiguously with collected 

data. 

Future studies are required to further analysis of different filters of IR-Camera to evaluate the 

potential of concrete properties for progress monitoring. There is another filter which is called iron 

filter which may be suitable for steel components which requires more investigation.  

Moreover, there are some other filters which can be applied on thermal images such as Iron, 

Lava and so on. Numerous empirical experiments showed that humidity and temperature filters 

are adequate to gain reasonable results in image processing. 

To sum up, in the first case study, all columns and walls could be identified by the use of 

thermal image. However, the slight differences of coordinates between real and estimated position, 

may result in not fully cover images in superimpose image which leads to lower confirmation in 

raster cells. The second case study observes the potential of thermal image as well. Although, non-

adjusted depth in the camera view image could result in less accuracy and confirmation which 

needs more investigations.  For components which their temperature adhere closely to the 

environment temperature, it is possible to use other filters in IR-Camera such as humidity filter.  

This filter can be implemented for old constructed parts or parts that stay in the shadow area. It 

can be concluded that image processing only on the optical photo, cannot identify all the building 

elements due to the low quality of image, poor lighting conditions and messy environment. 
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However, the combination of optical, thermal and humidity images resulted in a high range of 

object detections which still needs more investigation. 
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Appendix E 

PCA method 
% consider the clustered RSSI data set of 10 variables 
   Load data.mat 

         
% remove the mean variable-wise (row-wise) 
    data=data-repmat(mean(data,2),1,size(data,2)); 

  
% calculate eigenvectors (loadings) W, and eigenvalues of the covariance 

matrix 
    [W, EvalueMatrix] = eig(cov(data')); 
    Evalues = diag(EvalueMatrix); 

  
% order by largest eigenvalue 
    Evalues = Evalues(end:-1:1); 
    W = W(:,end:-1:1); W=W';   

  
% generate PCA component space (PCA scores) 
    pc = W * data; 

  
% plot PCA space of the first two PCs: PC1 and PC2 

plot(pc(1,:),pc(2,:),'*')  
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Appendix F 

 

 

 

 

 
Trilateration algorithm 
% usage: [N1 N2] = Trilateration(P,S,W)  
% P = [P1 P2 P3 P4 ..] Reference points matrix 
% S = [s1 s2 s3 s4 ..] distance matrix. 
% W : Weights Matrix (Statistics). 
% N : calculated solution 

  

  
function [N1 N2] = Trilateration(P,S,W) 
[mp,np] = size(P); 
ns = length(S); 
if (ns~=np) 
    error('Number of reference points and distances are different'); 
end 
A=[]; b=[]; 
for i1=1:np 
    x = P(1,i1); y = P(2,i1); z = P(3,i1); 
    s = S(i1); 
    A = [A ; 1 -2*x  -2*y  -2*z];  
    b= [b ; s^2-x^2-y^2-z^2 ]; 
end 
if (np==3) 
    warning off; 
    Xp= A\b;  % Gaussian elimination 
   % or Xp=pinv(A)*b;  
   % the matrix  inv(A'*A)*A' or inv(A'*C*A)*A'*C or pinv(A) 
   % depend only on the reference points 
   % it could be computed only once 
    xp = Xp(2:4,:); 
    Z = null(A,'r'); 
    z = Z(2:4,:); 
    if rank (A)==3 
        %Polynom coeff. 
        a2 = z(1)^2 + z(2)^2 + z(3)^2 ; 
        a1 = 2*(z(1)*xp(1) + z(2)*xp(2) + z(3)*xp(3))-Z(1); 
        a0 = xp(1)^2 +  xp(2)^2+  xp(3)^2-Xp(1); 
        p = [a2 a1 a0]; 
        t = roots(p); 

  
        %Solutions 
        N1 = Xp + t(1)*Z; 
        N2 = Xp + t(2)*Z; 
    end 
end 
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if  (np>3) 
%Particular solution 

  
    if W~=diag(ones(1,length(W))) 
        C = W'*W; 
        Xpdw =inv(A'*C*A)*A'*C*b; % Solution with Weights Matrix 
    else 
        Xpdw=pinv(A)*b; % Solution without Weights Matrix 
    end 

  
    % the matrix  inv(A'*A)*A' or inv(A'*C*A)*A'*C or pinv(A) 
    % depend only on the reference points 
    % it could be computed only once 
    N1 = Xpdw; 
    N2 = N1; 
end 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  220 

Appendix G 

 

Wang-Mendel Method used for fuzzy modeling 
clear all 
clc 

  
%% Load data, allocate training test dataset 
disp('loading data......') 
load votes.mat 
y = c0; 
y1 = []; 
y2 = []; 
[PNum, D] = size(y); 
for i  =  1 : PNum 
    if   mod(i, 3) == 0 
         y2 = [y2; y(i, :)]; 
    else y1 = [y1; y(i, :)]; 
    end         
end 

  
%% 

  
%% Initializes the fuzzy system (domain division, membership center, and 

width 

disp('Initializing Fuzzy Systems......') 
Partition = [5,  5,  5,  5,  5]; 
center = cell(D,1); 
sigma = cell(D,1); 
for i = 1 : D 
    center1 = []; 
    sigma1 = []; 
    for j = 1 : Partition(i)-2 
        center1 = [center1 j*(1/(Partition(i)-1))]; 
        sigma1 = [sigma1 1/(Partition(i)-1)]; 
    end 
    center{i} = [0 center1 1]; 
    sigma{i} = [1/(Partition(i)-1) sigma1 1/(Partition(i)-1)]; 
end 
%% 

  
%% draw out the initial membership function curve 
disp('draw out the initial membership function curve......') 
x = (0:0.001:1)'; 
figure 
for i = 1 : D 
    temp1 = []; 
    for j = 1: Partition(i) 
        temp1 = [temp1 SymTri(x, center{i}(j), sigma{i}(j))]; 
    end 
    subplot(2, 3, i) 
    plot(x, temp1,'LineWidth', 2)   
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end 
%% 

  

  

  
%% create ideal fuzzy rules part1 

disp('Automatic generation of complete rule......') 
DreamRuleLength = 1;  % The number of rules in an ideal rule base  

 
for i = 1 : D-1 
    DreamRuleLength = DreamRuleLength*Partition(i); 
end 
DreamRule = zeros(DreamRuleLength, D+2); 
for i = 1 : D-1 
    if i == 1 
            interval = DreamRuleLength/Partition(i); 
            for j = 1 : DreamRuleLength/interval 
                DreamRule((j-1)*interval+1:j*interval, i) = j; 
            end           
    else    newinterval = interval/Partition(i); 
            temp = []; 
            for  j = 1 : interval 
                 temp = [temp; ceil(j/(newinterval))];                 
            end 
            temp1 = []; 
            for  j = 1 : DreamRuleLength/interval 
                 temp1 = [temp1; temp]; 
            end 
            interval = newinterval; 
            DreamRule(:, i) = temp1;           
    end 
end 
%% 

  

  

  

  

  
%% Learn to get the rules 
disp('Learn to get the rule Library......') 
LearnRule = []; 
for i = 1 : length(y1) 
    newrule = RuleLearner_case1(y1(i,:), center, sigma); 
    LearnRule = [LearnRule; newrule]; 
end 
%% 

  

  
%% merge rules and fuzzy center and width parameter after the new member 

disp('Merge rule Library......') 
CompressRule = []; 
EmptyRule = [];   % Initialize an area that does not generate a rule 

for i = 1 : DreamRuleLength 
    tempruleset = []; 
    for j = 1 : size(LearnRule, 1) 
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        if   LearnRule(j, 1:D-1) == DreamRule(i, 1:D-1) 
             tempruleset = [tempruleset; LearnRule(j, :)]; 
        end 
    end 
    if   isempty(tempruleset) 
         EmptyRule = [EmptyRule; DreamRule(i, :)]; 

          
    else EmergeRule = tempruleset(1,:); 
         tempcenter = 0; 
         for  k = 1 : size(tempruleset,1) 
              tempcenter = tempcenter + tempruleset(k, D)*tempruleset(k, 

D+1); 
         end 
         newcenter = tempcenter/sum(tempruleset(:,D+1)); 
         tempsigma = 0; 
         for   k = 1 : size(tempruleset) 
               tempsigma = tempsigma + abs(newcenter - tempruleset(k, 

D))*tempruleset(k, D+1); 
         end 
         newsigma = tempsigma/sum(tempruleset(:,D+1)); 
         EmergeRule (D) = newcenter;        % D dimension, put center 

parameter first 

         EmergeRule (D+1) = newsigma;       % Dimension D+1 place width 

parameter 

         EmergeRule (D+2) = 1 - ( newsigma/abs(max(tempruleset(:,D)) - 

min(tempruleset(:,D))) );       % Confidence degree of d+2 dimension 

placement rules         

         CompressRule = [CompressRule; EmergeRule]; 
    end 

         
end 

  
%% completion rules, EmptyRule rules are formulated in the center and width 

of output 

disp('Complete rules......') 
iteration = 0; 
while ~isempty(EmptyRule) 
       iteration = iteration + 1; 
       disp(iteration) 
       NeighborNum = []; 
       for i = 1 : size(EmptyRule) 
           tempNeighborNum = 0; 
           for j = 1 : size(CompressRule) 
               if  sum(abs(EmptyRule(i, 1:D-1) - CompressRule(j,1:D-1))) == 1 
                   tempNeighborNum = tempNeighborNum + 1; 
               end   
           end 
           NeighborNum = [NeighborNum; tempNeighborNum];        
       end 
       [maxNeighborNum,maxNeighborNumIndex] = max(NeighborNum); 
       NeighborRule = []; 
       for i = 1 : size(CompressRule) 
           if  sum(abs(EmptyRule(maxNeighborNumIndex, 1:D-1) - 

CompressRule(i,1:D-1))) == 1 
               tempNeighborNum = tempNeighborNum + 1; 
               NeighborRule = [NeighborRule; CompressRule(i,:)]; 
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           end   
       end 
       SpecaluRule = EmptyRule(maxNeighborNumIndex, :) ; 
       if ~isempty(NeighborRule) 
          Specalucenter = sum((NeighborRule(:,D)).* 

(NeighborRule(:,D+2)))/(sum((NeighborRule(:,D+2)))); 
          Specalusigma = sum(abs((NeighborRule(:,D))-Specalucenter).* 

(NeighborRule(:,D+2)))/(sum((NeighborRule(:,D+2)))); 
          Specaludoc = 1 - Specalusigma/abs(max(NeighborRule(:,D)) - 

min(NeighborRule(:,D))); 
          SpecaluRule  (D)   =     Specalucenter; 
          SpecaluRule  (D+1) =     Specalusigma; 
          SpecaluRule  (D+2) =     Specaludoc; 
       end 
       EmptyRule(maxNeighborNumIndex, :) = []; 
%        if Specalusigma ~= 0 && ~isnan(Specalusigma) 
%           CompressRule = [CompressRule; SpecaluRule]; 
%        end 
end 
%% 

  

  
%% To assign a label to a given rule and translate it into a regular form 

disp('Label the resulting rules and translate them into regular forms ') 
RuleBase = CompressRule; 
outputpara = CompressRule(:, D:D+1); 
outputpara = sortrows(outputpara,1); 
center{D} = outputpara(:,1)'; 
sigma{D} = outputpara(:,2)'; 
for i = 1 : size(outputpara,1) 
    for j = 1 : size(RuleBase,1) 
        if center{D}(i) == RuleBase(j, D) 
           RuleBase(j, D) = i; 
        end         
    end        
end 
RuleBase = RuleBase(:, 1:D); 
Partition(D) = size(outputpara,1); 
%% 

  
%% In order to obtain the rules of Fu% label, and transformed into a regular 

form 

disp('Draw the membership function curve of the complete rule base......') 
x = (0:0.001:1)'; 
figure 
for i = 1 : D 
    temp1 = []; 
    for j = 1: Partition(i) 
        temp1 = [temp1 SymTri(x, center{i}(j), sigma{i}(j))]; 
    end 
    subplot(2, 3, i) 
    plot(x, temp1,'LineWidth', 2)   
end 
%% 

  
%% test model output performance 
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TsOutput = []; 
for  i = 1 : size(y2, 1) 
     output = WM_fuzzyprocessor( y2(i, 1:D-2), RuleBase, center, sigma); 
     TsOutput = [TsOutput; output]; 
end 
MSE = 10000*(abs(TsOutput - y2(:,D)))'*(abs(TsOutput - y2(:,D)))/(size(y2, 

1)); 
figure 
plot(y2(:,2)) 
hold on 
plot(TsOutput,'r') 
title(strcat('the testing MSE is ', num2str(MSE))) 
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Appendix H 

Purely occupancy-driven control of HVACs 

%day 
%hour 
%minute 
%state:leaving-0/office-1/coffee-2/restroom-3/class-4/lab-5/meeting-6 %( 
%Coffee and restroom are considered as Short temporary locations and Class 
%and lab and meeting are considered as Long-stay locations 

  
userNumber=9;  
dayNumber=26;  

  
%% 
%data read - 1 month---this page is data reading from the excel 
[~,timeData]=xlsread('C:\Users\Mehdi\Downloads\fuzzy logic-all\fuzzy 

logic\Files\locationRecord.xlsx','Sheet1','D2:D1453'); 
save timeData 

  

  
%% 
clear;clc 

  
%Creat a new diary file. 
C=clock; 
eval(['diary ', sprintf( '%02d.', C(1:5) ), 'txt']); 
clear C 

  
load('timeData.mat'); 
timeHourMinute=zeros(size(timeData,1),2); 
for i=1:size(timeData,1) 
    tmpFind1=find(timeData{i}==':'); 
    tmpFind2=find(timeData{i}=='M'); 
    if isempty(tmpFind2) 
        disp('Impossible Error!'); 
    else 
        if isempty(tmpFind1) 
            disp(['Warning0: Line=' int2str(i)]); 
            timeHourMinute(i,1)=str2double(timeData{i}(1:tmpFind2(1)-2)); 
        elseif size(tmpFind1,2)==1 
            timeHourMinute(i,1)=str2double(timeData{i}(1:(tmpFind1(1)-1))); 
            

timeHourMinute(i,2)=str2double(timeData{i}((tmpFind1(1)+1):(tmpFind2(1)-2))); 
        elseif size(tmpFind1,2)==2 
            timeHourMinute(i,1)=str2double(timeData{i}(1:(tmpFind1(1)-1))); 
            

timeHourMinute(i,2)=str2double(timeData{i}((tmpFind1(1)+1):(tmpFind1(2)-1))); 
        else 
            disp(['Error: > 2, Line=' int2str(i)]); 
        end 
    end 
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end 

  
diary off 

  
clear i timeData tmpFind1 tmpFind2 
save timeHourMinute 
%             user           day         hour     minute      state 
primData=[zeros(size(timeHourMinute,1),2) timeHourMinute 

zeros(size(timeHourMinute,1),1)]; 
clear timeHourMinute 
%% 
%(day-1).*24.*60+hour.*60+minute 
tmpData=(primData(:,2)-1).*24.*60+primData(:,3).*60+primData(:,4); 
primData=[primData tmpData]; 
% save primData2 
clear tmpData 

  
%% 
clear;clc 

  
userNumber=9;  
dayNumber=26;  

  
load('primData.mat'); 
%    day         hour     minute      state 
for i=userNumber:-1:1 
    usersData{i}=primData((primData(:,1)==i),2:end); 
end 

  
clear i primData 

  
%delete wrong data 
for iUser=1:userNumber 
    t1=usersData{iUser}(2:end,5)-usersData{iUser}(1:end-1,5); 
    usersData{iUser}([find(t1<0)+1 find(t1==0)],:)=[]; 
end 
save usersData 
clear iUser 

  
%% 
%states by one minute.(leaving-0/office-1/coffee-2/restroom-3/class-4/lab-

5/meeting-6) 
clear;clc 
load('usersData.mat'); 
userNumber=9; 
dayNumber=26; 

  
timeTable=zeros(60*24*dayNumber,userNumber); 
for iUser=1:userNumber 
    for iLine=1:size(usersData{iUser},1)-1 
        timeTable(usersData{iUser}(iLine,5):usersData{iUser}(iLine+1,5)-

1,iUser)=usersData{iUser}(iLine,4); 
    end 
end 
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clear dayNumber   iUser       userNumber   
clear iLine       usersData 
save timeTable 

  
%% 
load('timeTable.mat') 

  
%canculate hvacs on(number of users(1~5) in Zone 1--> hvac1 on / (6~9) --> 

hvac2 on) or off 
timeTable(timeTable>1)=0; 
nUser1=sum(timeTable(:,1:5),2); % Zone 1 
nUser2=sum(timeTable(:,6:end),2); %Zone 2 
nUser1(nUser1==1)=0; 
nUser2(nUser2==1)=0; 
nUser1(nUser1>1)=1; 
nUser2(nUser2>1)=1; 
time1=1:size(nUser1,1); 
time1(nUser1==0)=[]; 
nUser1(nUser1==0)=[]; 
time2=1:size(nUser2,1); 
time2(nUser2==0)=[]; 
nUser2(nUser2==0)=[]; 
plot(time1,nUser1,'b.'); 
hold on 
plot(time2,nUser2+0.5,'g.'); 
ylim([0 2.5]); 
openTime1=sum(nUser1); 
openTime2=sum(nUser2); 
legend(['HVAC1 on=' num2str(openTime1/(24*60)) 'days'],['HVAC2 on=' 

num2str(openTime2/(24*60)) 'days']); 
xlabel('Minutes for 1 month'); 
ylabel('HVAC1 & HVAC2 on'); 
title('Time for HVAC1 and HVAC2 keep on for 1 month'); 

  
save fig1 
clear nUser1     openTime1  time1      timeTable   
clear nUser2     openTime2  time2 

  
%% 
% pattarn 
load('timeTable.mat'); 

  
timeTable(timeTable>1)=0; 
iMinute=60*24*7; 
userNumber=9; 
tmpData=zeros(iMinute,userNumber); 

  
for i=1:iMinute:size(timeTable,1) 
    if i+iMinute-1>size(timeTable,1) 
        tmpData(1:size(timeTable,1)-i+1,:)=tmpData(1:size(timeTable,1)-

i+1,:)+timeTable(i:size(timeTable,1),:); 
    else 
        tmpData=tmpData+timeTable(i:(i+iMinute-1),:); 
    end 
end 
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clear i    iMinute     timeTable     userNumber 

  
%possibility 
tmpData=tmpData./max(max(tmpData)); 

  
nUser1=sum(tmpData(:,1:5),2); 
nUser2=sum(tmpData(:,6:end),2); 

  
clear tmpData 
save nUser12 

  
nUser1(nUser1<2)=0; 
nUser2(nUser2<2)=0; 
nUser1(nUser1>=2)=1; 
nUser2(nUser2>=2)=1; 
time1=1:size(nUser1,1); 
time1(nUser1==0)=[]; 
nUser1(nUser1==0)=[]; 
time2=1:size(nUser2,1); 
time2(nUser2==0)=[]; 
nUser2(nUser2==0)=[]; 
%% 
plot(time1,nUser1,'b.'); 
hold on 
plot(time2,nUser2+0.5,'g.'); 
ylim([0 2.5]); 
openTime1=sum(nUser1); 
openTime2=sum(nUser2); 

  
legend(['HVAC1 on=' num2str(openTime1/(24*60)) 'days'],['HVAC2 on=' 

num2str(openTime2/(24*60)) 'days']); 
xlabel('Minutes for 1 week'); 
ylabel('HVAC1 & HVAC2 on'); 
title('Time for HVAC1 and HVAC2 keep on for 1 week'); 

  
save fig2 
clear openTime1  openTime2  time1   time2    tmpData 
clear nUser1     nUser2 

 

 

 

 

 

 


