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Abstract 

Operational modal analysis aims at identifying the modal properties (natural frequency, 

damping, etc.) of a structure using only the (output) vibration response measured under 

ambient conditions. Highly economical and feasible, it is becoming a common practice in 

full-scale vibration testing. In the absence of (input) loading information, however, the 

modal properties have significantly higher uncertainty than their counterparts identified 

from free or forced vibration (known input) tests. Mastering the relationship between 

identification uncertainty and test configuration is of great interest to both scientists and 

engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing 

this challenge beyond the current state-of-the-art that are mostly concerned with 

identification algorithms, this work obtains closed form analytical expressions for the 

identification uncertainty (variance) of modal parameters that fundamentally explains the 

effect of test configuration. Collectively referred as ‘uncertainty laws’, these expressions 

are asymptotically correct for well-separated modes, small damping and long data; and 

are applicable under non-asymptotic situations. They provide a scientific basis for 

planning and standardization of ambient vibration tests, where factors such as channel 

noise, sensor number and location can be quantitatively accounted for. The work is 

reported comprehensively with verification through synthetic and experimental data 

(laboratory and field), scientific implications and practical guidelines for planning 

ambient vibration tests. 
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1. Introduction 

Operational modal analysis (OMA) aims at identifying the modal properties (natural 

frequency, damping ratio, mode shape, etc) of a constructed structure using only the 

(output) vibration response (acceleration, velocity, etc) [1][2][3]. The (input) excitation to 

the structure is not measured but is assumed to be broadband random. This allows 

vibration data to be collected when the structure is in its working or ‘operational’ 

condition without much intervention. This implies significant economy in 

implementation, which to a large extent has contributed to the increasing popularity of 

OMA in practical applications [4][5][6][7]. 

 

In the absence of loading information, the identification uncertainty of modal parameters 

from ambient vibration data is significantly higher than that in free vibration or force 

vibration tests. This is complicated by variability due to modeling errors regarding the 

stationary or broadband nature of loading, and the effects of structural/environmental 

changes [8][9][10]. Uncertainty quantification and quality control on the identified modal 

properties therefore become especially relevant. From a scientific point of view, it is of 

interest to know what factors the identification uncertainty depends on and what the 

relationship is. For planning or specification purposes, it is desirable to have an 

assessment of the identification uncertainty for a given test configuration. For example, 

how long should the data be? How many sensors are required? Should better sensors be 

used? These are long-standing issues that have presented challenges to researchers and 

practitioners [11][12][13][14].  

 

A Bayesian approach provides a fundamental basis for extracting the information 

contained in the data for inferring the parameters of interest in a manner consistent with 

probability and modeling assumptions [15][16][17]. In OMA this has recently been 

materialized and put into practice, where making inference based on the ‘raw’ FFT (i.e., 
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no filtering, windowing, etc.) within a selected frequency band is found to yield a 

computationally efficient method whose modeling assumptions are robust to applications. 

See [18] for the first formulation, [19] for a recent review and [20][21][22][23][24] for 

examples of recent applications. In a Bayesian context, identification results are 

encapsulated in the joint ‘posterior’ (i.e., given data) distribution of the modal parameters. 

With sufficient data often encountered in applications, the posterior distribution has a 

single peak and it can be approximated by a Gaussian distribution. The mean of the 

Gaussian distribution gives the posterior most probable value (MPV) of the modal 

parameters, while the covariance matrix reflects their remaining identification uncertainty. 

In a non-Bayesian, or ‘frequentist’ context, identification uncertainty has been defined as 

the ensemble variance of estimates over repeated experiments. Methods of calculation 

based on perturbation have been developed in [25][26][27] for time-domain state-space 

models. See also [28] that investigated empirically the effects of various sources on 

identification results.  

 

Being able to calculate the identification uncertainty for a given set of data alone does not 

provide much insight about how it depends on test configuration. Due to complexity of 

the problem, the exact dependence is expected to be complicated and is unlikely to be 

described in a closed-form explicit manner. Motivated by observations on the 

identification uncertainty of modal parameters in terms of their posterior c.o.v. 

(coefficient of variation = standard deviation / mean) monitored during typhoons, an 

asymptotic analysis has been performed for the posterior covariance matrix [29]. 

Focusing on well-separated modes, the study yielded closed-form expressions for the 

leading (zeroth) order of the posterior c.o.v. under the asymptotic condition of small 

damping and long data duration. The results were collectively referred as ‘uncertainty 

laws’, analogous to the laws of large numbers in statistics. They were found to be 

remarkably simple and insightful.  

 

The theory of uncertainty laws motivated the definition of the ‘modal signal-to-noise (s/n) 

ratio’ as the PSD (power spectral density) ratio of the modal response to noise at the 

natural frequency. This was found to be the only parameter in the uncertainty laws that 
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reflects test configuration attributes such as instrument noise, the number of sensors and 

their locations. However, the leading (zeroth) order of the uncertainty laws obtained so 

far does not depend on the modal s/n ratio. In this sense the zeroth order expression gives 

the ‘achievable precision limit’ when the modal s/n ratio is infinite. The objective of this 

work is to further capture the effect of the modal s/n ratio in the uncertainty laws so that 

test configuration can be quantified for planning or standardizing ambient vibration tests. 

To achieve this objective, we perform a first order asymptotic analysis of the posterior 

c.o.v.s, leading to ‘first order uncertainty laws’.  

 

This work is organized as follow. We first give a short overview of the Bayesian 

framework for OMA, based on which the uncertainty laws were derived. The zeroth 

order laws will then be reviewed. The key results of the first order laws will be 

summarized, followed by an outline of derivation with details referred to the appendix. 

The first order laws will be verified and their approximation under non-asymptotic 

conditions will be investigated using synthetic data and experimental data. Implications 

and applications of the uncertainty laws for planning ambient vibration tests will also be 

discussed. 

 

2. Bayesian framework 

Let the acceleration time history at n  measured DOFs of a structure be 1
0}ˆ{ 

 N
j

n
j Rx  

and abbreviated as }ˆ{ jx , where N  is the number of samples per data channel. The 

(scaled one-sided) FFT of }ˆ{ jx  is the complex-valued sequence 1
0}{ 

 N
k

n
k CF  where 
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12 i  and t  is the sampling interval. For a given k , the FFT kF  corresponds to the 

frequency tNkk  /f , up to the Nyquist frequency.  
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As in the conventional setting, consider a classically damped mode well-separated from 

other modes. It is identified using only the kF s on a selected band near the natural 

frequency. In the band it is assumed that kkk εΦ  F  where nRΦ  is the mode 

shape confined to the measured DOFs (scaled to have unit Euclidean norm, i.e., 

1|||| 2  ΦΦΦ
T

); n
k Cε  is the FFT of channel noise; and Ck   is the FFT of the 

modal acceleration response whose time domain counterpart satisfies 

)()()(2)( 2 tpttt    . Here f 2  (rad/sec), f  is the natural frequency (in 

Hz),   is the damping ratio and )(tp  is the modal force. The modal force and channel 

noise are assumed to have a constant PSD within the selected band, denoted respectively 

by S  and eS . In the above context, the set of modal parameters to be identified is 

},,,,{ Φθ eSSf  . 

 

Let }{ kF  denote the collection of FFT data within the selected band. Using Bayes’ 

Theorem with a uniform prior distribution for θ , the posterior PDF can be written as 

)](exp[}){|( θθ Lp k F  where  

 

k

kkk

k

kfk nNpL FFF 1*||lnln)|}({ln)( EEθθ     (2) 

is called the negative log-likelihood function (NLLF); ne
T

kk SSD IΦΦE   is the 

theoretical PSD matrix of data for given θ ; ΦΦΦ
1||||   and 

1222 ])2()1[(),(  kkk fD     ( kk f f/ )   (3) 

is the dynamic amplification factor. The expression of the likelihood function stems from 

the standard result in signal processing that for long data duration the FFTs of a 

stationary stochastic process are asymptotically independent at different frequencies and 

jointly complex Gaussian [31]. For computational purpose, the following equivalent form 

that reveals a quadratic dependence on Φ  is used [32]: 

)()ln(ln)1(ln)( 1
ΦAΦθ

T
e

k

ekeff dSSSDSNnnNL     (4) 
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The uncertainty laws of well-separated modes are derived based on the above 

identification framework. 

 

3. Zeroth order laws 

For well-separated modes, small damping and sufficiently long data duration, closed 

form expressions for the leading order of the posterior c.o.v.s of modal parameters have 

been derived [29], referred as the ‘zeroth order laws’ in this work. Specifically, suppose 

the selected band is )1( f , where   is called the ‘bandwidth factor’ that reflects the 

amount of usable (frequency-domain) information in the data for identifying the mode, 

often a trade-off between identification precision and modeling error risk. Let dT  be the 

data duration. Since the frequency spacing is 1
dT , there are cdf NTfN  2/2 1  

 

FFT ordinates in the band )1( f , where fTN dc   is the ‘normalized data length’ as 

a multiple of the natural period. The above definitions are illustrated in Figure 1, which 

shows an idealized singular value spectrum, i.e., plot of the eigenvalues of acceleration 

data PSD matrix with frequency. In the resonance band of a mode, the largest eigenvalue 

is equal to ek SSD   and the remaining ones are all eS .          

 

Figure 1 Idealized singular value spectrum of acceleration data in a band dominated by a single 

mode with frequency f  and damping ratio   
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In the above context, for small damping   and large fN , the leading (zeroth) order of 

the posterior c.o.v.s of Sf ,,  are given respectively by (the subscript ‘0’ denotes ‘zeroth 

order’) 

fc
f

BN




2

2
0    
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12
0    
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12
0    (6) 

where  
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SB      (9) 

are ‘data length factors’ reflecting that only a limited bandwidth is used for modal 

identification. The data length factors increase monotonically with   and range between 

0 and 1. The posterior covariance matrix for the mode shape is asymptotically given by 

)(
)(

2
~ T

n
cBN

ΦΦIC 






       (10) 

where 

S

Se           (11) 

is the ‘noise-to-environment’ (n/e) ratio; and  1tan)/2()( 
 B  is the data length 

factor for mode shape. In presenting the uncertainty laws, modal parameter symbols such 

as f  and   denote the actual property of the structure that gives the data. This should be 

distinguished from those in the NLLF that represent variables in a Bayesian inference 

problem. 
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4. First order laws (main theoretical results) 

One important aspect of the zeroth order laws is that they do not depend on test 

configuration attributes such as channel noise or sensors (number and location). 

Essentially, the zeroth order laws give the identification uncertainty when the s/n ratio is 

infinitely high because the damping ratio is taken to be asymptotically small. The 

objective of this work is to further capture the effect of test configuration. The Bayesian 

OMA framework [19] and a first order asymptotic analysis of posterior uncertainty 

motivated the definition of the ‘modal s/n ratio’ as the PSD ratio of modal response 

( 24/ S ) to noise ( eS ) at the natural frequency: 

24 


eS

S
           (12) 

This is approximately equal to the ratio of the largest to the second largest eigenvalue of 

the data PSD matrix at the natural frequency (Figure 1). 

 

The modal s/n ratio turns out to be the only parameter in the uncertainty laws that 

carries the influence of test configuration.  

 

We show that the posterior c.o.v. x  of modal parameter x  ( Sf ,, ) is given by, to 

the first order of the small parameter 1  as 0  and fN , 

)1(~ 12
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2   xxxx a     Sfx ,,    (13) 
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are ‘first order coefficients’; and )1/(tan 21   b .  

 

Equations (13) is a first order asymptotic expression in the following sense:  

)(1 21

2
0

2
  




Oax

x

x   as  fN,0   Sfx ,,  (17) 

The term 1xa  captures the first order effect with respect to (w.r.t.) 1 . It tends to zero 

as 0  (hence  ) but it captures the primary effect of   when   is not high. The 

first order uncertainty law for eS  is not presented as it is of little practical interest. For 

the mode shape, the effect of   is already contained in the zeroth order law in (10). 

 

5. Quantification of test configuration 
The zeroth order laws give the achievable limit of OMA modal parameter identification 

precision when the modal s/n ratio   is infinite. They are primarily influenced by the 

structure and data length, and less by test configuration. The first order laws capture the 

effect of finite  , which carries the influence of test configuration. It is remarkable that 

the apparently complicated influence of test configuration can be fundamentally 

quantified in a simple manner though  , even though this is only asymptotically correct 

for small damping and long data. 

 

The modal s/n ratio depends on the channel noise PSD eS , the damping ratio   and the 

modal force PSD S . The modal force PSD depends on the intensity of environmental 

excitation. It also depends on the measured DOFs in a less trivial manner, which turns out to 

be the only means by which the measured DOFs affect identification uncertainty as implied 

by the uncertainty laws. Specifically, let ξ  denote the full mode shape of the structure, i.e., 

containing all (possibly an infinite number of) DOFs. The modal force PSD corresponding to 

the scaling implied by ξ  is 

2)( Mξξ

ξSξ

T
F

T

pS           (18) 
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where 
FS  is the PSD matrix of applied forces and M  is the mass matrix. In reality ξ  can 

hardly be identified because of limited measured DOFs, and so is pS . Without loss of 

generality, assume that the first n  DOFs of ξ  are measured and the measured mode shape is 

scaled to have unit norm, as in the Bayesian OMA framework. Under this scaling, ξ  should 

be divided by  

n

i i1
2 . Replacing ξ  in (18) by  

n

i i1
2/ ξ  gives the modal force PSD 

under the new scaling:  





n

i

ipSS

1

2           (19) 

This is the quantity that can be identified from data with limited measured DOFs. 

Equation (19) implies that increasing the number of measured DOFs always increases S  

and hence the modal s/n ratio. The rate of increase depends on the mode shape value of 

the DOF incrementally added to the existing set of measured DOFs. See an illustration in 

Section 7.2 later. 

 

6. Outline of derivation 

In this section we outline the derivation of the first order uncertainty laws, where details 

are referred to the appendix. First recall from [29] that, to the leading order, the posterior 

c.o.v.s are given by 

1)(2 ~ ff
f L   

121)(2 )1(~   SqL 


  
121)(2 )1(~   S

SS
S qL   (20) 

where )( ffL , 
)(L  and )(SSL  are the second derivatives of the NLLF w.r.t. f ,   and 

S , respectively, and evaluated at the MPV;  

)()(

)(

SS

S

S
LL

L
q





            (21) 

is the ‘cross sensitivity coefficient’ between   and S . Throughout this work, we use a 

superscripted variable to denote the derivative of the subject quantity w.r.t. that variable.  
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The zeroth order asymptotic expressions (denoted with a subscript ‘0’) for the second 

derivatives that led to (6) were given by: 

)
1

(tan
4

2

1

2

)(
0
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Since 21 4  , the first order effect of modal s/n ratio can be captured by retaining up 

to the )( 2O  terms in the asymptotic expressions of the posterior c.o.v.s. The first order 

term in the posterior c.o.v.s can be obtained in terms of those of the derivatives )( ffL , 

)(L , )(SSL  and )( fL . It is shown in the appendix that ( Sfx ,, ) 

)1(~ 1)(
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xxxx cLL   )1(~ 1)(
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2
)(


Sc      (27) 

Taking natural logarithm of (21) and considering small perturbation, the first order 

expression for 
2
Sq  can be written in terms of c , SSc  and Sc :  

])2(1[~ 12
0

2   SSSSS cccqq       (28) 

Substituting (25) and (28) into (20), the first order expression for the posterior c.o.v. is 

given by 

)1(~ 12
0

2   xxx a       Sfx ,,   (29) 

where 

fff ca    )2(
1 2

0

2
0

SSS

S

S
xxx ccc

q

q
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  Sx ,  (30) 
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Substituting the expressions for ffc , c , SSc , Sc  in (26)-(27) and 0Sq  in (24) into 

(30) and simplifying gives the expressions for fa , a  and Sa  in (14)-(16).  

 

7. Verification with synthetic data 

In this section we present examples with synthetic data to investigate the approximate 

nature of the first order uncertainty laws under non-asymptotic conditions. The examples 

also illustrate the effect of channel noise level and measured DOFs on the modal s/n ratio 

and hence on the posterior c.o.v. of modal parameters. The same structure in [30] is 

considered, when the zeroth order law was investigated. 

 

Consider the horizontal vibration of a ten-storied shear building (i.e., with ten DOFs in 

total) with uniform mass of 1000 tons per floor, interstory stiffness of 1767kN/mm and 

damping ratio of 1% in all modes. The natural frequencies of the first three modes are 

1Hz, 2.98Hz and 4.89Hz. The structure is subjected to i.i.d. white noise excitation at all 

floors, each with a PSD of HzNSw /2.96 2 . Synthetic acceleration data is generated at 

a sampling rate of 100Hz for a duration of 600sec. The data is contaminated by i.i.d. 

white channel noise with a PSD of eS  (value see later). 

  

7.1. Effect of channel noise 

Consider identifying the first mode with two accelerometers placed on the fifth floor and 

the roof. As a reference, the modal force PSD corresponding to this sensor layout (with 

measured mode shape scaled to have unit norm) is calculated to be HzgS /)(278.0 2 . 

Modal identification is based on the FFTs of the measured acceleration data on the 

frequency band [0.96, 1.04] Hz, corresponding to a bandwidth factor of 4 . Consider 

different data sets contaminated by channel noise of different values of PSD eS , ranging 

from 500 to 1 Hzg /)( 2 . Correspondingly, the modal s/n ratio 24/  eSS  ranges 
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from 39.1])01.0)(500(4/[)278.0( 2   to 695])01.0)(1(4/[)278.0( 2  . For each data set, 

the MPVs of the modal parameters are calculated using Bayesian OMA algorithm [32].  

 

Figure 2(a) shows the posterior c.o.v. versus   for the different cases considered. The 

value of   on the x-axis is calculated using the MPVs of the modal parameters obtained 

in each case. The circles show the exact values of posterior c.o.v.s. The center line and 

dashed line show the values based on the zeroth order and first order uncertainty laws, 

respectively, calculated using the MPVs. Part of the discrepancy or scatter in the figures 

is due to the fluctuation of the MPVs calculated in each case. If the MPVs were equal to 

their exact parameter values then the zeroth order law (center line) would have been a 

straight horizontal line. It is seen from the figure that as   increases the first order law 

(dashed line) and the exact value (circles) of the posterior c.o.v. decrease and converge to 

a constant level equal to the zeroth order law. The first order law captures the variation of 

the posterior c.o.v. with the modal s/n ratio. Generally, it agrees well with the exact value. 

As expected, the discrepancy is greater for smaller modal s/n ratios. 
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(a) Two sensors, increasing channel noise (b) Fixed channel noise, two to ten sensors 

Figure 2. Posterior c.o.v. versus modal s/n ratio. Circle – exact; dashed line (- -) – first order law; 

center line (-.-) – zeroth order law. Uncertainty laws calculated using MPV. 

 

7.2. Effect of measured DOFs 

Suppose the channel noise level is fixed at the highest level in the last section, i.e., 

HzgSe /)(500 2 . We shall investigate improving the modal s/n ratio by increasing the 

number of measured DOFs (each with a uniaxial accelerometer) from n 2 to 10. The 

increasing number of sensors are placed from the top to the bottom, i.e., on the roof and 

9/F for 2n ; on the roof, 9/F and 8/F for 3n  and so on. As the number of measured 

DOFs increases from 2 to 10, the modal force PSD increases from Hzg /)(278.0 2  to 

Hzg /)(1 2 . The modal s/n ratio   increases from 39.1])01.0)(500(4/[)278.0( 2   to 

5])01.0)(500(4/[)1( 2  .  

 

Figure 2(b) shows the posterior c.o.v. versus   when the number of measured DOFs n  

increases from 2 to 10 in the manner just described. Since the measured DOFs are added 
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from the top to the bottom, the rate at which S  and hence   increases with n  is 

decreasing because the mode shape value of the additional DOF decreases. Similar to 

before, the posterior c.o.v. decreases with the modal s/n ratio. The first order law (dashed 

line) approximates well the exact values (circles), although the discrepancy is larger for 

smaller modal s/n ratios. Despite the large amount of additional resources invested when 

the number of measured DOFs increases from 2 to 10, the posterior c.o.v. of the damping 

ratio only reduces from 50% to 40%, i.e., by 20%. The reduction of c.o.v. is more 

effective for natural frequency, by 2/3 from 0.6% to 0.2%, but this is of little significance 

because the c.o.v. is already very small. 

 

8. Verification with experimental data 

In this section we extend our investigation to experimental data obtained in a laboratory 

as well as full-scale field environment where the actual dynamics is not as well-defined 

and it is impossible to control the environment. These gives a real challenging test to the 

uncertainty laws where modeling error can exist with regard to, e.g., unaccounted modes, 

stationarity of response, damping mechanism, unknown colored activities. The laboratory 

structure is a shear frame and it will illustrate the effect of increasing measured DOFs on 

modal s/n ratio and hence identification uncertainty. The field structures include a 

footbridge and a super-tall building. The footbridge will illustrate cases with relatively 

low modal s/n ratios. Results of the super-tall building will be reported statistically to 

supplement test cases and inform the order of magnitudes of parameters in the 

uncertainty laws. Bayesian OMA of the above structures has been performed and so the 

current study provides further insights on their identification uncertainty.  

 

As noted previously in the study of zeroth order laws, the modal s/n ratio is typically high 

(e.g., 100 ) for well-managed field tests with a moderate number of servo-

accelerometers. To investigate cases with low s/n ratios, we deliberately consider data 

sets with small modal s/n ratio, some of which can be atypical. These more challenging 

data sets feature higher modes, relatively high damping ratios and a small number of 

measured DOFs. The discrepancy between the uncertainty laws and the exact values of 
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posterior c.o.v. can be greater because of significant violation of the asymptotic 

conditions and other modeling errors associated with the identification model. 

 

8.1. Laboratory shear frame 

Consider a three-storied laboratory shear frame [33] whose measured DOFs are 

schematically shown in Figure 3(a). The structure was previously used to investigate a 

Bayesian two-stage approach for structural model identification. Ambient acceleration 

data was recorded for ten minutes at a sampling rate of 2048Hz and was later decimated 

to 512Hz for analysis. Figure 3(b) shows the root singular value spectrum calculated 

using the data at DOFs 1 and 2 only. The bottom line indicates roughly the root PSD 

level 2/1
eS  of channel noise, which ranges in the order of Hzg /100  to 20 Hzg /  

from low to high frequencies. The peaks of the top line indicate potential modes. Ten 

well-separated modes can be recognized. Their nature are indicated, e.g., TX2 refers to 

the second translational mode along the x direction; R1 refers to the first torsional mode. 

The mode S1 near 35Hz corresponds to a torsional mode with a mode shape somewhat 

between R2 and R3. The frequency band used for identifying each mode is indicated by a 

bar below the resonance peak. 

 

Figure 3. Laboratory frame. (a) Measured DOFs. (b) Root singular value spectrum for DOFs 1 & 2 
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for its low modal s/n ratio  . Adding incrementally one DOF at a time, this gives for 

each mode 23 cases, corresponding to DOFs {1, 2}, {1, 2, 3} and so on, until {1, 2, …, 

24}. Figure 4(a) shows the ratio of the posterior c.o.v. to the zeroth order law. The ratio 

to the zeroth order law rather than the absolute values are plotted to remove spurious 

fluctuations in the trend with   due to fluctuations in the MPVs. The circles show the 

ratio of the exact to the zeroth order law. The crosses show the ratio of the first order law 

to the zeroth order law. There are 23 crosses in the figure, corresponding to 23 different 

sets of measured DOFs with their number increasing from 2n  (DOFs 1 and 2) to 

24n  (all DOFs). As evidenced from the abscissas of the plots, when the number of 

measured DOFs increases the modal s/n ratio increases from about 20 to 400. 

Correspondingly, the posterior c.o.v. decreases. Ideally, if the first order law were exact 

and if the calculated MPVs were the same in different cases of measured DOFs, at each 

value of   the cross (first order/zeroth order) should coincide with the circle 

(exact/zeroth order). As seen in the plots, they are generally quite close, showing a good 

approximation in this case. Both the crosses and circles converge to 1 for high  . The 

former results directly from the uncertainty law formulas because the first order 

correction vanishes for high  . The latter (circle) shows that the zeroth order law is a 

good approximation of the exact posterior c.o.v. for high  , which has been verified 

previously . 
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(a) Posterior c.o.v./zeroth order law (b) Posterior c.o.v./exact 

Figure 4. Ratio of posterior c.o.v., lab frame, 2 to 24 DOFs, Mode S1. (a) Exact/Zeroth order (circle) 

and 1st order/Zeroth order (cross); (b) Zeroth order/exact (circle) and 1st order/exact (cross) 

 

Figure 4(b) plots the ratio of the uncertainty laws to the exact values. This plot is shown 

to further assess the accuracy of the uncertainty laws. Ideally if the first order law were 

exact and the calculated MPVs were the same in different cases then the crosses should 

all lie on the dashed line at 1. It can be seen that the crosses are all close to 1, showing 

that the first order laws can provide a good approximation even when the modal s/n ratio 

  is not high. On the other hand, the difference between the circles (zeroth order law) 

and the dashed line increases as   decreases because the zeroth order law does not 

account for the effect of  . 

 

Figure 5 shows the results for all the ten modes indicated in Figure 3. There are 

2301023   pairs of crosses and circles in the figure. Many modes have a high   even 

with the smallest number of measured DOFs ( 2n ). Their results cluster in the regime 

410  where the ratios are all close to 1, providing verification of the zeroth order law. 
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(a) Posterior c.o.v./zeroth order law (b) Posterior c.o.v./exact 

Figure 5. Ratio of posterior c.o.v., lab frame, 2 to 24 DOFs, 10 modes. Same legend as Figure 4 

 

8.2. Footbridge 

Consider a multi-span footbridge measuring 12 m in width and 220 m in total length 

[34][35]. The structure was previously used to investigate a Bayesian OMA method that 

can incorporate data from multiple setups. Seventy four locations distributed on two sides 

of the bridge were covered by thirty seven setups. Four triaxial servo-accelerometers 

were available and so only four locations could be measured in one setup. In all setups, 

two reference locations, Ref. 1 on the middle span and Ref. 2 on the side span, were 

always measured (each with one triaxial accelerometer). The other two accelerometers 

roved over the remaining locations in different setups. In each setup, five minutes of 

ambient acceleration data at 34 =12 DOFs were collected at a sampling rate of 200Hz. 

  

The data sets considered here correspond to the three DOFs (x, y, z) of the tri-axial 

accelerometer placed at Ref. 2. Figure 6 shows the root PSD calculated using a typical 
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data set (the first setup). The study here focuses on the three modes that have been 

studied previously, whose frequency bands are indicated in the figure. These modes (in 

ascending order of frequency) correspond to the lateral, vertical symmetric bending and 

vertical asymmetric bending of the bridge, whose mode shapes are shown in Figure 7. 

From Figure 6, the resonance peak of Mode 3 is less pronounced compared to that of 

Mode 1 or Mode 2, suggesting that Mode 3 has a relatively low modal s/n ratio. In fact it 

is the mode that presented challenge in mode shape assembly using non-Bayesian 

methods, as reported in [34].  

 

 

Figure 6. (Root) Singular value spectrum of a typical field data set 

 

 

Figure 7. Identified mode shapes (MPV) of Footbridge. The two reference sensor locations are 

indicated by a heavy dot. Data of the reference sensor on the right is used in the example  

 

Figure 8 to Figure 10 show the ratio of posterior c.o.v. for Mode 1 to 3, presented in a 

manner analogous to Figure 5. For each mode, the different values of modal s/n ratio 

among the points result from the different calculated MPVs of the modal parameters. The 
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approximation of the first order law is good for Mode 1 (Figure 8), but less so for Mode 

2 (Figure 9) and Mode 3 (Figure 10), although in terms of order of magnitude the latter 

are still acceptable. The poor approximation could be due to a number of reasons, 

although it is difficult to verify at this stage, e.g., modeling error due to colored excitation 

(human excitation). 

  

  

(a) Posterior c.o.v./zeroth order law (b) Posterior c.o.v./exact 

Figure 8. Ratio of posterior c.o.v., Footbridge, Mode 1, 37 sets. Same legend as Figure 4 
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(a) Posterior c.o.v./zeroth order law (b) Posterior c.o.v./exact 

Figure 9. Ratio of posterior c.o.v., Footbridge, Mode 2, 37 sets. Same legend as Figure 4 

 

  

(a) Posterior c.o.v./zeroth order law (b) Posterior c.o.v./exact 

Figure 10. Ratio of posterior c.o.v., Footbridge, Mode 3, 37 sets. Same as Figure 4 
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8.3. Statistics summary 

Figure 11 shows the posterior c.o.v.s based on the uncertainty laws versus the exact 

values for all the cases with experimental data. Results for a super-tall building are also 

reported. The structure was used previously to investigate the zeroth order laws [30]. 

Although not directly relevant, its modal force PSD identified from measurement was 

also compared with wind tunnel prediction [36]. The results for the super-tall building 

presented here were based on 18 hours of acceleration data collected at 50 Hz from a 

triaxial servo-accelerometer placed on the roof on a normal day. Modal identification was 

performed on the eleven modes below 3 Hz for each of the thirty six 30 minutes long 

non-overlapping segments.  

 

Figure 11. Uncertainty law vs exact values in examples with experimental/field data. Circle – zeroth 

order law; dot – first order law 
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Generally the first order uncertainty laws give a reasonable approximation. Table 1 

shows the statistics of the identified values (MPV) of the channel noise PSD eS , the 

modal force PSD S  and the n/e ratio SSe /  for the field structures. It is presented to 

give an idea of the order of magnitude of these quantities in the actual field situation.  

 

Table 1. Statistics of eS , S  (MPV) and   in field structures (one triaxial accelerometer) 

Case Mode eS  [ Hzg /)( 2 ] S  [ Hzg /)( 2 ] SSe /  

Min Mean Max Min Mean Max Min Mean Max 

Footbridge 1 0.16 4.7 25 0.15 0.45 0.97 0.49 11 50 

 2 76 152 305 0.09 2.1 11 7.3 206 851 

 3 41 143 314 0.08 1.5 6.1 30 156 515 

           

Super-tall 
building 

1 68 301 977 4.0 19 61 5.2 17 41 

 2 44 208 501 4.6 19 61 6.2 13 36 

 3 0.81 2.3 7.9 0.12 0.43 1.2 3.0 5.5 11 

 4 0.36 0.85 2.1 0.21 0.60 1.5 0.79 1.5 2.5 

 5 0.58 2.4 6.4 0.10 0.37 0.97 4.2 6.7 11 

 6 0.32 1.6 6.2 0.02 0.08 0.21 10 19 36 

 7 0.08 0.32 1.0 0.01 0.11 0.89 1.1 4.0 7.0 

 8 0.08 1.1 3.8 0.004 0.02 0.12 9.6 50 136 

 9 0.29 2.4 10 0.01 0.10 0.61 16 31 55 

 10 0.14 2.2 7.3 0.002 0.03 0.11 51 74 99 

 11 0.09 1.2 3.8 0.007 0.06 0.29 11 20 31 

 

9. Practical guidelines 

In this section we apply the uncertainty laws to produce practical guidelines for planning 

ambient vibration tests, which is the original motivation of this work. Focus is on the 

damping ratio, which is the most critical (highest uncertainty) among other modal 

parameters as well as having the greatest impact in practice due to high sensitivity of 

predicted response to damping. We will first discuss the bandwidth factor and modal s/n 

ratio, whose assumptions are inevitable when applying the uncertainty laws at the 

planning stage. After that we will discuss how to assess test configuration based on 

simple charts developed from the uncertainty laws.  
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9.1. Bandwidth factor 

The bandwidth factor   appears in the expressions of the uncertainty laws, e.g., the data 

length factor B  and the first order coefficient a . It is a dimensionless quantification of 

the bandwidth that can be utilized for identifying the subject mode. In the derivation of 

uncertainty laws, it has been implicitly assumed that in the selected band )1( f  the 

mode dominates, or roughly speaking, is within the band where the mode can be seen in 

the singular value spectrum. It is rational to have   as large as possible while keeping 

modeling error risk low. When the modal s/n ratio   is high the choice of   is governed 

by the need to control modeling error risk (e.g., existence of other modes), e.g., by setting 

an upper limit max . When   is not high the choice of   will depend on   because the 

resonance band does. In particular, the two values of frequency ratio   where the modal 

acceleration PSD SD  ( 1222 ])2()1[(  D ) equals the noise PSD eS  are given by 

(recalling SSe / ) 

1

2212

1

)1(421













        (31) 

For small   and small 1  (relevant when   is not high), this expression implies 

asymptotically 1~   (recall 24/1   ). In practice the band is often selected such 

that the data PSD eSSD   has dropped to a level near the noise PSD eS . This results in a 

wider band, for which  2  is empirically found to be a reasonable choice.  

 

In summary, for planning purpose the following simple rule is recommended:  

),2min( max           (32) 

This is illustrated in Figure 12(a) for a 1 Hz mode with 1% damping and taking 

10max   to control modeling error risk. Figure 12(b) illustrates the acceleration data 

PSD and the selected bands based on (32) for different values of  .  
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Figure 12 Bandwidth factor   for planning, assuming a 1 Hz mode with 1% damping and 

10max   to control modeling error risk 

 

9.2. Modal s/n ratio 

The modal s/n ratio   may be assessed based on experience for situations or more 

explicitly based on  , eS  and S . The damping ratio depends on the type of structure 

and vibration level, with typical values between 0.5% and 5%. The channel noise PSD 

eS  depends on the quality of sensors and the data acquisition system (DAQ, comprising 

cables, digitizing hardware, etc.). The value of eS  can range from the order of 1

Hzg /)( 2  for servo-accelerometers (with appropriate DAQ) to Hzg /)(10 25   for 

MEMS accelerometers data on smart phones. The modal force PSD S  depends on the 

environmental excitation and the measured DOFs. Simple formulas can be developed in 

the future to assess its order of magnitude for different types of structures and under 

different environments (e.g., wind, micro-tremor, traffic). A pre-test or such experience 

certainly helps. Drawing on experience of the authors, on a normal day (e.g., no strong 

wind) S  may range between 0.01 to 10 Hzg /)( 2  for a single DOF suitably placed for 

the mode. It can be increased by putting more sensors but the rate depends on the mode 

shape value of the additional measured DOFs (Section 5).  
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9.3. Assessing test configuration 

Focusing on the damping ratio, the adequacy of a test configuration can be assessed 

based on charts similar to those in Figure 13. The first order law of posterior c.o.v. for 

damping ratio is separated into two terms  

211 AA    
cN

A
2

1
1    



 

B

a
A

/1
2


   (33) 

so that 1A  and 2A  independently account for the effect of duration (in terms of cN ) and 

modal s/n ratio (related to channel noise and measured DOFs), respectively. Note that 

12 A  for 1B  and  , in which case 11 A . The term 1A  can thus be 

interpreted as an optimistic value of identification uncertainty that ignores possible 

inflation due to finite s/n ratio and limited bandwidth. In the expression of 2A , the values 

of B  in (8) and a  in (15) are evaluated with   taken as the minimum of 2  and 

max  (see (32) and Figure 12). A low value of max  reflects anticipation of a 

challenging mode or risk aversion towards modeling error in the frequency-domain 

neighborhood of the mode. Note that 2A  is insensitive to   for 100  (say), which 

quantifies a ‘sufficiently high modal s/n ratio’ where improving equipment has no 

significant reduction on identification uncertainty (of damping ratio). 

 

 

Figure 13 Charts for assessing test configuration. (a) for data duration and (b) for modal  s/n ratio 
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9.4. Example 

An example is given to illustrate the use of uncertainty laws for test planning. Consider a 

super-tall building whose fundamental translational mode has a natural frequency of 

2.0f Hz and a damping ratio of  1%. Clearly, these (and other) properties are not 

known prior to testing but assumptions of their values as well as statistically stationary 

data are inevitable at the planning stage. The fundamental mode is often the most 

demanding in data duration because it has the longest period. Consider a trial duration of 

300cN  natural periods, i.e., 1500 sec. Then 230.0)300)(01.0(2/11  A , which 

can also be read approximately from Figure 13(a). This value of c.o.v. is optimistic as it 

has not accounted for instrument noise and limited bandwidth. Suppose we place a 

triaxial servo-accelerometer with HzgSe /)(1 2  at one corner on the roof. Based on 

experience it gives on a normal day a modal force PSD of HzgS /)(1.0 2 . Then 

1/0.1 = 10 and 
2)01.0)(10(4/1 = 250. This value of   is sufficiently high (in the flat 

region of 2A  in Figure 13(b)), i.e., equipment (sensor/DAQ quality and sensor number) is 

good enough. Take 10max  . Then 10)10,2502min(  , i.e., choice of band is 

likely to be governed by modeling error risk control. This gives 724.0B  (from (8)), 

9.20a  (from (15)) and 22.1724.0/)250/9.201(2 A  (from (33)), which can 

also be read approximately from Figure 13(b). Thus, due to instrument noise and limited 

band, there is a 22% inflation of identification uncertainty and consequently 

%2822.1230.01  , which is acceptable. It may not be necessary to further reduce 

the identification uncertainty, but otherwise lengthening the data duration is the only 

effective means. Adding sensors or further reducing the channel noise will have little or 

no effect.  

 

Suppose now the sensor or DAQ has lower quality, in the sense that HzgSe /)(100 2 . 

Using the same trial duration of 300cN  gives 230.01 A  the same as before. To 
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assess instrument effect,  100/0.1 = 1000 and  2)01.0)(1000)(4/(1 2.5 (quite low). 

The usable bandwidth is 16.3)10,5.22min(  , i.e., governed by resonance band. 

This gives 344.0B , 85.6a  and 29.3344.0/)5.2/85.61(2 A . There is 

thus over 200% inflation due to (poor) instrument (which also narrows the usable band), 

giving %7629.3230.01  , which is not acceptable. From Figure 13(b), 2A  is quite 

sensitive to   around 2.5 and so identification uncertainty can be effectively reduced by 

increasing  . This is explored next by improving the quality of sensor/DAQ or 

increasing the number of measured DOFs.  

 

For example, reducing the channel noise eS  from 100 to 10 Hzg /)( 2  reduces   to 100 

and increases   to 25. The usable band is 10)10,252min(  , for which 

724.0B , 9.20a  and 59.1724.0/)25/9.201(2 A . There is only an 

inflation of 59% of uncertainty now, giving %3759.1230.01   (down from 76% 

before). Further reducing eS  to 1 Hzg /)( 2  can bring 1  down to 28%, whose effect is 

marginal.  

 

Alternatively, suppose we keep using the same sensor and DAQ, i.e., eS  remains at 100

Hzg /)( 2 , but now we install additional triaxial sensors at other corners on the roof. 

Since the mode shape values at other corners is similar to the existing ones, the modal 

force PSD S  increases roughly linearly with the number of sensors. Suppose we put 

another three sensors at the remaining three corners of the roof. This will increase S  by 

four times from 0.1 to 0.4 Hzg /)( 2  and hence   from 2.5 to 10. The usable band is 

32.6)10,102min(  , for which 595.0B , 3.13a , 

97.1595.0/)10/3.131(2 A  and %4597.1230.01  . The addition of three 

sensors roughly reduces identification uncertainty by half, although it may still be 

considered unacceptable. Without further adding sensors, the identification uncertainty 
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can be reduced by increasing the data duration. Doubling the duration from 300 to 600 

natural periods reduces the posterior c.o.v. to 2/1  of its original value (i.e., by about 

30%) to %322/%45  , which may be acceptable. The resulting data duration is 

(5)(600) = 3000 sec (about an hour). One needs to check the data to see whether 

stationary assumption is still justified. This is especially relevant for the damping ratio 

and the modal force PSD.   

 

10. Conclusions 

Beyond the current state-of-the-art in operational modal analysis, this work has 

discovered the fundamental relationship between the identification uncertainty of modal 

parameters and testing configuration. A Bayesian approach has been adopted to establish 

results that are consistent with probability and structural dynamics. The first order 

uncertainty laws (see (13)) allow one to account for the effects of test configuration when 

planning ambient vibration tests. The theory reveals the remarkable fact that the 

apparently complicated effect of test configuration on identification uncertainty can be 

fundamentally encapsulated in the modal s/n ratio. This is related to the channel noise, 

environmental excitation and measured DOFs. The mathematical correctness and quality 

of approximation of the first order laws under non-asymptotic conditions have been 

verified with synthetic data and experimental data under laboratory and field environment.  

 

A quick remark on the required quality and number of sensors is in order. To obtain a 

mode shape at more locations obviously requires more sensors. Otherwise, improving the 

accuracy of modal properties (other than mode shape) is not a good justification for 

deploying more sensors. One is likely to either have good enough modal s/n ratio or it 

would not help with just a few more sensors. The modal s/n ratio can be sufficiently high 

with only one or two good and suitably placed sensors. Otherwise, a material reduction in 

identification uncertainty would require an order of magnitude increase in the modal s/n 

ratio and hence the number of sensors. Thus, a structural health monitoring system with 

only one or two good accelerometers can give practically the same accuracy for natural 

frequency or damping as another one with hundreds. If the sensors have high noise, they 
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are simply not fit for the purpose and should be substituted by better ones. It is not 

advised to make up quality with quantity. 
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13. Appendix. First order Asymptotics of second 
derivatives of NLLF 

In this section we derive the first order asymptotic expressions for the derivatives )( ffL , 

)(L , )(SSL  and )( SL   w.r.t. 21 4   for fN  and 0 . We first consider 

asymptotics for fN , which leads to expressions that involve sums over the selected 

frequency band. Further asymptotics for 0  leads to the final analytical expressions 

for the sums. To facilitate analysis we separate the NLLF in (4) into a log-determinant 

term and a quadratic term, i.e., QD LLL   where 

 

k

ekeffD SSDSNnnNL )ln(ln)1(ln      (34) 

])1([ 11   
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13.1. Long data asymptotics 

We first prove the following expressions which are asymptotically correct for fN : 
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where  
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The terms 
)(1)( f

kD
 and 
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kD  are the derivatives of 

2221 )2()1( kkkD  
 

w.r.t. f  and  , respectively. Direct differentiation gives 
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)21(4)( 2221)(1   
kk

f
k fD   2)(1 8)( kkD      (41) 

 

13.1.1. Expressions for )( ffL  and )(L  

First consider 
)( ff

DL . Differentiating (34) w.r.t. f  and simplifying gives 
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We next express 
)( ff

DL  in terms of the derivatives of 1
kD  as they are easier to analyze. 

The derivatives of kD  are related to those of 1
kD  by 
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Substituting into (43) gives, after algebra, 

  

k

k
ff

kk

k

kk
f

kk
ff

D eDDeeDDL 1)(122)(12)(
)1()()21()1()(   (45) 

 

For the derivatives of QL , differentiating (35) w.r.t. f  and simplifying gives 
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Equation (47) depends on }{ kd , which in turn depends on the FFT data }{ kF . The latter 

is unknown prior to data collection. For the purpose of deriving uncertainty laws, it is 

modeled by a stochastic process consistent with the identification model. By a similar 

argument in Section 4.2 of [29], it can be shown that for any positive deterministic 

sequence }{ kc ,   
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where the modal parameters involved on the RHS represent the MPV, which are 

asymptotically the same as the actual properties that result in the data (assuming no 

modeling error). Evaluating (47) at the MPV and applying (48) gives, as fN , 
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To simplify, note that 
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Using this, (49) can be written as 
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Combining (45) and (51) gives (36). Using exactly the same procedure, )(L  is given by 

the same expression with f  replaced by  , as shown in (37).  

 

13.1.2. Expression for )(SSL  

Differentiating (34) w.r.t. S  and simplifying gives 

 

k

kek
S

D DSSDL 1)(
)(     

k

k
SS

D eSL 22)(
)1(    (52) 

On the other hand, differentiating (35) w.r.t. S  and simplifying gives 
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Evaluating at the MPV, applying (48) and simplifying gives, as fN , 
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Combining (52) and (54) gives (38). 
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13.1.3. Expression for )( SL   

Differentiating 
)(S

QL  in (52) w.r.t.   and simplifying gives 
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Substituting an analogous expression in (44) for 
)(

k
D  and simplifying gives 
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      (56) 

On the other hand, differentiating 
)(S

QL  in (53) w.r.t.   and simplifying gives 
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Evaluating at the MPV, applying (48) and simplifying using (50) gives, as fN , 
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Combining (56) and (58) gives (39). 

 

13.2. Small damping asymptotics 

Equations (36) to (39) are asymptotic expressions for fN  and they are applicable 

for general value of  . They involve sums that carry limited insights. We next consider 

their asymptotic behavior for 0 , which implies large kD  and small ke . The strategy 

is to make use of the Taylor expansion of 2)1(  ke  for small ke : 

...4321)1( 322  
kkkk eeee        (59) 

We will outline derivation for )( ffL , which leads to the coefficient ffc  in (26). The 

expressions for 
)(L , 

)(SSL  and 
)( SL 
 can be obtained similarly (details omitted), 

leading to the coefficients c , SSc  and Sc  in (26) and (27). 

 

Keeping up to the first order term in (59), substituting into (36) and using kkeD , 
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Substituting )(1)( f
kD  from (41) into (60) leads to sums of the form  

k
b

k
a
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technique similar to that in Appendix II of [29] is used to analyze this sum, except that 

the next order term should also be retained in addition to the leading order term. Omitting 

algebra, the result reads 
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is the first order term. This gives 
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Since 21 4  , we can write )1(~ 1)(
0

)(  ff
ffff cLL  as in (25) with ffc  given by 

(26). 

 


