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Introduction 1 

In a recent ESEX commentary, Parsons et al. (2015, p.1419) argued that “there is no inherent 2 

physical difference between so-called suspended sediment and bedload or saltating load, and 3 

that, in reality, all sediment transport lies along a continuum of hop lengths and virtual 4 

velocities” They further commented (p. 1419) that because the concepts of hop length and 5 

virtual velocity have not “been thought relevant to so-called suspended sediment, details of 6 

how fast suspended sediment moves in relation to the velocity of flow, either as virtual 7 

velocity including the periods of rest on the bed or as actual velocity during movement, is 8 

lacking.”  Obtaining such information is inherently difficult because the typical size of such 9 

sediment renders impossible many of the tracking techniques that have been used to study the 10 

movement of bedload in water (e.g. Hassan et al., 1991; Ferguson and Wathen, 1998; 11 

Lammare et al., 2005).  However, this information is important for estimation of bed material 12 

yield and sediment residence times, and for understanding morphological change, catchment 13 

connectivity and particulate pollutant transport.  14 

Recent work by Mao et al. (2017) has used spray-painted sections of river beds, and 15 

been able to extend  the information on virtual velocity to particles as small as 4 mm. 16 

However, if particles are small enough to be considered conventionally as suspended load it 17 

would seem intuitively likely that their virtual velocities are a relatively large fraction of 18 

water velocity, so that detecting them after a transport event may be difficult.  Whereas Milan 19 

(2013), for example, reported virtual velocities of particles with D50 of 61 mm in terms of 20 

m/day, virtual velocities of sand-sized particles transported at high values of excess shear 21 

stress are likely to be of the order of m/s.  Here, we report on an experiment using a long 22 

flume to provide a first attempt at determining the virtual velocity of such sand-sized 23 

sediment in water. 24 

 25 
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Methods 26 

A single experiment was performed using the large flume facility at the University of 27 

Tsukuba, Japan.  This flume is 160-m long, 4-m wide and 2-m deep, has a fixed slope of 28 

1/100, and discharges into a 2000-m
3
-capacity settling tank from which water is recirculated 29 

through an underground pipe system to large tanks located approximately 40 m upslope of 30 

the flume from which the discharge is pumped (Ikeda, 1983).  It was constructed between 31 

1976 and 1979 but has been little used in recent years. In consequence, the flume floor is now 32 

rusty, but free of all sediment (Figure 1a).  In parts, the floor has a pseudo-granular roughness 33 

created by the irregularity in the rusted surface.  Elsewhere the flume floor has rust layers 34 

peeling off, creating larger-scale roughness.  In addition, where sections of the flume are 35 

joined together, channel-like depressions (<1 cm deep) cross the flume floor (Figure 1a).   36 

Within this flume a steady flow discharge of 0.95 m
3 
s
-1
 was used to create a uniform flow 37 

depth of 0.12 m that persisted to a distance of 145 m within the flume. The width/depth ratio 38 

(w/h = 33) was much greater than 5, ensuring two-dimensional flow (Nezu and Nakagawa, 39 

1993). This discharge gave a mean flow velocity (estimated from the depth and discharge) of 40 

1.98 m s
-1
 and a mean flow shear velocity of 0.109 m s

-1
.  The hydraulic roughness, 41 

calculated using this mean flow velocity (Keulegan, 1938), was 0.99 mm giving a relative 42 

roughness (depth/roughness) of 122 [-]. Thus the surface roughness was very small relative to 43 

the depth of flow, such that no water surface effects interfered with the transport processes 44 

(Bettess, 1984).  Beyond a distance of 145 m the flow was gradually varied and a hydraulic 45 

jump formed at a distance of approximately 155 m due to a weir at the downstream end of the 46 

flume.  Into the upstream end of the flume we poured 25 kg of sand with a median diameter 47 

of 1.32 mm and a maximum size of 2.36 mm.  This small quantity enabled the sand to be 48 

introduced into the flow in a short time and minimized any possible effect of grain-to-grain 49 

collision on sediment velocity (Abrahams and Atkinson, 1993). For studying sediment 50 
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transport, we restricted our analysis to that part of the sand < 2mm, which comprised 96% of 51 

the total sand weight.  During later analysis this part was separated it into three size classes; 52 

0.5 to 1.0 mm, 1.0 to 1.4 mm, and 1.4 to 2.0 mm.  The median diameter of the particles in 53 

each of these size classes was 0.79 mm, 1.20 mm, and 1.61 mm, respectively. 54 

 Several formulae exist to calculate the critical shear velocity above which a particle of 55 

a given size is conventionally considered to be transported in suspension. Some of these 56 

formulae are based on the assumption that a particle is in suspension when the upward 57 

velocity of turbulent eddies (estimated by the shear or flow velocity) exceeds the settling 58 

velocity of the particle (Rubey, 1933; Rouse, 1937; Lane and Kalinske, 1939; Engelund, 59 

1965; Bagnold, 1966, Middleton, 1976; Engelund and Fredsoe, 1982; Egiazaroff, 1965), 60 

whereas others are empirically derived (van Rijn, 1984; Komar and Clemens, 1986; Sumer, 61 

1986; Celik and Rodi, 1991; Paphitis, 2001; Cheng, 2008).  For particles in the size range 62 

studied here, these formulae give critical shear velocities that range over an order of 63 

magnitude.  However, for the majority of them, and certainly all of those that are empirically 64 

derived, the sediment used in this study satisfies the suspension criterion (Table 1).  65 

 Once the steady discharge was established, the sand, which had previously been 66 

sprayed with fluorescent paint to aid later identification, was poured steadily into the top end 67 

of the flume from three containers positioned at 1, 2 and 3 m from the right-hand side of the 68 

flume.  Introduction of the sand into the flow took 50 s, and observations of the sediment 69 

plume indicated that it was transported in suspension away from the points of introduction.  70 

After the introduction of the sand, the discharge was run for 180 s, after which time the 71 

pumps were ramped down over a period of 240 s, and the flume bed was left to drain and dry.   72 

If all particles had remained in suspension and travelled at the same velocity as the water 73 

during the transporting discharge, that discharge was of sufficient duration to ensure all 74 
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particles could be easily transported the complete length of the flume (in the time of the 75 

experiment the water would travel a minimum of 356 m (after the completion of the 76 

introduction of the sand) and a maximum of 455 m (after the start of the introduction of the 77 

sand), compared to the flume length of 160 m).  Observations of the flume bed, however, 78 

using a UV light showed that fluorescent sand particles were present on the bed. The flume 79 

floor was then swept from the top end of the flume in 5-m-long sections and the combination 80 

of sand grains and rust particles bagged for later analysis. Collection of material for analysis 81 

was terminated at 145 m because of the backwater effect caused by the weir at the end of the 82 

flume.  In addition to collecting the material for analysis, further material from the backwater 83 

area was also collected downflume for a further 10 m beyond which the density of 84 

fluorescent particles became very low compared to the quantity of rust particles. This further 85 

material was required to estimate a recovery rate. 86 

The analysis of the 29, 5-m-length samples comprised preliminary riddling down to 4 87 

mm to remove the coarsest rust particles, sieving and discarding material coarser than 2 mm 88 

and finer than 0.5 mm, and separating of rust and sand grains in the retained portion using an 89 

electromagnet.  Observations with a UV light indicated that some of the introduced sand was 90 

lost in this technique because it was picked up along with the rust particles.  We estimate this 91 

loss to be no more than 5%. Finally, the retained sediment was washed to remove rust dust, 92 

dried and resieved to separate it into three size classes; 0.5 to 1.0 mm, 1.0 to 1.4 mm, and 1.4 93 

to 2.0 mm.  For the further material collected beyond 145 m, we employed a similar 94 

methodology, but because of the amount of material involved, after riddling (when 95 

approximately 100 kg of rust and sand particles still remained), the sample was riffled down 96 

to a one-eighth sample prior to further treatment. 97 

 98 
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Results 99 

A few grains of the sand were identified less than 5 m from the point of introduction and 100 

progressively (but irregularly) more downflume (see Figure 2). The total amount of sand 101 

recovered (including that from the backwater area) was 20.4 kg, which represents 85% of the 102 

introduced sediment in the size range from 0.5 to 2.0 mm.  Most likely, the unrecovered 103 

sediment was left in the unsampled last 5 m of the flume, or passed beyond the weir at the 104 

lower end of the flume into the settling tank.   Amounts of deposited sand were small over the 105 

first 120 m. No 5-m section contained more than 100 g of the sediment, and only four 106 

contained more than 10 g.  However, beyond this point deposition increased markedly, so that 107 

up to 145 m (well upflume of the part affected by the backwater effect of the weir; backwater 108 

length was 8.4 m based on Samuels, 1996) almost 4.5 kg (or more than 18%) was deposited.   109 

Examination of the percentage of sediment deposited in this first 145 m showed marked 110 

variation with particle size.  Almost 40% of the sediment 0.5 to 1.0 mm was deposited, 111 

compared to 14.6% and 12.2% of the 1.0 to 1.4 mm and the 1.4 to 2.0 mm sediment, 112 

respectively.  Paradoxically, more of the finer sediment was deposited than the coarser 113 

sediment (Fig 2).  The distributions of the travel distances of the sand in three particle-size 114 

classes shown in Figure 2 are slight overestimates of the true travel distance during the 115 

experiment because (i) loss of sediment along with the rust particles in the separation method 116 

results in an underestimate of sediment deposited at each distance;  (ii) the recovery location 117 

will also include some (additional) distance in transport as bedload in the waning phase of the 118 

flow; and (iii) anything less than 100 % recovery rate of the introduced sediment leads to 119 

overestimation of travel distance.  We have estimated that these factors will introduce no 120 

more than a 10% error.  On the other hand, it is inconceivable that the pattern of sediment 121 

deposition is simply the result of deposition in the waning phase of flow, given the 122 

experimental conditions described above.  The amount of sediment recovered, the size of the 123 
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flume, the weir at the downstream end, the capacity of the settling tank at the bottom end and 124 

the duration of the experiment make it impossible for deposition to be a result of particles 125 

having been transported off the end of the flume, re-circulated and re-entered into the 126 

upstream end of the flume. 127 

 We have no data on which to base an expected distribution function for the travel 128 

distance of sand-sized sediment.  Work on bedload (Bradley and Tucker, 2012; Yang and 129 

Saye, 1971) suggests the distribution function is right-skewed.  Accordingly, we have fitted a 130 

gamma distribution and compared it to a normal distribution fitted to our data (Figure 3), 131 

optimizing these fits according to the known total amount of sediment that must be 132 

accommodated within the distributions and the proportion of the distribution observed in our 133 

data up to 145 m downflume.  Although neither distribution is a particularly close fit to the 134 

data (Figure 3), Nash-Sutcliffe efficiencies for the two models are quite high (Table 2) and all 135 

but one of the Kolmogorov-Smirnov tests for goodness of fit is significant at p<0.001 (Table 136 

2).  Such evidence as we have therefore suggests a normal distribution fits our data better 137 

than a gamma distribution.  However, we have used both distributions to estimate the mean 138 

travel distances of the three particle size classes.  For the normal distribution, these distances 139 

are 151 m, 165 m and 168 m for the 0.5-1.0mm, 1.0-1.4 mm and 1.4-2.0 mm particle-size 140 

classes, respectively. For comparison, mean travel distances estimated from a gamma 141 

distribution are 150 m, 161 and 163 m. Assuming a travel time of 205 s (half the duration of 142 

the sediment input plus the experiment duration after sediment input was complete), gives a 143 

virtual velocity (simply defined as the mean travel distance for the size class divided by 205s) 144 

of the three sediment size classes of 0.74, 0.80 and 0.82 m s
-1
, respectively, under the 145 

assumption of a normal distribution, compared to the water velocity of 1.98 m s
-1
.  In 146 

comparison, the mean travel distances from the gamma distributions give virtual velocities of 147 

0.73, 0.79 and 0.80 m s
-1
. These results give a virtual velocity lower than that for saltating 148 
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particles obtained by Chatanantavet et al. 2013), who found an average virtual velocity of 0.8 149 

of the water velocity over a range of channel slopes.  These authors also found no difference 150 

in virtual velocity with particle size in contrast to our inverse relationships with particle size. 151 

 The irregularity of the deposition is also noteworthy.  Sections at 40-45 m, 90-95 m 152 

and 120-135 m all show exceptionally high amounts of deposition.  In contrast, sections 45-153 

80 m, 100-105 m 110-115 m and 135 -140 m show less deposition than might be expected.  154 

The former group coincide with joints between sections of the flume or significant rust 155 

layers.  Many of the latter group coincide with smoother sections of the flume bed.  Since 156 

joints are regularly spaced along the flume and rust shows no downflume spatial pattern, 157 

these factors affect the irregularity of the deposition but not its overall distribution. Natural 158 

channels have significant roughness induced by reach-scale bedforms (e.g. point bars, riffle-159 

pools) and patch- and grain-scale bedforms (e.g. transverse ribs, pebble clusters) so that the 160 

trapping of suspended sediment in such channels may be akin to that found in the rougher 161 

sections of the flume used in this study. 162 

 163 

Comparison with virtual velocities of bedload 164 

Mao et al (2017, Fig 10) plotted virtual velocities of  particles between 4 and 160 mm as a 165 

function of dimensionless shear stress for two rivers in northern Italy.  For their dataset, 166 

virtual velocities and dimensionless shear stress ranged from 0.0406 to 3.236 m h
-1
 and from 167 

0.0196 to 0.0548, respectively.  In contrast, our data (using the estimates based on the normal 168 

distribution) range from 2664 to 2952 m h
-1
, and from 0.868 to 0.26 (Fig. 3). Mao et al. fitted 169 

linear regressions to their data, but these equations substantially underpredict our observed 170 

values (yielding values between 24 and 52 m h
-1
, compared to observed velocities of between 171 

2664 and 2952 m h
-1
).  Comparable data to that of Mao et al. can be extracted from 172 
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Haschenburger & Church (1998) who examined movement of tracer particles ranging from 173 

16 to 180 mm in a small stream on Vancouver Island, and from Wong et al. (2007) who 174 

undertook a flume study of the movement of particles with a median size of 7.1 mm.  Taking 175 

all of these data together yields a power relationship (Fig. 4)  176 

   � = 58209�
∗
.��
�     (1) 177 

in which V is virtual velocity (m h
-1
) and τ* is dimensionless shear stress that fits the 178 

combined data well (R
2
 = 0.837).  Although the strength of this relationship indicates promise 179 

for “an holistic approach to sediment transport” (Parsons et al., 2015, p.1419), the paucity of 180 

data in the finer size range makes it better to regard this relationship as an hypothesis rather 181 

than a predictive model. Nonetheless, it is instructive to compare these datasets with those of 182 

Huxman et al. (2004) who examined rain-use efficiency across biomes in a similar attempt to 183 

identify a common relationship.  Looking at ecosystems varying by an order of magnitude in 184 

annual precipitation, these authors were able to find a common relationship between net 185 

annual primary production and annual precipitation, but noted that there was substantial 186 

variation in the sensitivity relationships between the 14 sites (including one site with an 187 

inverse relationship), indicating local characteristics could mask a trend only visible at a 188 

global scale. Likewise, for the five datasets of Figure 4. Individual relationships differ 189 

markedly from site to site (as indicated by the individual regression lines), but over order-of-190 

magnitude scales a common behaviour may be discerned.  191 

 192 

Discussion and Conclusion 193 

Although not ideal, because of its rusty state, the large flume at the University of Tsukuba has 194 

provided an opportunity for a first attempt to measure the virtual velocity of sand-sized 195 

Page 8 of 23

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

sediment in water at high values of excess shear stress.  The experiment clearly demonstrates 196 

that the sediment does travel intermittently because it has a virtual velocity that is less than 197 

that of the flow in which the sediment is travelling.  In that sense, the transported sand 198 

exhibited behaviour no different from bedload or saltating load.  For the sediment-size range 199 

and flow velocity used in our experiment this virtual velocity is 37-41 % of the flow velocity. 200 

Much sediment in rivers conventionally termed suspended is finer than that used in this 201 

experiment, so that this virtual velocity may not be representative of most fine sediment.  202 

However, if our observation that finer sediment has a lower virtual velocity than coarser 203 

sediment extends beyond the size range used here, and is not an artefact of our experiment, it 204 

may, in fact, be an underestimate. Such a lower virtual velocity of finer sediment is not 205 

inconceivable. First, trapping, and hence virtual velocity, of the sediment appears to be a 206 

function of bed roughness, and there is a probable relationship between bed roughness and 207 

trapping efficiency for particles of different sizes (Lisle, 1989; Niño et al., 2003; Fries and 208 

Taghon, 2010; Hamm et al., 2011; Gibson et al., 2009).  Secondly, finer particles are more 209 

likely to find sheltered positions on a rough bed and thus experience lower mobility, relative 210 

to the more exposed coarser grains, as observed for bedload transport (Parker et al., 1982). 211 

Thirdly, the virtual velocity of particles undergoing bedload transport has been found, in 212 

some instances, to be lower for finer clasts (Milan, 2013).  Our data show that trapping of 213 

sand-sized sediment is strongly controlled by the nature of the bed, specifically in our case by 214 

roughness of the flume bed.  The role of bed roughness in determining the virtual velocity of 215 

sand-sized sediment, in particular as it is controlled by bed-material calibre in natural rivers, 216 

clearly needs further study, as do the hop lengths of fine sediment.  However, better and more 217 

time-efficient methods than the one employed here will be required.  Combining our results 218 

with those for bedload virtual velocities  has allowed us to propose, for the first time, an 219 

hypothesis for an holistic analysis of sediment movement in rivers. 220 
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Table 1  Suspended sediment criteria for sediment used in the experiment. Y denotes sediment satisfies the suspension threshold,  

  N denotes it does not.  

Particle size 

class 

 

 Suspension Criterion 

 van Rijn 

(1984)* 

Engelund 

(1965)# 

Sumer 

(1986)* 

Celik & 

Rodi 

(1991)* 

Komar & 

Clemens 

(1986)* 

Paphitis 

(2001)* 

Cheng 

(2008)* 

Engelund 

& Fredsoe 

(1982)# 

Bagnold 

(1966)# 

Rubey (1933)# 

Middleton (1976)# 

Lane & Kalinske 

(1939)# 

Egiazaroff (1965)
#
 

Rouse 

(1937)# 

0.5mm – 1.0 

mm 

Y Y Y Y Y  Y Y Y Incipient Incipient 

1.00 mm – 

1.4 mm 

Y Y Y Y Y Y Y Incipient N N 

1.4 mm – 

2.0 mm 

Y Y Y Y Y Y Y N N N 

 

 
*
 denotes an empirically derived threshold and 

#
 denotes a theoretical or assumed threshold
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Table 2 Fits of normal and gamma distributions to particle-size data 1 

Probability 

distribution 

Particle size class 

0.5 – 1.0 mm 1.0 – 1.4 mm 1.4 – 2.0 mm 

 Nash-

Sutcliffe 

efficiency 

K-S 

p-

value 

Nash-

Sutcliffe 

efficiency 

K-S 

p-value 

Nash-

Sutcliffe 

efficiency 

K-S 

probability 

gamma 0.798 0.0037 

 

0.634 <0.001 0.594 <0.001 

normal 0.933 <0.001 0.823 <0.001 0.815 <0.001 

  2 
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 3 

List of Figures 4 

Figure 1  a) bed of flume looking downflume showing rusting flume bed 5 

   b) flume showing flow during experiment looking upflume   6 

Figure 2  Observed distribution of deposited sediment by size class  7 

Figure 3  Fits of normal and gamma distributions to cumulative distributions of 8 

  deposited particles by size class 9 

Figure 4 Relationship of results from the present experiment with those from 10 

bedload tracer studies. 11 

 12 
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flume showing flow during experiment looking upflume  
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Virtual velocity of sand transport in water 

Anthony J. Parsons
*
, James R. Cooper, John Wainwright and Tomohiro Sekiguichi 

Sand-sized sediment that would traditionally be classed as suspended load in rivers is shown to 

travel intermittently and have a virtual velocity about 40% of the flow velocity.  A unified 

relationship for virtual velocity against dimensionless shear stress is proposed for all sediment 

transport. 
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