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Abstract
This paper concerns the development and validation of Finite Element Methods (FEM) to simulate the dynamic response of a dowelled-joist timber floor. This is a solid floor comprised of timber joists connected using timber dowels with individual assemblies connected using inclined metal screws. The focus is on the structural dynamics in the low-frequency range up to 200 Hz which is the relevant range for impact sound insulation and vibration serviceability. Dowel connections between the joists that formed each assembly were modelled using either rigid or spring connectors in the FEM models. The validation against experimental modal analysis showed that both approaches were valid in terms of the eigenfrequencies, Modal Assurance Criterion (MAC) and the spatial-average velocity with point excitation. Whilst the FEM model with spring connectors had a higher number of correlated modes in the MAC analysis, this required removal of many spurious modes before predicting the response. The validated models were used to demonstrate the potential in predicting assessment parameters for vibration serviceability that are contained in EN 1995-1-1 (Eurocode 5). This predictive approach to the evaluation of vibration serviceability has the advantage in that it can be used for non-standard timber floors with non-standard boundary conditions or floor plans.
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1. Introduction
Timber floor systems are used as separating floors between dwellings in multi-storey buildings as they are a sustainable, economical, lightweight solution. For commercial and residential buildings in Switzerland there is interest in producing a solid floor with timber joists connected using timber dowels. These form wooden assemblies which can be connected to each other using inclined metal screws. This work concerns the development and validation of a model to describe the dynamic response of this dowelled-joist timber floor in the low-frequency range using Finite Element Methods (FEM). The aim is to produce experimentally-validated FEM models for the dynamic behaviour. Such models would allow future development of prediction models for impact sound insulation and inform assessments of vibration serviceability; hence the validation focuses on the low-frequency range that is relevant to these applications. 
Impact sound insulation is important because typical timber joist floor systems tend to provide lower insulation than concrete floors in the low-frequency range (below 200 Hz) [1,2]. For this reason the prediction of impact sound insulation is critical at the design stage. Prediction models tend to be based on deterministic approaches such as Finite Element Methods (FEM) (e.g. [3]), modal methods (e.g. [4,5]), Fourier methods (e.g. [6,7]) or a statistical approach such as Statistical Energy Analysis (SEA) (e.g. [1,8]). The choice of model for any new type of floor such as the dowelled-joist timber floor primarily depends on having an understanding of the dynamic behaviour of the floor; hence this is considered in this paper. 
Vibration serviceability is important for timber floors to minimise the likelihood of annoyance from floor vibration due to human activity (e.g. see [9,10]). The requirements for residential floors are described in the European Standard EN 1995-1-1 [11] which implements Eurocode 5. However, other standards exist and Zhang et al [12] have assessed EN 1995-1-1 against other design standards used for timber floors in Europe. They conclude that there is significant variation in the design equations and limit values. EN 1995-1-1 describes calculation of the fundamental frequency, f1, for a single-span, rectangular, timber joist floor that is simply supported on all four sides using
	
	


where m is the mass per unit area (kg/m2), L is the floor span (m), and (EI)L is the equivalent plate bending stiffness of the floor about an axis perpendicular to the beam direction (Nm2/m). 
Many timber floors are only supported on two sides for which Zhang et al [12] note that some countries also use Eq. (1). Dowelled-joist timber floors (like many other timber floors) are usually supported on two sides, are not always simply supported, can potentially be multi-span [10] and can have different length assemblies that are connected together to form non-rectangular floor plans. For these reasons it is proposed in this paper that validated FEM models could be used to assess different floor layouts and support conditions at the boundaries.
EN 1995-1-1 uses the fundamental frequency to give a design limit for the unit impulse velocity response. The unit impulse velocity response, v, is the maximum initial value of the vertical velocity caused by an ideal unit impulse of 1 Ns applied at the point of the floor which gives the maximum response, and should satisfy [11]
	
	


where ζ is the modal damping ratio (if unknown, it is recommended to assume ζ=0.01) and b is a function of the deflection of the floor under 1kN point load, a (mm). EN 1995-1-1 gives information regarding the calculation of parameters a and b with National annexes giving specific values for each country.
For a rectangular floor which is simply supported along four edges, the unit impulse velocity response can be calculated using [11]
	
	


where B is the width (m), L is the length (m) and n40 is the number of first-order modes with eigenfrequencies up to 40Hz (this has also been shown to be appropriate for timber floors supported on two edges [13]). The value of n40 may be calculated from [11]
	
	


Zhang et al [12] note that several countries do not make use of the unit impulse velocity due to its theoretical complexity and the difficulty in obtaining it through measurement. This provides the motivation in this paper to validate FEM models for a timber floor such that the unit impulse velocity can be calculated using FEM for all practical permutations of different boundary conditions and non-rectangular floor plans that exist in real buildings. Other approaches, such as Hamm et al [14] consider eigenfrequencies, stiffness and analysis of the acceleration in certain cases, and these could also be assessed with FEM. 
The majority of research on dowel-connected timber has focussed on the fundamental factors that affect the performance of dowel-type joints in terms of their strength, stiffness and ductility [15]. Due to the large investment of time in the design of timber joints, it has proven useful to have validated numerical models for their mechanical behaviour, particularly for failure. Examples include Chen et al [16] who developed a FEM model for a steel dowel joint in timber to assess failure modes that were validated against experimental data. Reynolds et al [17,18] also investigated the stiffness of steel dowel connections in timber by using an analytical model and measurements with a 1Hz oscillating load. Like most timber constructions, dowel-connected timber also uses screws and FEM has been used to assess failure. For screwed timber joints, Meghlat et al [19] validated FEM models using a beam element for the screw to predict stress and strain distributions along them. Avez et al [20] used FEM to model inclined screws connecting timber that was separated by a large gap, and used shear and pull-out tests to calibrate the model. For post-and-beam connections, Hong et al [21] validated FEM models for nails in timber. However, the literature does not seem to extend to FEM modelling for the dynamic behaviour of large dowelled-timber assemblies as considered here.
This paper concerns the validation of FEM models for the dynamic behaviour of a dowel-connected timber floor at frequencies up to 200Hz. Two models are considered for the dowels that use either rigid or spring-like connections. These are validated in terms of their eigenfrequencies, eigenfunctions and spatial-average response. The models are then used to assess vibration serviceability by calculating the maximum initial value of the vertical vibration velocity due to an ideal unit impulse.

2. Materials and methods
2.1 Materials
The dowelled-joist timber floor has a thickness of 200 mm and is formed from three assemblies (denoted as A, B and C). Each assembly consists of Spruce joists (45 mm width, 200 mm depth) connected using two rows of Beech dowels (16 mm diameter) as shown in Figure 1a and b. The assemblies are joined together using self-tapping metal screws (240 mm length) inclined at an angle of 45 and an average screw spacing of 313 mm (see Figure 1a). Three assemblies (900 mm width, 5500 mm length) were provided by Nägeli AG (Switzerland) to construct the dowelled-joist timber floor for the experimental work. The excitation positions are shown on Figure 1c.

2.2. Finite element modelling
2.2.1 Analysis methods
The finite element models are implemented using Abaqus (Version 6.12) [22]. All eigenvalue extraction used the Lanczos solver. 
The steady-state response to a point force used subspace-based, steady-state dynamic analysis [22]. The transient response to an ideal unit impulse used transient modal dynamics analysis [22]. The latter gives the temporal response based on a defined time-dependent loading where the structure's response is based on a subset of the system modes because only modes with eigenfrequencies up to 40 Hz are considered according to the recommendations in EN 1995-1-1. An ideal unit impulse is defined with the area under the force versus time curve being equal to 1 Ns. This is applied using a triangular profile at the position where there is maximum displacement in the eigenfunction. The duration of the load, td, is 0.002 s and the time increment, Δt, is 0.001 s. The total time, t, of the analysis is 1 s. Note that for td < Tn/4 (where Tn is the period) the maximum response is controlled by the pulse area and is independent of the pulse shape [23]; hence a triangular profile is equivalent to other shapes such as a rectangular or half-sine pulse. Two excitation positions are considered: (1) in the middle and (2) at the edge of the floor.

2.2.2 Timber joists
Shell elements were selected to model the timber joists rather than one-dimensional beam elements because it was necessary to incorporate a zig-zag pattern of dowel connections as well as the inclined screws. They also have an advantage over solid elements because the latter require a higher density mesh to give the same degree of accuracy and do not have rotational degrees of freedom. The Abaqus shell element was the thick, conventional element S8R which has transverse shear flexibility. This element has eight nodes, six degrees of freedom per node and uses quadratic interpolation functions [22]. In each assembly each individual joist is meshed such that the largest element dimension is less than one-eleventh of the bending wavelength. Rayleigh damping is applied to the elements in the dynamic analysis based on the damping identified in the experimental work.

2.2.3 Dowel connections between joists
Each joist is connected at all nodes where the dowels are positioned (see Figure 1(b)). Two different FEM models are created for the dowel connections. 
In FEM model No.1, the Abaqus connector element JOIN [22] is used to unify the displacements of the two nodes on adjacent joists at the position of the dowel. In FEM model No.2, three Abaqus SPRING2(S) elements [22] without dashpots are introduced in the three-coordinate directions to model the action of the dowel between adjacent beams. The SPRING2(S) element defines a spring between two nodes acting in a fixed direction with stiffness, k. Model updating is carried out to define values for the dowel spring stiffness assuming that the stiffness values are the same for all dowels in an assembly. The results of the model updating are compared against the experimental eigenfrequencies for each assembly. The dowel is stiffest along its longitudinal axis but the equivalent spring stiffness is partly dependent upon the fixation of the dowel inside the hole. Hence the initial estimate made for the stiffness of the springs assumed that the value for the x-direction stiffness must be larger than the stiffness in the y- and z-directions. The resulting values for kx, ky and kz are 10k N/mm, 350 N/mm and 350 N/mm for assembly A, and 10k N/mm, 300 N/mm and 300 N/mm for assemblies B and C.

2.2.4 Inclined screw connections between assemblies
The inclined screws are modelled using the Abaqus connector element JOIN [22] between all nodes along the axis of each screw – see Figure 2. 

2.2.5 Edge conditions
The assemblies and complete floor were installed in a test aperture used for laboratory measurement of impact sound insulation. The aim was to try and approximate pinned boundary conditions along the two opposite, shortest edges of the assemblies by using a rod through a 40 mm wide strip of elastomeric material formed from mixed cellular polyurethane (Getzner SR450, Getzner Werkstoffe GmbH) above and below the edges of the assemblies as indicated in Figure 3. The intention is for translational degrees of freedom to be restrained due to the metal rod but for the elastomer to allow rotation of each assembly. The two opposite, longer edges of each assembly are unconstrained.
Preliminary FEM models assumed that the isolated assemblies were pinned (ux=uy=uz=0) along the two ends. However, the results indicated that this assumption is invalid; hence it was necessary to create a more detailed FEM model for the boundary conditions. The edge condition is therefore modelled by introducing undamped elastic springs using Abaqus SPRING1(S) element [22] to represent the elastomer in the y-direction at the end supports of the plate, whilst maintaining the pinned condition for the other two directions (ux=uz=0) – see Figure 3(b). The SPRING1(S) element defines a spring acting in a fixed direction between a node and a ‘ground’ or ‘earth’ point. It is applied at all edge nodes because there is a strip of continuous elastomer in the actual floor. The actual floor has a discrete number of rods; however, the pinned condition in the FEM model was applied to all joists after it was checked that the difference was negligible.
The spring stiffness, k, is calculated using the elastomer manufacturer’s datasheet [24]. Each of the 80 spring supports for each assembly is assigned a stiffness of 650 N/mm corresponding to the stiffness of one layer of elastomer which is calculated using
	
	


where F is the specific load of the elastomer (N/mm2) for 1 mm deflection, b is the width of the elastomer strip (mm), h is the width of the joist (mm).

2.3. Experimental work
Experimental Modal Analysis (EMA) has been carried out to identify the material properties and the modal characteristics of the three spruce assemblies using FFT analysis with 0.002 Hz frequency lines. Excitation is applied in the direction perpendicular to the surface of the assembly/floor using an electrodynamic shaker (Type S 51123-IN, TIRA GmbH). This shaker is suspended above each assembly and connected to it via a stinger. Swept sine excitation is used from 4.3 Hz to 200 Hz with the mean-square force autospectrum decreasing with a ‑10dB/decade slope from a maximum of 0.02 N2 at 4.3 Hz.
At the driving-point the force is measured with a force transducer (Type KF24, Metra Mess- und Frequenztechnik in Radebeul e.K. (MMF)) and the acceleration with an accelerometer (Type KS 95B-100, MMF). The acceleration is measured using accelerometers (Type KS77C-100 and KS76C-100, MMF) covering a grid of 45 positions (five rows by nine columns) on each assembly. 
Experimental determination of the damping is essential as it is not possible to estimate this from previous studies on the frictional behaviour of timber on timber [25] and the friction between dowel and the surrounding timber [26]. The damping is determined from EMA for individual modes. This is used to fit a Rayleigh damping model so that the Rayleigh coefficients can be used in the FEM model.

2.4 Validation criteria used with data from the Experimental Modal Analysis
The Modal Assurance Criterion (MAC) is used to assess the correlation between the mode shapes from FEM and experimental modal analysis as given by [27]
	
	


where {X} and {A} are the column vectors of the degrees of freedom for the experimental and FEM mode shapes respectively, and superscript T indicates the transpose.
The Coordinate MAC (COMAC) for an individual degree-of-freedom, i, is used to indicate the contribution of each correlation point to the MAC as given by [27]
	
	


where l represents an individual correlated mode pair and L is the total number of modes that are considered. In this paper COMAC is calculated over the frequency range of interest from 1Hz to 200Hz.
MAC and COMAC are calculated using a single degree-of-freedom representing the out-of-plane displacement on the assemblies and the complete floor. For each assembly there are 45 correlation points, and for the complete floor there are 117 correlation points.
To compare the average response from the measurements with the FEM models, the spatial-average transfer mobility (magnitude), <Ytr>, is calculated using
	
	


where v is the velocity, F is the excitation force and N is either the number of nodes in the FEM model or the number of accelerometer positions used in the EMA.

2.5 FEM models for the unit impulse velocity response defined in EN 1995-1-1
The FEM models used to determine the unit impulse velocity response that is defined in EN 1995-1-1 for the dowelled-joist timber floor are: 
· FEM model No.1 using the laboratory support conditions with frequency-dependent damping (Rayleigh damping).
· FEM model No.1 using simply supported boundaries (ux=uy=uz=0) along the two edges of the floor and a constant damping ratio, ζ=0.01.
· FEM model No.2 using the laboratory support conditions with frequency-dependent damping (Rayleigh damping).
· FEM model No.2 using simply supported boundaries (ux=uy=uz =0) along the two edges of the floor and a constant damping ratio, ζ=0.01.

No allowance is made in the FEM model for the mass of the person on the floor that is being disturbed by the vibration because this is not defined or required in EN 1995-1-1. Note that assuming an added mass of 50 kg this would represent 3.7% of the total mass of the floor.  If the inclusion of the person’s mass was required in future versions of EN 1995-1-1, the effect could be calculated by adding the mass of the person at a specific point in a FEM model.

3. Results and discussion
3.1 Individual assemblies
For the individual assemblies, FEM model No.1 has no spurious modes whereas the spring elements in FEM model No.2 introduce spurious modes with distorted elements or a distorted structure which is physically implausible. For each assembly modelled with FEM model No.2, 66% of modes below 224 Hz (the upper limit of the 200 Hz one-third octave band) are spurious but these are readily identifiable and are excluded from the subsequent analysis.
For the three assemblies the comparison of experimental and FEM eigenfrequencies using correlated mode pairs and MAC are shown in Figures 3 and 4. For the assemblies there are nine correlated modes below 224 Hz. These show that both models show close agreement in terms of eigenfrequencies with MAC > 0.7. In general, there is no significant difference between the two FEM models.
COMAC results for the three assemblies are shown in Figure 5 for the frequency range from 1 Hz to 224 Hz. For both FEM models these indicate strong correlation (COMAC > 0.8) for 53% to 76% of the correlation points on each assembly. However there is weaker correlation (0.3 < COMAC < 0.7) at some points along the two opposite, shorter edges which are constrained by the metal rods which indicates the complexity in modelling this region. The discrepancies along these edges are likely to be responsible for MAC values below unity. Whilst the assemblies differed due to workmanship the agreement with both FEM models is similar for all three.

3.2 Dowelled-joist timber floor
For the complete floor, FEM model No.1 has no spurious modes whereas the spring elements in FEM model No.2 introduce spurious modes. With FEM model No.2, 70.5% of the 207 modes below 224 Hz are spurious but these are readily identifiable and are excluded. 
The comparison of experimental and FEM eigenfrequencies using correlated mode pairs and MAC are shown in Figures 6 and 7 respectively. 
In terms of the eigenfrequencies that are identified with EMA below 200 Hz, there are 14 modes on the complete floor. Simulations with FEM model No.2 also gave 14 correlated modes, whereas model No.1 only gave 13 modes. The agreement between experimental and FEM eigenfrequencies is within 10% for 8 out of the 14 modes with model No.1, and 9 out of the 14 modes with model No.2.
In terms of the MAC, for the first seven correlated mode pairs both FEM models have MAC > 0.7. However, for mode pairs from 8 to 14, only FEM model No.2 gave MAC > 0.7. This is noteworthy because for the isolated assemblies there are no significant differences between the two FEM models for all modes below 200 Hz.
COMAC results for the complete floor are shown in Figure 8. These are calculated using all correlated modes with MAC > 0.7; this equates to 8 and 12 modes for FEM models Nos.1 and 2 respectively. For FEM models Nos.1 and 2, COMAC > 0.7 for 79% and 74% (respectively) of the correlation points. Compared to FEM model No.2, model No.1 has a significantly larger area with strong correlation (particularly on assemblies B and C). This can be attributed to the smaller number of correlated modes used to calculate COMAC for No.1. For both FEM models, COMAC tends to be slightly lower along the connection zone between adjacent assemblies. For FEM model No.2, COMAC is lowest at some points along the two opposite, shorter edges which are constrained by the metal rods. In general there are no significant, systematic differences in COMAC over the surface of the floor that would indicate severe problems in the modelling of the edge conditions, dowel connections or inclined screw connections.
	Both FEM models have been validated in terms of the eigenfrequencies and MAC, but there is slightly better agreement between experimental data and FEM model No.2 for which there were more highly correlated modes. For this reason the next section continues to assess both models in terms of the dynamic response.

3.3 Spatial-average dynamic response of an assembly and the dowelled-joist timber floor
To assess the validity of both FEM models for application to the prediction of impact sound insulation this section compares the spatial-average velocity to point force excitation from measurements and FEM in one-third octave bands. The spatial-average is determined from all the correlated mode pairs identified from FEM and EMA. This assessment adds to the validation using eigenfrequencies, MAC and COMAC as it includes the effect of damping and therefore gives an indication of the accuracy in the response of an assembly and the complete floor.
One of the more problematic parameters to estimate for a floor is the modal damping ratio. Jarnerö et al [28] have shown that the damping ratio for timber floors can be significantly lower in the laboratory than when installed in a building. Figure 10 shows the modal damping ratio calculated for each mode that is identified in the EMA using the 3 dB down points. Alongside these points is plotted the Rayleigh curve which is fitted to these measured data. For assembly A and the complete floor there is only one mode which does not fit closely to the Rayleigh curve; this mode occurs at 137 Hz for the assembly A and 187 Hz for the complete floor. In terms of the dynamic response this would correspond to a maximum error of 2 dB at any frequency where the response is dominated by that particular mode. For this reason the Rayleigh curve can be considered a reasonable approximation across the frequency range of interest.
For the development of prediction models for impact sound insulation it is of interest to compare measured and predicted data in terms of the average difference (absolute values) in each one-third octave band. Before assessing vibrational serviceability to a unit impulse in the next section it is of interest to compare measured and predicted values of the average transfer mobility over the entire surface in the frequency range controlled by eigenfrequencies up to 40Hz. The reason for this is that EN 1995-1-1 has a prediction model that only considers these eigenfrequencies. For both assembly A and the complete floor, the lowest eigenfrequency falls in the 16 Hz band. For this reason, the spatial-average transfer mobility is averaged over the 16 Hz to 40 Hz one-third octave bands to compare measurements and FEM.
Figure 11 compares measurements (using all EMA measurement points) and both FEM models in terms of the spatial-average transfer mobility (magnitude). The results are shown in one-third octave bands for assembly A (Figure 11a) and the complete floor (Figure 11b) using the excitation position for the point force from the EMA. In terms of one-third octave bands for assembly A and the complete floor, FEM models Nos.1 and 2 both show the same trends as the measured data and, on average, differ from the measurements by 3 dB although there are differences up to 10 dB in individual bands.
For assembly A, the first two modes fall in the 16 Hz and 25 Hz one-third octave bands where the Rayleigh damping approximation is very close to the experimentally-determined damping. In the 16 Hz band the difference between measurements and FEM is 5.2 dB for both FEM models, whereas in the 25 Hz band it is 4.1 dB for FEM model No.1, and 9 dB for FEM model No.2. Considering all bands between 12.5 Hz and 160 Hz the average difference is 3.1 dB for FEM model No.1 and 3.5 dB for FEM model No.2. However, when the spatial-average transfer mobility is averaged over the 16 Hz to 40 Hz bands the measured values differ by 0.6 dB from FEM model No.1 and 1.6 dB from FEM model No.2. 
For the complete floor, the average difference is 3.5 dB between measurements and FEM models Nos.1 and 2 when considering all one-third octave bands between 12.5 Hz and 160 Hz. When the spatial-average transfer mobility is averaged over the 16 Hz to 40 Hz bands the measured values differ by 0.3 dB from FEM model No.1 and 0.4 dB from FEM model No.2. 
These results indicate that both FEM models are reasonable for both an individual assembly and the complete floor. However, FEM model No.1 is more efficient as it does not generate spurious modes like No.2 which have to be removed before carrying out the response analysis with FEM.

3.4 Vibration serviceability
In the previous sections both FEM models have been validated in terms of the eigenfrequencies and mode shapes for the low-frequency modes that need to be considered for vibration serviceability according to EN 1995-1-1. In this section, the unit impulse velocity response is predicted using FEM models Nos.1 and 2 for a dowelled-joist floor with simply supported boundaries for comparison with the equations and design limit given in EN 1995-1-1. Note that for FEM model No.2 there are no spurious modes up to 40 Hz (serviceability frequency limit for the calculation of the unit impulse velocity response. The properties of the floor are given in Table 1 for which it is assumed that two edges are simply supported. Two different excitation positions on the floor are chosen where there is a maximum response; these are at the centre of assembly A and the edge of assembly C. Figure 12 shows the response of the floor at these excitation positions for both FEM models.
For the complete floor, the average damping ratio for the modes below 40 Hz is 0.02; this is calculated as an average value from the fitted Rayleigh curve between 14 Hz and 40 Hz. This is the same value that is proposed in the UK National Annex [29]. As noted by Zhang et al [12] this value is more appropriate for timber floors than 0.01 which is given as the default value in EN 1995-1-1. However, in EN 1995-1-1, the damping value is only used to calculate the design limit for the unit impulse velocity.
Table 2 shows f1 and n40 calculated according to EN 1995-1-1 for comparison with values calculated from FEM models Nos. 1 and 2. The fundamental frequencies from EN 1995-1-1 and FEM are within 3.5% of each other; hence the EN 1995-1-1gives a reasonable estimate. The value of n40 from EN 1995-1-1 and FEM model No.1 are identical when the EN 1995-1-1 value is rounded to the nearest integer, but the value from FEM model No.2 is 25% higher.
Figure 13 shows the time-dependent unit impulse velocity that has been predicted using FEM models Nos.1 and 2. For comparison with the design limits, the initial maximum values of each time-dependent unit impulse velocity (determined from Figure 12) are plotted in Figure 14 along with values calculated according to EN 1995-1-1 for models A, B, C, D and E described in Table 1. The results show that the floor satisfies the design limit in all five cases that were assessed, which includes when values are calculated according to EN 1995-1-1 using equations (1), (3) and (4) and assuming ζ=0.01, and when values are calculated using FEM model Nos. 1 and 2 at either excitation position. However, from Figure 14 it is seen that EN 1995-1-1 overestimates the value from FEM at the centre of assembly A by a factor of 2 and underestimates by a factor of 2 at the edge of assembly C. The fact that both excitation points indicated a maximum response indicates that a robust assessment can be made using FEM models because many different excitation points can be considered.

4. Conclusions
Finite element models have been developed and validated with experimental modal analysis for a dowelled-joist timber floor and its component assemblies in the low-frequency range up to 200Hz. The dowel connections between the joists that formed each assembly were modelled using different FEM models with either rigid or spring connectors. The experimental validation showed that both models were valid in terms of eigenfrequencies, MAC and the spatial-average velocity with point excitation. The FEM model with spring connectors had a higher number of correlated modes in the MAC analysis which required removal of many spurious modes; hence the model with rigid connectors is more appropriate and efficient (as the spurious modes do not need to be removed) to predict impact sound insulation and vibration serviceability.
The validated models were used to demonstrate the potential in predicting assessment parameters for vibration serviceability as described in EN 1995-1-1 (Eurocode 5) which to-date have been considered as complex and difficult to measure. This predictive approach to evaluation has the advantage that it can be used for non-standard timber floors with non-standard boundary conditions and/or floor plans. For the dowelled-joist timber floor, EN 1995-1-1 gives reasonable estimates of f1 and n40. However, estimates of the unit impulse velocity response from EN 1995-1-1 are inadequate because a dowelled-joist timber floor which is supported on only two sides can have a maximum response at a position that is not in the centre of the floor (as would be expected with a floor that is supported on all four edges). Calculation of the unit impulse velocity response in future revisions of EN 1995-1-1 should therefore consider allowing floors which are only supported on two sides to be assessed using validated FEM models.
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[bookmark: _Ref440953889]Figure 1. Dowelled-joist timber floor system: (a) Two assemblies joined together using inclined screws, (b) Side view of a single joist indicating the dowel pattern (units: millimetres), (c) Excitation positions.

[bookmark: _Ref467843516]Figure 2. FEM model in the connection zone between two assemblies.
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[bookmark: _Ref440967643]Figure 3. Boundary condition for the assemblies and complete floor system: (a) Cross-section of installed situation, (b) FEM model.




Figure 4. Comparison of measured and predicted eigenfrequencies in terms of correlated mode pairs for the three assemblies: (a) FEM model No.1, (b) FEM model No.2.


Figure 5. MAC values for the three assemblies: (a) FEM model No.1, (b) FEM model No.2.




Figure 6. COMAC (1Hz – 200Hz) for the three assemblies: (a) FEM model No.1, (b) FEM model No.2.

Figure 7. Comparison of measured and predicted eigenfrequencies in terms of correlated mode pairs for the dowelled-joist timber floor with FEM models Nos.1 and 2.




Figure 8. MAC values for the dowelled-joist timber floor: (a) FEM model No.1, (b) FEM model No.2.


[bookmark: _Ref467826497]Figure 9. COMAC (1Hz – 200Hz) values for the dowelled-joist timber floor: (a) FEM model No.1, (b) FEM model No.2.


[bookmark: _Ref467139793]Figure 10. Modal damping. Comparison of measured data and the fitted Rayleigh damping curve for (a) assembly A and (b) complete floor.




[bookmark: _Ref467139810]Figure 11. Average transfer function based on all EMA measurement points for (a) assembly A and (b) complete floor.




[bookmark: _Ref467590197]Figure 12. Velocity response of the floor to the unit impulse. (a) FEM model No.1 – excitation at the centre of assembly A, (b) FEM model No.1 - excitation at the edge of assembly C, (c) FEM model No.2 - excitation at the centre of assembly A and (d) FEM model No.2 - excitation at the edge of assembly C.




[bookmark: _Ref467590213]Figure 13. Impulse response for FEM models Nos. 1 and 2 with excitation at (a) centre of assembly A and (b) edge of assembly C. Arrows indicate the initial maximum values.

[bookmark: _Ref467674158]Figure 14. Comparison of the design limit (red) and calculated values (black) for the unit impulse velocity. Descriptions of models A–E are given in Table 2.


Tables

Table 1. Properties of dowelled-joist timber floor and assemblies used to assess EN 1995-1-1 using  FEM and/or EN 1995-1-1 design equations.
	Parameters
	Values
	Used for calculations

	Length, L (m)
	5.5
	FEM and EN 1995-1-1 design equations

	Width, B (m)
	2.7
	FEM and EN 1995-1-1 design equations

	Thickness, h (m)
	0.2
	FEM and EN 1995-1-1 design equations

	mA (kg/m2)
	94.6
	FEM

	mB (kg/m2)
	91.8
	FEM

	mC (kg/m2)
	89.7
	FEM

	m (kg/m2)
	92.1
	EN 1995-1-1 design equations

	EA (MPa)
	11700
	FEM

	EB (MPa)
	11650
	FEM

	EC (MPa)
	10218
	FEM

	E (MPa)
	11189
	EN 1995-1-1 design equations

	Beech dowel, Ed (MPa)
	13700
	EN 1995-1-1 design equations

	Longitudinal stiffness, (EI)L (Nm2/m)
	7459556
	EN 1995-1-1 design equations

	Transverse stiffness, (EdI)B (Nm2/m)
	41100
	EN 1995-1-1 design equations






Table 2. Comparison of f1 and n40 predicted using EN 1995-1-1 and FEM.

	Model
	A
	B
	C
	D
	E

	
	EN 1995-1-1
	FEM No.1
	FEM No.1
	FEM No.2
	FEM No.2

	Damping used to determine response
	Not used in calculation
	Rayleigh damping representing the laboratory situation
	ζ=0.01
	Rayleigh damping representing the laboratory situation
	ζ=0.01

	Damping used to determine design limit
	ζ=0.01
	ζ=0.02
(average value from fitted Rayleigh damping curve between 14Hz and 40Hz)
	ζ=0.01
	ζ=0.02
(average value from fitted Rayleigh damping curve between 14Hz and 40Hz)
	ζ=0.01

	Boundary condition for the two edges
	Simply supported
	Laboratory support condition (see Figure 2)
	Simply supported
	Laboratory support condition (see Figure 2)
	Simply supported

	f1 (Hz)
	14.77
	14.28
	14.71
	14.26
	14.69

	n40 (-)
	2.86
	3
	3
	4
	4
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