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Abstract

Considerable progresses have been made in computer-aided engineering for the high fidelity analysis of structures and systems.
Traditionally, computer models are calibrated using deterministic procedures. However, different analysts produce different models
based on different modelling approximations and assumptions. In addition, identically constructed structures and systems show
different characteristic between each other. Hence, model updating needs to take account modelling and test-data variability.

Stochastic model updating techniques such as sensitivity approach and Bayesian updating are now recognised as powerful
approaches able to deal with unavoidable uncertainty and variability. This paper presents a high fidelity surrogate model that
allows to significantly reduce the computational costs associated with the Bayesian model updating technique. A set of Artificial
Neural Networks are proposed to replace multi non-linear input-output relationships of finite element (FE) models. An application
for updating the model parameters of the FE model of the DRL-AIRMOD structure is presented.
c© 2017 The Authors. Published by Elsevier Ltd.
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1. Introduction

The purpose of model updating is to adjust the computer model such that its outputs agree with experimental data
obtained typically from a modal test. This is an essential step of model validation and verification. Today, different
stochastic model updating procedures have been developed and applied in different fields (see e.g. [1–4]). The
two most promising approaches to the stochastic model updating problem are the sensitivity (covariance updating)
method [5] and Bayesian updating [6,7]. Recently, these two techniques have been combined in order to overcome
the limitation of the individual procedure [1]. More specifically, the results of the sensitivity approach are used to
define prior distributions for the Bayesian Model updating. By doing so, the computational efforts associated with the
Bayesian Model updating procedure are largely reduced and the final distributions of the model parameters can evolve
and relax the initial assumption of Gaussian parameter variability used in the sensitivity approach.

The main obstacle to practical engineering application of stochastic model updating is associated to the significant
computer cost required. This is because many evaluations of a time-consuming model are required for performing un-
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certainty quantification. This is particularly true for Bayesian model updating, which until recently was restricted only
to small-scale numerical examples. In fact, large scale applications of Bayesian Model updating requires advanced
statistical sampling technique, parallel computing and high-fidelity surrogate models. This issue has been faced by
replacing the full FE models with surrogate meta-models. Popular surrogate models use Artificial Neural Networks
(ANN) [8,9], Polynomial Chaos [10], Kriging [11], etc and a number of applications in different fields to update large
and complex models (see e.g. [12]) (see e.g. [2,12]) have already demonstrated the applicability of the stochastic
model updating approach.

The focus of this paper is not to provide a comparison of different stochastic model updating strategies. Instead, the
purpose is to present a technique for developing a high-fidelity surrogate model based on Artificial Neural Networks
for the Bayesian model updating. This strategy has been successfully used in Ref. [1] for the parameter updating of
the FE model of the DRL-AIRMOD structure [13].

1.1. Bayesian Model Updating

The Bayesian model updating is based on the well-known Bayes rule has been introduced by Beck and Katafygiotis
[6,7]. The general formulation is the following:

P (θ|D,M) =
P (D|θ,M) P (θ|M)

P (D|M)
(1)

where θ represents any hypothesis to be tested, e.g. the value of the model parameters, D is the available experimental
data (i.e. observations), and M is the chosen mathematical model. The different terms of Eq 1 are: the likelihood
function of the data D (P (D|θ,M)) representing the probability of obtaining the data D when the values of θ are
fixed for a chosen modelM; the prior probability density function of θ (P (θ|M) that incorporates prior information
about the values of the parameters; the posterior probability density function of θ (P (θ|D,M)) representing the new
information based on observations and prior knowledge. Finally, the denominator term (P (D|M)) representing a
normalization factor (also called evidence) ensuring that the posterior distribution function integrates to 1.

The equation (1) introduces a way to update some apriori knowledge on the parameters θ, by using data or ob-
servations D and conditional to some available information or hypothesis I. In the context of model updating, the
initial knowledge about the unknown adjustable parameters, e.g. from prior expertise, is expressed through the prior
PDF. A proper prior distribution can be a uniform distribution in the case when only a lower and upper bound of
the parameter is known, or a Gaussian distribution when the mean and the relative error of the parameter are known.
The data consists of the eigenvalue residuals, εi = {ze

i − zi(θ)} where ze
i typically represents the i-th measured natural

frequency and zi(θ) the i-th eigenvalue of the mathematical model.

The likelihood function gives a measure of the agreement between the available experimental data and the corre-
sponding numerical model output. Particular care has to be taken in the definition of the likelihood, and the choice of
likelihood depends on the type of data available, e.g. whether the data is a scalar or a vector quantity. Different like-
lihood leads to different accuracy and efficiency in the results of the updating procedure and should be selected with
caution; as an example, the use of unsuitable likelihood function might cause that the model updating do not produce
any relevant variation in the prior. The likelihood function is often chosen to be a multivariate normal distribution
[6,12]. In practical application the data are also considered independent reducing the likelihood function to:

P (D|θ,M) =

n∏
i=1

1

σ2
i

√
2π

exp
− ε2

i

2σ2
i

 (2)

Finally, the posterior distribution expresses the updated knowledge about the parameters, providing information on
which parameter ranges are more probable based on the initial knowledge and the experimental data.

The solution of equation (1) for realistic structural dynamics problems is generally intractable analytically or
numerically. Instead the solution is obtained by means of modern sampling techniques. Markov Chain Monte Carlo
(MCMC) methods are the largely adopted procedures. The Metropolis-Hastings algorithm carries out a random walk
in the model space sampled from the prior distribution, concentrated on regions of significant probability. Successive
samples drawn from the so-called proposal distribution are dependent only upon the immediate past sample in the
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chain and independent of preceding samples (i.e. Markovian property). The algorithm picks a candidate next sample
if the new sample is more probable (i.e. corresponding to large value of the posterior distribution) than the current
sample. In the case of a rejection the sample remains unchanged and is used again in the next iteration. It can be
shown that convergence is asymptotic independent of the proposal distribution used to generate test samples. Until
quite recently, the application of Bayesian updating to industrial scale systems has not been possible because of
the requirement for huge computing resource. This restriction has now been largely overcome by the development
of modern stochastic simulation algorithm, called Transitional Markov Chain Monte Carlo (TMCMC) [14]. This
algorithm allows the generation of samples from the complex shaped unknown posterior distribution through an
iterative approach. In this algorithm, m intermediate distributions Pi are introduced:

Pi ∝ P (D|θ, I)βi P (θ|I) (3)

where the contribution of the likelihood is scaled down by an exponent βi, with 0 = β0 < .. < βi < .. < βm = 1, thus
the first distribution is the prior PDF, and the last is the posterior. The value of these exponents βi is automatically
selected to ensure that the dispersion of the samples at each step meet a prescribed target. By employing intermediate
distributions, it is easier for the updating procedure to generate samples also from posterior showing very complex
distribution, e.g., very peaked or multi-modal. For additional information the reader is reminded to [14].

1.2. Surrogate Model

Bayesian model updating procedures based on stochastic sampling require a huge number of model evaluations.
For this reason surrogate models, also known in literature as meta-models or emulators, are widely used to mimic
the input-output relation of computational expensive numerical model M by using a cheaper analytical model M̂.
Some examples of surrogate models are Artificial Neural Networks (ANN), Poly-Harmonic Splines or Support Vector
Machines. In this work, ANNs have been selected as surrogate model for their effectiveness and versatility.

ANN defines a function f : X → Y , where f (x) is a composition of other weighted functions g(x). Often the
non-linear weighted sum is used for the composition as follows:

ŷ = f (x) = K

∑
i

wi · gi(x)

 (4)

where K is an activation function such as logistic or hyperbolic functions, ŷ is the predicted output of the surrogate
model wi are weights to be updated in the ANN training algorithm. The classical architecture type consists of one
input layer, one or more hidden layers and one output layer. Each layer employs several nodes, which are connected
to the nodes of the adjacent layers by weighted links. In each node, the inputs gi(x) are first weighted and summed;
then, the sum is processed by an activation function K to produce the node output. A bias is generally introduced in
the hidden and output layers, which acts as threshold for the argument of activation function. The employed activation
function is the widely used sigmoidal function f (x) = (1 + e−x)−1. The selection of an ANN topology is general based
on fitting performance. A simple approach consist of an heuristic testing of different topologies exploring some of the
possible topological combinations. Then, the best ANN architecture is selected based on a performance indicator [9].

In the context of model updating, a complex numerical model M is used to provide a large number of outputs.
The analysis might be tempted to construct a single ANN able to match all the outputs of interest. Instead, the use of
different ANN to predict individual output is suggested. It is important to note that this computational strategy does
not influence the capability of the ANN to model correlations among the outputs.

2. Numerical Example

2.1. DLR AIRMOD Structure

The experimental data come from a replica of the well-known GARTEUR SM-AG19 benchmark structure built
at the German Aerospace Centre (DLR) in Göttingen, Germany and known as AIRcraft MODel (DLR-AIRMOD),
and it is shown in Figure 1. The corresponding NASTRAN solid finite element model is also shown in Figure 1.
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Fig. 1. DLR-AIRMOD structure [15].
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Fig. 2. Performance of different ANNs configurations and associated training time.

The experimental details are described in detail in [15]. The structure was reassembled 130 times, producing 260
modal data sets from single point excitation at two locations showing significant variability. 18 input parameters were
selected including the support stiffnesses, joint stiffnesses, mass parameters to represent variability in the position of
cable bundles, screws and glue after each reassembly of the structure and 14 natural frequencies are used as output of
interest.

2.2. Analysis of Artificial Neural Networks

In this section, ANNs are constructed and trained to replace the computational expensive DLR-AIRMOD FE model
and the performance of different ANN configurations is analysed. The training and validation data have been obtained
using uniform distributions representing the variability of the 18 input parameters (from 5% till 200% of the nominal
values). 2200 realisations of the input parameters have been obtained by means of the Latin Hypercube Sampling and
split into two sets for calibration and validation.

9 different configurations of ANN have been tested as shown in Table 1. The first 8 ANNs are constructed to predict
all the outputs of the DLR-AIRMOD FE model. Instead, the configuration #9 uses 14 individual ANN, each of those
is trained to predict a specific output. The performance of the ANNs is then calculated evaluating the so-called R2

parameter for each output of the ANN. The mean performance of the ANN is defined at the sum of each R2 value
divided by the number of considered outputs. The worst performance of the ANN correspond to the minimum value
of the R2. Figure 2 shows the performance of different ANN and the corresponding training time required. It can be
seen that the best performance is obtained training individual ANN mapping all the inputs into a single output at time.
The values for these configurations varying between 0.3677 and 0.9479 whereas the worst individual performance is
between 0 and 0.7996. ANNs trained to represent single independent output (configuration #9) are outperforming all
the ANNs trained to reproduce all the outputs at once while keeping the capability to reproduce output correlations
(see Figure 2). Hence, the set of ANNs with single outputs is clearly the closest approximation of the DLR-AIRMOD
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Table 1. An example of a table.

ID Configuration (t) Mean performance (t) Worst performance (t) Training time (s)

1 18 14 14 0.6840 0.0742 63
2 18 28 14 0.7613 0.0132 268
3 18 50 14 0.7175 0.0524 658
4 18 100 14 0.3677 0 13512
5 18 200 14 0.7818 0.3375 16218
6 18 28 24 14 0.6695 0.0227 4388
7 18 56 48 14 0.9446 0.5605 19173
8 18 40 36 14 0.8465 0.1160 3342
9 18 16 6 1 0.9479 0.7996 172
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Fig. 3. Worst performance of the ANN configuration #9 (left panel) and predicted correlation among the outputs (right panel).

FE model. Also the training time (excluding the cost of running the full FE model 2000 times) for this configuration
was found to be 172 seconds of CPU time, whereas the other configuration (which allowed for correlation between the
14 outputs) required up to 19,173 seconds (5.33 hours). The specific configuration of multi-input single output ANN
has been estimated adopting heuristic search as shown in [9]. Auto-correlation of the vectors (of 2000 training points
+ 200 separately chosen validation points) for each of the 14 outputs were found to be in almost perfect agreement
for the FE model and the ANN. The performance of the worst output prediction from the configuration #9 of ANN is
shown in Figure 3.
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Fig. 4. Selected DLR-AIRMOD parameter updated using high-fidelity meta-model and FE model.

The selected ANNs has been used in the Bayesian Model and a sample example is shown in Figure 4. Those shown
in orange were obtained directly from the ANN surrogate and the smooth orange curve is obtained from a Gaussian
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mixture based on 500 points determined by LHC sampling. The uniform prior is indicated by the horizontal dashed
blue line and the vertical grey dotted lines denote the mean and two STDs determined by the sensitivity method (see
[1] for more details about model uprating based on sensitivity method). Considerable confidence can be attributed
to these results because the peaks of the orange histograms are seen in general to agree quite closely with the means
obtained independently by the sensitivity method.

The presented procedures and numerical techniques have been implemented in the open source software Open-
COSSAN [16,17] and freely available to researchers and practitioners.

3. Conclusions

The use of a surrogate models enables efficient stochastic model updating, but at the same time introduces addi-
tional uncertainty. High-fidelity surrogate models are therefore required. In this paper 18 ANNs have been constructed
to simulate the frequency distributions of the DLR-AIRMOD structure without loosing the correlation among the out-
puts. Such strategy has been proved to be more reliable and accurate than using a single ANN with multiple outputs.
The availability of high fidelity surrogate models allows the implementation of stochastic model updating on large
scale complex models allowing taking into account the unavailable variability of parameters.
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