
ar
X

iv
:1

70
9.

08
99

1v
1

 [
cs

.F
L

]
 2

6
Se

p
20

17

Reachability Switching Games

John Fearnley1, Martin Gairing1, Matthias Mnich2, and Rahul

Savani1

1 University of Liverpool, UK

{john.fearnley, gairing, rahul.savani}@liverpool.ac.uk

2 Universität Bonn, Germany and Maastricht University, The Netherlands

mmnich@uni-bonn.de

Abstract

In this paper, we study the problem of deciding the winner of reachability switching games.

These games provide deterministic analogues of Markovian systems. We study zero-, one-, and

two-player variants of these games. We show that the zero-player case is NL-hard, the one-player

case is NP-complete, and that the two-player case is PSPACE-hard and in EXPTIME. In the one-

and two-player cases, the problem of determining the winner of a switching game turns out to be

much harder than the problem of determining the winner of a Markovian game. We also study

the structure of winning strategies in these games, and in particular we show that both players

in a two-player reachability switching game require exponential memory.

Keywords and phrases Deterministic Random Walks, Model Checking, Reachability, Simple

Stochastic Game, Switching Systems

1 Introduction

Probabilistic model checking is an important topic in the field of formal verification. Like

any model checking problem, it asks us to check that a given system satisfies a logical

specification. In the probabilistic setting, the system itself makes use of probability, either

in the form of an explicit use of randomization, or because the system interacts with a

randomized environment. Probabilistic model checking is now a mature topic, with tools

like PRISM [15] providing an accessible interface to the research that has taken place.

In this paper, we approach this topic from a different view. Prior work has studied

deterministic random systems, which attempt to replicate the properties of a random system

in a deterministic way. A switching system (also known as a Propp machine) does this by

replacing the nodes of a Markov chain with switching nodes. Each switching node maintains

an ordered queue over its outgoing edges. When the system arrives at the node, it is sent

along the first edge in this queue, and that edge is then sent to the back of the queue. In

this way, the switching node ensures that, after a large number of visits, the system uses

each outgoing edge a roughly equal number of times. This mimics a Markovian node with

a uniform distribution over its outgoing edges, since such a node also ensures a fairness

property over its outgoing edges, in expectation.

There has been much work that studies how well switching systems achieve their goal

of simulating a Markov chain, which we will discuss in more detail in the related work

section. However, in this paper, we study the question how hard is it to model check switch-

ing systems? We already have a good knowledge about the complexity of model checking

Markovian systems, but how does this change when we instead use switching nodes?

There are good reasons why a designer may want to implement a system using switching

nodes. Firstly, true randomness is actually quite expensive, requiring specialist hardware

to implement. Most systems actually use pseudorandom generators as their source of ran-

domness, but these generators add complexity to the system. For example, the Mersenne

http://arxiv.org/abs/1709.08991v1

2 Reachability Switching Games

Twister, used as the standard generator in Python, requires an extra 2.5 kilobytes of internal

state. This complicates the program, and hence makes the model checking task much harder.

By comparison, a switching system provides a much cheaper implementation, so long as the

designer is willing to accept deterministic randomness. Another reason why a system de-

signer may use switching nodes is that they naturally satisfy fairness properties. In fact,

they do this better than random systems, which can only provide fairness in expectation.

Our contribution. In this paper, we initiate the study of model checking in switching

systems. We focus on reachability problems, one of the simplest model checking tasks. This

corresponds to determining the winner of a two-player reachability switching game. We

study zero-, one-, and two-player variants of these games, which correspond to switching

versions of Markov chains, Markov decision processes [18], and simple stochastic games [3],

respectively.

The main message of the paper is that deciding reachability in one- and two-player

switching games is much harder than deciding reachability in Markovian systems. Our

results are summarised in the table below.

Markovian Switching

0-player PL-complete1
NL-hard; in PLS, in NP ∩ coNP

1-player P-complete NP-complete

2-player NP ∩ coNP
2

PSPACE-hard; in EXPTIME

The PLS and NP ∩ coNP upper bounds for the 0-player case were shown before [8, 13],

but all other upper and lower bounds for switching games we show for the first time in this

paper.

We also investigate the properties of winning strategies in these games. For the one-

player case, we show that the reachability player can win using a marginal strategy, which

simply counts the number of times that each edge has been used. For the two-player case,

we show that both players can win using exponential memory, and also that both players

require exponential memory in order to win.

Related work. Our work was directly inspired by the work of Dohrau, Gärtner, Kohler,

Matousek, and Welzl [8]. They studied zero-player reachability switching games and showed

that the associated decision problem is in NP ∩ coNP. More recently, it was shown that the

zero-player problem is in PLS [13]. The contribution of our work is to study these questions

in the one- and two-player settings.

Switching games are part of a research thread at the intersection of computer science and

physics. This thread has studied zero-player switching systems, also known as deterministic

random walks, rotor-router walks, the Eulerian walkers model [17] and Propp machines [4–7,

11, 12]. Propp machines have been studied in the context of derandomizing algorithms and

pseudorandom simulation, and in particular have received a lot of attention in the context

of load balancing [1, 9]. However, most work on Propp machines has focused on how well

1
PL, or probabilistic L, is the class of languages recognizable by a polynomial time logarithmic space
randomized machine with probability > 1/2.

2 It is a long-standing open problem whether we can solve these problems in P.

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 3

multi-token switching systems simulated Markov chains. The idea of studying single-token

reachability questions should be credited to the work of Dohrau at al. [8] mentioned above.

Katz et al. [14] and Groote and Ploeger [10] considered switching graphs; these are graphs

in which certain vertices (switches) have exactly one of their two outgoing edges activated.

However, the activation of the alternate edge does not happen when a vertex is traversed

by a run; this is the key difference to switching games in this paper. That model was also

studied by others [10, 16, 19].

2 Preliminaries

A reachability switching game is defined by a tuple (V, E, VR, VS, VSwi, Ord, s, t), where (V, E)

is a finite graph, and VR, VS, VSwi partition V into reachability vertices, safety vertices, and

switching vertices, respectively. The reachability vertices VR are controlled by the reach-

ability player, the safety vertices VS are controlled by the safety player, and the switching

vertices VSwi are not controlled by either player, but instead follow a predefined “switching

order”. The function Ord defines this switching order : for each switching vertex v ∈ VSwi,

we have that Ord(v) = 〈u1, u2, . . . , uk〉 where the sequence is required to be a permutation

over the vertices that have an incoming edge from v. The vertices s, t ∈ V specify source

and target vertices for the game.

A state of the game is defined by a tuple (v, C), where v is a vertex in V , and

C : VSwi → N is a function that assigns a number to each switching vertex, which rep-

resents how far that vertex has progressed through its switching order. Hence, it is required

that C(u) ≤ | Ord(v)| − 1, since the counts specify an index to the sequence Ord(v).

When the game is at a state (v, C) with v ∈ VR or v ∈ VS, then the respective player

chooses an outgoing edge at v, and the count function does not change. For states (v, C)

with v ∈ VSwi, the successor state is determined by the count function. More specifically, we

define Upd(C, v) : VSwi → N so that for each u ∈ VSwi we have

Upd(C, v)(u) =

{

(C(u) + 1) mod | Ord(u)| if v = u,

C(u) otherwise .

This function updates the count at v by 1, and wraps around to 0 if the number is larger

than the number of outgoing edges of v. Then, the successor state of (v, C), denoted as

Succ(v, C) is (u, Upd(C, v)), where u is the element at position C(v) in Ord(v).

A play of the game is a (potentially infinite) sequence of states (v1, C1), (v2, C2), . . . with

the following properties:

1. v1 = s and C1(v) = 0 for all v ∈ VSwi;

2. If vi ∈ VR or vi ∈ VS then (vi, vi+1) ∈ E and Ci = Ci+1;

3. If vi ∈ VSwi then (vi+1, Ci+1) = Succ(vi, Ci);

4. If the play is finite, then the final state (vn, Cn) must either satisfy vn = t, or vn must

have no outgoing edges.

A play is winning for the reachability player if the play is finite and the final state is at the

target vertex t. A (deterministic, history dependent) strategy for the reachability player is

a function that maps a play prefix (v1, C1), (v2, C2), . . . , (vk, C1), to an outgoing edge of vk.

A play (v1, C1), (v2, C2), . . . is consistent with a strategy if, whenever vi ∈ VR, we have

that vi+1 is the vertex chosen by the strategy. A strategy is winning for the reachability

player if every play that is consistent with the strategy is winning for the reachability player.

Strategies for the safety player are defined analogously.

4 Reachability Switching Games

3 One-player reachability switching games

In this section we consider one-player reachability switching games, i.e., games with VS = ∅.

3.1 Containment in NP

We show that deciding whether the reachability player wins a one-player reachability switch-

ing game is in NP. The proof uses controlled switching flows. These extend the idea of

switching flows, which were used in [8] to show containment of the zero-player reachability

problem in NP ∩ coNP.

Controlled switching flow. A flow is a function F : E → N that assigns a natural

number to each edge in the game. For each vertex v, we define

Bal(F, v) =
∑

(v,u)∈E

F (v, u) −
∑

(w,v)∈E

F (w, v)

to be the difference between the outgoing and incoming flow at v.

A flow F is a controlled switching flow if it satisfies the following constraints:

The source vertex s satisfies Bal(F, s) = 1

The target vertex t satisfies Bal(F, t) = −1

Every vertex v other than s or t satisfies Bal(F, v) = 0

Let v ∈ VSwi be a switching node and Ord(v) = 〈u1, u2, . . . , uk〉. There exists a constant

c and an index i ≤ k such that

F (v, uj) = c + 1 for all j < i.

F (v, uj) = c for all j ≥ i.

The first three constraints ensure that F is actually a flow from s to t, while the final

constraint ensures that the flow respects the switching order at each switching node. Note

that there are no constraints on how the flow is split at the nodes in VR.

Marginal strategies. A marginal strategy for the reachability player is defined by a

function M : E → N, which assigns a target number to each outgoing edge of the vertices

in VR. The strategy ensures that each edge e is used no more than M(e) times. That is,

when the play arrives at a vertex v ∈ VR, the strategy checks how many times each outgoing

edge of v has been used so far, and selects an outgoing edge e that has been used strictly

less than M(e) times. If there is no such edge, then the strategy is undefined.

Observe that a controlled switching flow defines a marginal strategy for the reachability

player. We prove that this strategy always reaches the target.

◮ Lemma 1. If a one-player reachability switching game has a controlled switching flow F ,

then the corresponding marginal strategy is winning for the reachability player.

Proof. The proof will be by induction on the total amount of flow in F , which is defined as
∑

e∈E F (e).

The base case is
∑

e∈E F (e) = 1. The requirements of a controlled switching flow imply

that F (s, t) = 1, and all other edges have no flow at all. If s ∈ VR, then the corresponding

marginal strategy is required to choose the edge (s, t), and thus it is a winning strategy. If

s ∈ VSwi, then the balance requirement of a controlled switching flow ensures that t is the

first vertex in Ord(s), so the switching node will move to t, and the reachability player will

win the game.

There are two cases to consider for the inductive step. First, assume that
∑

e∈E F (e) = i,

and that s ∈ VR. Let (s, v) be the outgoing edge chosen by the marginal strategy (this can

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 5

be any node that satisfies F (s, v) > 0). If G denotes the current game, then we can create a

new switching game G′, which is identical to G, but where v is the designated starting node.

Moreover, we can create a controlled switching flow F ′ for G′ by setting F ′(s, v) = F (s, v)−1

and leaving all other flow values unchanged. Observe that all properties of a controlled

switching flow continue to hold for F ′. Since
∑

e∈E F ′(e) = i − 1, the inductive hypothesis

implies that the marginal strategy that corresponds to F ′ (which is consistent with the

marginal strategy for F) is winning for the reachability player.

The second case for the inductive step is when
∑

e∈E F (e) = i and s ∈ VSwi. Let (s, v)

be the first edge in Ord(s), which is the edge that the switching node will use. Again we can

define a new game G′ where the starting node is v, and in which Ord(s) has been rotated

so that v appears at the end of the sequence. We can define a controlled switching flow F ′

for G′ where F ′(s, v) = F (s, v)−1 and all other flow values are unchanged. Observe that F ′

satisfies all conditions of a controlled switching flow, and in particular that rotating Ord(s)

allows s to continue to satisfy the balance constraint on its outgoing edges. Again, since
∑

e∈E F ′(e) = i − 1, the marginal strategy corresponding to F ′ (which is identical to the

marginal strategy for F) is winning for the reachability player. ◭

In the other direction, if the reachability player has a winning strategy for the game,

then we can show that there exists a controlled switching flow.

◮ Lemma 2. If the reachability player has a winning strategy for a one-player reachability

switching game, then that game has a controlled switching flow of bounded size.

Proof. Let v1, v2, . . . , vk be the play that is produced when the reachability player uses his

winning strategy. We may assume that during the play no state (v, C) is repeated. This is

without loss of generality, since if the safety player can force a loop in the state space than

she could force to stay in this loop forever and thus the reachability player would not have

a winning strategy. Thus, if the play visits a fixed vertex multiple times then for each visit

the switch configuration C must be unique. It follows that each vertex is visited at most nn

times. Define the flow F so that F (e) is the number of times e is used by the play. Since

each vertex is visited at most nn times, we have F (e) ≤ nn for all e. We claim that F is a

controlled switching flow. In particular, since the play is a path through the graph starting

at s and ending at t, we will have Bal(F, s) = 1 and Bal(F, t) = −1, and we will have

Bal(F, v) = 0 for every vertex v other than s and t. Moreover, it is not difficult to verify

that the balance constraint will be satisfied for every vertex v ∈ VSwi. ◭

Combing the two previous lemmas yields the following corollary.

◮ Corollary 3. If the reachability player has a winning strategy for a one-player reachability

switching game, then he also has a marginal winning strategy.

Finally, we can show that solving a one-player reachability switching game is in NP.

◮ Theorem 4. Deciding the winner of a one-player reachability switching game is in NP.

Proof. By Lemmas 1 and 2, the reachability player can win if and only if the game has a

controlled switching flow of bounded size. Moreover, we can guess a flow, and check whether

it satisfies the requirements of a controlled switching flow in polynomial time. ◭

6 Reachability Switching Games

Controller

start

fail

x1 x2 x3 x4 target

C1 C2 C3start start start start

start fail start fail start fail

Figure 1 High-level overview of our construction for one player for the example formula C1 ∧

C2 ∧ C3 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). Note that the negations of variables in the

formula are not relevant for this high-level view; they will feature in the clause gadgets as explained

below. The edges for the variable phase are solid, and the edges for the subsequent verification

phase are dashed.

3.2 NP-hardness

In this section we show that deciding the winner of a one-player reachability switching game

is NP-hard. We will do so by reducing from 3SAT. Throughout this section, we will refer

to a 3SAT instance with variables x1, x2, . . . , xn, and clauses C1, C2, . . . , Cm. It is well-

known [20, Thm. 2.1] that 3SAT remains NP-hard even if all clauses contain at most three

variables, and all variables appear in at most three clauses. We make this assumption during

our reduction.

Overview. At a high level, the idea behind the construction is that the reachability player

will be asked to assign values to each variable. Each variable xi will have a corresponding

vertex that will be visited three times during the game. Each time this vertex is visited,

the reachability player will be asked to assign a value to xi in a particular clause Cj . If

the player chooses an assignment that does not satisfy Cj , then the game records this by

incrementing a counter. If the counter corresponding to any clause Cj is incremented to

three (or two if the clause only has two variables), then the reachability player immediately

loses, since the chosen assignment fails to satisfy Cj .

The problem with the idea presented so far is that there is no mechanism to ensure

that the reachability player chooses a consistent assignment to the same variable. Since

each variable xi is visited three times, there is nothing to stop the reachability player from

choosing contradictory assignments to xi on each visit. To address this, the game also counts

how many times each assignment is chosen for xi. At the end of the game, if the reachability

player has not already lost by failing to satisfy the formula, the game is configured so that

the target is only reachable if the reachability player chose a consistent assignment.

A high-level overview of the construction for an example formula is given in Fig. 1.

The control gadget. The sequencing in the construction is determined by the control

gadget, which is shown in Fig. 2. In our diagramming notation, square vertices belong

to the reachability player. Circle vertices are switching nodes, and the switching order of

each switching vertex is labelled on its outgoing edges. Our diagrams also include counting

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 7

a3n+1b

start

fail

x1 x2 x3 x4 x5

a

b

1
2

3
4

5

Figure 2 The control gadget.

xi

a3bxi+1

Ci start start

a

b

1
2 3

a3b xi+1

Cj Ck start

a

b

1
2 3

true false

Figure 3 A variable gadget.

gadgets, which are represented as non-square rectangles that have labelled output edges.

The counting gadget is labelled by a sequence over these outputs, with the idea being that

if the play repeatedly reaches the gadget, then the corresponding output sequence will be

produced. In this example the gadget is labelled by a3n+1b, which means the first 3n + 1

times the gadget is used the token will be moved along the a edge, and the 3n + 2nd time

the gadget is used the token will be moved along the b edge. This gadget can be easily

implemented by a switching node that has 3n+2 outgoing edges, the first 3n+1 of which go

to a, while the 3n + 2nd edge goes to b. We use gadgets in place of this because it simplifies

our diagrams.

The control gadget has two phases. In the variable phase, each variable gadget, repres-

ented by the vertices x1 through xn is used exactly 3 times, and thus overall the gadget

will be used 3n times. This is accomplished by a switching node that ensures that each

variable is used 3 times. After each variable gadget has been visited 3 times, the control

gadget then sends the token to the x1 variable gadget for the verification phase of the game.

In this phase, the reachability player must prove that he gave consistent assignments to all

variables. If the control state is visited 3n + 2 times, then the token will be moved to the

fail vertex. This vertex has no outgoing edges, and thus is losing for the reachability player.

The variable gadgets. Each variable xi is represented by a variable gadget, which is

shown in Figure 3. This gadget will be visited 3 times in total during the variable phase,

and each time the reachability player must choose either the true or false edges at the

vertex xi. In either case, the token will then pass through a counting gadget, and then move

to a switching vertex which either moves the token to a clause gadget, or back to the start

vertex.

It can be seen that the gadget is divided into two almost identical branches. One cor-

responds to a true assignment to xi, and the other to a false assignment to xi. The clause

gadgets are divided between the two branches of the gadget. In particular, a clause appears

on a branch if and only if the choice made by the reachability player fails to satisfy the

clause. So, the clauses in which xi appears positively appear on the false branch of the

gadget, while the clauses in which xi appears negatively appear on the true branch.

The switching vertices each have exactly three outgoing edges. These edges use an

arbitrary order over the clauses assigned to the branch. If there are fewer than 3 clauses on

a particular branch, the remaining edges of the switching node go back to the start vertex.

Note that this means that a variable can be involved with fewer than three clauses.

The counting gadgets will be used during the verification phase of the game, in which

8 Reachability Switching Games

the variable player must prove that he has chosen consistent assignments to each of the

variables. Once each variable gadget has been used 3 times, the token will be moved to x1

by the control gadget. If the reachability player has used the same branch three times, then

he can choose that branch, and move to x2, which again has the same property. So, if the

reachability player gives a consistent assignment to all variables, he can eventually move

to xn, and then on to xn+1, which is the target vertex of the game. Since, as we will show,

there is no other way of reaching xn+1, this ensures that the reachability player must give

consistent assignments to the variables in order to win the game.

The clause gadgets. Each clause Cj is represented by a clause gadget, an example of

a2bstart fail
a b

Figure 4 A gadget for a clause with three variables

which is shown in Figure 4. The gadget counts how many variables have failed to satisfy

the corresponding clause. If the number of times the gadget is visited is equal to the

number of variables involved with the clause, then the game moves to the fail vertex, and

the reachability player immediately loses. In all other cases, the token moves back to the

start vertex.

Correctness. The following pair of lemmas show that the reachability player wins the

one-player reachability switching game if and only if the 3SAT instance is satisfiable.

◮ Lemma 5. If there is a satisfying assignment to the 3SAT formula, then the reachability

player can win the one-player reachability switching game.

Proof. The strategy for the reachability player is as follows: at each variable vertex xi,

choose the branch that corresponds to the value of xi in the satisfying assignment. We

argue that this is a winning strategy. First note that the game cannot be lost in a clause

gadget during the variable phase. Since the assignment is satisfying, the play cannot visit a

clause gadget more than twice (or more than once if the clause only has two variables), and

therefore the edges from the counting gadgets to the fail vertex cannot be used. Hence, the

game will eventually reach the verification phase. At this point, since the strategy always

chooses the same branch, the play will pass through x1, x2, . . . , xn, and then arrive xn+1.

Since this is the target, the reachability player wins the game. ◭

◮ Lemma 6. If the reachability player wins the one-player reachability switching game, then

there is a satisfying assignment of the 3SAT formula.

Proof. We begin by arguing that, if the reachability player wins the game, then he must

have chosen the same branch at every visit to every variable gadget. This holds because xn+1

can only be reached by ensuring that each variable has a branch that is visited at least 3

times. The control gadget causes the reachability player to immediately lose the game if

it is visited 3n + 2 times. Thus, the reachability player must win the game after passing

through the control gadget exactly 3n + 1 times. The only way to do this is to ensure that

each variable has a branch that is visited exactly 3 times during the variable phase.

Thus, given a winning strategy for the game, we can extract a consistent assignment to

the variables in the 3SAT instance. Since the game was won, we know that the game did

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 9

not end in a clause gadget, and therefore under this assignment every clause has at least

one literal that is true. Thus, the assignment satisfies the 3SAT instance. ◭

Hence, we have the following theorem.

◮ Theorem 7. Deciding the winner of a one-player reachability switching game is NP-hard.

4 Two-player reachability switching games

4.1 Containment in EXPTIME

We first observe that solving a reachability switching game lies in EXPTIME. This follows

from the fact that the game can be simulated by an alternating Turing machine, which is

a machine that has both non-deterministic and universal control states. It has been shown

that APSPACE =EXPTIME [2], which means that if we can devise an algorithm that runs in

polynomial space on an alternating Turing machine, then we can obtain an algorithm that

runs in exponential time on a deterministic Turing machine.

It is straightforward to implement a reachability switching game on an alternating Turing

machine. The machine simulates a run of the game. It starts by placing a token on the

staring state. It then simulates each step of the game. When the token arrives at a vertex

belonging to the reachability player, it uses existential non-determinism to choose a move

for that player. When the token arrives at a vertex belonging to the safety player, it uses

universal non-determinism to choose a move for that player. The moves at the switching

nodes are simulated by remembering the current switch configuration, which can be done in

polynomial space. The machine accepts if and only if the game arrives at the target state.

This machine uses polynomial space, because it needs to remember the switch configur-

ation. Thus, we have the following theorem.

◮ Theorem 8. Deciding the winner of a reachability switching game is in EXPTIME.

4.2 PSPACE-hardness

We show that deciding the winner of a two-player reachability switching games is PSPACE-

hard, by reducing true quantified boolean formula (TQBF), the canonical PSPACE-complete

problem, to our problem. Throughout this section we will refer to a TQBF instance

∃x1∀x2 . . . ∃xn−1∀xn · φ(x1, x2, . . . , xn), where φ denotes a boolean formula given in neg-

ation normal form, which requires that negations are only applied to variables, and not

sub-formulas. The problem is to decide whether this formula is true.

Overview. We will implement the TQBF formula as a game between the reachability

player and the safety player. This game will have two phases. In the quantifier phase, the

two players assign values to their variables in the order specified by the quantifiers. In

the formula phase, the two players determine whether φ is satisfied by these assignments

by playing the standard model-checking game for propositional logic. The target state of

the game is reached if and only if the model checking game determines that the formula is

satisfied. This high-level view of our construction is depicted in Fig. 5.

The quantifier phase. Each variable in the TQBF formula will be represented by an

initialization gadget. The initialization gadget for an existentially quantified variable is

shown in Fig. 6. The gadget for a universally quantified variable is almost identical, but the

state di is instead controlled by the safety player.

10 Reachability Switching Games

Formula φ

x1 x2· · · xnstart

target fail target fail target fail

Figure 5 High-level overview of our construction for two players. The dashed lines between

variables are part of the first, quantifier phase ; the dotted line from variable xn to the Formula is

the transition between phases, and the solid edges are part of the second, formula phase.

di

xi ¬xi

fi

from xi−1

target target

to xi+1

fail

1 1

2 2

1

2

Figure 6 The initialization gadget for an ex-

istentially quantified variable xi.

∧1

from fn

∨1 ∧2

x1 ¬x2 ¬x3 x4

Figure 7 The formula phase game for the

formula (x1 ∨ ¬x2) ∧ ¬x3 ∧ x4.

During the quantifier phase, the game will start at d1, and then pass through the gadgets

for each of the variables in sequence. In each gadget, the controller of di must move to either

xi or ¬xi. In either case, the corresponding switching node moves the token to fi, which

then subsequently moves the token on to the gadget for xi+1.

The important property to note here is that once the player has made a choice, any

subsequent visit to xi or ¬xi will end the game. Suppose that the controller of di chooses

to move to xi. If the token ever arrives at xi a second time, then the switching node will

move to the target vertex and the reachability player will immediately win the game. If the

token ever arrives at ¬xi the token will move to fi and then on to the fail vertex, and the

Safety player will immediately win the game. The same property holds symmetrically if the

controller of di chooses ¬xi instead. In this way, the controller of di selects an assignment

to xi. Hence, the reachability player assigns values to the existentially quantified variables,

and the safety player assigns values to the universally quantified variables.

The formula phase. Once the quantifier phase has ended, the game then moves into the

formula phase. In this phase the two players play a game to determine whether φ is satisfied

by the assignments to the variables. This is the standard model checking game for first

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 11

order logic. The players play a game on the parse tree of the formula, starting from the root.

The reachability player controls the ∨ nodes, while the safety player controls the ∧ nodes

(recall that the game is in negation normal form, so there are no internal ¬ nodes.) Each

leaf is either a variable or its negation, which in our game are represented by the xi and ¬xi

nodes in the initialization gadgets. An example of this game is shown in Figure 7. In our

diagramming notation, nodes controlled by the safety player are represented by triangles.

Intuitively, if φ is satisfied by the assignment to x1 through xn, then no matter what the

safety player does, the reachability player should be able to reach a leaf node corresponding

to a true assignment, and as we discussed earlier, he will then immediately win the game.

Conversely, if φ is not satisfied by the assignment, then no matter what the reachability

player does, the safety player can reach a leaf corresponding to a false assignment, and then

immediately win the game.

◮ Lemma 9. The reachability player wins if and only if the QBF formula is true.

The proof can be found in Appendix A. Thus, we have shown the following theorem.

◮ Theorem 10. Deciding the winner of a reachability switching game is PSPACE-hard.

Note that all runs of the game have polynomial length, a property that is not shared by

all reachability switching games. This gives us the following corollary.

◮ Corollary 11. Deciding the winner of a polynomial-length reachability switching game is

PSPACE-complete.

The proof, which contains the argument for containment in PSPACE, is in Appendix A.

4.3 Memory requirements of winning strategies

In this section we will show that both players need exponentially many memory states to

win a reachability switching game. We begin by giving a simple gadget that forces the

x

y

a

b

c

target

target

fail

y

start 1

1

2

2

2

1

Figure 8 A reachability switching game in which the reachability player needs to use memory.

reachability player to use memory. The gadget is shown in Figure 8. The game starts by

allowing the safety player to move the token from x to either a or b. Whatever the choice,

the token then moves to c and then on to y. At this point, if the reachability player moves

the token to the node chosen by the safety player, then the token will arrive at the target

node and the reachability player will win. If the reachability player moves to the node not

chosen by the safety player, the token will move to c for a second time, and then on to the

12 Reachability Switching Games

fail vertex, which is losing for the reachability player. Thus, every winning strategy of the

reachability player must remember the choice made by the safety player.

Observe that we can create a similar gadget that forces the safety player to uses memory,

by swapping the two players. In this modified gadget, the safety player would have to chose

the vertex not chosen by the reachability player. Thus, in a reachability switching game,

winning strategies for both players need to use memory.

A memory lower bound. We can now use this gadget to show a lower bound on the

amount of memory that is need to win a reachability switching game.

◮ Lemma 12. In a reachability switching game, winning strategies for both players may

need to use 2n memory states, where n is the number of switching nodes.

Corresponding upper bound. We can also show that exponential memory is sufficient

in a two-player reachability switching game. We say that a strategy is a switch configuration

strategy if it simply remembers the current switch configuration. Any such strategy uses

at most exponentially many memory states. For games with binary switch nodes, these

strategies use exactly 2n memory states, where n is the number of switching nodes.

◮ Lemma 13. In a reachability switching game, both players have winning switch configur-

ation strategies.

The proofs of Lemmas 12 and 13 can be found in Appendix A.

5 Zero-player reachability switching games

In this section we consider zero-player reachability switching games, i.e., games with VR =

VS = ∅. As an initial hardness result for this case, we show that deciding the winner of

a zero-player game is NL-hard. To do this, we reduce from the problem of deciding s-t

connectivity in a directed graph.

The idea is to make every node in the graph a switching node. We then begin a walk

from s. If, after |V | steps we have not arrived at t, we go back to s and start again. The

idea being that, if there is a path from s to t, then the switching nodes must eventually send

the token along that path.

More formally, given a graph (V, E), we produce a zero-player reachability switching

game played on V ×V ∪{fin}, where the second component of each state is considered to be

a counter that counts up to |V |. Every vertex is a switching node, the start vertex is (s, 0),

and the target vertex is fin. Each vertex (v, k) with v 6= t k < |V | has outgoing edges to

(u, k +1) for each outgoing edge (v, u) ∈ E. Each vertex (v, |V |) with v 6= t has a single edge

to (s, 0). Every vertex (t, k) has a single outgoing edge to fin. Given (V, E), this game can

be constructed in logarithmic space by looping over each element in V × V and producing

the correct outgoing edges.

◮ Theorem 14. Deciding the winner of a zero-player reachability switching game is NL-hard

under logspace reductions.

The proof can be found in Appendix B.

6 Further work

Many interesting open problems remain. For the zero-player case, there is an extremely

large gap between the upper bounds of NP ∩ coNP and PLS and the easy lower bound of NL

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 13

that we showed here. We conjecture that the problem is in fact P-complete, but despite

much effort, we were unable to improve upon the upper or lower bounds.

For the one-player case we have shown tight bounds. For the two-player case we have

shown a lower bound of PSPACE and an upper bounds of EXPTIME. We conjecture that

the lower bound can be strengthened, since we did not make strong use of the memory

requirements that we identified in Sect. 4.3.

Finally, here we studied the problem of reachability, which is one of the simplest model

checking tasks. What is the complexity of model checking more complex specifications?

References

1 Hoda Akbari and Petra Berenbrink. Parallel rotor walks on finite graphs and applications

in discrete load balancing. In Proc. SPAA 2013, pages 186–195, 2013.

2 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. Assoc.

Comput. Mach., 28(1):114–133, 1981.

3 Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.

4 Joshua Cooper, Benjamin Doerr, Tobias Friedrich, and Joel Spencer. Deterministic random

walks on regular trees. Random Structures Algorithms, 37(3):353–366, 2010.

5 Joshua Cooper, Benjamin Doerr, Joel Spencer, and Gábor Tardos. Deterministic random

walks on the integers. European J. Combin., 28(8):2072–2090, 2007.

6 Joshua N. Cooper and Joel Spencer. Simulating a random walk with constant error. Combin.

Probab. Comput., 15(6):815–822, 2006.

7 Benjamin Doerr and Tobias Friedrich. Deterministic random walks on the two-dimensional

grid. Combin. Probab. Comput., 18(1-2):123–144, 2009.

8 Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jirí Matousek, and Emo Welzl.

ARRIVAL: A zero-player graph game in NP ∩ coNP. Technical report, 2016.

https://arxiv.org/abs/1605.03546 .

9 Tobias Friedrich, Martin Gairing, and Thomas Sauerwald. Quasirandom load balancing.

SIAM J. Comput., 41(4):747–771, 2012.

10 Jan Friso Groote and Bas Ploeger. Switching graphs. International Journal of Foundations

of Computer Science, 20(05):869–886, 2009.

11 Alexander E Holroyd, Lionel Levine, Karola Mészáros, Yuyal Peres, James Propp, and

David B Wilson. Chip-firing and rotor-routing on directed graphs. In In and Out of

Equilibrium 2, pages 331–364. Springer, 2008.

12 Alexander E. Holroyd and James Propp. Rotor walks and Markov chains. In Algorithmic

probability and combinatorics, volume 520 of Contemp. Math., pages 105–126. Amer. Math.

Soc., Providence, RI, 2010.

13 Karthik C. S. Did the train reach its destination: The complexity of finding a witness. Inf.

Process. Lett., 121:17–21, 2017.

14 Bastian Katz, Ignaz Rutter, and Gerhard Woeginger. An algorithmic study of switch

graphs. Acta Inform., 49(5):295–312, 2012.

15 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-

abilistic real-time systems. In Proc. CAV 2011, volume 6806 of Lecture Notes Comput. Sci.,

2011.

16 Christoph Meinel. Switching graphs and their complexity. In Proc. MFCS 1989, volume

379 of Lecture Notes Comput. Sci., pages 350–359, 1989.

17 Vyatcheslav B. Priezzhev, Deepak Dhar, Abhishek Dhar, and Supriya Krishnamurthy. Eu-

lerian walkers as a model of self-organized criticality. Phys. Rev. Lett., 77(25):5079, 1996.

18 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

https://arxiv.org/abs/1605.03546

14 Reachability Switching Games

19 Klaus Reinhardt. The simple reachability problem in switch graphs. In Proc. SOFSEM

2009, volume 5404 of Lecture Notes Comput. Sci., pages 461–472, 2009.

20 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Appl. Math.,

8(1):85–89, 1984.

J. Fearnley, M. Gairing, M. Mnich, and R. Savani 15

A Proofs for Section 4

Proof of Lemma 9.

Proof. If the QBF formula is true, then during the quantifier phase, no matter what assign-

ments the safety player picks for the universally quantified variables, the reachability player

can choose values for the existentially quantified variables in order to make φ true. Then,

in the formula phase the reachability player has a strategy to ensure that he wins the game,

by moving to a node xi or ¬xi that was used during the quantifier phase.

Conversely, and symmetrically, if the QBF formula is false then the safety player can

ensure that the assignment does not satisfy φ during the quantifier phase, and then ensure

that the game moves to a node xi or ¬xi that was not used during the quantifier phase.

This ensures that the safety player wins the game. ◭

Proof of Corollary 11.

Proof. Hardness follows from Theorem 10. For containment, observe that the simulation by

an alternating Turing machine described in Section 4.1 runs in polynomial time whenever

the game terminates after a polynomial number of steps. Hence, we can use the fact that AP

=PSPACE [2] to obtain a deterministic polynomial space algorithm for solving the problem.

◭

Proof of Lemma 12.

Proof. Consider a game with n copies of the memory gadget shown in Figure 8, but modified

so that the following sequence of events occurs.

1. The safety player selects a or b in all gadgets, one at a time.

2. The safety player then moves the game to one of the y vertices in one of the gadgets.

3. The reachability player selects a or b as normal, and then either wins or loses the game.

The reachability player has an obvious winning strategy in this game, which is to remember

the choices that the safety player made, and then choose the same vertex in the third step.

Since the safety player makes n binary decisions, this strategy uses 2n memory states.

On the other hand, if the reachability player uses a strategy σ with k < 2n memory

states, then the safety player can win the game in the following way. There are 2n different

switch configurations that the safety player can create at the end of the first step of the

game. By the pigeon-hole principle there exists two distinct configurations C1 and C2 that

are mapped to the same memory state by σ. The safety player selects a gadget i that differs

between C1 and C2, and determines whether σ selects a or b for gadget i. He then selects

the configuration that that is consistent with the other option, so if σ chooses a the safety

player chooses the configuration Ci that selects b. He then sets the gadgets according to Ci

in step 1, and moves the game to gadget i in step 2. The reachability player will then select

the vertex not chosen in step 1, he loses the game.

Finally, observe that we can obtain the same lower bound for the safety player by swap-

ping the roles of both players in this game. ◭

Proof of Lemma 13.

16 Reachability Switching Games

Proof. Let G = (V, E, VR, VS, VSwi, o, s, t) be a reachability switching game, and let C denote

the set of all switch configurations in this game. Consider the “blown-up” reachability game

G′ played on V × C, where there are no switching nodes, but instead the successor of a

vertex (v, C) with v ∈ VSwi is determined by C. It is straightforward to show that the

reachability player wins the game G′ if and only if he wins the original game. Both players

in a reachability game have positional winning strategies. Therefore, if a player can win

in G′, then he can also win in G using a switch configuration strategy that always plays

according to the positional winning strategy in G′. ◭

B Proof for Section 5

Proof. We must argue that there is a path from s to t if and only if the zero-player reach-

ability game eventually arrives at fin. By definition, if the game arrives at fin, then there

must be a path from s to t, since the game only uses edges from the original graph.

For the other direction, suppose that there is a path from s to t, but the game never

arrives at fin. By construction, if the game does not reach fin, then (s, 0) is visited infinitely

often. Since (s, 0) is a switching state, we can then argue that the vertex (v, 1) is visited

infinitely often for every successor v of s. Carrying on this argument inductively allows us

to conclude that if there is a path of length k from s to v, then the vertex (v, k) is visited

infinitely often, which provides our contradiction. ◭

	1 Introduction
	2 Preliminaries
	3 One-player reachability switching games
	3.1 Containment in NP
	3.2 NP-hardness

	4 Two-player reachability switching games
	4.1 Containment in EXPTIME
	4.2 PSPACE-hardness
	4.3 Memory requirements of winning strategies

	5 Zero-player reachability switching games
	6 Further work
	A Proofs for Section ??
	B Proof for Section ??

