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Abstract

Artificial Neural Networks (ANNs) are commonly used in place of expensive

models to reduce the computational burden required for uncertainty quan-

tification, reliability and sensitivity analysis. ANN with selected architecture

is trained with the back-propagation algorithm from few data representatives

of the input/output relationship of the underlying model of interest. How-

ever, different performing ANNs might be obtained with the same training

data as a result of the random initialization of the weight parameters in each

of the network, leading to an uncertainty in selecting the best performing

ANN. On the other hand, using cross-validation to select the best perform-

ing ANN based on the ANN with the highest R2 value can lead to biassing

in the prediction. This is as a result of the fact that the use of R2 cannot

determine if the prediction made by ANN is biased. Additionally, R2 does
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not indicate if a model is adequate, as it is possible to have a low R2 for a

good model and a high R2 for a bad model. Hence in this paper, we propose

an approach to improve the robustness of a prediction made by ANN. The

approach is based on a systematic combination of identical trained ANNs,

by coupling the Bayesian framework and model averaging. Additionally, the

uncertainties of the robust prediction derived from the approach are quan-

tified in terms of confidence intervals. To demonstrate the applicability of

the proposed approach, two synthetic numerical examples are presented. Fi-

nally, the proposed approach is used to perform a reliability and sensitivity

analysis on a process simulation model of a UK nuclear effluent treatment

plant developed by National Nuclear Laboratory (NNL) and treated in this

study as a black-box employing a set of training data as a test case. This

model has been extensively validated against plant and experimental data

and used to support the UK effluent discharge strategy.
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1. Introduction

Complex critical systems, such as bridges, buildings, nuclear plants, and

air-crafts, are designed to fulfil specific performance requirements despite the

unavoidable uncertainty. Therefore, their respective designs should be able

to deal with changing conditions driven by nature. Due to the infeasibility

(i.e. huge cost, time) in testing the performance of these systems for varying

levels of uncertainties, mathematical models and virtual prototypes are used
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in simulating the behaviour of these systems. This advance in computational

development has allowed engineering practitioners to reduce the number of

expensive test required to qualify a new system/product. On the other hand,

a quantifiable mathematical model simulating the performance of a system

is viewed to be composed of three main elements such as: 1) an input vector

that represents the state variables of the system, 2) a mathematical model

defining the system of interest, which is usually seen as a black-box, and

finally 3) an output vector that represents the performance of the system.

Two types of uncertainties that affects the state variables of the mathematical

model are usually considered: 1) randomness due to inherent variability in

the system behaviour (aleatory uncertainty) and, 2) imprecision due to lack of

knowledge and information on the system (epistemic uncertainty). Usually,

the design of complex critical systems requires the explicit consideration of

the different levels of uncertainties affecting the state variables of the system

for an adequate performance assessment [1, 2].

1.1. Reliability and Sensitivity Analysis for Complex System Performance

Evaluation

To quantify the performance of complex critical systems in the presense

of uncertainties, reliability analysis is usally carried out. In mathematical

terms, the state variables of a system is defined by a vector collection X =

(X1, X2, ..., Xp) of state variables. The performance criteria of the system

(i.e. limit state) g(X) divides the system state into two regions (i.e. safe

domain S = X : g(X) > 0 and a failure domain F = X : g(X) ≤ 0). The

probability that the system would not meet an expected performance using

Monte Carlo method can be expressed as p̂F = 1/N
∑N

i I(g(Xi)), where the
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indicator function I(g(Xi)) is 1 if g(Xi) is negative or 0 otherwise. It should

be noted that among the numerical methods proposed in several literature to

estimate p̂F , simulation methods [3] have attracted significant attention due

to their flexibility and accuracy. Simulation methods are generally applicable

to varying systems, but require a balance between computational efficiency

and accuracy. These simulation methods includes: Monte Carlo (MC) [4],

Importance Sampling [5], Directional Sampling [6], Line Sampling [7, 8],

Subset Simulation [9, 10] etc. Each of these simulation methods have special

features to target different classes of problems. For instance, in a scenario

when the target failure probability p̂F is less than 10−4, direct Monte Carlo

method [4] is not suited for this problem. Hence, a simulation approach

that is suitable for the problem can be adopted (i.e. Subset simulation,

Line sampling). Similarly, a system performance can only be improved if

the state variables that affect the performance significantly are identified

and focused on. Sensitivity analysis is used to achieve this by identifying

and ranking the contributions of each state variable of the system to the

variability in the performance. Most often, the variance based method to

sensitivity analysis [11] is adopted when assessing the contributions of the

state variables. This method is a class of simulation approaches that is used

to decomposes the output variance into parts that can be attributed to the

inputs and interactions between them. The sensitivity indices (i.e. state

variable ranking) using this approach are estimated by Si = Vi/V ar(Y ) and

Ti = 1 − V arX∼i[EX∼i(Y |X∼i)]/V ar(Y ), where Si is the contribution of a

single state variable and Ti is the contribution due to interactions among the

state variables.
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1.2. Need for Surrogate Models

Unfortunately, reliability and sensitivity analysis using the simulation

approach are computationally demanding tasks, requiring a huge number

of model runs. To be specific, when performing reliability analysis on a

high reliable system with a low failure probability (i.e. pF < 10−4), a huge

number of samplesN is required to accurately compute the failure probability

(i.e.N > 1/pF ). Similarly, when performing sensitivity analysis on a model

with p number of state variables using the variance based method [12], the

total number of model evaluations EM follows the relationship EM = (p +

2)N , where N is the number of samples required. The number of samples

N is usually proportional to the dimension of the model being analysed.

For instance, Patelli et al., (2012) [13] required greater than 105 samples to

accurately compute the sensitivity indices of the Gravity Field and Steady-

State Ocean Circulation Explorer (GOCE) satellite due to the complexity of

the finite element (FE) model used (i.e. p > 3000)(see ref [14] also). In a

similar fashion, Baroni and Tranola (2014) [15] found out that the sensitivity

indices convergence was reached using N = 1024 samples for a model of p = 5

uncertain parameters. Generally speaking, the computational cost required

for performing the aforementioned analysis can vary amongst different set of

models. This is as a result of the time required for a single run of the model.

Therefore, to tackle these huge computation restrictions, alternative methods

that significantly reduces this computational burden must be sourced out.

1.3. Artificial Neural Networks for Reliability and Sensitivity Analysis

Artificial Neural Network (ANN) is a computing device inspired by the

neurology of the brain [16]. Over the past few decades, ANN has proven to be
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an extremely valuable tool for reducing the computational burden required

for performing reliability and sensitivity analysis. For instance, in refs [13,

17–20] ANNs have been used as substitutes to replace expensive models in

order to speed up their analysis. The ANNs in the aforementioned literature

have been trained with the back-propagation algorithm [21] based on input-

output training data set Dtrain(x, y) extracted from the expensive model of

interest. The back-propagation algorithm efficiently computes the slope of

the gradient by employing a gradient descent, following the slope of the error

function downward along, and simultaneously changing all the weight values

of the network. The weight parameters are constantly tuned until the value

no longer decreases. However, a limitation of using the back-propagation

algorithm to train an ANN is that different performing ANNs (i.e. with

identical architecture) arise from the same training data. This is as a result

of the gradient decent algorithm used to minimize the error function of an

ANN, getting trapped on a different error surface in each ANN. Consequently,

cross-validation is utilized to select the best performing ANN in the set by

choosing the ANN with the lowest validation regression error (i.e. highest

R2). However, a key limitation of using R2 to judge the performance of ANN

is that it cannot determine whether the weight parameters and predictions

of the ANN are biased, as it is possible to have a low R2 value for a good

ANN, and a high R2 value for an ANN that does not fit the data. Moreover,

if the validation data is partially corrupted with noise, the evaluation of the

R2 will be biased. Hence, we make a claim (see Section 3.2 for verification

of claim) that the use of R2 value to select the best performing ANN in

a set of different performing ANNs will introduce biassing in the quantity
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predicted by the selected ANN. Therefore, in this paper, we aim to address

this issue by proposing a simple novel approach used to reduce the biasing

and improve the robustness of the prediction made by an ANN. The structure

of this paper is organized as follows: In Section 2, the proposed approach is

discussed. Next, two synthetic numerical examples are presented in Section

3 to demonstrate the applicability of the proposed approach. This is followed

by applying the approach to a real case study involving a radioactive waste

treatment plant. Finally, conclusions are provided in Section 5.

2. Proposed Approach

The proposed approach in this paper is aimed towards improving the ro-

bustness of the prediction made by an ANN when used to perform reliability

and sensitivity analysis. The underlying principle behind the proposed ap-

proach is to construct a set of ANNs (i.e. same architecture) based on the

same training data Dtrain(x, y). By doing so, a distribution of similar ANNs

whose error functions are trapped in different local minima is created. The

major highlight of this approach is that the solution space of the error func-

tion is exploited as many times as possible with the possibility of locating

a global minima on the error surface. Further, Bayes’ theorem is used to

evaluate the posterior probability of each of the trained ANN based on their

likelihood to predict the training data. This is followed by the use of a model

averaging technique (adjustment factor approach see [22]) to combine the

total prediction made by all the ANNs in the set to yield a robust prediction

that converges to the true value. Finally, the model uncertainty propagated

to the predicted quantity is quantified in terms of confidence intervals.
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2.1. Bayesian Model Selection for Identical Trained Artificial Neural Net-

works

Various authors (see e.g.[23, 24]) have used Bayesian model selection

(BMS) technique as a means of selecting an appropriate model structure for

their respective problems, by computing the model evidence based on Markov

Chain Monte Carlo (MCMC) posterior simulations of the model parameters

or using approximation techniques to estimate the posterior probability of

a particular model. Hence, BMS techniques have been used in place of the

standard optimization training technique (e.g. back-propagation) to identify

the “best” model.

Conversely, the aim of this paper is different. The optimal network ar-

chitecture of the ANN is assumed to be known (e.g. determined by heuristic

approach and trained by the back-propagation algorithm). Then, the opti-

mal ANN is trained multiple times and a set of different performing networks

is obtained. BMS have been used to select and rank the identical trained

networks. By so doing, the posterior probability of a network in the identical

set can be defined as the degree of belief that its given prediction is true,

given that one of the identical trained network in the set has its error function

located in the global minima. However, from a practical point of view all the

networks in the set are just approximations of a high fidelity model. For this

reason, it is more appropriate to interpret the posterior probability as the de-

gree of belief that a particular ANN within the set is the best approximation

of the underlying model of interest. Therefore, given a set of M identical

competing ANNs (N1, N2, ..., NM) trained with same data Dtrain(x, y), the

posterior probability of the kth ANN, i.e. the Nk in the set, is defined by
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Eq.(1):

P (Nk|Dtrain) =
P (Dtrain(x, y)|Nk)P (Nk)∑M
q=1 P (Dtrain(x, y)|Nq)P (Nq)

(1)

where P (Dtrain(x, y)|Nk) is the likelihood of training data Dtrain(x, y) for

the Nk ANN, and P (Nk) is the prior probability of Nk, which is the ANN

probability evaluated before observing training data Dtrain(x, y). The prior

ANN probability P (Nk) can be specified depending on the existing prior

knowledge about the credibility of ANN Nk, or it can be given as a uniform

probability, P (Nk) = 1/M , if no additional information is provided. The ad-

vantage of assigning uniform prior probability to P (Nk) is that the difficulty

of estimating the prior probability numerically is avoided. The likelihood

P (Dtrain(x, y)|Nk) may be thought of as the probability of observing the

training data Dtrain(x, y) under ANN Nk. It supplies a relative measure of

how well the ANNNk is supported by the training dataDtrain(x, y). Since the

denominator in Eq.(1) is common for all the ANNs, the posterior ANN prob-

ability is proportional to prior probability and the likelihood. The likelihood

of each ANN is evaluated by measuring the degree of agreement between the

training data Dtrain(y) and the response ŷ for each ANN. Hence, a proba-

bilistic relationship between training data Dtrain(x, y) and ANN predictions

ŷ involving uncertainty can be described. Typically, the bias function and

noise are included as parts of the probabilistic relationship to match ANN

predictions with training data. The bias function captures the discrepancies

between the expensive model responses and predictions made by the ANN.

The noise is usually assumed to be independent and identically distributed

normal random variable with a mean of zero [25]. Various authors [26–28]

have used the Bayesian statistical methodology to quantify the uncertainty
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in the bias function modelled as a Gaussian process. In their works, a math-

ematical formulation that combines bias function associated with the ANN

and noise from training data is utilized to describe the probabilistic rela-

tionship between the training data Dtrain(x, y) and ANN predictions ŷ. The

mathematical formulation of this probabilistic relationship is given by the

following equation:

Dtrain(y) = ŷ − ε (2)

where ε is a random variable that covers both bias associated with the ANN

prediction ŷ and the noise in the response training data Dtrain(y). ε is as-

sumed to be an independent identically distributed random variable with a

mean µ of zero. The use of ε with zero mean does not shift ANN predic-

tion ŷ. This reflects the fact that ŷ is the most probable prediction value

for the ANN. The bias function is not included as a separate term in the

probabilistic relationship. This is due to the fact that introducing a sepa-

rate bias function results in shifting the prediction ŷ of the ANN from the

initially predicted value. The likelihood P (Dtrain(x, y)|Nk) of training data

Dtrain(x, y) for ANN Nk is evaluated by observing where the training data

points Dtrain(y) are located in the distribution of ŷ estimated by Nk. The

procedures to estimate the distribution P (ŷ|Nk) of Nk and the likelihood

P (Dtrain(x, y)|Nk) is given. First, the uncertainty in errors of predictions ŷ

made by Nk is quantified by introducing an assumption that the prediction

errors are independent and identically distributed normal random variable

with a mean µ of zero. The error of the prediction of the kth network is

represented by the following:

εki = Dtrain(yi)− ŷi, εki ∼ N(0, σ2
k), i = 1, 2, ..., N (3)
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where Dtrain(yi) is the ith training response output data, ŷi the prediction of

the training data made by Nk, σ2
k is the variance of prediction error εki, and N

the number of samples in the training data. The prediction error εki measured

is considered to be a random sample from a normal distribution with a mean

(µ) of zero and variance σ2
k. Using the principle of maximum likelihood

estimation (MLE) (see [29]), the variance σ2
k for Nk can be estimated as:

σ2
k =

1

N

N∑
i=1

ε2ki (4)

Secondly, the predictive distribution P (ŷ|Nk) of response ŷ under model Nk

is created by including the prediction error obtained in the previous step into

the prediction of ŷ made by Nk. This predictive distribution is defined by

the following equation:

P (ŷ|Nk) = Dtrain(y) + εki (5)

Lastly, assuming that the residuals between the training data Dtrain(x, y)

and Nk output ŷ are normally and independently distributed with a mean of

zero and constant variance σ2
k, the likelihood function P (Dtrain(x, y)|Nk) is

approximated by:

P (Dtrain(x, y)|Nk) ≈ 1√
2πσ2

k

1

N

N∑
i=1

exp{−[yi − ŷki]2

2σ2
k

} (6)

2.2. Robust Artificial Neural Network Prediction

To obtain a robust prediction from an ANN, the estimates made by all

the subsequent trained ANNs are combined using model averaging technique.
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Specifically, the adjustment factor approach (see [22]) which is a model aver-

aging technique is combined with Bayes’ theorem. With this approach, the

ANN having the highest posterior probability is used in conjunction with

other respective ANNs trained to correct the bias estimate predicted by a

single ANN. The adjustment factor is evaluated by assuming the error be-

tween the prediction of all the subsequent trained ANNs and the training

data are normally distributed. For the quantification of the robust value, the

posterior probability computed for each ANN is used as a weighting. A dis-

tribution from the response predicted by the ANNs is created by introducing

the adjustment factor Af which is characterized by a normal distribution.

The robust ANN prediction can be obtained from the following equation:

yrobust = ŷ∗ + Af (7)

where ŷ∗ represents the point estimate of the best ANN in the set with the

highest probability, Af represents the adjustment factor, and yrobustrepresent

the robust prediction which also incorporates the model uncertainty. Since

the adjustment factor Af is assumed to be a normal distribution, the expected

value and variance of the adjustment factor Af is given by the following

relationships:

E(Af ) =
M∑
k=1

P (Nk|Dtrain)(ŷk − ŷ∗) (8)

V ar(Af ) =
M∑
k=1

P (Nk|Dtrain)(ŷk − E(yrobust))
2 (9)

Similarly, the expected value and variance of the robust prediction yrobustcan

be estimated from the following relationships:

E(yrobust) = ŷ∗ + E(Af ) (10)

12



V ar(yrobust) = V ar(Af ) (11)

where E(Af ) and V ar(Af ) represents the expected value and variance of

the adjustment factor, and E(yrobust)and V ar(yrobust)represents the expected

value and variance of the robust estimate.

2.3. Confidence Interval for Robust Estimate

To quantify the uncertainty in the robust prediction yrobustdue to model

uncertainty, confidence intervals are established. In particular, 5th and 95th

percentiles derived from the robust prediction are used quantify the model

uncertainty. In theory, this interval is likely to contain the true estimated

value. As the model uncertainty is assumed to follow normal distribution,

the confidence intervals (see [30]) are calculated from the following equations:

CI = E(yrobust) + 1.96
√
V ar(yrobust) (12)

CI = E(yrobust)− 1.96
√
V ar(yrobust) (13)

where CI and CI represents the upper and lower confidence intervals of the

robust estimate.

3. Numerical Examples

To demonstrate the applicability of the approach presented, two synthetic

numerical examples are used for illustrative purpose.
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3.1. Example 1

The first example presents a 2-D non-linear function. The output of the

function Y is represented by the equation:

Y = 10cos(X1) + 10sin(X2) (14)

where the model state variables X1 and X2 are uniformly and independently

distributed in the range of 0 and 360 degrees. For this current reliability

analysis, the failure criteria (F = g(X) ≤ 0) of the model is defined as when

the model output Y exceeds 15. The surface and contour plot of the function

is shown in Fig.1 and 2.
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Figure 1: Surface Plot of Safety Function
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Figure 2: Contour Plot of Safety Function

Given that the proposed will be tested, the objectives of this example will

involve training multiple ANNs based on the same architecture, compute the

failure probability p̂F from each of the each of the ANNs based on the failure

criteria (F = g(X) ≤ 0) defined, compute the robust estimate of (̂pF ), and

finally quantify the uncertainty in the the robust estimate of (̂pF ) due to

model uncertainty.

3.2. Analysis

Training samples Dtrain(x, y) of size N = 100 have been generated via

Latin hypercube sampling (LHS) algorithm[31] from Eq.(14). Two sets Z1 =

Ni, i = 1, 2, ...M and Z2 = Ni, i = 1, 2, ...M composed of M = 10 identical

ANNs have been trained based on Dtrain(x, y). Specifically, in the first set

(Z1), all the training samples in Dtrain(x, y) have been used to train the ANNs

to maximize their predictive performances. For the second set Z2, 80% of the
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training samples Dtrain have been used to train the ANNs and the remaining

20% used for validation. The network architecture chosen for the ANNs

in both sets composed of three hidden layers (2,5,1). Next, the posterior

probability of the ANNs in set Z1 has been estimated using Bayes’ formula

given in Eq. (1) by assigning uniform prior probability P (Nk) = 1/M to each

ANN. On the other hand, the R2 validation values for the ANNs in set Z2

have been estimated based on the validation samples. The results of these

analysis are given in Table.1 for robust comparison. It should be noted that

ith ANN in both set (Z1 and Z2) have been trained inside the same iteration

loop, hence it is assumed that their resultant behaviour should be similar,

except that the ANNs in Z1 are expected to have a higher performance

capability due to more training samples used to train them. As shown in

Table.1, although the ANNs Ni, i = 1, 2, ..M in sets Z1 and Z2 are identical

as they have been trained in the same iteration loop, there is no agreement

between the posterior probability estimated from the ANNs in Z1 and the

corresponding R2 validation values estimated from the ANNs in Z2. This

finding is further supported by the fact that the best model selected (N1)

based on its posterior probability has the lowest R2 value. Hence, we can

support our claim that the use of R2 value to select the best model is a

biased method. Further, to implement the proposed approach, the ANNs

in Z1 have been chosen as they have higher predictive capability (i.e. more

samples used to train them). To accurately compute a robust estimate of

p̂F , 104 Monte Carlo simulation runs have been used for each ANN, and the

proposed approach presented have been used to average out the prediction

made by each ANN model into a robust value that is converges to the true

16



value. Finally, the model uncertainty propagated to robust prediction of p̂F

has been quantified in terms of confidence intervals estimated from Eq.(12)

and Eq.(13).

Table 1: Simulation Results for Non-linear Function

ANN P (Nk|D)(Z1) R2(Z2) p̂F (Z1) σ2
k(Z1)

1 9.8E-1 0.9850 0.080 0.0430

2 1.6E-3 0.9993 0.088 0.0553

3 7.1E-3 0.9993 0.078 0.0547

4 8.7E-3 0.9929 0.086 0.6188

5 2.8E-6 0.9992 0.087 0.0603

6 7.0E-4 0.9993 0.076 0.0583

7 4.0E-4 0.9992 0.090 0.0597

8 3.0E-3 0.9993 0.105 0.0532

9 6.4E-8 0.9988 0.081 0.0859

10 6.9E-8 0.9988 0.080 0.0913
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Figure 3: Model Uncertainty Propagated to p̂F Using the Proposed Approach

3.3. Verification of the Proposed Approach for Reliability Analysis

To verify that the true value of p̂F falls within the robust confidence

interval derived from the approach, the real model given in Eq.(14) has

been used to estimate the true value of p̂F adopting the same failure cri-

teria (i.e. Y > 15). Similarly, 104 Monte Carlo simulation runs have been

used to estimate the true value of the failure probability p̂F = 0.0870. This

value obtained (p̂F = 0.0870) verifies that the proposed approach is robust

enough to estimate a prediction that converges to the true value. Finally,

to investigate the number of ANNs that must be trained for the predic-

tion (i.e. p̂F ) that converges to the true unbiased value, a different number

(M = 10, 100, 1000, 10000) of ANNs have been trained repeatedly adopting

the proposed approach. For each set of (M = 10, 100, 1000, 10000) ANNs

trained, the confidence intervals CI, CI and expected value of the robust
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prediction E(yadj) has been estimated. The results are shown in Fig.(4).
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Figure 4: Confidence Intervals of pF for Different Number of Trained ANNs

From the results shown in Fig.4, it is evident that as the number of ANNs

trained increases, the robust prediction obtained from the approach converges

to the true value. The reason for this outcome is that as more identical

ANNs are being trained, the error function solution space is explored many

times as possible, hence, the global minimum of the error function is more

likely to be reached during this exploration. Thus, the value estimated from

the proposed approach is likely to approach the true value. On the other

hand, although the computational cost required to achieve the best solution

of the predicted quantity using the approach is computationally expensive,

parallelization strategies could be adopted and incorporated into the analysis

to improve the computational efficiency of the approach.
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3.4. Example 2

The second example used to test the proposed approach adopts the well

known the Ishigami function. This function is often used as a benchmark

model to test different sensitivity analysis methods. The function is repre-

sented by the following equation:

f(X) = sin(X1) + asin2X2 + bX34sin(X1) (15)

In this example, the numerical values chosen for a and b are 7 and 0.1 re-

spectively. The parameters Xi, i = 1, 2, 3 are uniformly distributed in the

interval of −π and π. The surface plot of the non-linear function is shown in

Fig.5.
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Figure 5: Ishighami fuction: Relationship between X1 and X2

The overall objective of this example is to adopt the proposed approach

to increase the robustness of the sensitivity indices predicted by ANN and

quantify the ANN model uncertainties.
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3.5. Analysis

Here, training samples Dtrain of size N = 100 have been generated via

Latin hypercube algorithm [31]. Once again, two sets Z1 = Ni, i = 1, 2, ...M

and Z2 = Ni, i = 1, 2, ...M containing M = 10 ANNs with a three hidden

layer configuration of (3,13,1) have been constructed and used as a substitute

for the Ishigami function. In a similar fashion as carried out in the first

example, the ANNs in the first set (Z1) have been trained with 100% of

Dtrain(x, y), while 80% Dtrain(x, y) have been used to train the ANNs in the

second set (Z2), and the remaining 20% used to compute the R2 validation

error. Using Bayes’ formula given in Eq. (1) the posterior probability of each

ANN in Z1 have been estimated by assuming a uniform prior probability

P (Nk) = 1/M . Tables.2 and 3 shows the summary of the results obtained.

Again, comparing the posterior probability and the R2 validation error shows

that there is no correlation between them. For instance, the 9th and 10th ANN

have the highest R2 values, however, their respective posterior probability

are relatively low compared to other ANNs. Hence, selecting them based on

their R2 validation error can result to biased values, when used for prediction.

Henceforth, the ANNs in Z1 have been selected to implement the proposed

approach. To compute the robust predicted quantity, Saltelli’s algorithm

[32] has been used to estimate Si and Ti for all the ANNs adopting N = 105

Monte Carlo samples. Further, the proposed approach has been used to

combine the sensitivity indices estimated to give a robust estimate. Finally,

the model uncertainties propagated to the robust estimates of the sensitivity

indices are quantified in terms of confidence intervals (see Tables. 4 and 5).
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Table 2: Quantities Estimated from Identical ANNs (NB: Xi, i = 1, 2, 3 is the First Order

Sensitivity Indices Estimated from Z1)

ANN R2(Z2) σ2
k(Z1) X1(Z1) X2(Z1) X3(Z1)

1 0.9549 0.5382 0.3266 0.4647 0.0014

2 0.9546 0.5462 0.3253 0.4673 0.0009

3 0.9548 0.4826 0.3210 0.4618 0.0006

4 0.9604 0.4405 0.3276 0.4681 0.0000

5 0.9572 0.4983 0.3167 0.4672 0.0054

6 0.9623 0.4404 0.3204 0.4552 0.0053

7 0.9567 0.4842 0.3299 0.4657 0.0008

8 0.9552 0.5059 0.3305 0.4611 0.0007

9 0.9754 0.2225 0.3130 0.4407 0.0025

10 0.9741 0.5537 0.3352 0.4763 0.0075
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Table 3: Quantities Estimated from Identical ANNs (NB: Xi, i = 1, 2, 3 is the Total Effect

Sensitivity Indices Estimated from Z1)

ANN P (Nk|D)(Z1) X1(Z1) X2(Z1) X3(Z1)

1 6.6E-7 0.5338 0.4635 0.2105

2 3.3E-7 0.5295 0.4575 0.2074

3 1.5E-4 0.5357 0.4588 0.2059

4 1.5E-2 0.5338 0.4657 0.2140

5 3.1E-6 0.5403 0.4697 0.2090

6 1.5E-2 0.5230 0.4521 0.1986

7 1.3E-4 0.5393 0.4642 0.2161

8 1.5E-5 0.5343 0.4602 0.2063

9 1.2E-4 0.5428 0.4387 0.2356

10 1.6E-5 0.5392 0.4730 0.2180

Table 4: Quantified Uncertainty in Robust Pridiction for First Order Sensitivity Indices

Parameter CI CI V ar(Si) E(Si)

X1 0.3138 0.3347 7.9E-6 0.3139

X2 0.4416 0.4766 18.3E-6 0.4418

X3 0.0029 0.0070 5.1E-6 0.0030
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Table 5: Quantified Uncertainty in Robust Pridiction for Total Effect Sensitivity Indices

Parameter CI CI V ar(Si) E(Si)

X1 0.5429 0.5462 27E-6 0.5430

X2 0.4388 0.4787 39E-6 0.4389

X3 0.2357 0.2365 40E-6 0.2358

3.6. Verification of Proposed Approach for Sensitivity Analysis

To verify the robust sensitivity indices obtained from the approach con-

verges to the true value, a comparison has been made with the predicted

value estimated from the real model. Adopting N = 105 Monte Carlo sam-

ples, the real sensitivity indices have been computed directly from the real

model with Saltelli’s algorithm [32] (see Table.6) The results show that the

robust values obtained from the approach is close to the real value estimated

from the real model. Hence, we conclude that our approach is sufficient

enough to increase the robustness of the prediction made by ANN.

Table 6: Sensitivity Indices Estimated from the Real Model

Parameter First Order Indices Total Effect Indices

X1 0.3139 0.5430

X2 0.4417 0.4389

X3 0.0030 0.2358
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4. Case Study

Once again, the applicability of the proposed approach is demostrated

by performing reliability and sensitivity analysis on a real case study. This

case study focuses on a complex and expensive mathematical model of the

Site Ion eXchange Effluent Plant (SIXEP)(see [33]) situated on the nuclear

fuel reprocessing and decommissioning site at Sellafield, U.K. Sellafield site

is one of the largest nuclear installations in the world and is arguably the

most complex nuclear site in the world due to the fact there is a lot of engi-

neering and history present in a fairly small area. SIXEP plant is one of two

effluent treatment plants that manage discharges of radioactivity across the

whole site. This is a highly complex engineered system. The plant works by

capturing radioactivity present in a mobile form in the aqueous waste stream

into an immobile solid form by a process of filtration and ion exchange. The

SIXEP plant was commissioned in the mid 1980’s and immediately resulted

in the reduction of radioactivite discharge from the Sellafield site to less than

1% of the prior level. A schematic diagram of the SIXEP is shown in Fig.6.

Figure 6: SIXEP Schematic [33]
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The feeds into the SIXEP contain particulate materials, and a number

of soluble radioactive isotopes predominantly, Caesium-137 and Strontium-

90. These soluble radioactive species are removed from the liquid effluent

using an ion exchange media loaded in 2 ion exchange beds which operates

in series (one lead bed and one lag bed). The lead bed is replaced with fresh

media when it is exhausted, and the bed that previously operated in the lag

position is promoted to the lead position. The filtration and carbonation

steps are present to protect the exchange beds and have a secondary benefit

of removing actinides. In order to ensure the continued removal of these

two key radioactive isotopes, the plant is routinely operated on the basis of

feeds meeting a set of Conditions for Acceptance (CfA). These CfA define

the feed envelope in terms of the acceptable concentrations of inactive species

which affect the efficiency of the process. A model of the SIXEP plant have

been constructed by the National Nuclear Laboratory, UK (see [33]) in the

gPROMS modelling sofware developed by Process Systems Enterprise Ltd

[34]. The model uses an equation-oriented architecture to represent equip-

ment, chemistry, physics, operating procedures and other relationships, to

whatever degree of accuracy is required. Whilst the SIXEP model is robust

and accurate, it does not predict discharges precisely down to several signif-

icant figures. This makes this a really challenging test-case. However, the

model is being used to test new feed compositions to provide assurance that

the plant can continue to operate effectively, i.e. ensuring the discharges

of Caesium-137 and Strontium-90 are kept within the required limits. Pre-

dictions made by this model are used in real-world application to underpin

discharges for site data that is publicly available from the UK environmental
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agency [33].

4.1. Uncertainties Affecting the SIXEP

There is uncertainty of the future feeds composition arising from the Sel-

lafield site, leading to variability in the activity levels of Caesium-137 and

Strontium-90 and other soluble species that affect the removal of these iso-

topes. This variability can cause undesirable consequences to the environ-

ment (i.e. the discharges of the two afore-mentioned radionuclides exceeds

their desired levels). Therefore, it is nessessary to include this uncertainty

into studies when using the SIXEP model to assess the risk associated with

the SIXEP model, and identify thoes model parameters that contribute sig-

nificantly to this variability. It should be noted that the uncertainty consid-

ered to affect the plant feeds are aleatory (i.e. random) in nature [1]. The

consideration of this type of uncertainty leads to defining of a state vector x

of 18 state variables of the SIXEP model x = xn : n = 1, 2, .., 18, which are

assumed to be described by the probability distributions given in Table.7.

The schematic of the SIXEP model is shown in Fig.7.
 

𝒙𝟏 

𝒙𝒏 

𝒙𝟑 

𝒙𝟐 

gPROMS 

𝒇(𝒙𝒊) 

𝒎𝒂𝒙(𝑪𝒔-137) 

𝒎𝒂𝒙(𝑺𝒓-90) 

Figure 7: SIXEP Model Schematic
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Fig.8 shows a deterministic simulation from the model using the set of

mean values specified in Table.7. The results from the deterministic evalua-

tion of the model shown in Fig.8 illustrates the activity levels of Caesium-137

and Strontium-90 with respect to time. It is to be noted that the simulation

result shown in Fig.8, the SIXEP model has been started from a saved state

representing steady state operation with the mean parameter values. From

the figure (i.e. Fig.8), it can be see that there is a rise and drop in the activity

levels of the Caesium-137 and Strontium-90 caused by the ion exchange bed

change cycle. In this simulation, an ion exchange bed change occurs every

77 days (i.e. every 11 weeks). Hence, when a new ion exchange bed comes

online, the activity discharges are low, and as the ion exchange media be-

comes saturated, activity breaks through the bed and thus produces a rising

discharge profile which drops again following the next bed change (shown as

the peaks in Fig.8). It should be noted that the scalar quantities of interest

(i.e. performance variables) shown in Fig.8 is the maximum activity of both

radionuclides on the final day (616th day) of an ion exchange bed life, i.e.the

number of days required to reach a new steady state.

28



Table 7: SIXEP Model Input Parameters

ParameterID Mean S.T.D LowerBound UpperBound

1 0.50E+3 0.66E+3 0.01E+2 6.63E+3

2 39.0E+3 37.0E+3 1.00E+3 210E+3

3 1.05E+3 359E+3 0.11E+3 3.00E+3

4 0.03E+3 0.02E+3 0.01E+4 0.13E+4

5 46.0E-6 36.0E-6 3.00E-6 494E-6

6 6.13E-3 1.83E-3 1.14E-3 1.42E-3

7 1.59E-5 1.28E-5 0.25E-5 14.7E-5

8 9.40E-6 1.05E-5 2.50E-7 1.06E-4

9 15.9E+4 7.10E+4 1.90E-4 4.81E+5

10 0.45E+2 0.49E+2 0.20E+1 0.24E+3

11 2.00E+3 0.62E+3 0.73E+3 4.00E+3

12 0.33E+2 0.39E+2 4.00E-2 5.30E+2

13 0.14E+1 0.30E+1 3.00E-2 0.37E+2

14 3.84E-6 1.22E-5 0.40E-12 1.06E-4

15 3.50E-6 2.82E-4 2.74E-3 4.61E-3

16 3.20E-6 3.28E-6 2.56E-7 3.5E-5

17 2.38E-6 2.93E-6 2.50E-11 2.50E-5

18 2.00E+6 2.79E+5 7.03E+5 3.00E+6

Henceforth, the state variables x = xn : n = 1, 2, .., 18 map out two per-

formance variables defined by a vector y = yz : z = 1, 2. Propagating the
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uncertainties from the state variables via Monte Carlo simulation through

the model gives rise to variability in the performance variables. The uncer-

tainty propagation has been performed by generating 1000 samples and the

maximum concentration of the two radionuclides are shown in the histograms

given in Fig.9 and 10. The failure criteria (F = X : g(X) ≤ 0) of the model

has been defined as when the performance variables exceeds unity.
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Figure 8: Normalised Deterministic Simulation from SIXEP Model
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Figure 10: Normalized Variability in Maximum Strontium-90

Further, the reliability and sensitivity analysis technique discussed in this
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paper is been adopted to quantify the failure probability, and identify the

contributions of the state variables to the variation in the performance vari-

able.

4.2. Construction of ANN for Reliability and Sensitivity Analysis

As a single evaluation of the model requires approximately 1200 seconds

for running a single process, ANN have been used as a substitute to speed

up the time required for reliability and sensitivity analysis. To construct

the network, training set Dtrain(x, y) of sample size Ntrain = 1021 have been

obtained by evaluating the model repeatedly. Specifically, the training data

set Dtrain(x, y) have been generated via the LHS algorithm, considering the

18 state variables to be uniformly distributed. The idea behind using uniform

distributions is to explore the admissible range of variability within each of

the state variable. The hyper-parameters of the uniform distributions chosen

to represent the state variables are identical to those specified in Table.7.

Scalar quantities of the performance variables y = y1, y2 have been computed,

where y1 and y2 represents the maximum concentration of Caesium-137 and

Strontium-90 respectively. The choice of the ANN architecture is vital for

an accurate representation of the SIXEP model. In particular, three hidden

layer configuration (18,9,2) have been chosen.

4.3. Training multiple Identical ANN

Here, two sets Z1 = Ni, i = 1, 2, ...M and Z2 = Ni, i = 1, 2, ...M contain-

ing M = 1000 ANNs have been trained. As done in the previous examples,

100% of the training samples have been used to train all the ANNs in Z1,

while 80% of the training samples have been used to train the ANNs in Z2
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and the remaining 20% used for validation. The posterior probability of

the ANNs in Z1 has been estimated by assigning uniform prior probability

P (Nk) = 1/M to each ANN. In addition, the R2 validation errors have been

computed for the ANNs in Z2. For brevity, a summary of the top and bot-

tom 5 ANNs based on their posterior probability and variance are shown in

Tables 8-11. The same tables also show the R2 validation error for a robust

comparison.

Table 8: Top 5 ANN for Max Caesium-137

ANN σ2
k(Z1)) P (Dtrain|Nk)(Z1) R2(Z2)

1 0.18E-6 0.162 0.9623

2 0.19E-6 0.116 0.9498

3 0.20E-6 0.107 0.9586

4 0.21E-6 0.058 0.9465

5 0.22E-6 0.046 0.9588
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Table 9: Bottom 5 ANN for Max Caesium-137

ANN σ2
k(Z1) P (Dtrain|Nk)(Z1) R2(Z2)

1 1.62E-2 0.0029 0.8839

2 1.67E-2 0.0047 0.8880

3 1.72E-2 0.0087 0.8990

4 1.77E-2 0.0066 0.6205

5 1.83E-2 0.0012 0.6140

Table 10: Top 5 ANN for Max Strontium-90

ANN σ2
k(Z1) P (Dtrain|Nk)(Z1) R2(Z2)

1 1.62E-6 0.165 0.9275

2 1.18E-6 0.122 0.9330

3 1.10E-6 0.087 0.9594

4 1.06E-6 0.066 0.9588

5 1.04E-6 0.047 0.9517
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Table 11: Bottom 5 ANN for Max Strontium-90

ANN σ2
k(Z1) P (Dtrain|Nk)(Z1) R2(Z2)

1 1.20E-2 0.0016 0.8892

2 1.18E-2 0.0012 0.7948

3 1.10E-2 0.0008 0.8993

4 1.06E-2 0.0066 0.8969

5 1.04E-2 0.0047 0.8918

Again, as shown in Tables 8-11, there is no correlation between the R2

validation error and the posterior probability computed for each ANN (i.e.

a high R2 does not indicate the best model). For example, in Table. 8 when

comparing the 4th and 5th ANNs, the R2 value of the 5th is 0.9588 which is

greater than the R2 value of the 4th ANN (0.9456). However, the posterior

probability of the 4th ANN is greater than the posterior probability of the 5th

ANN. This confirms that a high R2 validation error does not mean a better

model.

4.4. Robust Estimate of Failure Probability

In this section, the ANNs in Z1 have been adopted to implement the

proposed approach in order to compute a robust estimate of the failure

probability. Specifically, 104 samples have been used to compute the fail-

ure probability p̂F in each ANN. To reduce the computational time for this

stage, parallelization strategy have been adopted to speed up the analysis

(i.e. 20 parallel workers used). Then, the proposed approach has been used
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to compute the robust estimate of p̂F . Finally, confidence intervals of robust

estimate quantifying the model uncertainties has been estimated based on

Eqs. (12) and (13), and the result is shown in Fig.11.
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Figure 11: Confidence Intervals in Robust Prediction of the Probability of Failure

Although the confidence interval shown in Fig.11 is fairly wide, the most

probable estimate of the true failure probability is represented by the mean

of the interval(i.e. shown in red).

4.5. Robust Estimate of Sensitivity Indices

In this section, the ANNs in Z1 have been adopted to implement the

proposed approach in order to compute robust estimates of the sensitivity

indices. Specifically, 105 samples have been used to compute the sensitivity

indices in each ANN adopting 20 workers in order to reduce the computa-

tional time. Then, the proposed approach has been used to compute a robust
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estimate of Si and Ti. Finally, the model uncertainty propagated to the ro-

bust estimates have been quantified in terms of confidence intervals (see Figs.

12-15).
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(contributions to Cs-137)
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Figure 13: Confidence Intervals in Robust Prediction of Total Effect Sensitivity Indices

(contributions to Cs-137)
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Figure 14: Confidence Intervals in Robust Prediction of First Order Sensitivity Indices

(contributions to Sr-90)
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Figure 15: Confidence Intervals in Robust Prediction of Total Effect Sensitivity Indices

(contributions to Sr-90)

From the results shown in Figs. 12-15, the state variables that have higher

contributions (i.e. 7th parameter) tend to have larger confidence intervals. A

possible reason for these large intervals may be that the performance of an

ANN reduces when estimating significant variables as a result of noise and

other factors not known to the authors. However, the expected value (i.e.

shown in red) is the most likely estimate that is to be taken as the true value

when adopting the proposed approach.

5. Conclusions

Reliability and sensitivity analysis of complex models are computationally

expensive due to the large number of model evaluations required to compute

their robust measures. In this paper, an ANN is being used as substitutes
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for an expensive model to speed up the time required for the aforementioned

analysis. However, the use of ANN for these kind of analysis introduces

additional uncertainties into the predicted quantity. Therefore, it is vital to

quantify the uncertainties in order to ensure a robust prediction. On the other

hand, training a unique ANN architecture repeatedly results to variability

in terms of their performance. This variability is as a result of the error

function within each ANN being trapped in a different local minima. Hence,

an additional uncertainty is introduced due to the lack of knowledge about

the best performing ANN. Consequently, the use of cross-validation technique

(i.e. k−fold) to evaluate the performances of these ANNs based on their R2

value is not an adequate measure due to the possibility to having a low R2

value for a good ANN, and a high R2 value for an ANN that does not fit the

model adequately. In addition, the use of only part of the data set to train

the ANN is wasteful of information, and drastically decreases accuracy in

estimating the weight parameters of the ANN. Hence, we postulate that the

use of cross-validation technique to select the best ANN out of a set of ANN

with identical architecture introduces biassing and reduces the robustness of

the predicted quantity.

Therefore, a novel approach has been presented to enhance the accuracy

of the prediction (i.e. robustness) made by an ANN and quantify the model

uncertainties in terms of confidence intervals. The proposed approach com-

bines Bayesian model selection and model averaging technique into a unified

framework. The applicability of the proposed approach is demonstrated in

two numerical examples, and is further applied to a real case study concern-

ing a radioactive waste management plant (SIXEP). The results obtained
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from this study shows that the true value of the quantity to be predicted by

the ANN is close to the expected value given from our proposed approach,

and within the confidence bounds that quantifies the model uncertainty. This

model uncertainty quantification is of paramount importance in safety criti-

cal applications, in particular when few data representative are used to train

an Artificial Neural Network.
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