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Abstract

The single-logarithmic enhancement of the physical kernelfor Higgs production by gluon-gluon
fusion in the heavy top-quark limit is employed to derive theleading so far unknown contributions,
ln5,4,3(1−z), to the N3LO coefficient function in the threshold expansion. Also using knowledge
from Higgs-exchange DIS to estimate the remaining terms notvanishing forz= m2

H/ŝ→ 1, these
results are combined with the recently completed soft+virtual contributions to provide an uncer-
tainty band for the complete N3LO correction. For the 2008 MSTW parton distributions these
N3LO contributions increase the cross section at 14 TeV by(10± 2)% and(3± 2.5)% for the
standard choicesµR=mH andµR= mH/2 of the renormalization scale. The remaining uncertainty
arising from the hard-scattering cross sections can be quantified as no more than 5%, which is
smaller than that due to the strong coupling and the parton distributions.
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1 Introduction

After the recent discovery of a new boson by the ATLAS and CMS collaborations [1,2] at the Large
Hadron Collider (LHC), precise theoretical predictions are needed in order to determine whether
or not this particle is indeed, as it appears so far [3, 4], theStandard Model (SM) Higgs boson.
In particular, to study its properties and to be able to distinguish between SM and Beyond-the-SM
scenarios, it is important to provide precision calculations of the Higgs production rate.

The main production mechanism for the SM Higgs boson at the LHC is the gluon-gluon fusion
process. The radiative corrections in Quantum Chromodynamics (QCD) for the corresponding in-
clusive cross section have been computed to next-to-next-to-leading order (NNLO) in the effective
theory [5–7] based on the limit of a large top-quark mass,mt ≫ mH , and later formH

<∼ 2mt in the
full theory [8–10]. The large size of the QCD corrections at this and the previous [11–14] order,
mainly due to large contributions from thez→1 limit, wherez is the ratio of the Higgs massmH
to the partonic center-of-mass energy

√
ŝ squared,z= m2

H/ŝ, together with the still sizeable scale
uncertainty have motivated systematic theory improvements beyond NNLO.

At the next-to-next-to-next-to-leading order (N3LO), all plus-distribution contributions to the
partonic cross section in theMS scheme,[(1−z)−1 lnk (1−z)]+ with 0 ≤ k ≤ 5, i.e., the leading
contributions for Higgs boson production at threshold, areknown in the large top-mass limit [15].
Recently also the corresponding terms proportional toδ(1−z) have been computed [16] which
include the 3-loop virtual contributions. In MellinN-space, withN being the conjugate variable
of z, the threshold logarithms appear as lnk N with 1≤ k ≤ 2n at then-th order, while the virtual
contributions lead to a constant inN. Based on comparisons at the previous orders, the soft-
virtual (SV) approximation inN-space (which can be supplemented by an all-order resummation
of threshold contributions up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [17])
has been shown to yield reliable predictions for the total Higgs production cross section, see,
e.g., Refs. [15, 18–21]. Studies in the soft-collinear effective theory (SCET) have reached similar
conclusions concerning the validity of an approximation based on threshold logarithms [22,23].

In this paper we present N3LO and N4LO results beyond the SV approximation. For a scheme-
independent description of the hard scattering process onecan employ physical evolution kernels
(also called physical anomalous dimensions) which arise from standard QCD factorization once the
parton densities (PDFs) are eliminated from the evolution equation for the physical cross section.
Since the physical evolution kernels exhibit only a single-logarithmic enhancement at largez, see
Refs. [24, 25], we are able to establish constraints on the coefficient functions in theMS scheme.
In this manner we obtain at N3LO the subleading logarithmic contributions lnk (1−z) (or in Mellin
spaceN−1 lnkN ) for k = 5, 4, 3 to the gluon-gluon partonic cross section. In addition, with the
help of results for inclusive deep-inelastic scattering (DIS) by Higgs exchange which are known to
N3LO [25], we can also systematically estimate the size of the remainingO(N−1) terms.

Based on the SV contributions together with the new subleading double logarithmically en-
hancedN−1 lnkN terms, we are then able to provide improved predictions for the yet unknown full
N3LO corrections to the gluon-gluon coefficient function for inclusive Higgs production. As an
additional uncertainty estimate we study the numerical impact of the N4LO corrections in the SV
approximation. Our analytical results at N3LO can be compared to previous phenomenologically
motivated approximations for the third-order cross section [26,27].
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Beyond the(1−z)0 terms in the expansion aboutz= 1, the gluon-gluon coefficient function
receives ‘flavour-singlet’ contributions which, unlike for DIS and semi-inclusivee+e− annihilation
(SIA), cannot be analyzed (so far) in terms of physical kernels for hadron-collider observables.
Hence an extension of the above results to all powers of(1−z) along the lines of Ref. [24] can be
performed only for the ‘non-singlet’Ck

A nℓ
f contributions. Yet the corresponding terms can, at least,

provide useful checks of future Feynman-diagram calculations. Finally we take the opportunity to
update the corresponding results for the dominant quark-antiquark annihilation contribution to the
Drell-Yan (DY) process to the same accuracy at N3LO and N4LO.

2 Constraints from the physical evolution kernel

For mH ≃ 125 GeV [1, 2] the higher-order corrections can be addressedin the large top-mass
approximation, in which the effective coupling of the Higgsto partons is given by the Lagrangian

Leff = − 1
4υ

C(µ2
R)H Ga

µνGµν
a , (2.1)

whereυ≃ 246 GeV is the Higgs vacuum expectation value andGa
µν denotes the gluon field strength

tensor. The matching coefficientC(µ2
R) is fully known up to N3LO [28–30]. Standard QCD factor-

ization, here as usual performed in theMS scheme, allows to express the inclusive hadronic cross
section for Higgs boson production at a center-of-mass energy Ecm=

√
S as

σ(S,m2
H) = τ ∑

a,b

∫ 1

0

dx1

x1

dx2

x2
fa/h1

(x1,µ
2
F) fb/h2

(x2,µ
2
F)

∫ 1

0
dzδ

(
z− τ

x1x2

)
×

× σ̃0 cab(z, αs(µ
2
R), m2

H/µ2
R, m2

H/µ2
F) , (2.2)

whereτ=m2
H/S, andµF andµR are the mass-factorization and renormalization scales, respectively.

The PDFs of the colliding hadrons are denoted byfa/h(x,µ
2
F), the subscriptsa,b indicating the type

of massless parton. The variablez= m2
H/ŝ is the partonic equivalent ofτ, with ŝ= x1x2S being the

partonic center-of-mass energy squared. The completeαs-expansion of the effective Higgs-gluon
vertex is included iñσ0, viz

σ̃0 =
πC(µ2

R)
2

64υ2 with C(µ2
R) = − αs(µ2

R)

3π

{
1 + 11

αs(µ2
R)

4π
+ . . .

}
. (2.3)

We expand the coefficient functionscab in powers of the strong coupling withas≡αs(µ2
R)/(4π),

cab(z, αs(µ
2
R), m2

H/µ2
R, m2

H/µ2
F) =

∞

∑
n=0

an
s c(n)ab (z, m2

H/µ2
R, m2

H/µ2
F) . (2.4)

At leading order (LO) we havec(0)ab = δagδbgδ(1−z); at n≥ 1 the coefficient functionsc(n)ab in
Eq. (2.4) differ from the quantities∆ab in Refs. [6,7] by a factor ofz−1, cf. Eq. (4.3) of [7]. As men-
tioned above, the QCD corrections within the large top-masslimit are known up to NNLO [5–7],
while at N3LO only the soft and virtual (SV) contributions, i.e., the plus-distributionsDk(z) =
[(1−z)−1 lnk(1−z)]+ and theδ(1−z) terms in the gluon-gluon channel are available so far [15,16].
Very recently, also the leading double-logarithmic threshold contribution to the quark-gluon coef-

ficient functionc(3)qg has been obtained as part of an all-order result [31].
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More information about large-z contributions to the N3LO coefficient functionc(3)gg and its
higher-order counterparts can be extracted from the physical evolution kernel. To that end, we con-
sider the caseµF = µR = mH (the scale-dependent terms can be reconstructed by renormalization-
group arguments) and define dimensionless partonic ‘structure functions’Fab

σ(S,m2
H) = ∑

a,b

σ̃0 Fab . (2.5)

For the sub-dominant(1−z)0 terms we can restrict ourselves to the ‘non-singlet’ case where only
the coefficient functioncgg and the splitting functionPgg are taken into account; other contributions
are suppressed by two powers of(1−z) relative to the leading(1−z)−1 terms. Exploiting the
evolution equations forαs and the PDFs one arrives at the expression, cf. Ref. [24],

d

d lnm2
H

Fgg =

{
2Pgg(as)+β(as)

dcgg(as)

das
⊗ (cgg(as))

−1
}
⊗Fgg

≡ Kgg⊗Fgg ≡
∞

∑
ℓ=0

aℓ+1
s K (ℓ)

gg ⊗Fgg

=

{
2asP

(0)
gg +

∞

∑
ℓ=1

aℓ+1
s

(
2P(ℓ)

gg −
ℓ−1

∑
k=0

βk c̃(ℓ−k)
gg

)}
⊗Fgg (2.6)

which defines the physical evolution kernelKgg and its perturbative expansion. Here⊗ denotes
the usual Mellin convolution, cf. Eq. (2.2), whileβ(as) stands for the standard QCD beta function,

β(as) = −β0a2
s − . . . with β0 = 11/3CA−2/3 nf . P(ℓ)

gg are the(ℓ+1)-loop gluon-gluon splitting

functions, defined analogously toK (ℓ)
gg in the middle line of Eq. (2.6). Up to N4LO the expansion

coefficients ˜c(ℓ)gg in the last line are given by [32]

c̃(1)gg = c(1)gg ,

c̃(2)gg = 2c(2)gg −c(1)gg ⊗c(1)gg ,

c̃(3)gg = 3c(3)gg −3c(2)gg ⊗c(1)gg +c(1)gg ⊗c(1)gg ⊗c(1)gg ,

c̃(4)gg = 4c(4)gg −4c(3)gg ⊗c(1)gg −2c(2)gg ⊗c(2)gg +4c(2)gg ⊗c(1)gg ⊗c(1)gg −c(1)gg ⊗c(1)gg ⊗c(1)gg ⊗c(1)gg . (2.7)

The calculation of the physical kernel, given the fact that it contains several convolutions, is
best carried out inN-space. The MellinN-moments are defined as

f (N) =

∫ 1

0
dz
(

zN−1{−1}
)

f (z){+} , (2.8)

where the parts in curly brackets apply to plus-distributions. A useful if approximate dictionary
between the logarithms inz-space andN-space is

(−1)k
(

lnk−1(1−z)
1−z

)

+

M
=

1
k

(
[S1−(N)]k +

1
2

k(k−1)ζ2 [S1−(N)]k−2 + O([S1−(N)]k−3)
)
,

(−1)k lnk(1−z) M
=

1
N

(
lnkÑ +

1
2

k(k−1)ζ2 lnk−2Ñ + O(lnk−3Ñ)
)
+ O

(
1

N2

)

(2.9)
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with S1−(N) = lnÑ−1/(2N)+O(1/N2) andÑ = Neγe, i.e., lnÑ = lnN+γe with γe≃ 0.577216.
HereM

= indicates that the right-hand-side is the Mellin transform(2.8) of the previous expression.
The splitting functions, coefficients functions and their products in Mellin space can be expressed
in terms of harmonic sums [33]. These give rise to harmonic polylogarithms [34] inz-space from
which one can then extract the large-z and large-N expansions. All these manipulations were
carried out using the symbolic manipulation system FORM [35–37].

The crucial feature of the (factorization scheme independent) physical evolution kernels to be
exploited here is the fact that they display only a single-logarithmic large-z enhancement. This
behaviour is in striking contrast to that of theMS scheme coefficient functions, which do include
double-logarithmic contributions, i.e., lnk(1−z) with k > n ≥ 1 at NnLO, at all orders in the ex-
pansion aroundz= 1. This behaviour of the physical evolution kernels has beenobserved at higher
orders in perturbative QCD for a variety of observables in DIS, semi-inclusivee+e− annihilation
(SIA) and DY lepton-pair production [24, 25]. For DIS and SIAit can be derived from properties
of the unfactorized partonic cross sections in dimensionalregularization, see Refs. [38,39].

Also the kernelKgg in Eq. (2.6) is single-log enhanced as far as it is known so far, i.e., to NNLO.
It is therefore plausible to conjecture this behaviour to all orders inαs. In particular, requiring the
cancellation of the ln5(1−z) and ln4(1−z) terms in the third line of Eq. (2.7), we can determine

the corresponding coefficients ofc(3)gg . Moreover, we observe that the leading large-N logarithms
of Kgg take a simple form for the sub-dominantN−1 contributions,

K(1)
gg

∣∣∣
N−1

= −
(
8β0CA+32C2

A

)
lnN + O(1) ,

K(2)
gg

∣∣∣
N−1

= −
(
16β2

0CA+112β0C2
A

)
ln2N + O(lnN) ,

K(3)
gg

∣∣∣
N−1

= −
(

32β3
0CA+ξ(3)H β2

0C2
A

)
ln3N + O(ln2N) , (2.10)

where the first two lines follow from the NLO and NNLO coefficient functions known from the
respective diagram calculations in Refs. [11, 12] and [5–7]. The last line is an obvious general-
ization based on the results for DIS (where the leading-β0 coefficients can be derived from the
large-nf results in Ref. [40] to all orders) and DY, where the coefficients are the same except for

CA→CF , see Eq. (6.17) of Ref. [24]. The unknown coefficientξ(3)H can be estimated by comparing
Eq. (2.10) and its completely known analogue in DIS, given byEq. (5.2) of Ref. [24], together
with the Padé approximants for the N3LO terms in both equations as about 300 with a conserva-
tive uncertainty of 50%, i.e., 150. This result provides theinformation about the ln3(1−z) term of
the N3LO coefficient function. Note that the splitting functions in Eq. (2.6) do not contribute to

Eq. (2.10) beyond NLO, as the diagonal quantities andP(n)
qq andP(n)

gg do not show any logarithmic
higher-order enhancement of theN0 andN−1 terms [41–44].

Eqs. (2.6) – (2.10) withK(3)
gg

∣∣∣
N−1

= O(ln4N) lead to the N3LO and N4LO predictions

c(3)gg (z) = c(3)gg (z)
∣∣∣
Dk,δ(1−z)

− 512C3
A ln5(1−z) +

{
1728C3

A +
640
3

C2
A β0

}
ln4(1−z)

+

{(
− 1168

3
+3584ζ2

)
C3

A −
(

2512
3

+
1
3

ξ(3)H

)
C2

A β0−
64
3

CAβ2
0

}
ln3(1−z)
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+ O

(
ln2(1−z)

)
(2.11)

and

c(4)gg (z) = c(4)gg (z)
∣∣∣
Dk,δ(1−z)

− 4096
3

C4
A ln7(1−z)+

{
19712

3
C4

A +
3584

3
C3

A β0

}
ln6(1−z)

+

{
(−2240+23552ζ2)C

4
A −

(
19136

3
+

8
3

ξ(3)H

)
C3

A β0−
1024

3
C2

A β2
0

}
ln5(1−z)

+ O

(
ln4(1−z)

)
(2.12)

at µR = µF = mH , wherec(n)gg (z)|Dk,δ(1−z) denotes thez-space SV approximation at NnLO. The
coefficients forn= 3 can be found in Eqs. (17) – (22) of Ref. [15] and Eq. (10) of Ref. [16] (where
the expansion is in powers ofαs/π instead of ouras = αs/(4π)). The coefficients multiplying
leading and next-to-leading lnk(1−z) terms in Eq. (2.11) and (2.12) agree with those for DY case
in Eqs. (6.24) and (6.25) in Ref. [24] ifCF is replaced byCA in the latter results. For the third
logarithm this is, unsurprisingly, only true for theβ2

0 contribution. The leading lnk(1−z) terms in
Eq. (2.11) and (2.12) agree with the old conjecture of Ref. [45], i.e., the coefficients of ln2n−1(1−z)
andD2n−1 are the same at NnLO up to a sign. On the other hand, the subleading terms in Eq. (2.11)
do not agree with the phenomenological ansatz employed in Refs. [26,27].

Seven of the eight plus-distributions of the N4LO SV contributionc(4)gg (z)|Dk,δ(1−z) in Eq. (2.12)

can be obtained by expanding and Mellin inverting the resultof the N3LO + N3LL soft-gluon
exponentiation. The coefficients ofDk for 2≤ k≤ 7 can be found in Eq. (16) of Ref. [46] and that
of D1 in Eq. (13) of Ref. [47]. The remainingD0 andδ(1−z) terms, on the other hand, require a
fourth-order calculation. TheD0 term can be predicted up to two unknown anomalous dimensions
at four loops which are usually denoted byAg,4 andDg,4, see, e.g., Refs. [15,17], as

c(4)gg

∣∣∣
D0

= Dg,4 + C4
A

(
− 50096

9
+

11328416
729

ζ2+
8392600

81
ζ3+

1581760
81

ζ2
2 +

3461120
9

ζ5

− 6894080
27

ζ2ζ3+
372416

15
ζ3

2 −217184ζ2
3 −

595616
15

ζ2
2ζ3−562176ζ2ζ5+983040ζ7

)

+ C3
A nf

(
191776

81
− 3613696

729
ζ2−

2285696
81

ζ3−
401920

81
ζ2

2 +
492800

9
ζ2ζ3

− 729088
9

ζ5−
69248

15
ζ3

2 +30400ζ2
3

)

+ C2
A n2

f

(
− 17920

81
+

290816
729

ζ2+
89344

81
ζ3+

2560
9

ζ2
2 −

69376
27

ζ2ζ3+
32768

9
ζ5

)

+ C2
ACF nf

(
108272

81
− 62752

27
ζ2−

340712
27

ζ3−256ζ2
2 +

13312
9

ζ2ζ3+
512
5

ζ3
2 +9088ζ2

3

)

+ CACF n2
f

(
− 15008

81
+

2144
9

ζ2+
3584
27

ζ3−
512
3

ζ2ζ3

)
. (2.13)

The derivation of the this result required the extension of the calculations of Ref. [15] to theα4
s

part of the exponentiation functiong5, see also Refs. [18,49].
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The coefficientAg,4 has been estimated by Padé approximants asAg,4 = (17.7, 9.70, 3.49) ·103

for nf = 3, 4, 5 effectively massless flavours. A corresponding estimate for Dg,4 is

Dg,4(nf = 3) = 12·105 , Dg,4(nf = 4) = 9.3 ·105 , Dg,4(nf = 5) = 6.8 ·105 , (2.14)

which is less reliable, as due toDg,1 = 0 only the two coefficients of Refs. [15, 18, 49–51] are
available. Corresponding estimates for the quark quantitiesAq,4 andDq,4 relevant to the Drell-Yan
process can be obtained by multiplying the above results byCF/CA.

Using Eqs. (2.9), our new result (2.11) together with the coefficients of c(3)gg (z)|Dk,δ(1−z) in

Refs. [15,16] can be employed to rigorously extend theN-space N3LO threshold expansion to

κ3c(3)gg (N) ≃ 1.152 ln6N+5.46171 ln5N+23.8352 ln4N+44.9659 ln3N (2.15)

+85.6361 ln2N+60.7085 lnN+57.0781

+ N−1
{

3.456 ln5N+19.7023 ln4N+(61.7304+ .0115ξ(3)H ) ln3N+O(ln2N)
}

with κ3 = 1/2000≃ 1/(4π)3. Here we have inserted the QCD values of the group factors,CA = 3
andCF = 4/3, used the physical value ofnf = 5 light flavours at scales of orderm2

H , and truncated
coefficients including the Riemannζ-function and the Euler-Mascheroni constantγe. The factor
κ3, asκ4 in Eq. (2.16) below, approximately converts the coefficients to an expansion inαs.

Note that theN−1 coefficients receive contributions from both the plus-distributions and the
lnk(1−z) terms of Eq. (2.11), hence thez-space andN-space SV approximations lead to different

predictions for cross sections. It is clear from Eq. (2.15) that the coefficientξ(3)H is not a major
source of uncertainty; its contribution to the coefficient of N−1 ln3N is expected to be below 10%.

The N4LO result corresponding to Eq.(2.15) reads, withκ4 = 1/25000≃ 1/(4π)4,

κ4c(4)gg (N) ≃ 0.55296 ln8N+3.96654 ln7N+21.2587 ln6N+62.2985 ln5N

+150.141 ln4N+212.443 ln3N+(256.373+2κ4Ag,4) ln2N (2.16)

+(142.548+κ4 [4γeAg,4−Dg,4]) lnN + κ4g0,4

+ N−1
{

2.21184 ln7N+19.6890 ln6N+(86.4493+552κ4ξ(3)H ) ln5N+O(ln4N)
}
.

Here the coefficientAg,4 is practically negligible, its contribution to the ln2N and lnN coefficients
being of the order of 0.1%. The uncertainty ofDg,4 in Eq. (2.14), conservatively set to 100%, is
an effect of order±20% for the lnN term. The constant-N contributiong0,4, i.e., the fourth-order
term of the prefactor of the soft-gluon exponential, see, e.g., Refs. [17, 49] can be estimated by
three Padé approximants which yield a fairly wide spread of values suggestingκ4g0,4 = 65±65.
Alternatively this quantity can be estimated via a calculation in which the constant-N contributions
in the integrals for the soft-gluon exponent, which we evaluate in the form given by (2.3) – (2.6) and
(3.2) of Ref. [17], are not discarded. This modified way to write the resummation formulae leads
to much smaller coefficients of the constant-N prefactors of the soft-gluon exponential at NNLO
and N3LO which can be used to obtain a range forg0,4 consistent which the one given above.

Exact SU(N) expressions corresponding to Eq. (2.15) and thelnN enhanced parts of Eq. (2.16)
can be found in the Appendix, together with third- and fourth-order predictions for the respective
highest-three logarithms beyond the(1−z)0 terms given in Eqs. (2.11) and (2.12) above.
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3 Approximate N3LO phenomenology

Before we address the numerical impact ofN−1 contributions to the coefficient function, we briefly
discuss the soft+virtual (SV) approximation. Inz-space this approximation can be defined by
keeping only theDk(z) andδ(1−z) terms in the cross section, cf. Eq. (2.11). The soft coefficients
in z-space are affected, however, by the artificial presence of factorially-growing subleading terms,
originating in the mis-treatment of kinematic constraintssuch as energy conservation, that spoil
the accuracy of the approximation for higher-order predictions at limited logarithmic depth [52].

The natural choice for the soft-gluon enhanced contributions is MellinN-space, where instead
of plus-distributions inz the dominant threshold contributions are given by powers oflnN, and the
kinematic constraints are automatically imposed. Consequently theN-space SV approximation is
defined by keeping the terms in the coefficient function that do not vanish forN→∞, cf. Eq. (2.15).

The numerical contributions of the lnk N terms, 0≤ k≤ 2n, of the Mellin-transformed coeffi-
cient functionsc(n)gg in Eq. (2.4) to the cross section (2.2) are illustrated up to Nn=3LO in Table 1,
where all numbers are normalized to the lowest-order resultproportional to[ fg/p⊗ fg/p](τ) with
τ = m2

H/S. All these results have been calculated in the heavy-top limits for mH = 125 GeV,
Ecm =

√
S= 14 TeV, the central gluon distributionfg/p of the 2008 NNLO MSTW set [53] and

the corresponding valueαs(M2
Z) = 0.1171 of the strong coupling leading toαs(m2

H) = 0.1118 at
µF = µR = mH . Also shown is the corresponding normalized expansion of the prefactor function
[C(µ2

R= m2
H)]

2 in Eq. (2.3).

All these contributions are positive, as are the lnN enhanced terms at N4LO, see Eq. (2.16).
The same is true for the corresponding coefficient functionsfor the Drell-Yan process and semi-
inclusivee+e− annihilation, cf. Table 1 and Eq. (37) of Ref. [54], while forDIS only thean

s lnk≥nN
contributions are positive atn ≤ 4, see Table 1 of Ref. [17]. In all these cases the complete SV
result is smoothly approached when the lnk N terms are included one by one. This is in contrast to
thez-space SV approximation which exhibits large cancellations between theDk(z) contributions
as illustrated at N3LO for DIS in Fig. 4 of Ref. [17] and for Higgs production in Ref. [16].

Furthermore the formally leading terms, i.e., those with the highest powers of lnN, provide
numerically small contributions to the cross section; the dominant part of the threshold corrections
arises from the lowest-power logarithms and the constant terms. This is due to the pattern of
coefficients in, for example, Eq. (2.15), which is comparable but less pronounced than that in DIS
and SIA, and the low value ofτ for the production of a 125 GeV Higgs-boson at the LHC, which
leads a low effective value ofN of Neff ≈ 2 for the lnk N contributions according to Table 1.

Another interesting feature shown in Table 1 is the rather large value of theδ(1−z) term at
N3LO [16] which contributes, for the value ofαs given above, about three times as much as its
NNLO counterpart. It accounts for 63% of the constant-N contribution at this order, the rest of
which arises from the Mellin transform of theDk terms, such as the first line of Eq. (2.9) fork= 2.

We are now ready to analyze the effect of adding the subdominant N−1 contributions to the
SV terms. Before turning to N3LO, we compare the resulting approximation to the exact result at
NLO and NNLO in Fig. 1. It is clear that including theN−1 terms improves the approximation at
largeN. Interestingly, the exact result lies between the SV and theSV+N−1 approximations at
N >∼ 2 at both NLO and NNLO. It is therefore not unreasonable to assume that this behaviour also
holds at N3LO; hence one can constrainc(3)gg (N) even in this region inN.
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LO NLO NNLO N3LO

constant 100 77.4 32.2 8.04
(delta) (100) (35.1) (1.72) (5.07)
lnN 14.8 12.0 5.14
ln2N 7.16 7.56 4.04
ln3N 1.07 1.09
ln4N 0.18 0.27
ln5N 0.025
ln6N 0.002

SV 100 99.4 53.0 18.6

C2(m2
H) 100 19.6 2.05 0.12

Table 1: The individual contributions of the lnkN terms in theN-space coefficient functionsc(n≤3)
gg at

µR = µF = mH to the Higgs production cross section formH = 125 GeV,Ecm = 14 TeV, and the central
gluon density and five-flavourαs of Ref. [53]. All results are given as percentages of the LO contribution.
Also shown, in the same manner, is the expansion of the prefactor function[C(µ2

R = m2
H ]

2), calculated in the
on-shell scheme for the top mass withm2

t = 3.00·104 GeV2.

This situation is, in fact, expected from related studies ofthe DY process [24] and Higgs-
exchange DIS [25]. It is particularly interesting to consider the latter case as the coefficient func-
tions are completely known to N3LO. Thus, in order to estimate the size of theN−1 logarithms
not determined in Eq. (2.15), we compare with Ref. [25] and expand the gluon coefficient function

c(n)DIS(N) of Higgs-exchange DIS up toO(N−1) at both NNLO and N3LO. We find

c(2)DIS

∣∣∣
N−1 lnk N

∝ ln3N+5.732 ln2N+8.244 lnN−3.275,

c(3)DIS

∣∣∣
N−1 lnk N

∝ ln5N+12.65 ln4N+52.56 ln3N+92.01 ln2N+18.13 lnN−24.30 (3.1)

for CA = 3,CF = 4/3 andnf = 5, where we have normalized the expressions such that the coeffi-
cient of the leading logarithm is equal to 1. The analogous expressions for Higgs production are

c(2)gg

∣∣∣
N−1 lnk N

∝ ln3N+2.926 ln2N+5.970 lnN+2.007,

c(3)gg

∣∣∣
N−1 lnk N

∝ ln5N+5.701 ln4N+
(

17.86+0.00333ξ(3)H

)
ln3N+O(ln2N) . (3.2)

Comparing Eqs. (3.1) and (3.2) an interesting pattern emerges: the size of the coefficients of the
non-leading logarithms for Higgs production is always smaller than that of their analogues for
Higgs-exchange DIS; the ratio is a factor of about 1/2 or (much) less except for the ln1N terms.
Thus we suggest as a conservative estimate of the completeN−1 contribution

c(3)gg

∣∣∣
estimate

N−1 lnk N
∝ ln5N+5.701 ln4N+18.9 ln3N+46 ln2N+18 lnN+9 , (3.3)

where we have usedξ(3)H =300 as roughly indicated by the physical-kernel coefficients in Ref. [24].
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contributions in Eq. (2.15) (dotted), the SV contribution plus the threeN−1 lnkN terms (approximately)
known from physical kernels constraints (dash-dotted), and by the SV terms plus the estimated complete
N−1 contributions in Eq. (3.3) (dashed).

The above equation includes an estimate of the non-logarithmic N−1 contribution toc(3)gg (N).
The ratio of the corresponding coefficient to that ofN−1 lnN is moderate with 0.58 at NLO and
0.34 at NNLO, which may even indicate a trend towards lower values if the order is increased.
Hence a ratio of 0.5 at N3LO, as used in Eq. (3.3), appears to be sufficiently conservative (recall
that these terms contribute positively to the cross section, so for larger coefficients we have larger
contributions from the estimated terms which lead to a wider, i.e., more conservative error band).

Summarizing these constraints, we show in Fig. 2 the coefficient functionc(3)gg (N) in the SV
approximation, for the SV terms plus theN−1 lnk N contributions withk≥ 3 as in Eq. (2.15), and

for the SV terms plus the estimate (3.3) of allN−1 contributions. Varying the value ofξ(3)H by
±50% has a very small impact on the latter two results. Based onthe pattern observed at NLO and
NNLO, we expect that the exact result falls in the band displayed in the figure forN >∼ 2.

The consistency of the bands in Fig. 1 with the exact results at N >∼ 2 does not guarantee the
same for the hadronic cross sections at high collider energiesEcm. Hence we show in Fig. 3 the
NLO and NNLO gluon-gluon contributions to the cross section(2.2) for a wide range ofEcm. Here
and below we have used the exact top-quark mass dependence atLO instead of the constant̃σ0 in
Eq. (2.3) but for now, as in Table 1, the NNLO MSTW [53] parton set and itsαs value irrespective
of the order of the calculation. Also displayed in the figure are the results for the corresponding
‘K-factors’ at NLO and NNLO,KNkLO = σNkLO/σNk−1LO , where we show the rather small (but
not negligible) negative effect of the quark-gluon and quark-(anti)quark contributions as well.

We observe that the exact results, for both gluon-gluon fusion and all channels, are consistent
with the band defined by the SV and SV+N−1 approximations forEcm

<∼ 20 TeV at NLO (the
deviation from it remains small even at higher energies) andat all energies considered at NNLO,
where the approximations are applicable down to somewhat lower values ofN as shown in Fig 1.
The effect of the non-SV gluon-gluon terms is largely compensated by the other channels at NNLO.
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section as a function of the collider energy for the exact coefficient function (solid), the SV approximation
(dotted) and the SV terms plus theN−1 contributions (dashed). The lower panels show the corresponding
K-factors, including the impact of the other partonic subprocesses (dash-dotted). All curves have been
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at µR = mH (upper curves) andµR = 0.5mH (lower curves) for the NNLO gluon distribution of Ref. [53]
at µF = mH . The lower panel shows the ratio of these N3LO predictions to the complete NNLO result.

In view of these results, we can reliably employ our approximations ofc(3)gg (N) to predict the
size of the N3LO corrections forEcm

<∼ 20 TeV, as shown in Fig. 4. Here all partonic channels are
included up to NNLO, while at N3LO we consider only the gluon-gluon process. The N3LO scale
dependence ofαs [55,56] has been used withαs(M2

Z) = 0.1165 in the latter case with, since there
are no PDF parametrizations at this order yet, the NNLO PDFs of Ref. [53] at the scalem2

H .

Under these conditions, the N3LO cross sections are larger atµR= mH that their NNLO coun-
terparts by 11.3%±1.9% atEcm = 7 TeV and 9.7%±1.7% atEcm = 20 TeV. At µR = mH/2,
which is closer to the point of minimal sensitivity and provides a scale choice that closely re-
produces the effect of threshold resummation [19], the corrections are substantially smaller with
4.1%±2.9% and 2.7%±2.5%, respectively, at 7 TeV and 20 TeV. Hence the size and present
uncertainty of the N3LO corrections is only weakly dependent of the collider energy in this range,
the latter amounting to about 2-3% at these natural values ofµR.

Fig. 5 displays the dependence of the total cross section on the renormalization and factor-
ization scalesµR andµF for the successive perturbative orders, now consistently calculated using
(where possible) the corresponding values and evolution ofαs and the PDFs, at 14 TeV. As shown
in the upper plot, the variation withµF for fixedµR is small already at LO, despite the PDFs chang-
ing considerably over the wide range of scales used in the plots. The dependence onµF is, in fact,
larger at N3LO than at NNLO; this is due to the (presently unavoidable) use of the NNLO gluon
distributions also at this order and the omission of the quark-gluon and quark-(anti)quark channels.
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Figure 5:The dependence of the Higgs production cross section on the factorization scaleµF for µR = mH
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Our N3LO band defined by the SV and SV+N−1 approximations for the coefficient functionc(3)gg (N) is
compared to the LO, NLO and NNLO results for the respective PDFs andαs values of Ref. [53].
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No such caveats apply to the dependence onµR for fixed µF which at N3LO requires ‘only’
the four-loop beta function [55, 56] but not the so far unknown fourth-order splitting functions.
Using the interval 0.25mH ≤ µR ≤ 2mH , the cross section ranges from 32 to 56 pb at NLO, from
42.5 to 57 pb at NNLO, and from 49.5 to 54.5 pb for the center of our N3LO uncertainty band.
The respective lower numbers change to 38, 47.5 and 52.5 pb ifa more conventional variation by a
factor of 2 is used about the apparently preferred scalemH/2. These results indicate an uncertainty
due to the truncation of the perturbation series at N3LO of slightly less than±5%.

Finally, in the bottom plot in Fig. 5,µF andµR are varied together relative tomH . The resulting
scale dependence of the cross sections at LO, NLO and NNLO is similar to, but slightly smaller
than, those just discussed. The further improvement at N3LO can not be trusted quantitatively,
as the falling trend towards large scales withµR is combined with the partly spurious (see above)
increase withµF shown in the upper plot. Hence it is best, at least for the timebeing, to use the
results for a fixedµF for a conservative error estimate.

While often unavoidable, error estimates using scale variations are, of course, not particularly
reliable; they summarize rather what is known than what willbe added by yet unknown higher
orders, and (width of) the scale range considered is somewhat arbitrary. A useful alternative is to
estimate, where possible, the size to the next order in the perturbative expansion at a standard scale
(for other approaches see [57,58]). In the case at hand this is possible, since the size of the complete
SV contribution at N4LO has been determined in terms of two parameters that can be estimated,
see Eq. (2.16). In line with the discussion at the end of Section 2, we useDg,4= 0 andκ4g0,4 = 130

for a ‘large’ estimate of the N4LO gluon-gluon coefficient function, andκ4Dg,4 = 55, i.e., twice
the Padé approximant in Eq. (2.14) andg0,4 = 0 for a ‘small’ estimate (recall thatκ4 = 1/25000
effectively converts the fourth-order quantities to an expansion inαs).

In principle, the N4LO cross section in the SV limit also involves theα5
s contribution to the con-

stantC(µ2
R) in Eq. (2.3) which, in fact, is known except for thenf -dependent part of the five-loop

beta-function of QCD [29,30]. However, as obvious from the last row of Table 1, this contribution
can be safely neglected in the present context.

The resulting estimates for the N4LO correction are shown in Fig. 6 in the same manner as the
N3LO contributions in Fig. 4. Also here the relative size to thecorrections depends weakly on the
colliders energy between 7 TeV and 20 TeV, with about 3.0% to 2.5% atµR= mH and−0.4% to
−0.5% atµR = mH/2. At Ecm = 14 TeV the N4LO SV terms change the respective N3LO cross
sections by about 1.5 pb and -0.5 pb. Even if these results were to considerably underestimate the
true N4LO correction, the latter would still amount to less than 5%.Note that the bands here and in
Fig. 4 above have to be added (upper panels), or are shown relative to (lower panels), the different
lower-order results at the two scales. Hence the differencebetween the bands forµR = mH and
µR = mH/2 does not indicate the overall scale uncertainty of the N3LO and N4LO predictions.

In view of these and the above results, a combined perturbation-series uncertainty of about
±5% can be assigned to our present N3LO cross section, which takes into account the approximate

character ofc(3)gg (N), the omission of the N3LO quark-gluon and quark-(anti)quark contributions
and the truncation of the expansion at this point. Calculating all higher-order contributions in the
heavy-top approximation but normalizing with the full lowest-order result, this leads to a total
cross section of 54.3±2.7 pb at 14 TeV for the NNLO PDFs of Ref. [53] – which should under-
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Figure 6:As Fig. 4, but for the N4LO corrections as obtained from the ‘large’ and ‘small’ SV estimates of

the coefficient functionc(4)gg (N) discussed in the text. In the lower panel the N4LO results are shown relative
to the corresponding N3LO cross sections in the SV approximation.

or overestimate the corresponding N3LO gluon-gluon luminosity by less than 1% – andαs(M2
Z) =

0.1165, where the central value refers the choiceµR = mH/2 andµF = mH . As all our results, the
above cross section does not include either electroweak corrections or bottom-mass effects.

Our present result for the N3LO corrections in the SV approximation is larger, by about a
factor of two atµR = mH , than that given ten years ago in Ref. [15]. This is due to the recently
calculated coefficient ofδ(1−z) [16], which turns out to be almost twice as large as anticipated for
the uncertainty estimate in Ref. [15], and the different input parameters, most notably a larger value
of αs(M2

Z). Our results including theN−1 lnkN term in Eq. (3.3) can be compared to Refs. [26,27],
where an approximate N3LO prediction has been constructed, based on the large and small-N
behavior of the partonic cross section (for which the latterhas a small effect at LHC energies).
As mentioned above, theirN−1 lnk N terms due not agree with our result except for the obvious
coefficient ofN−1 ln5N. Nevertheless, the central prediction of Refs. [26, 27] forthe N3LO cross
section is rather comparable to our result.

Finally, with the perturbative QCD corrections to the coefficient function of the dominant hard
scattering process well under control, the largest remaining uncertainties in predictions of the
physical cross section originate from the input parametersfor αs and the PDFs, cf. Eq. (2.2).
For instance, use of the ABM12 value ofαs and PDFs [59], which were tuned to LHC data, leads
to central values for the cross section which are significantly lower, by some 11-14% (depending
on the collider energy), than those reported, e.g., in Table1 and Fig. 5, see Ref. [59]. This is
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due to a smaller value ofαs(M2
Z) and a smaller gluon distribution in the relevantz-range for the

ABM12 parametrization as compared to MSTW [53]; the origin of these differences has been
understood [60, 61]. Very recently, also the NNPDF collaboration has reported new and slightly
lower values of the Higgs cross section for the NNPDF3.0 parton set [62] also tuned to LHC data.

4 Summary and outlook

For almost ten years rigorous results for the total Higgs-production cross section in the heavy top-
quark limit have been confined to the exact NNLO coefficient functions [5–7] plus the N3LL soft-
gluon resummation [15,50,51] which fixes the highest six threshold logarithms at all higher orders.
Earlier this year an N3LO diagram calculation has been completed in the soft+virtual limit [16],
adding the coefficient ofδ(1−z) to those of the[(1−z)−1 lnk (1−z)]+ terms with 0≤ k≤ 5.

Progress has also been made in the past years on resumming sub-dominant large-z logarithms,
(1−z)a lnk (1−z) with a≥ 0, via physical evolution kernels [24,25] or the structure of unfactorized
cross sections in dimensional regularization [38,39]; thelatter has been used recently to derive the
leading large-z logs for the quark-gluon contribution to Higgs production to all orders [31].

Here we have considered the dominant gluon-gluon channel and extended the calculations of
Ref. [24] to Higgs-boson production. Based on the results ofRefs. [5–7] we have thus derived the
leading sub-SV contributions, lnk (1−z) with k= 5, 4, 3, the first two completely (unsurprisingly
verifying the conjecture of Ref. [45] for the leading logarithm) and the third up to a constant of
minor numerical relevance. The corresponding results fora≥ 1 can only be derived for the non-CF

terms at this point, consequently only the coefficient of theleading logarithms is complete. These
results, included in the Appendix together with their fourth-order counterparts, can provide a non-
trivial check on a future complete N3LO calculation.

Switching to Mellin moments for phenomenological considerations, a comparison of the pat-
tern of the coefficients at NLO, NNLO and N3LO with those for Higgs-exchange DIS, where the
coefficient function is fully known to N3LO [25], allows to give well-motivated estimates for the

remainingN−1 ln2,1,0N third-order contributions toc(3)gg (N). It turns out that both the correspond-
ing coefficient functions atN >∼ 2 as well as the NLO and NNLO contributions to the cross sections
for LHC energies are contained in a band spanned by the respective SV and SV+O(N−1) approx-
imations. Assuming the same situation at the third order, wehave been able to improve upon
previous estimates [15,26] of the size and remaining uncertainty of the N3LO correction.

We have studied the dependence of these approximate N3LO results on the renormalization
and factorization scales, as well as the size of the N4LO corrections in the SV approximation. We
conclude that the remaining perturbation-series uncertainty amounts to no more than±5%, which

includes the effects of approximate character ofc(3)gg (N), the omission of the N3LO quark-gluon
and quark-(anti)quark contributions and the truncation ofthe series. Using the central NNLO
PDFs of Ref. [53] atµF = mH and the N3LO strong coupling withαs(M2

Z) = 0.1165 leads to an
increase by(10±2)% atµR= mH and(3±2.5)% atµR= mH/2, which appears to be the preferred
central scale, over the corresponding NNLO cross sections at a collider energy of 14 TeV.
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The perturbative expansion of the hard scattering cross section is, therefore, now quite well
under control, rendering the uncertainties of the PDFs andαs an at least as important source of
uncertainties for LHC predictions. Given the progress on the perturbative QCD corrections re-
ported in Ref. [16] and here, together with new global fits of PDFs to LHC data, it appears that the
cross section values [63] recommended for use in the ongoingand upcoming ATLAS and CMS
Higgs analyses require revision, for Run2 of the LHC, to include the latest theory developments
and improvements on the evaluation of the parton distributions and the value ofαs.

A Large-N expansions at N3LO and N4LO

Here we present the general expressions corresponding to Eqs. (2.15) and (2.16). For compactness
the results are written in terms of lñN = ln N+ γe. TheN0 coefficients at N3LO read
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∣∣∣
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Except for the ln0Ñ part, these results have been presented before in a different notation, e.g., in

Appendix E of Ref. [18]. Our newN−1 terms read, with one unknown coefficientξ(3)H of Eq. (2.10)

c(3)gg

∣∣∣
N−1 ln5Ñ

= 256C3
A ,

c(3)gg

∣∣∣
N−1 ln4Ñ
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The corresponding N4LO results are given by

c(4)gg

∣∣∣
ln8Ñ

=
512
3

C4
A ,

c(4)gg

∣∣∣
ln7Ñ

=
5632

9
C4

A − 1024
9

C3
Anf ,

c(4)gg

∣∣∣
ln6Ñ

= C4
A

[
216320

81
+

2560
3

ζ2

]
− 45568

81
C3

Anf +
2048
81

C2
An2

f ,

c(4)gg

∣∣∣
ln5Ñ

= C4
A

[
838112

135
+

14080
9

ζ2−1792ζ3

]
−C3

Anf

[
26048

15
+

2560
9

ζ2

]
− 256

3
C2

ACFnf

+
17024
135

C2
An2

f −
256
135

CAn3
f ,

c(4)gg

∣∣∣
ln4Ñ

= C4
A

[
3450592

243
− 45056

9
ζ3+

250912
27

ζ2+
7936

5
ζ2

2

]

+C3
Anf

[
−1084592

243
− 1024

9
ζ3−

41600
27

ζ2

]
+C2

ACFnf

[
−12592

9
+1024ζ3

]

+C2
An2

f

[
77152
243

+
640
27

ζ2

]
+

160
9

CACFn2
f −

640
81

CAn3
f ,

c(4)gg

∣∣∣
ln3Ñ

= C4
A

[
13631360

729
+

923968
81

ζ2−
1125184

81
ζ3+

7040
9

ζ2
2 −

16000
3

ζ2ζ3+3072ζ5

]

+C3
Anf

[
−4591096

729
− 219904

81
ζ2+

116096
81

ζ3−
11008

45
ζ2

2

]
+

16
3

CAC2
Fnf

+C2
ACFnf

[
−2208−128ζ2+

3968
3

ζ3+
512
5

ζ2
2

]
+CACFn2

f

[
5600
27

− 1280
9

ζ3

]

+C2
An2

f

[
436760

729
+

1280
9

ζ2+
7424
81

ζ3

]
− 3200

243
CAn3

f ,

c(4)gg

∣∣∣
ln2Ñ

= C4
A

[
28356478

729
+

2800672
81

ζ2−
799888

27
ζ3+

873104
135

ζ2
2 −

82720
9

ζ2ζ3

+
65824

9
ζ5+

25792
15

ζ3
2 +2336ζ2

3

]
+ CAC2

Fnf

[
4864

9
−2560ζ5+

4736
3

ζ3

]

+C3
Anf

[
−12176488

729
− 661136

81
ζ2+3152ζ3−

32768
135

ζ2
2 −

19520
9

ζ2ζ3−
448
9

ζ5

]
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+C2
ACFnf

[
−751982

81
− 34576

9
ζ2+

15232
3

ζ3+
7744
45

ζ2
2 +3840ζ2 ζ3+1280ζ5

]

+C2
An2

f

[
1072784

729
+

11680
81

ζ2+
9760
27

ζ3−
320
3

ζ2
2

]
+CAn3

f

[
−7424

729
− 128

9
ζ3

]

+CACFn2
f

[
110996

81
− 2624

3
ζ3−

1472
9

ζ2−
1408
45

ζ2
2

]
+ 2Ag,4 ,

c(4)gg

∣∣∣
ln1Ñ

= C4
A

[
50096

9
+

29565664
729

ζ2+
2426936

243
ζ3−

1592288
405

ζ2
2 −

876608
27

ζ2ζ3

+
4928

5
ζ3

2 +
17248

9
ζ2

3 −
9824

3
ζ2

2ζ3+6144ζ2 ζ5

]
+16ζ2CAC2

Fnf

+C3
Anf

[
−191776

81
− 10159592

729
ζ2−

1819648
243

ζ3+
820928

405
ζ2

2 +
127616

27
ζ2ζ3

+
4928

9
ζ2

3 −384ζ3
2

]
+ CACFn2

f

[
15008

81
+384ζ2+

256
27

ζ3−256ζ2 ζ3

]

+C2
ACFnf

[
−108272

81
− 116096

27
ζ2+

38504
27

ζ3+128ζ2
2 +

22400
9

ζ2ζ3

+
1024

5
ζ3

2 −896ζ2
3

]
+ CAn3

f

[
−3200

81
ζ2−

5120
81

ζ3+
256
45

ζ2
2

]

+C2
An2

f

[
17920

81
+

1019464
729

ζ2+
349184

243
ζ3−

10624
45

ζ2
2

]
− Dg,4 (A.3)

with the yet unknown fourth-order quantitiesAg,4 andDg,4, and

c(4)gg

∣∣∣
N−1 ln7Ñ

=
2048

3
C4

A ,

c(4)gg

∣∣∣
N−1 ln6Ñ

=
35840

9
C4

A −
3584

9
C3

Anf , (A.4)

c(4)gg

∣∣∣
N−1 ln5Ñ

= C4
A

[
244736

27
+2560ζ2+

88
9

ξ(3)H

]
−C3

Anf

[
49792

27
+

16
9

ξ(3)H

]
+

2048
27

C2
An2

f .

The correspondingN0 contributions for the DY process can now be written down at the same
accuracy due to the determination of the coefficient ofδ(1−z) at N3LO in Refs. [47, 48]. The DY
counterparts of Eqs. (A.2) and (A.4) have been determined inRef. [24]; the leading ln2k−1(1−z)
terms atk-loops of those agree with the result of Ref. [64].

B z-space results beyond (1–z)0 for large z

For non-singlet quantities such as the dominant quark-antiquark annihilation contribution to the
total cross section for Drell-Yan lepton-pair production,pp/pp̄→ l+l−+X, the physical kernel is
single-log enhanced at all orders in the expansion aboutz=1 [24]. This is also true for theCk

A nℓ
f

contributions to Higgs production via gluon-gluon fusion in the heavy-top limit, viz

K (1)
gg (z) = ln(1−z) pgg(z)

[
−16CAβ0−32C2

A H0
]
+ O

(
ln0(1−z)

)
,
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K (2)
gg (z) = ln2(1−z) pgg(z)

[
32CAβ2

0 +112C2
A β0H0+128C3

A H0,0
]
+ O(ln(1−z)) ,

K (3)
gg (z) = ln3(1−z) pgg(z)

[
−64CAβ3

0 −ξ(3)
H C2

A β2
0 H0−η(3)

H C3
A β0H0,0−ξ(3)

P C4
A H0,0,0

]

+ O
(
ln2(1−z)

)
(B.1)

at µR = mH with H0 = lnz, H0,0 = 1/2 ln2z, H0,0,0 = 1/6 ln3z [34] and

pgg(z) = (1−z)−1
+ −2+z−1+z−z2 .

The first two lines of Eq. (B.1) are a direct consequence of Refs. [11,12] and [5–7]; their numerical
coefficients are the same as for the Drell-Yan case in Eq. (3.27) of Ref. [24], which is based on the
results of Refs. [5,65], up to a factor of two due to the different normalizations ofpgg here andpqq

in Ref. [24]. The N3LO generalization based on the results for DIS, where the corresponding
coefficient functions are known [25, 66, 67], involves two presently unknown parameters of the

third-order coefficient function,ξ(3)
H already encountered above andη(3)

H relevant at(1−z)k≥1, and

one unknown coefficient of the four-loop splitting functionP(3)
gg which is not relevant here.

Eq. (B.1) together with Eqs. (2.6) and (2.7) above yields theµF = µR = mH results

4−3c(3)gg (z)
∣∣∣
CF =0

=
(

ln5(1−z)8C3
A − ln4(1−z)10/3C2

Aβ0 + ln3(1−z)1/3CAβ2
0

)
pgg(z)

+ ln4(1−z)C3
A

{
−27H0 pgg(z)−32H0(1+z)+59(1−z)−187/3

(
z−1−z2)}

+ ln3(1−z)C3
A

{[
16/3−56ζ2+

(
170/3+η(3)

H /96
)

H0,0

]
pgg(z)

+
[
4H0,0−8H̃−1,0

]
pgg(−z)−

(
119−407/3z−1−205z+605/3z2)H0

+(76+140z)H0,0−128(1+z) H̃1,0−721/3+2875/12z+2314/9
(
z−1−z2)}

+ ln3(1−z)C2
Aβ0

{(
20/3(1+H0)+ξ(3)H /192 H0

)
pgg(z)+10(1+z)H0−67/3

+271/12z+193/9
(
z−1−z2)} + O

(
ln2(1−z)

)
(B.2)

and

4−4c(4)gg (z)
∣∣∣
CF =0

=
(

ln7(1−z)16/3C4
A− ln6(1−z)14/3C3

Aβ0+ ln5(1−z)4/3C2
Aβ2

0

)
pgg(z)

+ ln6(1−z)C4
A

{
−77/3 H0 pgg(z)−32(1+z)H0+166/3(1−z)−550/9

(
z−1−z2)}

+ ln5(1−z)C4
A

{[
8−92ζ2+

(
244/3+η(3)

H /96
)

H0,0

]
pgg(z)

+
[
4H0,0−8H̃−1,0

]
pgg(−z)−

(
156−220z−1−306z+286z2)H0

+(104+232z)H0,0−192(1+z) H̃1,0−1265/3+5051/12z+3818/9
(
z−1−z2)}

+ ln5(1−z)C3
Aβ0

{[
10+

(
91/6+ξ(3)H /96

)
H0

]
pgg(z)+70/3(1+z)H0−265/6

+533/12z+93/2
(
z−1−z2)} + O

(
ln4(1−z)

)
. (B.3)
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Here we have again suppressed the argumentz of the harmonic polylogarithms for which we use
a partly modified basis in terms of functions that have Taylorexpansions aboutz= 1 with rational
coefficients [24] including

H̃1,0(z) = H1,0(z) + ζ2 = − lnz ln(1−z)−Li2(z)+ζ2 ,

H̃−1,0(z) = H−1,0(z)+ζ2/2 = lnz ln(1+z)+Li2(−z)+ζ2/2 .

Similar to their NNLO analogues [5–7] and the NNLO and N3LO coefficient function for Higgs-
exchange DIS [25], the complete coefficient functions corresponding to Eqs. (B.2) and (B.3) will
include additionalCF -terns contributing from(1−z)1 beyond the leading logarithms.

The corresponding results for the non-singlet quark-antiquark annihilation contribution to the
Drell-Yan process are given by†

4−3c(3)ns
DY (z) =

(
ln5(1−z)4C3

F − ln4(1−z)5/3C2
Fβ0 + ln3(1−z)1/6CFβ2

0

)
pqq(z)

+ ln4(1−z)C3
F

{
−27/2 H0 pqq(z)+4(1+z)H0−8(1−z)

}

+ ln3(1−z)C3
F

{[
−16−24ζ2−3H0− H̃1,0+

(
79/3+η(3)

DY/192
)

H0,0

]
pqq(z)

+(17/2−73/2z)H0−27/2(1+z)H0,0+14(1+z) H̃1,0+8−17/2z
}

+ ln3(1−z)C2
Fβ0

{[
10/3+

(
13/3+ξ(3)DY/384

)
H0

]
pqq(z)− (1+z)H0+4(1−z)

}

+ ln3(1−z)C2
FCA

{(
8/3−4ζ2+ H̃1,0+2H0,0

)
pqq(z)+(1+z)(H̃1,0+2H0)

+6−11/2z
}

+ O
(
ln2(1−z)

)
(B.4)

and

4−4c(4)ns
DY (z) =

(
ln7(1−z)8/3C4

F − ln6(1−z)7/3C3
Fβ0 + ln5(1−z)2/3C2

Fβ2
0

)
pqq(z)

+ ln6(1−z)C4
F

{
−77/6 H0 pqq(z)+4(1+z)H0−8(1−z)

}

+ ln5(1−z)C4
F

{[
−16−40ζ2−3H0− H̃1,0+

(
116/3+η(3)

DY/192
)

H0,0

]
pqq(z)

+(16−52z)H0−21(1+z)H0,0+22(1+z) H̃1,0+16−33/2z
}

+ ln5(1−z)C3
Fβ0

{[
5+
(

103/12+ξ(3)DY/192
)

H0

]
pqq(z)−8/3(1+z)H0+22/3(1−z)

}

+ ln5(1−z)C3
FCA

{(
4−6ζ2+ H̃1,0+2H0,0

)
pqq(z)+(1+z)(H̃1,0+2H0)

+6−11/2z
}

+ O
(
ln4(1−z)

)
(B.5)

†The ln4(1−z) and ln5(1−z) contributions toc(3)ns
DY (z) have been presented before in Eq. (6.29) of Ref. [24]

where, unfortunately, all coefficients are too small by a factor 3/4.
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with
pqq(z) = 2(1−z)−1

+ −1−z .

The ln3(1−z) term in Eq. (B.4) and the ln5(1−z) contribution in Eq. (B.5) include the unknown

third-order coefficientsξ(3)DY andη(3)
DY which we definitely expect to be equal to their counterparts

for Higgs-boson production in Eqs. (B.1) – (B.3). Hence an extension of either Refs. [5–7] or
Refs. [5, 65] to N3LO will fix also the third-highest power of ln(1−z) at N4LO and all higher
orders for both processes.
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