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Abstract 

 

The Development of a Strain-based Defect Assessment Technique for 

Composite Aerospace Structures 

By William J. R. Christian 

 

This thesis details the work conducted over three years on the development of 

strain-based defect assessment techniques for carbon-fibre reinforced composites. This 

material, whilst exhibiting a high specific strength, is sensitive to defects and thus there is 

an industrial need for assessment techniques that are capable of characterising defects 

and obtaining predictions of residual strength or life. The most commonly applied 

techniques are currently ultrasonic and thermographic non-destructive evaluation. A 

strain-based defect assessment could lead to more accurate predictions of residual 

strength, resulting in a reduction of the costs associated with operating composite 

aerospace structures. The aim of this project is to increase the quality and confidence in 

residual strength information gained from the non-destructive evaluation of composite 

defects using strain-based assessments, in addition to currently applied ultrasonic 

practices for composite structures. A literature review on composite defects and existing 

techniques for assessing defects was conducted. Knowledge gaps were then identified 

that if filled, could improve residual strength predictions.  

Initially, a statistical framework was developed that used Bayesian regression to 

predict the residual strength of impacted composites, based on ultrasonic non-destructive 

measurements, that is robust to data outliers. As part of this framework a performance 

metric for quantifying the accuracy of residual strength predictions was introduced, 

allowing currently applied assessment techniques to be compared with the novel strain-

based assessment. 

Then, a novel technique for performing strain-based defect assessments was 

developed that utilised image decomposition and the statistical framework to make 
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residual strength predictions. Digital image correlation was used to measure strain fields 

which were then dimensionally reduced to feature vectors using image decomposition. 

The difference between feature vectors representing virgin and defective laminates were 

quantified, resulting in a strain-based defect severity measure. Bayesian regression was 

used to fit an empirical model capable of predicting the residual strength of an impacted 

laminate based on the strain-based defect severity. The accuracy of the strain-based 

predictions were compared to the accuracy of ultrasound-based predictions and found to 

outperform the currently applied ultrasonic technique. 

Strain-based assessment of in-plane fibre-waviness was also explored, as minimal 

research had been conducted studying waviness defects with full-field techniques. This 

required the development of a procedure for creating controlled levels of local waviness 

in laminates. The same strain-based assessment used for assessing impact damage was 

applied to the fibre-waviness specimens, but for this defect the accuracy of predictions 

were found to be comparable to the ultrasound-based predictions. However, residual 

strain measurements were found to be effective for predicting the strength of laminates, 

indicating that knowledge of the residual strains around a waviness defect may be 

important when predicting a laminates residual strength.   
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1. Introduction 

1.1. Background 

Composite materials are used in aircraft structures to assist in reducing weight, 

without compromising strength. This weight reduction allows for more efficient aircraft, 

decreasing both the financial and environmental costs of air travel. Whilst composite 

materials have high specific-strengths relative to the aluminium alloys they typically 

replace, they are sensitive to defects. These defects can cause the ultimate strength of 

the structure to be substantially lower than the intended design value. In addition to this, 

the defects are often difficult to visibly locate. To account for defects that may be present 

but undetected, aircraft are designed assuming that defects are always present in the 

structure. Composite structures are then assessed at intervals, to ensure that material 

defects that actually exist are not going to result in failure during operation. These 

assessment techniques can take many forms depending on the material and defects they 

are designed to detect. The importance of the information they provide can also vary 

considerably. Rytter [1] categorised the information obtained from defect assessments 

into four levels, which are described as follows [2]:  

 Level 1: Defect detection 

 Level 2: Level 1 plus location identification 

 Level 3: Level 2 plus extent definition 

 Level 4: Level 3 plus remnant life prediction 

For composite structures there are substantial costs associated with repairs, hence it 

would be beneficial for assessment techniques to provide Level 4 information. This could 

help to reduce the number of repairs to those that are essential for the structure to be 

safely operated. Ultrasound and thermography are amongst the most common 

techniques currently employed to assess aerospace composites [3], and provide Level 3 

information in the form of the size and shape of defects. From this data, the residual 

strength of the structure can be inferred, but predictions based on these measurements 

have high levels of uncertainty because the effect of the defect on the structural integrity 

is not completely characterised [4]. In general, the loss of structural integrity involves the 

failure of materials due to the breaking of bonds as a result of deformation. It is possible 

to characterise this deformation in terms of strain fields. Hence, the changes in strain 
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fields induced by defects should be treated as Level 4 information in Rytter’s classification, 

because they provide the most appropriate input parameters for predicting the change in 

structural integrity, or residual strength [2]. Thus, employing strain fields to assess the 

effect of defects in composites is likely to lead to more reliable predictions of the residual 

strength or life; and in turn, likely to reduce premature or unnecessary repairs. 

Techniques such as digital image correlation (DIC) and thermoelastic stress 

analysis (TSA) can be used to capture full-field surface strain data to assess the integrity 

of a component. This data is a suitable input for a Level 4 defect classification technique, 

however the full-field data has a high level of dimensionality which must be reduced to 

obtain the key information required for residual strength predictions. Patki and Patterson 

[5] developed a technique of reducing the dimensionality of full-field strain data using 

image decomposition. Strain fields on the surface of impacted glass-fibre laminates were 

dimensionally reduced to feature vectors. The numerical dissimilarity between feature 

vectors representing a virgin laminate and a defective laminate was then used as a 

measure of the defect severity for the defective laminate. This thesis extends the 

technique developed by Patki and Patterson to obtain residual strength predictions of 

defective composites. The residual strength predictions made using strain data would be 

expected to be more accurate than predictions made using conventional ultrasonic non-

destructive evaluation (NDE). To confirm this, the effectiveness of strain-based and 

ultrasound-based assessments will be quantified and compared.  

Defects commonly encountered in the commercial aerospace industry will be 

used to demonstrate the effectiveness of the defect assessment technique. As strain-

based defect assessments have already been successfully applied to impact damage, a 

common form of service damage for composite aircraft structures, this will be one of the 

defects assessed using the technique. This will be the first time the technique is used to 

predict residual strength, and thus, will ensure the technique is verified before applying it 

to other defects. Impact events result in complicated regions of damage with 

delaminations, fibre fracture and matrix cracking all present in close proximity to each 

other [6] making it difficult to predict the strength of the defective composite and thus a 

major concern for industry. However, despite the complexity of the defect produced by 

these events, it is simple to recreate the defect in a laboratory setting. Drop-weight impact 

testing [7] is a common method of creating impact damage and thus will be used in this 
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study. To demonstrate that strain-based assessments are not limited to impact damage, 

a form of manufacturing defect completely distinct from impact damage will also be 

explored. Cantwell and Morton [8] listed five common forms of manufacturing defect that 

are encountered in industry: 

 Resin-rich areas 

 Voids 

 Fibre-waviness (Cantwell and Morton refer to this as, ‘distorted fibres’) 

 Broken fibres 

 Inclusions 

After discussions with Airbus, the industrial sponsor of this project, it was decided that 

fibre-waviness would be a suitable defect to be explored. Composite laminates are said 

to contain fibre-waviness when, instead of having a uniform orientation, the fibre 

orientation has local variations. This can cause the material to be weaker than the design 

strength [9] and thus can lead to premature failure. 

1.2. Aim and Objectives 

The aim of this project is to increase the quality and confidence in residual 

strength information gained from the non-destructive evaluation of composite defects 

using strain-based inspections, in addition to currently applied ultrasonic practices for 

composite structures. The objectives of this project are to: 

 develop the statistical methods for predicting the remnant properties of defective 

structures based on non-destructive measurements. 

 develop a technique for determining the severity of defects using full-field strain-

data. 

 demonstrate the effectiveness of strain-based defect assessments relative to 

current practices of ultrasonically inspecting aircraft. 

  



 

4 

 

2. Literature Review 

 This chapter is a review of the literature related to assessing defects in composite 

laminates and structures. The focus of the literature review is on the assessment of impact 

damage and fibre waviness. The chapter is split into six sections with the first section 

focusing on methods of predicting the performance of defective composites. The second 

section discussing statistics that are robust to outliers. The third section focuses on stress 

and strain based techniques of assessing defects in composites and the fourth section 

focusing on how image decomposition can be used as part of a strain-based NDE 

technique. Literature on fibre-waviness is introduced in the fifth section and knowledge 

gaps are identified in the final section.   

2.1. Conventional Non-destructive Evaluation of Composites 

 The main focus of the NDE research community is on developing techniques to 

locate defects in a structure. This thesis is concerned with predicting the behaviour of 

composite structures containing defects and thus this section focuses on methods of 

determining the effects of defects on remnant properties using non-destructive 

measurements. In 1975, Stone and Clarke [10] demonstrated a technique for predicting 

the inter-laminar shear strength of a laminate containing porosity. By controlling the 

pressure used to cure flat crossply laminates in an autoclave, the void content in a 

specimen was controlled. Through-transmission ultrasound was then used to measure the 

ultrasound attenuation coefficient of the laminate. Finally, the inter-laminar shear 

strength of the laminate was measured. A linear relation was observed between the 

attenuation coefficient and the measured inter-laminar shear strength demonstrating 

that the technique could be used to predict the loads at which delaminations would 

initiate and then propagate in a structure.  

 Also in 1975, measurements of surface damage were used to predict the residual 

strength of composites containing ballistic impact damage. Avery and Porter [11] 

performed a series of tests on boron-fibre and carbon-fibre reinforced composites plates. 

Various projectiles, which are occasionally encountered by military aircraft, were fired at 

composite plates at different speeds and angles. These projectiles resulted in holes 

through the plates with cracks extending from the holes. The width of the visible damage 

transverse to the loading direction was measured and then the plate loaded to failure in 

tension. When the visible damage width was plotted against residual strength, a linear 
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relation was observed. The method of least-squares was used to fit a line to the data and 

confidence intervals were also calculated. The lower bound of these confidence intervals 

could then be used to make conservative predictions of residual strength, using only 

measurements of surface damage. Fifty specimens were tested, demonstrating the 

effectiveness of the technique. However, the technique is irrelevant for civil aerospace as 

typical forms of service damage, e.g. hail or tool drops, do not result in penetration of the 

structure and often result in barely-visible impact damage [6].  

 In 1990, the previously described damage assessment procedure was modified by 

Prichard and Hogg [12] for barely-visible impact damage. Composites plates were 

manufactured using two different material systems. Both materials were reinforced by 

carbon fibre but one was produced using an epoxy matrix and the other using a 

polyetheretherketone (PEEK) thermoplastic matrix. Both laminates used a quasi-isotropic, 

[-45\0\45\90]2S lay-up and were then impacted using a 20 mm hemispherical tup at 

energies between 0 and 15 J. This resulted in twenty epoxy matrix specimens and 

nineteen thermoplastic specimens. The specimens were assessed using C-scan ultrasound 

and the width of the defect transverse to the intended direction of loading was recorded. 

The laminates were then loaded in compression to determine the residual strength. A 

correlation was observed between the residual strength and the defect width and a line-

of-best fit was determined using least-squares regression. The line-of-best-fit could be 

used to make predictions of the average residual strength of a coupon for a given defect 

size. A confidence interval was also calculated for the predictions, this interval could then 

be used to make conservative estimates of residual strength. A high amount of variability 

in the behaviour of impacted composites means that data outliers can potentially occur 

[6, 13]. A method of accounting for data outliers, that might affect the parameters of the 

line-of-best-fit, was suggested by Prichard and Hogg [12]. The method of maximum 

normed residual [14] was used to identify if outliers were present in the dataset. It was 

suggested that if outliers were identified, then these should be removed and the 

regression performed on the remaining data. This assumes that the outliers are an 

incorrect measurement, when they could in fact be a valid outcome when testing 

laminates that contain defects. By removing outliers from the data set, the confidence 

interval for predictions would likely be too small [15] resulting in predictions of residual 

strength which are potentially optimistic. 
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Another requirement for NDE of composites is automation of the assessment 

process. As greater volumes of composites are utilised in aerospace structures, the time 

required to review the obtained NDE data becomes excessive [16].  Some techniques have 

been developed to automatically detect and characterise defects in NDE data. Recently, 

Usamentiaga et al. [17] developed a technique for processing images produced by pulsed 

phase thermography. The thermographic images were segmented to select only the areas 

containing defects. From these images, simple shape and amplitude features were 

measured and used to train an artificial neural network capable of predicting the energy 

of the impact that caused the defect. Liu and Chattopadhyay [18] have used guided wave 

ultrasonics to detect and determine the severity of defects in an unmanned aerial vehicle 

wing, made from a composite sandwich. For each defect state, a cluster of feature vectors 

were obtained. Kernel principal component analysis was used to find non-linear relations 

in the ultrasonic data. It was shown that when the dataset was projected onto the first 

three principal components, the Mahalanobis distance between clusters representing 

defective states and the virgin state correlated with measurements of the extent of the 

defect. 

2.2. Robust Statistics 

Previous studies have used least-squares regression to make predictions of 

remnant properties based on non-destructive measurements [10-12]. This is not the only 

method of performing regression; however, it is the most well-known and one of the 

easiest to perform. This is because analytical equations are used to directly estimate the 

parameters of the line-of-best-fit [19]. Problems are encountered with this method when 

outliers are present in the data, as the outliers can have a significant effect on the 

parameters that are estimated from the data. Hawkins [20] suggested two likely causes 

of outliers. The first cause is that an outlier is an erroneous measurement, an example of 

this could be an experiment measuring the Young’s modulus of a coupon using an 

incorrectly calibrated strain gauge. The second cause of outliers, suggested by Hawkins, 

is that the stochastic nature of the physical system cannot be described using a Normal 

distribution. Instead a probability distribution with heavy-tails, such as a t-distribution, 

would be more appropriate. For composite materials containing impact damage there are 

many different failure modes operating at the same time that interact with each other [6] 

and therefore it is common for outliers to occur. 
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One of the earliest techniques for accounting for data outliers was to identify and 

remove them. Of particular note is the maximum normed residual method, developed by 

Grubbs [21] and published in 1950. This technique normalises a data sample by 

subtracting the mean from each value and dividing the resulting values by their standard 

deviation, these are referred to as normed residuals. If the highest normed residual is 

above a critical value then it is identified as an outlier and removed from the data sample. 

This process is repeated until no more outliers are identified. This technique is commonly 

applied to composite materials and is one of the recommended techniques for the 

determination of material properties in Chapter 8 of MIL-HDBK-17-1 [14]. The method is 

simple to apply, but can only be used if multiple samples with the same level of defect 

severity are available. 

In 1984, Rousseeuw [22] developed the method of least trimmed squares, which 

was capable of performing regression with data containing outliers. Least trimmed 

squares works by performing least-squares regression on subsets of the available data. A 

large number of different subsets are chosen and for each fit the coefficient of 

determination, 𝑅2, is calculated. The line-of-best-fit for the subset with the lowest 𝑅2 is 

then chosen as the line-of-best-fit for the complete dataset. This method is robust to 

outliers as the subset with the lowest value of 𝑅2 is likely to be a subset that does not 

contain any outliers. This method has recently been applied to structural health 

monitoring of concrete bridge structures, which was robust to outliers caused by 

environmental conditions [23]. This method, like the maximum normed residual method 

described previously, assumes that the outliers are erroneous measurements. By 

removing outliers and then calculating statistical quantities from the remaining data, 

mean values may be more accurate, but confidence intervals are likely to be narrower 

than they should be. When calculating the residual strength of a composite aircraft 

structure, if the confidence interval for a prediction is too narrow then predictions would 

be optimistic and the safety of the structure could be compromised. 

In 1989, Lange et al. [15] proposed a regression technique that used the t-

distribution to represent the residuals around a line-of-best-fit. A t-distribution can 

account for the presence of outliers as its shape can be modified to have heavier-tails 

depending on how many outliers are present. By using a t-distribution for regression, the 

full dataset is used to estimate the parameters of the line-of-best-fit and thus confidence 
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intervals for predictions take into account the potential for outliers to occur. Lange 

applied this technique to various problems in biostatistics. In 2011, Kruschke [24] used 

the t-distribution to perform robust Bayesian linear regression. By combining regression 

using the t-distribution with Bayesian analysis it is possible for prior knowledge to be 

incorporated into the model. Kruschke used Gibbs sampling, performed using a software 

package called JAGS [25] to determine the parameters of the line-of-best-fit. Gibbs 

sampling can be used to fit complicated statistical models and thus robust Bayesian 

regression can be extended to situations where linear models are not appropriate to 

describe the behaviour of composites. The model developed by Kruschke has not been 

used for the analysis of composite materials. Gibbs sampling is a computationally 

expensive algorithm compared to classical regression, but once the regression model has 

been fitted, predictions can be quickly obtained. 

2.3. Stress and Strain Based Defect Assessments 

 A substantial amount of work has been conducted on developing non-contacting 

experimental solid-mechanics techniques for detecting defects. Early work in the 1970s 

used electronic speckle pattern interferometry to detect voids in composite joints [26]. 

However, this technique was sensitive to vibrations and the data was difficult to interpret, 

and thus it would be unsuitable for application in industrial settings. Shearography has 

been applied for detecting delaminations in composites [27]. This technique used a 

vacuum chamber placed over the inspected area. When a vacuum was drawn, measurable 

surface deformations occurred at the location of artificial delaminations. Shearography 

for defect assessments has since seen substantial amounts of research and is now an 

accepted NDE technique applied in both the aerospace and marine industries [28]. The 

technique is also capable of sizing delaminations [29] and thus could be used to predict 

the residual strength of a laminate using the technique developed by Prichard and Hogg 

[12]. The shearography techniques applied in industry tend not to provide quantitative 

measures of deformation and thus are limited to locating and approximating the extent 

of defects, but not its severity. 

 Deflectometry, a technique that uses a grid reflected on the surface of a specimen 

to take accurate measurements, has been utilised for detecting impact damage in surface 

slope data. The changes in surface slope on specimens were then compared to finite 

element (FE) models of idealised impact damage [30]. This technique was further 
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extended, using the virtual fields method, to allow defects to be detected and 

characterised independently of the loads applied [31]. DIC has also been used in studies 

of impact damage in composites and has been used for observing the deformation of 

composite structures during impact [32], measuring the size of indentations due to impact 

events [33], and exploring the failure mechanics of impact damage during compression 

loading [4]. These studies show that non-contacting measurements provide useful data 

for exploring the effect of defects in a composite structure, but few studies have 

developed methods of quantifying the severity of defects. 

Horn et al. [34] used TSA to measure the stress concentration factor associated 

with impact damage. This concentration factor was used to normalise a fatigue curve for 

a virgin specimen. The fatigue curve could then be used to make predictions of the fatigue 

behaviour of the defective specimen. It was found that the modified fatigue curve was 

able to predict the fatigue behaviour of the impacted specimens. This technique 

essentially only considers the stress at an arbitrary location on the surface of the laminate 

and assumes that this will accurately describe the defect in its entirety. However, internal 

stresses may be greater than those on the surface and thus drive the fatigue process. If 

all of the measured stress field was analysed, a greater amount of information about the 

defect would be obtained. This could potentially increase the accuracy of fatigue 

predictions.  

 Emery and Dulieu-Barton [35] developed a technique of quantifying fatigue 

damage in various stacking configurations of laminates made from glass fibre reinforced 

polymer. TSA was used to inspect the specimens during cyclical loading. The specimens 

were tested in fatigue for 3000 cycles. After fatigue loading, the specimens were re-

examined using TSA. Two simple statistics were measured for each TSA map: the total 

number of pixels with a first strain invariant above 100 με and, the maximum value of first 

strain invariant. These values were normalised using the values for a virgin specimen, 

resulting in two fatigue damage metrics. When the two metrics were plotted against the 

number of cycles applied, a clear trend was visible. No regression analysis was conducted 

and thus the potential to predict fatigue life was not demonstrated. A significant problem 

with TSA as a non-destructive evaluation technique is that cyclical loading is often 

required to capture accurate data. Whilst techniques have been developed to apply 

different forms of loading [36, 37], this is still a major issue and limits the technique to a 
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laboratory setting. Whilst DIC still requires the application of loads to a structure to induce 

strains, these loads can be static and thus are easier to apply.  

Cuadra et al. [38] used DIC to monitor the accumulation of damage in composite 

strips. Tests to failure were conducted in both tension and fatigue with periodic 

inspections using DIC. Indications of the potential formation of damage were obtained 

using acoustic emission. DIC was used to measure the surface strain in the specimens and 

changes in the surface strain distribution due to accumulated damage were detected. It 

was also found that surface locations with high longitudinal strain corresponded with 

features visible in the fracture surface post-failure. During fatigue tests, similar strain 

distribution statistics were employed as those proposed by Emery and Dulieu-Barton [35], 

however the paper focuses on locations of high strain and therefore does not consider 

how the whole specimen degrades. 

2.4. Image Decomposition 

  Techniques such as DIC generate large quantities of data that require processing 

to obtain key information. To achieve this, it is beneficial if the dimensionality of the data 

is first reduced. Pattern recognition techniques have been applied to images since the 

1960s with the focus on reducing the dimensionality of the data to key features [39]. The 

earliest paper to make a significant contribution to this field is by Hu [40] who proposed 

the use of geometric moment invariants to reduce the dimensionality of image data for 

pattern recognition tasks. An issue with this technique is that the monomials used to 

calculate the moment invariants are not orthogonal and thus it is difficult to reconstruct 

the original image from the image moments. In 1980, Teague [41] suggested using the 

Legendre and Zernike polynomials sets, both of which are orthogonal polynomials, for the 

computation of image moments. Zernike moments have since become a common image 

recognition technique with applications to iris recognition [42], facial recognition [43], and 

aircraft identification [44]. Zernike polynomials are an infinite set of orthogonal 

polynomials, whose complexity increases as the order of the polynomial is increased. For 

detailed information on their calculation and their use for image processing the reader is 

directed to work by Teague [41]. 

In 2009, Wang et al. [45] was the first to utilise image decomposition to represent 

solid-mechanics data. Image decomposition with Zernike image moments was used to 

represent the simulated mode shapes of vibrating circular disks. The dimensionality of the 
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mode shape images was significantly reduced to a small set of image moments which 

were referred to as ‘shape descriptors’. These shape descriptors can then be arranged in 

the form of a feature vector that represents the original mode shape image. By reducing 

the dimensionality of the images, comparisons between different images can be made in 

a computationally efficient manner. Image decomposition using Zernike moments also 

allows for the comparison of shape images that are invariant to rotations. It was suggested 

that this was useful for making comparisons of mode shapes for axisymmetric structures, 

where double mode shapes can occur that are identical except for a rotation around the 

axis of the structure. An issue with performing image decomposition with Zernike 

polynomials is that the polynomial set is defined on a unit disk and thus the data must be 

mapped onto a disk or the Zernike polynomials must be modified if a unit disk is not 

appropriate.  

  Wang et al. [46] also performed image decomposition on full-field displacement 

data captured using high-speed DIC measurements. A rectangular plate was excited with 

a sinusoidal motion and the mode shapes at the natural frequencies were recorded. As 

the shape images in this case were rectangular, Tchebichef polynomials [47] were used 

for calculating the image moments. These polynomials are defined for a rectangular grid 

and thus are more suited to full-field strain measurements, which typically yield 

rectangular data-fields. 

 Image decomposition has also been applied to full-field strain data for the 

purpose of FE model updating [48]. An aluminium tensile test specimen was produced 

with a circular hole at the centre of the gauge region. The specimen was then loaded in 

tension and the strain-fields measured using DIC. An FE model of a specimen with the 

same dimensions as the physical specimen was also produced. Image moments were 

calculated for both DIC strain data and the FE data. The data had a hole at its centre and 

thus it was not possible to use pre-existing decomposition techniques. Instead, Zernike 

polynomials were tailored to the geometry; to ensure they were orthogonal. The 

polynomials were tailored using Gram–Schmidt orthogonalisation. Once orthogonalised, 

the modified polynomials could be used for image decomposition. Whilst this technique 

allows image decomposition to be performed for any specimen geometry, it is nontrivial 

to perform the orthogonalisation process and thus the applicability of the technique is 

limited.  
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 In 2012, Patki and Patterson [5] applied image decomposition to assessing impact 

damage in composite components as part of a strain-based defect assessment technique. 

Glass-fibre reinforced laminates with a crossply [0\90\0\90\0̅]s layup were impacted at 

four levels of impact energy resulting in barely visible impact damage (BVID). The 

laminates were then prepared for loading in tension. Prior to loading they were assessed 

using ultrasonic pulse-echo C-scans. Measurements of defect width transverse to the 

direction of loading and defect length parallel to the direction of loading were taken using 

the C-scans. The projected area of the defect in the C-scan was also recorded. All of the 

ultrasound measurements were found to have strong linear relations with the impact 

energy, with defect area being the most effective in terms of the coefficient of 

determination, 𝑅2. When loaded in tension, first principal strain-fields around the impact 

location were measured using DIC. Square areas of the strain-field, centred on the impact 

location were selected and then the 2D discrete Fourier transform used to determine the 

spectral image of the strain field. The square spectral image was then mapped onto a unit 

disk and Zernike moments calculated. These image moments were termed Fourier-

Zernike shape descriptors and a detailed description is available in [49]. The shape 

descriptors for each specimen were collated into feature vectors.  

To assess the defect in the glass-fibre laminates, numerical comparisons were 

made between feature vectors representing the strain field on the defective laminates 

with a feature vector for a virgin laminate. Three dissimilarity metrics were used for 

making the numerical comparisons; cosine distance, Euclidean distance and Pearson 

correlation (modified such that zero indicated a pair of positively correlated vectors and 

one indicated no correlation). A strong linear relation was observed between the impact 

energy and the modified Pearson correlation. The strength of this linear relation was 

quantified using the coefficient of determination and was found to be 0.953 for the 

modified Pearson correlation, compared to 0.861 for the defect area. It was concluded in 

the paper that the strain-based measures of defect severity could form the basis of a Level 

4 defect assessment technique, but no attempt was made to link these measurements to 

the residual strength of the laminate. Also, the technique was only demonstrated for one 

type of defect and for a material system that is not widely used in the commercial 

aerospace industry. 
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More recently, image decomposition has been incorporated into a technique for 

validating solid-mechanics models. Sebastian et al. [50] used image decomposition with 

Tchebichef moments to represent strain-fields experimentally measured using DIC and 

predicted using FE models. A scatter graph was then plotted with the x-value of each point 

equal to the values of the experimental shape descriptors and the y-values equal to the 

corresponding shape descriptors calculated from the predicted data. If the experimental 

and predicted data were identical then these points would lie on a strain line, 𝑦 = 𝑥, but 

due to noise in the experimental data this would not be expected. Instead the model was 

defined as valid if all the points were contained within a region defined by the uncertainty 

in the values of the experimental shape descriptors. This uncertainty was based on the 

accuracy of the reconstructions using the experimental shape descriptors and the 

uncertainty of the measurement system determined using the method described in [51]. 

The validation technique was demonstrated with a number of case studies, two of which 

were composite structures. This validation technique is now published as a European 

Committee for Standardization Workshop Agreement [52]. 

Methods of filtering feature vectors obtained from image decomposition have 

also been explored. To represent DIC strain-fields on an aluminium structure Lampeas et 

al. [53] initially calculated a large number of Zernike image moments. Subsequently, the 

number of moments in the feature vector was reduced by removing moments with a 

magnitude close to zero. In one example provided, this technique resulted in an accurate 

reconstruction of a strain-field using just sixteen image moments.  

Gong et al. [54] has applied the previously described validation technique to 

carbon-fibre composites containing delaminations, to explore their behaviour when 

delaminations are placed into compression. Carbon-fibre laminates with a crossply 

[0\90\0\90\0̅]s layup were produced with an artificial delamination at the first interface 

of similar size and shape to those produced by impact events. The laminates were then 

quasi-statically loaded to failure in a four-point bend configuration with the delamination 

on the compressive side. DIC was performed on the compressive surface of the coupon 

to observe how the delamination buckled and then propagated. FE simulations of a similar 

coupon containing a delamination propagating during bending were also produced. This 

FE model was validated using the experimental data. Residual strength predictions could 
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be generated from such a model, but it would be difficult to determine the uncertainty in 

predictions due to the complexity of the FE method. 

2.5. Fibre-Waviness in Composite Laminates 

2.5.1. Mechanics of Waviness Defects 

Observations of fibre waviness in composite laminates were first made in the late 

1960s during early mechanical studies of composite laminates, but their cause was given 

little consideration until Swift [55] suggested potential sources such as: 

 Mechanical vibrations during fabrication. 

 The use of incorrect lengths of material for the size of mould. 

 Disturbance of fibre due to resin flows 

 Non-uniform curing and cooling 

The study also explored the effect of waviness defects on the elastic modulus of 

unidirectional composites and produced predictions for idealised defects. Thick section 

laminates were found, by Hyer et al. [56], to be particularly susceptible to out-of-plane 

waviness. This particular form of waviness is where the shape of the plies, when viewed 

along a cross-section, are found to have an approximately sinusoidal shape. Observations 

of the geometry of waviness defects were made for out-of-plane waviness defects in 

cross-ply cylinders. These observed defects were found to vary in size, severity and 

location within the laminate, with no discernible cause of this variation. FE predictions of 

the stresses around an idealised defect in a cylinder experiencing external hydrostatic 

pressures were also made. These stress predictions were later combined with failure 

criteria to predict the strength reductions due to the idealised defects [57]. FE modelling 

has since become a common approach for the study of fibre-waviness with many papers 

written on the topic [58-61]. 

 The first attempt at creating controlled levels of waviness in specimens suitable 

for material testing was conducted in 1993 by O’Hare-Adams and Hyer [9]. Out-of-plane 

waves in individual prepreg plies were formed by weaving the prepreg between three 

parallel rods and then curing it. A cross-ply laminate was produced using prepreg with the 

central ply replaced by the cured wavy ply. This laminate was cured causing the non-wavy 

plies to bond to the wavy ply, resulting in a laminate with a localised area out-of-plane 

waviness at its midplane. The laminates were cut into coupons with the sinusoidal wavy 
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ply visible along the longest edge of each coupon. This resulted in twenty-eight coupons. 

The wavelength and amplitude of the waves were measured using optical microscopy and 

the ratio of amplitude to wavelength recorded and used as a waviness severity metric. 

Compression strength tests were conducted on the coupons and a relation between the 

severity of the out-of-plane waviness and the ultimate compressive strength of the 

laminates observed. This technique has since been used for fatigue [62] and tensile 

strength studies [63]. 

In 2000, Wisnom and Atkinson [64] developed a technique for creating 

unidirectional fibre composite laminates containing both in-plane and out-of-plane 

waviness. Prepreg plies were laid-up over a curved aluminium plate. Both the plate and 

the laminate on top were then flattened. The plies closest to the aluminium plate surface 

had a shorter path than the plies on the top of the composite, so that when the laminates 

were flattened the top plies were placed into compression. This compressive stress 

caused the fibres in the top plies to buckle, resulting in a waviness defect. The laminates 

were then vacuum bagged and cured. The cured laminates were cut into eighteen, 10 by 

50 mm coupons with the fibres running along the length of the coupons. Half of these 

coupons had their in-plane and out-of-plane fibre waviness measured destructively. The 

waviness measurements indicated that the manufacturing technique produced more in-

plane than out-of-plane fibre waviness. The remaining nine laminates were loaded to 

failure using a pin-ended buckling test. This test indicated that the compressive strength 

of the coupons could have been reduced by up to 26%; however, the pin-ended buckling 

test was unorthodox and a standard compressive test would be more suitable to confirm 

this result. This method resulted in flat coupons with the in-plane waviness distributed 

uniformly throughout the composite, but this is not consistent with waviness defects 

observed in real components which are typically localised [60, 65].  

A technique of creating localised areas of in-plane fibre-waviness was developed 

by Çınar and Ersoy [66] for reducing the residual strains at L-bends for composite 

laminates. The prepreg laminates were laid-up on a flat surface and then pressed into an 

L-bend mould, causing the fibres on the inner radius of the bend to buckle. The laminate 

and mould were then vacuum bagged and cured. Tests were conducted to measure the 

deformation of the L-bend when removed from the mould. The material properties of the 
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wavy laminates were not determined, as a flat geometry is typically required to conduct 

such tests. 

In 2016, Diao et al. [67] explored the effects of in-plane fibre-waviness on the 

failure of unidirectional composites in tension. Two techniques were developed for 

generating approximately uniform levels of waviness in individual plies of unidirectional 

carbon-fibres in a thermoplastic polyamide matrix. The first technique was using gas 

texturing, where nitrogen gas was blown at speed through the plies before the polymer 

matrix had been infused. The second technique was called non-constrained annealing. 

The plies were heated between two plates to 220 ⁰C without the addition of pressure and 

then allowed to cool back down to room temperature. The mismatch of the coefficients 

of thermal expansion for the fibres and matrix resulted in compressive strains being 

applied to the fibres causing them to buckle. The fibre-orientation was measured using 

the Yurgartis method [68], described later in this chapter, and it was found that the 

standard deviations of the fibre-orientation angle for the gas textured and non-

constrained annealed specimens were 1.77⁰ and 2.16⁰ respectively, whilst for the control 

specimen it was 1.00⁰. When the wavy specimens were tested to failure in tension, it was 

found that the failure of the specimen was progressive, whereas for a non-wavy specimen 

the failure was sudden. The study suggested that the progressive failure could be used to 

increase the damage tolerance of composite materials.  

2.5.2. Detection and Quantification of Waviness 

The first technique for quantitatively measuring fibre angles in laminates was 

developed by Yurgartis [68] in 1987. Laminates were cut, polished and the cut plane 

viewed with a microscope. If the fibres were perpendicular to the cutting plane then they 

appeared circular. However, if the fibres were not perpendicular to the cutting plane then 

they would appear elliptical. The major axis of the ellipses on the cut surface were 

measured and used to calculate the orientation of the cut fibres. The technique was used 

to destructively determine the statistical distribution of fibre orientation angles within the 

laminate. A normal distribution was found to be suitable for representing the range of 

fibre-orientations encountered at a waviness defect. 

Requena et al. [69] developed a technique that used high-resolution X-ray 

computed tomography to observe the internal structure of composite laminates. The 

tomogram had a resolution of 1.6 μm, allowing for individual fibres to be identified in the 



 

17 

 

tomographic slices. The orientation of the fibres could then be calculated based on their 

location in neighbouring slices of the tomogram. This technique is not suited to the 

inspection of aerospace components as the inspected region was just a 1 mm wide cube. 

More recently, waviness measurements over areas approximately 50 mm wide have been 

conducted [70] but computed tomography is always going to impose a limitation on the 

size of the component to be inspected and thus is not an appropriate technique outside 

of a laboratory setting.  

Smith [65] developed a technique of non-destructively measuring the in-plane 

orientation of fibres within a composite laminate, in 2010. The technique used pulse-echo 

ultrasound to produce C-scans of a laminate. The echoes were recorded from a thin layer 

of the composite laminate, just below the ply that was to be inspected. A texture was 

visible in the C-scan image that was caused by the fibre bundles in the ply. The 2D discrete 

Fourier transform was then performed on small square subsets of the texture to obtain 

the power spectrum image. At the centre of this image was an approximately elliptical 

shape. The orientation of the texture in the square subset of the C-scan was exactly 90⁰ 

to the orientation of this ellipse, and thus, the texture orientation was obtained by 

measuring the orientation of the power spectrum ellipse. The technique was further 

extended to allow for the measurement of out-of-plane waviness by performing the same 

Fourier transform based analysis on square subsets of composite B-scans. B-scans are 

images where the amplitude of echoes received along a strip of material are recorded. 

These images show a cross-section through the material, instead of the top-down view 

obtained using C-scans. Thus, Smith’s technique is capable of fully characterising waviness 

defects at any location in a composite but with substantially more noise than 

measurements obtained with the previously mentioned techniques. The benefit of using 

pulse-echo ultrasound over other techniques is that this form of non-destructive 

evaluation is already common in the aerospace industry [3] and thus infrastructure 

already exists for obtaining the ultrasound data required by the measurement algorithm. 

This technique has been used as an input for FE models of composites [71]. 

Measurements of fibre-orientation were used to modify the local stiffness of a modelled 

composite laminate. The model was then used to generate predictions of the stress field 

around waviness defects. If the composite was accurately characterised, then the model 

could potentially be used to predict failure loads for a defective structure. 
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Three studies have used non-contacting solid-mechanics techniques to study 

waviness defects, however these have only been utilised for out-of-plane waviness. In 

1998, Bradley et al. [72] used Moiré interferometry to obtain displacement fields captured 

on the cut edge of coupons containing out-of-plane waviness. Measurements of the shape 

of the waviness defects were also taken and used to create an FE model to simulate the 

displacement fields. Qualitative comparisons were then made between the experimental 

and the simulation data. In 2014, Elhajjar et al. [73] used TSA to locate areas of out-of-

plane fibre waviness in quasi-isotropic carbon-fibre laminates. Local areas of out-of-plane 

waviness were created in eight specimens using the method developed by O’Hare-Adams 

and Hyer [9]. The specimens were then cyclically loaded in tension-tension and 

compression-compression. TSA was used to measure the temperature changes on the 

surface of the specimens due to the cyclic stresses in the material. The locations of fibre-

waviness were identified in all eight specimens, but as the severity of the waviness defect 

was not varied, it was not possible to determine if TSA could be used to identify the 

severity of the defect. Strain-fields measured with DIC have been used to study the failure 

of specimens containing out-of-plane fibre waviness [74]. Surface strain on the cut edge 

of specimens containing out-of-plane waviness, were used to determine the load at which 

the waviness defects initiated further damage. 

2.6. Knowledge Gaps 

 A statistical technique is required to make predictions of the remnant properties 

of a defective composite. This technique must be capable of generating a prediction and 

estimating the uncertainty on that prediction to ensure the safety of the aerospace 

structure. This is currently achieved using the classical regression method of least-

squares, but a more advanced regression technique is required to generate predictions 

and estimate uncertainties when outliers are present. Robust Bayesian linear regression 

could be applied to NDE measurements to obtain residual strength predictions. These 

predictions would be robust to outliers whilst remaining conservative to guarantee safety. 

This will be referred to as the first knowledge gap. 

 Strain-based defect assessments have, in most cases, focused on measuring the 

severity of defects. It would be of greater use to industry if the strain-based assessment 

technique was capable of predicting residual strength of a structure containing defects. 

As the technique developed by Patki and Patterson [5] has already been shown to 
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accurately predict defect severity for impact damage, it will serve as the basis for an 

empirical prediction technique for residual strength. To demonstrate the effectiveness of 

such a technique it must be applied to composite laminates that are commonly utilised in 

modern commercial aircraft structures. Crossply glass-fibre laminates are not typically 

used in load-bearing aircraft structures. Therefore, commonly utilised carbon-fibre 

laminates will be used for this study. In addition to crossply laminates, quasi-isotropic 

laminates will also be assessed to demonstrate that the technique is not limited to a single 

material. This will be referred to as the second knowledge gap. 

 To demonstrate that the strain-based defect assessment is not limited to impact 

damage, it will also be applied to in-plane fibre-waviness defects. To achieve this, a 

method of producing flat laminates containing localised in-plane waviness defects must 

be developed, as current techniques result in uniformly distributed waviness defects. 

When a set of specimens containing waviness defects is obtained they must then be 

assessed. Non-destructive methods of characterising waviness defects have been 

developed with ultrasonic characterisation [65] being the most promising. Despite the 

existence of methods of characterising waviness, no method of directly predicting the 

residual strength of a laminate containing waviness using non-destructive measurements 

has been found in literature. A small number of papers have used full-field strain 

measurement techniques to study waviness defects, none of these have been used to 

study in-plane waviness and none of these have estimated the severity of the defects 

using full-field measurements. This will be referred to as the third knowledge gap. 
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3. Experimental Techniques 

 This chapter summarises the experimental techniques that will be used in this 

thesis. Where possible, the best practices for these techniques will also be identified. To 

develop the strain-based defect assessment technique, it is necessary to have a 

benchmark against which it can be compared. Pulse-echo ultrasound is currently the most 

common technique for locating and characterising defects in composite structures [3] and 

as such will be used in this study. DIC was shown to be effective for determining the 

severity of impact damage by Patki and Patterson [5] and thus will be used in this study. 

Whilst DIC measurements will be the focus of this thesis, TSA will also be investigated to 

see if the strain-based assessments could be performed using small cyclic loads. 

3.1. Pulse-Echo Ultrasonic Non-destructive Evaluation 

 Industrial ultrasonic inspections involve the use of pulses of ultrasound energy 

that are passed through the specimen to be inspected. If there is a sudden change in 

material density as the pulse passes through the specimen, then a portion of the 

ultrasound energy is reflected back towards the probe as an echo. The time at which the 

echo is received by the probe and its amplitude is recorded using an ultrasonic flaw 

detector. The flaw detector plots the amplitude of the detected echoes against their 

arrival time, resulting in a graph called an A-scan. If the pulse passes through a virgin 

location in the specimen, then an echo will only be detected when the ultrasound energy 

enters or leaves the specimen. However, if a defect (e.g. a delamination) is present, then 

a new peak will be observed in the A-scan. This is because the delamination is filled with 

air, and thus forms a significant discontinuity in the material density. An exemplar A-scan 

of a composite laminate is shown in Figure 1 with a delamination detected at 

approximately 0.75 μs. A “gate” is used to select a specific time-range of the A-scan and 

the position or amplitude of any peaks that pass through the gate are recorded. To assess 

an area of a laminate, the probe is moved across the specimen in a raster pattern whilst 

the gated peaks are measured in the A-scan. The recorded data is then presented as an 

image, where the intensity of the pixels indicate the recorded amplitude or position of 

the peaks at a particular location. These images are called C-scans, and are referred to as 

amplitude or time-of-flight C-scans depending on the quantity measured by the gate.  
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Figure 1: Ultrasound A-scan of a composite laminate at the location of a delamination, also showing an 

exemplar gate. 

 To achieve high spatial resolution C-scans of defects in composites, focused 

probes should be used with high natural frequencies (≥ 5 MHz) [75]. The probe used for 

this work had a spherical focus and produced ultrasound at a frequency of 10 MHz. Whilst 

it is possible to ultrasonically inspect structures in-situ, it is easier to automate the process 

if the component is immersed in a water tank [76]. Therefore, the probe and specimen 

were immersed in water for ultrasonic coupling with a standoff distance equal to the focal 

length (50 mm) of the probe. The probe was automatically moved across the specimen 

using a multi-axis scanner (Midas-NDT, UK), the scanner is shown in Figure 2. The probe 

was attached to an ultrasonic flaw detector (Epoch 4+, Olympus, Japan) that produced an 

A-scan of the laminate at the location of the probe. Either the detection time or the 

amplitude of the echoes were output by the flaw detector as an analogue signal, which 

was sampled at 100 μm increments along a series of lines at a spacing of 200 μm, resulting 

in C-scans of the defects. Time-of-flight C-scans were then transformed so that the colour-

bar indicated defect depth, relative to the top surface of the specimen. 
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Figure 2: The multi-axis ultrasound C-scan machine used for this thesis. 

3.2. Digital Image Correlation 

Stereoscopic DIC is a technique for measuring the deformation of components 

due to applied loads. Two cameras are used to capture pairs of images of the same area 

of the specimen as it deforms. By using two cameras to view the specimen, each point on 

the specimen surface can be triangulated allowing for measurements of the three-

dimensional deformations. The position of small overlapping square portions of the 

images, called facets, are tracked across the image pairs. Figure 3 shows a single camera 

image used for DIC with a facet shown in white, the two smaller images at the bottom of 

the figure show a close-up of the facet before and after a load was applied. By tracking 

the position of a dense grid of facets the full-field displacements of the specimen can be 

determined [77]. This displacement data is then differentiated, resulting in a dense grid 

of strain data. A high contrast random pattern should be applied to the specimen to 

ensure accurate measurements of the location of each facet and how it deforms over 

subsequent images. This pattern can be applied by any method that marks the specimen 

surface, but the most common method is by painting the specimen white and then 

spraying large black paint droplets onto the specimen, resulting in a speckle pattern. The 

size of the speckles within the speckle pattern is important. If the speckles are too small 

then aliasing will result in repetitive artificial patterns in the displacement-fields, however 
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if the speckles are too large then the spatial resolution of the measurements will be 

limited. A speckle size of 3 to 6 pixels when viewed by the DIC cameras has previously 

been recommended [77] and a range of 3 to 5 pixels has also been suggested [78]. The 

speckle size has an effect on the facet size used for the correlations. To ensure each facet 

is unique and cannot be mistaken for another facet by the DIC system, Sutton et al. [77] 

recommended that each facet should typically contain 9 speckles uniformly distributed 

within it.   

 

Figure 3: A DIC image showing a speckle pattern applied to a specimen (top) with a magnified image of a single 

facet (bottom-left) and the same facet after loading (bottom-right). Scale bars are nominal as the specimen 

was viewed at an angle.  

 For the DIC experiments, speckle patterns were applied to masked areas of the 

specimens. The size of the speckle pattern was dependent on the experiment and thus 

the speckle pattern size is defined in later chapters but the method of application was 

common for all specimens. A white base coat (Matt White, PlastiKote, USA) was first 

applied and black speckles (Pro Paint Acrylic Black Matt, CRC, USA) sprayed over the base 
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coat resulting in high-contrast speckles with a typical diameter of 0.25 mm. When the 

speckle pattern was viewed through the DIC cameras, these speckles were approximately 

4 pixels in diameter. The specimens were then loaded using a servo-hydraulic load frame 

(8501, Instron, USA) with a four-point bending rig, with a support span and load span of 

160 mm and 80 mm respectively. The same bending rig used to induce strains for 

measurement was also used to load the specimens to failure. 

A stereoscopic DIC system (Q-400, Dantec Dynamics, Denmark) was used to 

capture surface displacements on the specimens tested in this thesis. All DIC 

measurements were taken on the surface of the specimens that was in tension. The DIC 

system consisted of two digital cameras (Guppy PRO F-125; Allied Vision Technologies, 

Germany) with resolutions of 1292 by 964 pixels, positioned 180 mm apart on either side 

of the bending rig with a stereo angle of 62⁰. A pair of 12 mm lenses (Cinegon 12/1.4, 

Schneider, Germany) were mounted on the cameras, the experimental setup is shown in 

Figure 4. The specimens were illuminated using a single LED light array (Dantec Dynamics, 

Denmark), resulting in well-exposed images. As the specimens were illuminated from one 

side, the images captured by one camera had a slightly higher exposure than those 

captured by the other camera. Despite this, the DIC system was still able to correlate the 

facets successfully. A facet size of 25 pixels and grid spacing of 5 pixels was used to 

evaluate displacement vectors in a dense grid. 

 

Figure 4: A third-angle projection diagram of the DIC setup showing the LED light and camera positions (left) 

and bending rig (right). 
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Strain was calculated from the displacement field using local polynomial 

smoothing [77] whereby a quadratic surface was fitted, using the method of least-

squares, to a square subset of 441 displacement vectors. The gradient at the centre of the 

fitted quadratic surface was then used to calculate the strain at the centre of the subset.  

For the strain-based defect assessment, introduced later in this thesis, it was 

necessary to determine the uncertainty of the measurement system. An ideal method of 

measuring the uncertainty of the measurement system would have been to use a 

calibration specimen such as those used in [51, 79]. These specimens are designed such 

that their surface strain field can be calculated using analytical equations. However, it was 

not possible to use such specimens as they could not have been mounted and loaded in 

view of the DIC cameras. Instead, the measurement uncertainty was estimated by 

measuring the strain on the surface of an aluminium coupon of similar size and speckle 

pattern quality as the composite coupons. A 1.5 Nm bending moment was applied to the 

aluminium coupon, inducing strain. A resistance strain gauge bonded to the compressive 

side of the aluminium coupon was used to determine the magnitude of the uniform 

surface-strain field. DIC measurements were performed on the tensile side and the root 

mean square error between the strain field measured using DIC and the strain gauge was 

calculated. The root mean square error of the DIC measurement system was found to be 

44 μϵ. 

3.3. Thermoelastic Stress Analysis 

 Thermoelastic stress analysis is a technique that relates the small temperature 

fluctuations on the surface of a specimen to the stresses within the material. The 

specimen is cyclically loaded at a high enough frequency to ensure adiabatic conditions. 

The temperature distribution on the surface of the specimen is then measured using a 

thermal camera. As the temperature fluctuations are small, the signal-to-noise ratio of 

the measurements are increased with the use of a lock-in amplifier. The lock-in amplifier 

uses a reference signal, often the load applied to the specimen measured using a load cell, 

to amplify the temperature fluctuations that occur at the same frequency as the 

reference, whilst rejecting signals at other frequencies. As the stress fluctuations in the 

specimens are likely to be at the same frequency as the reference signal, this results in a 

substantial amount of the measurement noise being removed. For an orthotropic 
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material under plane stress conditions, the amplitude of the thermoelastic signal, 𝑆∗, can 

be related to the stresses in the directions of material symmetry, 𝜎11 and 𝜎22, as [80]: 

1 

𝑆∗ = 𝐾1∆𝜎11 + 𝐾2∆𝜎22       (1) 

where 𝐾1 and 𝐾2 are mechanical coefficients. If the material is isotropic, then 𝐾1 = 𝐾2 

and thus the detector output is directly proportional to the first stress invariant. As the 

infrared camera has an array of sensors, images of the thermoelastic signal captured 

across the surface of a specimen are recorded. The phase difference between the 

thermoelastic signal and the reference signal is also recorded and can similarly be shown 

as an image indicating any change in phase across the surface of the specimen. For an 

elastic material, any such change in phase would be an indication that heat conduction 

was taking place within the coupon and thus adiabatic conditions had not been achieved. 

 The frequency at which the specimen must be cyclically loaded for adiabatic 

conditions is dependent on the thermal properties of the material being tested. For 

carbon-fibre composites, Greene et al. [80] recommended a frequency of 20 to 25Hz. 

Despite this, carbon-fibre composites have been inspected at lower frequencies, such as 

10 Hz [35] and even as low as 5 Hz [73], but these studies did not check for adiabatic 

conditions. To determine a suitable frequency for this study, tests were run at different 

frequencies, with attention paid to the phase images. A frequency of 20 Hz was found to 

be sufficient for a uniform phase across the surface of the specimen. 

 For accurate TSA measurements, a matt surface with a high emissivity was 

required to limit reflections and maximise the infrared emission [80]. To obtain this 

surface finish, the specimens were sprayed with matt black paint (RS-764-3039, RS, UK). 

A TSA system (Deltatherm 1780, Stress Photonics, USA) was used to perform the analysis. 

The system consisted of a staring-array infrared camera (SC7000, FLIR, USA) with a 50 mm 

lens (ASIO 50mm F/2.3, Janos Technology, USA), which was used to take surface 

temperature measurements of the specimens on the tensile surface during cyclic bending. 

The specimens were loaded in the same four-point bending apparatus as used for the DIC 

measurements. An average load was applied so that one surface was always in tension 

and the opposite surface was always in compression. The tensile surface of the specimens 

were viewed at an angle of 50⁰ relative to the surface normal of the specimen, see Figure 

5. As the matte paint provided a diffuse surface, the viewing angle would not be expected 
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to have an effect on the thermoelastic measurements at angles below 60⁰ [81]. To correct 

for the oblique view, the images produced using TSA were warped with the imwarp 

function in MATLAB, resulting in thermoelastic images that appear to have been captured 

from a perpendicular view. The specimens were cyclically loaded under displacement 

control and thus the applied displacement was used as the control signal for the TSA 

system. 

 

 

Figure 5: A specimen under cyclic bending whilst TSA was performed. 
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4. Robust Empirical Predictions of the Residual Strength of 

Defective Composites Based on Ultrasound Measurements 

4.1. Introduction 

This chapter introduces the statistical techniques required to make predictions of 

residual strength based on non-destructive measurements. When a non-destructive 

technique has located a defect and measured its size, the next step can take a number of 

forms: the simplest option is to repair or replace the component as soon as an indication 

of a defect occurs. This is a common approach in the aerospace industry because 

predictions of residual strength and life of composites have substantial levels of 

uncertainty [2]. At the opposite end of the complexity scale, a finite element model of the 

defective component can be created with the available data [71] and used to simulate the 

initiation and propagation of damage under service conditions. It is difficult to establish 

the extent to which a finite element model provides an accurate representation of the 

defective component and thus it is usually costly in time and resources to obtain high-

fidelity predictions of residual performance with a quantified level of uncertainty. 

Alternative approaches utilise empirical models relating measurements of the defect to 

experimental measurements of component residual performance when the same type of 

defect is present [82]. Once the database has been established to support the empirical 

model, this type of approach can be applied quickly and without in-depth expert analysis, 

thus reducing revenue lost during structural assessments and the costs of performing such 

assessments. It is also more straightforward to establish the uncertainty associated with 

predictions generated by empirical models. By quantifying the prediction uncertainty, 

conservative estimates of residual performance can be made that ensure the safety of the 

aircraft whilst limiting the number of unnecessary repairs. 

Empirical models have been created for a wide range of defect types [10, 12]. In 

many situations, a linear or low-order polynomial fit exists between the measured defect 

severity and the properties that are to be predicted. In these situations predictions can 

be made using the classical technique of least-squares regression [12]. Situations also 

exist where continuous functions are not suitable. For example, when composite 

laminates are impacted, a threshold impact energy exists below which damage is not 

initiated [83]. Simple linear regression is not capable of accounting for this transition and 
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instead more advanced statistical techniques are used. One such technique is piecewise 

regression [84], where segments of the data are fitted using different functions, resulting 

in discontinuities at certain locations. The data segments are often still fitted using 

classical least-squares regression.  

In this chapter, robust Bayesian linear regression has been introduced and 

compared to classical regression for use on small datasets and data containing outliers. 

The regression techniques have been applied to ultrasonic NDE measurements where a 

linear relationship has previously been found between defect size and residual strength 

[12]. The predictive performance of the empirical models have been assessed using leave-

one-out-cross-validation which has been compared to the classical measure of a models 

performance, the determinant of correlation, 𝑅2. A second regression technique, based 

on robust Bayesian linear regression, called piecewise robust Bayesian regression is 

introduced, which allows predictions to be generated when the data used to fit the model 

contains discontinuities. 

This chapter is based on the following published paper, written by the author of 

this thesis: 

Christian WJR, DiazDelaO FA, Patterson EA. “Robust empirical predictions of residual 

performance of damaged composites with quantified uncertainties”. Journal of 

Nondestructive Evaluation. 2017. 36:36 

4.2. Regression Techniques 

4.2.1. Classical Linear Regression 

The purpose of regression analysis is to predict a quantitative response based on 

measured data. In classical regression analysis, the method of least-squares is used to 

determine the parameters of a linear model, assuming that the difference between the 

model and the data is normally distributed. This method is widely known and documented 

[12, 19] and thus the equations to perform classical regression are not included in this 

thesis. The aim of least-squares regression is to fit a line, 𝑦 =  𝑚𝑥 + 𝑐, to a set of 𝑛 points 

{(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 𝑦 is the residual strength to be predicted and 𝑥 the value of the defect 

severity metric measured using ultrasound. The parameters 𝑚 and 𝑐 are directly 

estimated from the residual strength data. By assuming the measured residual strengths 

are normally distributed around the regression line, a region can be defined that in 95% 
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of cases is expected to contain the residual strength measurements. This region is known 

as a confidence interval. The lower bound of the confidence interval is then used to define 

the allowable defect size for a safe residual strength such that only 2.5% of components 

with the allowable defect size would be expected to fail at loads below the required 

strength. A potential problem with the classical approach arises when the data is scarce 

and there is strong prior information that is not being used. The sources of this prior 

information can be a combination of expert knowledge, engineering judgement, physical 

constraints, amongst many others. When prior information is ignored, the fitted 

regression model may generate inaccurate predictions. This problem is circumvented by 

adopting a Bayesian framework. By doing so, uncertainty is quantified when predicting 

the residual strength for any unobserved defect value. 

4.2.2. Bayesian Regression 

For Bayesian regression, initial probability distributions, called prior distributions, 

are defined for the parameters of the regression line (e.g. line gradient, 𝑚, and intercept, 

𝑐). These prior distributions are expressed in mathematical notation as 𝑝(𝜃) where 𝜃 is a 

column vector of the parameters of the regression line. The prior distributions can be 

specific and well-defined if previous experimental data is available or vague if no such 

data exists. A vague prior distribution tends to be very wide in the sense that a large 

number of potential values of the parameter have a high probability of occurring, this 

indicates the lack of pre-existing knowledge. When residual strength measurements are 

taken the data can be used to update the prior distributions using Baye’s rule, 

2 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

∫ 𝑝(𝐷|𝜃′)𝑝(𝜃′)𝑑𝜃′      (2) 

After the parameter distributions have been updated they are called 'posterior 

distributions' and have the notation 𝑝(𝜃|𝐷) where 𝐷 is the residual strength data. The 

term 𝑝(𝐷|𝜃) is called the likelihood function and is the probability that the residual 

strength measurements come from a system with the regression parameters in 𝜃. The 

denominator of equation (2) is used to normalise the posterior distribution such that the 

area under the probability density functions for the posterior distributions is equal to 

unity. For simple models, the posterior distributions can be calculated analytically. 

However, for more complicated regression models, such as the two described later in this 

chapter, this is not possible. Instead, random samples from the posterior distribution can 
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be generated using Markov Chain Monte Carlo (MCMC) techniques. For this thesis, the 

MCMC algorithm known as Gibbs sampling, described extensively in [24], has been used 

to generate a large number of samples of the possible parameter values for the regression 

model. The histogram of these random samples will have the same shape as the posterior 

distribution for each parameter, an example for samples from a normal distribution is 

shown in Figure 6.  This means percentiles of the random samples will be very close to the 

percentiles of the underlying probability distribution. Thus, if the random samples are 

potential values of residual strength, then the percentiles can be used to make 

conservative residual strength predictions. 

 

Figure 6: Histogram of 5000 samples randomly distributed with a normal distribution (with 𝜇 = 0 and 𝜎 = 1), 

with the probability distribution function of the normal distribution, 𝑝(𝑦), superimposed. 

4.3. Experimental Method 

 Two sets of composite specimens, with in-plane dimensions of 250 mm by 90 mm, 

were manufactured using two different material systems and layups. Since laminates 

consisting of unidirectional plies are particularly sensitive to impacts [6], unidirectional 

prepregs were used to manufacture the specimens for this experiment. Twelve crossply 

carbon fibre laminates were produced from M10R-UD-150 unidirectional prepreg (Hexcel, 
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USA) with a [02/902/02/902/02/90]S layup, where the 0° plies were parallel to the longest 

edge. The prepreg laminate was cured in a hot press (APV-3530, Meyer, Germany) at a 

temperature of 130 °C and a pressure of 2.5 bar for 45 minutes as per the manufacturer’s 

recommendations. The press was heated up to temperature at a rate of 10 °C/min and 

after curing was left to cool naturally with the pressure maintained. A second batch of 

specimens with a different layup was produced to demonstrate the rigour of the defect 

assessment. The different layup affects the size and shape of impact damage in the 

laminate [6].  Twenty-five quasi-isotropic carbon fibre laminates were produced from 

RP507UT210 prepreg (PRF, UK) with a [02/902/452/-452]S layup using an identical process. 

The nominal thickness of the crossply and quasi-isotropic specimens were 2.90 mm and 

3.02 mm respectively.  

A drop weight impactor, identical to the one employed by Yang and Cantwell [7], 

was used to produce barely visible impact damage in the laminates with a 20 mm 

diameter hemispherical tup of mass 2.67 kg. The specimens were clamped onto a metal 

support with a 125 mm by 75 mm opening underneath them. The eleven crossply 

specimens were impacted with a range of energies between 4 and 14 J leaving a single 

virgin specimen. Eighteen quasi-isotropic specimens were impacted with a range of 

energies between 4 and 15 J, leaving seven virgin specimens.  

The specimens were then cut down to 220 mm by 40 mm coupons using a wet 

diamond saw (Versatile 103450, Vitrex, USA). The use of the wet diamond saw resulted in 

clean edges on the specimens and did not produce edge delaminations. The impact 

location was used as the centre of the specimens. 

After each impact, the delaminations in the composite were evaluated using 

pulse-echo ultrasound. A time-of-flight C-scan was captured using the equipment and 

technique described in Chapter 3. The width, length and area of the defects were 

evaluated from the C-scans. After the defect evaluation using ultrasound, the coupons 

were loaded to failure using a servo-hydraulic load frame (8501, Instron, USA) in a four-

point bend setup with a support span of 160 mm and load span of 80 mm. Each coupon 

was placed in the loading rig such that the impact damage was centred in the load span 

and the impacted surface was in tension. The specimens were loaded under displacement 

control at a rate of 0.8 mm/min and failure was defined as the point at which the force 
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dropped below 50% of its peak value. The maximum bending moment was recorded and 

used as the measure of the residual strength of the coupon.  

The ultrasound defect, 𝑥𝑖, and residual strength, 𝑦𝑖, measurements were 

normalised using: 

3 

𝑥𝑖
∗ =

𝑥𝑖−�̅�

𝑠𝑥
         (3) 

4 

𝑦𝑖
∗ =

𝑦𝑖−�̅�

𝑠𝑦
         (4) 

where �̅� and �̅� are the mean of the ultrasound measurements of defect size and residual 

strength measurements respectively, and 𝑠𝑥 and 𝑠𝑦 are their standard deviations. The 

normalisation allowed the use of the same prior distributions for Bayesian regression 

regardless of the units used in the ultrasound and residual strength measurements. The 

normalisation also increased the efficiency of the Gibbs sampler, by reducing the number 

of iterations required to represent the predictive distribution, because it ensured that the 

potential values for the gradient and intercept were close to zero and of approximately 

the same scale, so that large perturbations were not introduced during sampling.  

4.4. Bayesian Modelling 

4.4.1. Robust Bayesian Linear Regression 

The model used to predict residual strength based on ultrasound measurements 

was linear, of the form 𝑦∗ = 𝑚𝑥∗ + 𝑐, with the assumption that the data was distributed 

around the regression line as a Student’s t-distribution. This distribution was employed 

because it allowed the deviation of residual strength measurements from the regression 

line to have a greater probability of outliers, compared to the normal distribution. Thus, 

when present, outliers were expected to have less effect on the intercept and gradient of 

the regression line. The form of the model is shown schematically in the bottom portion 

of Figure 7, in a similar style as the one employed in [24]. The shape of the distribution 

about the line shown in the centre portion is a t-distribution defined by its normality, 𝑣𝑠, 

spread, 𝜎𝑠, and mean, 𝜇𝑠, which in turn is defined by the gradient of the line, 𝑚𝑠, and its 

intercept, 𝑐𝑠. Each of these four parameters: normality, spread, gradient and intercept are 

described by prior distributions that are shown schematically in the top portion of Figure 

7. It was decided to represent the prior distribution for the normality parameter by an 
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exponential distribution in order to allow it to vary from low values that causes the t-

distribution to have long tails, to high values at which the t-distribution behaved like a 

normal distribution. The probability density function, 𝑝(𝑦∗), for the t-distribution 

illustrating this behaviour is shown in Figure 8. The exponential distribution has a scale 

parameter, 𝐾, of 29. The prior distributions of the gradient and intercept of the line-of-

best-fit have been defined as normal distributions, which is the common choice for simple 

regression models [85]. In both normal distributions the means, 𝑀𝑐 and 𝑀𝑚, were set to 

zero as the normalisation process in equations (3) and (4) cause the values of both the 

intercept and gradient to be close to zero. The standard deviations, 𝑆𝑐 and 𝑆𝑚,  of the 

normal distributions are also defined with a high value of 100, which ensures that the 

prior distributions are vague and thus will not limit the potential values of the gradient 

and intercept. The probability distribution describing the prior distribution of the spread 

of the t-distribution, 𝜎𝑠, was a uniform distribution that assigned an equal probability to 

values of the spread from 𝐿 = 1 × 10−3 to 𝐻 = 1 × 103. All of the parameters used to 

define the initial or prior probability distributions are listed in Table 1. 
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Figure 7: Schematic diagram showing how the regression model (bottom) is formed from a linear regression 

line with the data distributed around it in the form of a t-distribution (middle). At the top are the initial or prior 

probability distributions for the values of the model parameters. 
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Figure 8: Illustration of the probability density function for the t-distribution as a function of the normality 

parameter ν for a mean, 𝜇 = 0 and spread, 𝜎 = 1. As ν tends to infinity, the t-distribution converges to a 

normal distribution. 

Table 1: The values used to define the vague prior probability distributions for the regression model 

parameters, these values are suggested in [24]. 

Parameter Prior Value 

𝐾 29 

𝑀𝑐 0 

𝑆𝑐 100 

𝑀𝑚 0 

𝑆𝑚 100 

𝐿 1 × 10−3 

𝐻 1 × 103 

  

The regression model was fitted to the residual strength data using the open-

source software JAGS [25] to determine the posterior distributions of the parameters, 

that is the normality, 𝜈 and spread, 𝜎 of the t-distribution together with the gradient, 𝑚 

and intercept, 𝑐 of the regression line. Subsequently, these posterior parameters can be 

used to predict the residual strength of a defective composite structure when a particular 

size of impact damage has been identified. Since the posterior parameters are each 
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represented by a probability distribution, the prediction also results in a probability 

distribution that is called the posterior predictive distribution. This predictive distribution 

can be computed using a random number generator such that when 𝜈(𝑗), 𝑚(𝑗), 𝑐(𝑗) and 

𝜎(𝑗) are the 𝑗th samples from the posterior distributions, then the 𝑗th sample of the 

predicted strength is given by 

5 

𝑦(𝑗) = 𝑡𝑟𝑛𝑑 (𝑚(𝑗) (
𝑥−�̅�

𝑠𝑥
) + 𝑐(𝑗), 𝜎(𝑗), 𝜈(𝑗)) × 𝑠𝑦 + �̅�   (5) 

where 𝑡𝑟𝑛𝑑( ) is a generator of random numbers conforming to a t-distribution and, as in 

equations (3) and (4), �̅� and �̅� are the mean of the ultrasound defect and residual strength 

measurements respectively, and 𝑠𝑥 and 𝑠𝑦 are their corresponding standard deviations. 

The JAGS software package was used to generate 500,000 random samples at each 𝑥 

location and ranked by the magnitude of the predictive residual strength in order to allow 

the 2.5th, 50th and 97.5th percentiles to be identified. A typical result is shown in Figure 9 

with an interval defined using the 2.5th and 97.5th percentiles from the predictive 

distribution. The 50th percentile of 𝑦 was used to plot the line-of-best-fit. The locations at 

which the percentiles were calculated are marked with dots. The code for performing 

robust Bayesian linear regression is included in this thesis as Appendix A and Appendix B. 

It is important to note that when using percentiles of the predictive distribution, the 

interval generated is commonly called a credible interval. The distinction between the 

classical confidence intervals and the Bayesian credible interval is subtle but important. 

In the classical (frequentist) view, parameters are fixed but unknown. Thus, a 95% 

confidence interval is expected to include the true value of the parameter 95% of the time 

in repeated sampling. The interval, not the true value of the unknown parameter, is 

random. From the Bayesian point of view, the value of the parameter is considered 

random and a 95% credible interval is expected to contain 95% of the probability 

distribution of the parameter. Under certain conditions, confidence and credible intervals 

may coincide. For a detailed account on the similarities and differences in methodology 

and philosophy of construction refer to [86]. 
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Figure 9: A typical predictive distribution of residual strength, y*, as a function of ultrasound measurement, 

x*, based on a Bayesian linear regression model fitted to the measured data values (crosses) with prediction 

uncertainties and a 95% credible interval. The dots on the three lines indicate the locations at which percentiles 

of the predictive distribution were calculated. The lines are spline curves interpolated through the quantified 

points. 

4.4.2. Piecewise Robust Bayesian Regression 

 To perform piecewise robust Bayesian regression, the only part of the model 

described in the previous section that must be changed is how the mean of the t-

distribution, 𝜇𝑠, is obtained. Instead of the t-distribution mean being calculated using a 

simple linear function, it is instead calculated using a discontinuous basis function, shown 

schematically at the bottom of Figure 10. This basis function has a discontinuity at a 

transition point, 𝜉𝑠, where the value of the t-distribution mean changes from a constant, 

to a linear function. The transition parameter was given a uniform prior distribution with 

the upper and lower bounds of the distribution set to the maximum and minimum values 

of 𝑥∗ respectively. This prior distribution allows the transition to occur at any value of 

defect severity. The linear function in the second half of the basis function is defined with 

two parameters: gradient, 𝑚𝑠, and intercept, 𝑐𝑠. These parameters have normal prior 

distributions where the means and standard deviations of the prior distributions were set 

to the same values used for the linear function in the robust Bayesian linear regression 

model, these values are listed in Table 1. The regression model was fitted to the residual 

strength data using the open-source software JAGS [25] to determine the posterior 

distributions of the parameters. To generate samples of the posterior predictive 
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distribution of the piecewise Bayesian regression model, equation (5) can be modified to 

include the samples of the transition parameter 𝜉(𝑗) as such: 

6 

𝑦(𝑗) =  {
𝑡𝑟𝑛𝑑(𝑚(𝑗)𝜉(𝑗) + 𝑐(𝑗), 𝜎(𝑗), 𝜈(𝑗)) × 𝑠𝑦 + �̅� , (

𝑥−�̅�

𝑠𝑥
) ≤ 𝜉(𝑗) 

𝑡𝑟𝑛𝑑 (𝑚(𝑗) (
𝑥−�̅�

𝑠𝑥
) + 𝑐(𝑗), 𝜎(𝑗), 𝜈(𝑗)) × 𝑠𝑦 + �̅� , (

𝑥−�̅�

𝑠𝑥
) > 𝜉(𝑗)

 (6) 

After samples of the posterior predictive distribution were obtained, it was then possible 

to calculate the bounds of the credible interval. This was performed in the same way as 

for robust Bayesian linear regression using percentiles of the posterior predictive 

distributions. It is also possible to reverse the behaviour of the basis function such that 

the linear interval is first which transitions into a constant-valued interval. The code for 

performing piecewise robust Bayesian regression is included in this thesis as Appendix A 

and Appendix C. 

 

 

Figure 10: Schematic diagram showing how the basis function for piecewise robust Bayesian regression (solid 

black line in the bottom graph) is formed using three parameters and the prior distributions for those 

parameters (top). 
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4.5. Performance Metrics 

To determine the most effective empirical model for predicting the residual 

strength of defective composites, it must be possible to quantify the accuracy of the 

generated predictions. Once the accuracy of predictions are quantified, different models 

can be directly compared to select the most effective for a particular defect assessment 

task. A commonly applied performance metric for this task is the coefficient of 

determination, 𝑅2, which measures the amount of variability in the data that is accounted 

for by the empirical model [87]. This results in a dimensionless number between 0 and 1, 

where 1 indicates a perfect fit. But the ability of a model to fit data does not indicate how 

accurate future predictions will be. In this thesis, the performance of regression models 

were assessed using the Leave-One-Out-Cross-Validation (LOOCV) technique [85, 88] to 

alleviate the effect of double-counting when using the same measured data to fit the 

model and assess its performance with a traditional correlation coefficient such as 𝑅2. 

Using the LOOCV technique, the regression model was fitted to the data 𝑛 times, where 

𝑛 was the number of coupons tested, and omitting or leaving out the data from one 

coupon each time, i.e. using (𝑛 − 1) points of data. Each fitted model was then used to 

predict the left-out measured data. The numerical difference between the predicted and 

measured residual strength of the left-out specimen was recorded as the prediction error 

for that coupon, 𝑒𝑖, and the LOOCV performance metric was taken as: 

7 

𝐿𝑂𝑂𝐶𝑉 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1     (7) 

Since, the extent of the defect detected in the ultrasound scans can be characterised in a 

number of ways, including area, width and length, as shown in Figure 11, the LOOCV 

metric was used to identify the defect characteristic that provided the best predictions in 

terms of the lowest value of root mean squared error in equation (7). 



 

41 

 

 

Figure 11: A typical time-of-flight C-scan of impact damage in a quasi-isotropic composite laminate, showing 

the defect metrics used. The defect area was defined as the projected area of all the delaminations when 

viewed in the C-scan. Colour is used to indicate the depth of delaminations from the impacted surface. 

4.6. Results 

A typical time-of-flight ultrasound C-scan from an impacted coupon is shown in 

Figure 11. The area, width and length of the defect were used as defect metrics and their 

efficacy for predicting residual strength compared, as described in the previous section. 

The width was defined as the total width of the delaminations perpendicular to the 

loading direction when viewed from above, as defined by Prichard and Hogg [12]. Defect 

length was measured similarly, but parallel to the loading direction. The defect area was 

taken as the total projected area of the delaminations when viewed from the impacted 

face using time-of-flight ultrasound. As the impact energy was increased, the size of the 

delaminations caused by the impact increased as well. This can be seen for both quasi-

isotropic coupons and crossply coupons in Figure 12 and Figure 13 respectively. 
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Figure 12: Time-of-flight C-scans of quasi-isotropic coupons with increasing impact energies of 5J, 8J, 12J and 

15J.  

 

Figure 13: Time-of-flight C-scans of crossply coupons with increasing impact energies of 5J, 8J, 10J and 12J. 

Figure 14 shows the Bayesian linear regression predictions of the residual 

strength of quasi-isotropic coupons using area, length and width of the ultrasound data 

(as shown in Figure 11) as the defect metric. Similar plots for predicting the residual 

strength of crossply coupons are shown in Figure 15. The LOOCV performance metric was 

used to assess the accuracy of predictions made using the different measurements. The 

lowest value indicates the measurement that is expected to result in the most accurate 

predictions. The LOOCV performance metrics, listed in Table 2, reveal that the area of the 

defect is the best metric for predicting the residual strength for both the quasi-isotropic 

and crossply coupons. 
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Figure 14: Residual strength predictions made using Bayesian linear regression for impacted quasi-isotropic 

specimens using ultrasound measurements of defect area (top), length (middle) and width (bottom) as the 

defect metric. The size of the 95% credible interval (grey shading) indicates that the uncertainty is smallest 

when the area of the defect was used as the defect metric which concurs with the LOOCV performance metric 

data in Table 2. 
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Figure 15: Residual strength predictions made using Bayesian linear regression for impacted crossply coupons 

using ultrasound measurements of defect area (top), length (middle) and width (bottom) as the defect metric. 
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Table 2: LOOCV performance metrics indicating the average uncertainties of residual strength predictions for 

crossply and quasi-isotropic specimens using three different defect metrics to make predictions. The 𝑅2 

statistics for the same regression models are also shown. 

Defect Metric 

Bayesian Regression Classical Regression 

Crossply Quasi-isotropic Crossply Quasi-isotropic 

LOOCV 

(Nm) 

𝑹𝟐 

(-) 

LOOCV 

(Nm) 

𝑹𝟐 

(-) 

LOOCV 

(Nm) 

𝑹𝟐 

(-) 

LOOCV 

(Nm) 

𝑹𝟐 

(-) 

Defect Area 2.517 0.830 5.325 0.763 2.500 0.830 5.341 0.763 

Defect Length 3.388 0.697 6.230 0.678 3.385 0.697 6.232 0.678 

Defect Width 3.290 0.705 6.923 0.603 3.288 0.705 6.923 0.603 

 

The predictions from Bayesian linear regression form a straight line as expected 

while the corresponding uncertainties are a pair of curves above and below the regression 

line defining a credible interval such that 95% of results for all coupons evaluated with 

ultrasound (to provide a value of the defect metric, 𝑥∗) and then tested to failure (to 

provide a value of residual strength, 𝑦∗) would be expected to lie in. Residual strength 

predictions were made for a range of defect metric values from zero, indicating no defect 

found, to the point at which the defect causes the residual strength to be approximately 

half the virgin strength. An example of how the plots in Figure 14 and Figure 15 can be 

used for making conservative estimates of residual strength is shown in Figure 16.  
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Figure 16: Residual strength predictions made using Bayesian linear regression for impacted crossply 

specimens using the defect area from the ultrasound measurements as the defect metric together with the 

95% credible interval (grey shading). The dotted lines indicate an exemplar minimum residual bending strength 

and the corresponding maximum allowable defect area for coupons with a probability of failure of less than 

2.5%. 

4.7. Discussion 

The graphs in Figure 14 and Figure 15 show the predictions of the residual 

strength as a function of the size of defect and are directly comparable to the ones 

produced by Prichard and Hogg [12] with the same correlation between defect width and 

residual strength demonstrated. There is substantial scatter above and below the 

regression line in the measured residual strengths, which is likely due to the complex 

nature of impact damage involving both fibre breakage and matrix cracking within the 

area of impact damage [6]. It is not possible to resolve these microscale features using 

ultrasound and a much more sophisticated model would be required to incorporate such 

detail into the residual strength predictions (e.g. [54] where an FE model was developed 

that predicted the propagation of delaminations produced by impact damage). However, 

the Bayesian approach employed here together with the use of the calculated credible 

interval allows all of the potential sources of uncertainty, including both the noise in the 

ultrasound measurements and the behaviour of the unmeasured microscale damage, to 

be accounted for in the predictions. The lower bound of the credible interval can be used 

to specify the maximum allowable size of a defect for a specified minimum residual 

strength. For instance, if the minimum tolerable residual bending strength for the crossply 

coupons is 32 Nm, then the maximum allowable area of a defect detected by ultrasound 
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would be 341 mm2, as shown by the dotted lines in Figure 16. This would ensure that 

coupons with a probability of 2.5% or more of failing at loads below the minimum residual 

strength are taken out of service for repair or disposal. 

The LOOCV performance metric, values given in Table 2, was used to demonstrate 

that defect area was the best choice for residual strength predictions for both the crossply 

and quasi-isotropic specimens, as predictions were up to 25% more accurate than when 

using the other defect metrics. The 𝑅2 statistics, also shown in Table 2, also demonstrate 

that defect area is the best empirical model, however this statistic does not estimate the 

average uncertainty of future predictions. The use of the best available defect metric for 

residual strength predictions reduces the size of the credible intervals, as can be seen in 

Figure 14, which raises the maximum allowable size of a defect permitted for the same 

probability of failure for a given required residual strength. This is likely to reduce the 

number of components that are removed unnecessarily from service for repair or disposal 

and hence reduce operating costs. Table 2 contains LOOCV performance metrics for both 

Bayesian and classical regression models showing that for data that does not contain 

outliers, the two regression techniques have similar behaviour. 

The relative performance of the classical and Bayesian linear regression models 

were compared for a small dataset by using a subset of data from just four of the crossply 

coupons. The two techniques produce the same regression line but substantially different 

intervals as shown in Figure 17. When calculating the allowable defect size for a coupon 

with a residual strength of 32 Nm the classical regression model over predicted the 

allowable defect size by almost 40%. In contrast, as the data set was small, the uncertainty 

on the Bayesian regression predictions were high and thus a conservative allowable defect 

size was determined that was 32% smaller than when the defect size was calculated using 

the full dataset. This implies that classical regression tends to underestimate the 

prediction uncertainty in the presence of limited or small datasets while the Bayesian 

analysis is conservative. This occurs because the normalisation, described in equations (3) 

and (4), ensures that the spread, s of the measured residual strengths around the 

regression line are always towards the lower end of the corresponding prior distribution, 

shown in Figure 7 and Table 1, and thus as more coupons are tested the credible interval 

will collapse towards the measurements. These conservative estimates of the allowable 

defect size ensure that unexpected failures are unlikely. 
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Figure 17: Residual strength predictions made using Bayesian linear regression for a small set of four impacted 

quasi-isotropic specimens. Strength predictions were based on ultrasound measurements of defect area. The 

wide light grey region is the Bayesian regression credible interval and the narrow dark grey region is the 

classical regression confidence interval.  

The influence of outliers on Bayesian regression can be explored using an artificial 

set of data generated using the following linear function:   

8 

𝑦𝑖 = −3𝑥𝑖 + 60 + 𝑁𝑟𝑛𝑑(0, 0.32)      (8) 

where 𝑥𝑖 = {3,4,5, ⋯ ,12} and 𝑁𝑟𝑛𝑑(0, 0.32) is a random number generator that 

produces numbers with a normal-distribution of mean value of 0 and standard deviation 

of 0.3. The classical and Bayesian linear regressions and the corresponding intervals 

calculated from this data were identical, as expected, and thus only the Bayesian linear 

regression is shown in Figure 18. However, when an outlier was introduced by changing a 

single value, 𝑦2 = 30, the behaviour of the two techniques was substantially different, as 

shown in Figure 19. The gradient and intercept of the Bayesian regression is unchanged 

with the line-of-best-fit equation being almost identical to the linear function in equation 

(8). For classical linear regression, the gradient has increased to -2.2, an error of 26% of 

the value used in equation (8) to generate the data. The credible intervals are larger in 

the presence of the outlier by a factor of 3.3 and 12.2 respectively for the Bayesian and 

classical regression models. This suggests that the Bayesian regression model is more 

robust in the presence of outliers, which is expected, because in these circumstances 

Gibbs sampling will assign higher probabilities to low values of the normality parameter 

of the t-distribution so that outliers have little effect on the slope and gradient 
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distributions for the regression line. Consequently, when using the Bayesian model, there 

is no need to identify and remove outliers from measured data as is common practice 

when using other regression techniques [22, 23]. The LOOCV performance metric and 𝑅2 

were calculated for both regression models when an outlier was present and are shown 

in Table 3. When choosing the best performing regression model, the 𝑅2 statistic 

incorrectly identified the classical regression model as having marginally higher 

performance despite the regression line not following the data trend. The LOOCV 

performance metric is 13% lower for the Bayesian regression model and thus correctly 

identified the Bayesian regression model as the best choice for future predictions. This is 

because the LOOCV performance metric actually tests the regression models ability to 

predict new data whilst 𝑅2 only indicates how well the regression line fits the available 

data.  

 

Figure 18: Bayesian linear regression based on artificial data generated using the linear function in equation 

(8) with normally distributed measurement noise.  
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Figure 19: Classical (dashed and dotted line with dark grey shading) and Bayesian (dashed line with light grey 

shading) linear regression and corresponding confidence and credible intervals based on the artificial data in 

Figure 18 with the addition of an outlier at (4, 30).  

Table 3: LOOCV and 𝑅2 performance metrics for Bayesian and classical regression applied to data containing 

an outlier. 

Performance Metric Bayesian Regression Classical Regression 

LOOCV (Nm) 5.72  6.58 

𝑅2 (-) 0.791 0.790 

 

 Piecewise robust Bayesian regression can also account for outliers, this means 

discontinuous data can be empirically modelled even when outliers are present. To 

demonstrate this, data was generated with a non-continuous function: 

9 

𝑦𝑖 = {
5𝑥𝑖 + 5 + 𝑁𝑟𝑛𝑑(0, 1.52) , 𝑥𝑖 > 9

50 +  𝑁𝑟𝑛𝑑(0, 1.52) , 𝑥𝑖 ≤ 9
     (9) 

where 𝑥𝑖 = {1,2,3, ⋯ ,20}. When piecewise robust Bayesian regression was used to fit an 

empirical model to the data generated by (9), it was able to automatically identify the 

transition at 𝑥 = 9. This resulted in a credible interval that tightly follows the data, shown 

in Figure 20. Outliers were added to the data by changing two values in the data set, 𝑦4 =

75 and 𝑦14 = 40. Piecewise robust Bayesian regression was again able to identify the 

transition point and estimated a similar equation for the line-of-best-fit despite these 
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outliers, as shown in Figure 21. The width of the credible interval increased but this is to 

be expected. With the addition of two outliers, the data suggests there is a significant 

probability of future measurements being outliers and thus the credible interval must be 

wider to indicate the potential for these outliers to occur. If the same task was to be 

performed using classical regression, prior knowledge of the location of the transition 

point or categorisation of the data into one interval or the other would introduce too 

many subjective judgements regarding the data. To perform this task with classical 

regression would also require the removal of the outliers resulting in a credible interval 

that is too narrow. 

 

Figure 20: Piecewise robust Bayesian regression applied to non-continuous data generated using equation (9). 

 

Figure 21: Piecewise robust Bayesian regression applied to non-continuous data generated using equation (9) 

with two outliers. 
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The Gibbs sampling algorithm used to perform Bayesian regression took on 

average 33 s to fit the regression model using a PC with an Intel Core i7-960 processor. 

The classical regression was performed using the same data in approximately 0.02 s on 

the same computer. The disparity in computational speed is due to classical linear 

regression using analytical equations whilst Bayesian linear regression uses iterative Gibbs 

sampling. However, the application of the Bayesian regression model is simpler than a 

computational mechanics model and allows defect prognoses to be made quickly whilst 

incorporating all of the uncertainties. Bayesian regression also allows regression to be 

applied to nonlinear data with minimal input by the user. In this chapter, measurements 

taken from ultrasound C-scans were correlated with residual bending strength but the 

approach is generic and any measurement from a non-destructive evaluation technique 

could be correlated to an important performance metric. In later chapters the two 

introduced Bayesian regression techniques were applied to different non-destructive 

measurements and for predicting different quantities without any modification to the 

statistical techniques.   

4.8. Conclusion 

Bayesian linear regression has been used to create a model of the residual 

strength in bending after impact of carbon fibre composite coupons, based on ultrasound 

measurements in both crossply and quasi-isotropic laminates. The performance of the 

model was found to be more robust than classical linear regression. In more detail, C-scan 

data was generated for twenty-five quasi-isotropic coupons and twelve crossply coupons 

that had been subject to drop-weight impacts in the range 0 to 15 J using a 20 mm 

diameter tup. The coupons were tested to failure in four-point bending in order to 

determine their residual strength. A Bayesian linear regression model was fitted to the 

measured ultrasound and strength data using Gibbs sampling and the performance of the 

model evaluated using the LOOCV performance metric. 

The empirical model based on defect area, measured using ultrasonic C-scans, 

was found to yield smaller prediction uncertainties than using either the defect length or 

width. The LOOCV performance metric was used to estimate the average uncertainty of 

future predictions and found that for both the crossply and quasi-isotropic specimens 

using defect area results in prediction uncertainties that are approximately 25% smaller 

than using either defect length or defect width.  
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It was found that a classical linear regression model tended to underestimate the 

uncertainty in predictions of residual strength and thus overestimate the allowable defect 

size when only a limited amount of experimental measurements was available. In the 

example given in this chapter, this overestimation was 40%. In these circumstances, the 

Bayesian linear regression model provided conservative estimates of the prediction 

uncertainty, thus underestimating the allowable defect size. This implies that the use of 

the Bayesian model might lead to the rejection of some serviceable components but it is 

unlikely to compromise safety. An additional advantage of the Bayesian approach is that 

the model can be updated as more experimental data becomes available. In the presence 

of outliers in the measured data, Bayesian regression was shown to provide accurate 

estimations of prediction uncertainties whereas classical linear regression provided very 

conservative estimations, with a 95% confidence interval that was almost four times 

larger than the interval calculated using Bayesian regression. Bayesian regression was still 

able to accurately estimate the parameters of the function used to generate the data 

containing outliers whilst classical regression estimates of gradient were different by 26%. 

The 𝑅2 statistic in the presence of data outliers wrongly identified the classical regression 

model as being more adequate, unlike LOOCV. A second type of Bayesian regression was 

also introduced, allowing for empirical models to be generated for non-continuous data 

whilst still being robust to outliers. It is not possible to perform this task with classical 

regression without subjective judgements and discarding data.  

Normalisation of the measured data was used to provide a generic approach to 

implementing the Bayesian regression model using Gibbs sampling. However, the main 

drawback of both the Bayesian regression model and the LOOCV performance metric is 

the high computation time required for the calculations. Once the calculations have been 

completed the defect assessments can be performed rapidly using residual strength 

predictions based on non-destructive evaluation, without the need for expert 

interpretation or analysis. It is proposed that the Bayesian model has the potential to 

permit improved decision-making on the serviceability of defective composite 

components as a result of more robust and reliable predictions of residual behaviour and 

accurate estimates of the uncertainty in the predictions. This is likely to reduce 

unnecessary repairs and replacements and thus decrease maintenance costs and down-

time. 



 

54 

 

5. Strain-based Defect Assessment of Impacted Composite 

Laminates 

5.1. Introduction 

 There are substantial costs associated with the repair of composite structures, 

hence it would be beneficial for the assessment techniques to provide the most suitable 

information for characterising the defect. This could help to reduce the number of repairs 

to those that are essential for the structure to be safely operated. Ultrasound and 

thermography are amongst the most common techniques currently employed to assess 

aerospace composites [3], and provide information in the form of the size and shape of 

the defect. From this data, the residual strength of the structure can be inferred, but 

predictions based on these measurements have high levels of uncertainty because the 

effect of the defect on the structural integrity is not completely characterised [4].  The 

changes in strain fields induced by the defect should provide the most appropriate input 

parameters for predicting the change in structural integrity, or residual strength [2].  Thus, 

employing strain fields to assess the effect of defects in composites is likely to lead to 

more reliable predictions of the residual strength. 

 To determine how much of an improvement can be obtained by using a strain-

based assessment compared to an ultrasound assessment, the statistical techniques 

introduced in the previous chapter are applied to a strain-based defect assessment 

described in this chapter. The experiments detailed in this chapter extend the defect-

assessment technique developed by Patki and Patterson [5] to predicting the residual 

strength of impacted coupons. The strain-based defect assessments described here were 

performed in parallel to ultrasound-based inspections and as such direct comparisons can 

be made between the two assessment techniques. 

This chapter is based on the following published paper, written by the author of 

this thesis: 

Christian WJR, DiazDelaO FA, Patterson EA. “Strain-based Damage Assessment for 

Accurate Residual Strength Prediction of Impacted Composite Laminates”. Composite 

Structures. 2017. 
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5.2. Experimental Method 

 Two different material systems and layups were chosen to explore the accuracy 

of strain-based residual strength predictions. Eight crossply coupons were produced using 

M10R-UD-150 prepreg (Hexcel, USA) with a [02/902/02/902/02/90]S layup. Nineteen quasi-

isotropic coupons with a [02/902/452/-452]S layup were manufactured using RP507UT210 

prepreg (PRF, UK) and cured with an identical method to that used for the coupons 

described in Chapter 4.  

 Barely visible impact damage (BVID) was created in the laminates using a drop-

weight impact tower. A 20 mm hemispherical tup of mass 2.67 kg was used to produce 

damage without forming cracks on the impacted surface of the coupon. The only damage 

visible was a shallow dimple with a typical diameter of 5 mm on the impacted surface. 

Seven of the crossply laminates were impacted with a range of energies between 4 J and 

12 J, leaving a single virgin laminate. Thirteen of the quasi-isotropic laminates were 

impacted at a range of energies between 4 J and 15 J, leaving six virgin laminates. The 

laminates were then cut into 220 mm by 40 mm coupons using a wet diamond saw 

(Versatile 103450, Vitrex, USA) with the impact location used as the centre of the coupons 

and the 0⁰ plies running in the x-direction, as shown in Figure 22. A wet diamond saw was 

used to ensure the cut edges were free from delaminations that may have caused 

premature failure. 

 

Figure 22: A coupon with speckle pattern applied at the location where the impact was applied showing 

dimensions and the coordinate system used for the DIC and ultrasound measurements. 

The spatial distribution of the delaminations produced by the impacts were 

measured using pulse-echo ultrasound. The process used to produce time-of-flight C-

scans is explained in Chapter 3. Time-of-flight C-scans are images that show the position 

and depth of defects within a laminate. After the ultrasonic inspection, the strain-based 

defect assessment, explained in the next section, was performed. Since the strain-based 
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defect assessment required a load to be applied to each coupon, a further ultrasonic 

inspection was performed after the strain-based assessment was complete to check that 

the delaminations had not propagated. The delaminations in one quasi-isotropic coupon, 

which was impacted with an energy of 15 J, had propagated and hence, data for this 

coupon was not included in any further analysis.  

After the final ultrasound inspection, each coupon was loaded to failure using a 

four-point bend setup. A servo-hydraulic load frame (8501, Instron, USA) with a four-point 

bending rig, consisting of a support span and load span of 160 mm and 80 mm 

respectively, was used to load the coupons. The coupons were placed in the bending rig 

such that the impacted surface was in tension; and thus, the large delaminations close to 

the rear surface, were in compression. The load frame was then operated under 

displacement control to monotonically load the coupons to failure at a rate of 

0.8 mm/min. The coupons were considered to have failed when their stiffness was 

reduced to 50% of its original value. The ultimate bending moments were recorded and 

used as the residual strength for the coupons. The measurement of residual strength in 

bending was chosen because the loads required for failure in tension or compression were 

expected to exceed ±100 kN and thus were too high for the load frame. 

5.3. Strain-Based Defect Assessment 

 To perform DIC, a speckle pattern was first applied to a 50 mm wide area in the 

middle of each coupon on the surface that was impacted, a photograph of a speckled 

coupon is shown in Figure 22. The DIC setup used for this experiment is described in 

Chapter 3 and a photo of an impacted coupon during loading is shown in Figure 23. The 

impacted surface was chosen for the strain-based inspection because aerospace 

structures are typically inspected on the most accessible surface, which is also likely to be 

the surface that experiences impacts.  
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Figure 23: Coupon under four-point bend load with the cameras used for DIC attached to the top half of the 

rig facing the impacted surface of the coupon. 

Each coupon was loaded to the same displacement by vertically moving the 

loading span 6 mm towards the support span, where a displacement of 0 mm would 

indicate all four noses of the four-point bend rig were in contact but not inducing a 

bending moment in the coupon.  The application of a common displacement instead of 

bending moment ensured that variations in the stiffness of the virgin material does not 

affect the defect assessment; and, that only variations in redistribution of the strain due 

to the defect are measured [35]. Each coupon was loaded 6 times and the strain field 

captured each time. The common displacement resulted in a mean bending moment 

applied to the crossply and quasi-isotropic coupons of 20.36 Nm and 21.38 Nm 

respectively. 
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 The strain fields contained large quantities of data, much of it redundant, and 

thus the dimensionality of the fields were reduced prior to performing the defect 

assessment.  Once each strain field was captured, a 25 mm wide square area of the strain 

field was selected with the centre defined by the surface dimple caused by the impactor. 

The width of this square area was chosen to be approximately the same as the y-direction 

width of the largest defect detected using ultrasound. If the area of strain data used for 

assessments was substantially larger than the defect, only a small portion of the strain-

field would be affected by the defect, limiting the sensitivity of the technique. The square 

area of strain data was dimensionally reduced using the technique of image 

decomposition [50]. Image decomposition is the process by which an image consisting of 

a large number of pixels can be represented by a comparatively small number of shape 

descriptors. Orthonormal discrete Tchebichef polynomials [47] were used to describe 

each strain field and hence, to provide these shape descriptors. The Tchebichef shape 

descriptors for an N x N discrete image, 𝐼(𝑖, 𝑗), are given as [47]: 

10 

𝑇𝑝,𝑞 =
1

�̃�(𝑝,𝑁)�̃�(𝑞,𝑁)
∑ ∑ �̃�𝑝(𝑖)�̃�𝑞(𝑗)𝐼(𝑖, 𝑗)𝑁−1

𝑗=0
𝑁−1
𝑖=0     (10) 

where �̃�𝑝(𝑖) and �̃�𝑞(𝑗) are scaled Tchebichef polynomials calculated using the recursive 

function [47]: 

11 

�̃�𝑛(𝑥) =
(2𝑛−1)�̃�1(𝑥)�̃�𝑛−1(𝑥)−(𝑛−1)(1−

(𝑛−12)

𝑁2 )�̃�𝑛−2(𝑥)

𝑛
,     𝑛 = 2, 3, ⋯ , 𝑁 − 1 (11) 
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�̃�0(𝑥) = 1        (12) 

13 

�̃�1 =
2𝑥+1−𝑁

𝑁
        (13) 

and [47], 

14 

�̃�(𝑛, 𝑁) =
𝑁(1−

1

𝑁2)(1−
22

𝑁2)⋯(1−
𝑛2

𝑁2)

2𝑛+1
       (14) 

Shape descriptors and their associated Tchebichef polynomials up to an order, 𝑂, can then 

be used to calculate a reconstruction of the image [47], 

15 

𝐼(𝑖, 𝑗) = ∑ ∑ 𝑇𝑝,𝑞 �̃�𝑝(𝑖)�̃�𝑞(𝑗)𝑂
𝑞=0

𝑂
𝑝=0      (15) 
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where 0 ≤ 𝑂 ≤ 𝑁 − 1. If 𝑂 = 𝑁 − 1 then the reconstructed image will be identical to the 

original image. For this study, the shape descriptors corresponding to Tchebichef 

polynomials up to an order of 24 were calculated for each strain field, 𝐼(𝑖, 𝑗), and collated 

into a feature vector, 𝒔, with 325 dimensions. The reconstruction error was assessed using 

the root mean squared residual: 

16 

𝑢 = √
1

𝑁
∑ (𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))

2𝑁

𝑖,𝑗
      (16) 

A large number of shape descriptors were initially calculated to ensure that the 

reconstruction error was substantially smaller than the measurement uncertainty of the 

DIC system. The feature vectors were then filtered by a similar technique used in [53] 

whereby the shape descriptors below a threshold were set to zero. The value of the 

threshold was chosen such that the root mean squared residual of the reconstruction 

after filtering was equal to the measurement uncertainty. An example of this filtering 

process and its results is shown in Figure 24. After filtering, the feature vectors typically 

had around 30 non-zero elements compared to 10,000 pixels in the original strain fields. 

 

Figure 24: The first 120 of the 325 shape descriptors in a feature vector describing the strain field on a loaded 

coupon with impact damage (left) with the filter thresholds indicated by dashed lines. All 325 shape descriptors 

were used for the unfiltered reconstruction (top right) but only 29 shape descriptors, shaded in the bar chart, 

were required after filtering (bottom right). 

 The severity of the defect was assessed by making a numerical comparison 

between the feature vectors representing the defective coupons and those representing 
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the virgin coupons using dissimilarity metrics. Patki and Patterson [5] used three different 

metrics for comparing feature vectors: cosine similarity, Pearson correlation and 

Euclidean distance. The cosine similarity was calculated as [5]: 

17 

𝐶𝑜𝑠𝑆𝑖𝑚(𝒔𝑑𝑎𝑚, 𝒔𝑣𝑖𝑟) =
〈𝒔𝑑𝑎𝑚,𝒔𝑣𝑖𝑟〉

‖𝒔𝑑𝑎𝑚‖‖𝒔𝑣𝑖𝑟‖
     (17) 

where 〈𝒔𝑑𝑎𝑚, 𝒔𝑣𝑖𝑟〉 is the inner product of the two vectors and ‖∙‖ the Euclidean norm. 

The Pearson correlation coefficient, 𝜌, can be calculated using equation (17) as [39]: 

18 

𝜌 =  𝐶𝑜𝑠𝑆𝑖𝑚(𝒔𝑑𝑎𝑚 − 𝒔𝑑𝑎𝑚̅̅ ̅̅ ̅̅ ̅, 𝒔𝑣𝑖𝑟 − 𝒔𝑣𝑖𝑟̅̅ ̅̅ ̅)    (18) 

where 𝒔𝑑𝑎𝑚̅̅ ̅̅ ̅̅ ̅ and 𝒔𝑣𝑖𝑟̅̅ ̅̅ ̅ are the means of the two feature vectors. Tchebichef shape 

descriptors can be any real value with both positive and negative values and thus, the 

mean of a feature vector containing Tchebichef shape descriptors tends to be very close 

to zero. This can be seen in the bar chart in Figure 24 where, with the exception of the 

first shape descriptor, all the values are close to zero with an approximately even split of 

negative and positive values. This causes the Pearson correlation and cosine dissimilarity 

to be almost identical when Tchebichef shape descriptors are used. Therefore, the cosine 

similarity has not been used in this study. This effect was not encountered by Patki and 

Patterson as the Fourier-Zernike shape descriptors that were used in that study were 

always positive real numbers [49] and thus the mean of the resultant feature vectors were 

nonzero. It has been suggested that for defect assessments, it is more appropriate to 

measure the dissimilarity between feature vectors as opposed to their similarity [5] as the 

dissimilarity would be expected to increase as the severity of the defect was increased. 

Thus, the Pearson dissimilarity has been used in this study which was calculated as [5, 39]: 

19 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 − 𝜌     (19) 

The third metric used in [5] was the Euclidean distance, given as: 

20 

𝐿𝑒𝑢𝑐 = √∑ (𝑠𝑑𝑎𝑚𝑘
− 𝑠𝑣𝑖𝑟𝑘)

2𝑚
𝑘=1      (20) 

where 𝑚 is the number of elements in the feature vectors 𝒔𝑑𝑎𝑚 and 𝒔𝑣𝑖𝑟 representing the 

strain fields in the defective and virgin coupons respectively. Despite the defect metrics 

calculated using equations (19) and (20) being shown to be capable of predicting impact 

energy, issues are encountered when they are used. If any of the shape descriptors are of 
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a substantially higher magnitude than the others, then the Pearson dissimilarity is 

typically very close to zero. Since the value of the first shape descriptor is always equal to 

the mean value of the strain field, and a load bearing structure typically experiences a 

high mean strain, the Pearson correlation will be low regardless of the severity of the 

defect present in the structure. Issues are also encountered when using the Euclidean 

distance. When used to compare feature vectors that contain many terms, the Euclidean 

distance suffers from an effect called concentration [89], where the distances between all 

the feature vectors become roughly equal, and thus defect severity measures become 

meaningless. The Manhattan distance, sometimes called the city-block distance, is less 

sensitive to concentration and thus, is expected to be a better metric for assessing the 

extent to which the strain field has been affected by the defect. The Manhattan distance 

was calculated as [89]: 
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𝐿𝑚𝑎𝑛 = ∑ |𝑠𝑑𝑎𝑚𝑘
− 𝑠𝑣𝑖𝑟𝑘|𝑚

𝑘=1       (21) 

where 𝑚 is the number of elements in the feature vectors 𝒔𝑑𝑎𝑚 and 𝒔𝑣𝑖𝑟 representing the 

strain fields in the defective and virgin coupons respectively. The three defect metrics 

used for the strain-based defect assessment in this chapter are the Manhattan distance, 

Euclidean distance and Pearson dissimilarity. As the strain field was captured six times for 

each coupon, including the virgin coupons, the defect metrics for each defective coupon 

were evaluated 36 times and the mean value recorded as the strain-based defect severity 

for that coupon. It was assumed that if the damage was likely to propagate, then the strain 

field on the surface of the defective coupon would be expected to be substantially 

different to the strain field on the virgin coupon.  

5.4. Results 

 Examples of ultrasound time-of-flight C-scans captured for the crossply and quasi-

isotropic coupons are shown at the top of Figure 25 and Figure 26 respectively. The 

projected area of the defect visible in the time-of-flight C-scans was recorded and this 

measurement used as the ultrasound-based defect severity. The strain field on the 

impacted surface, when the four-point bend rig was at a 6 mm displacement, is shown at 

the bottom of Figure 25 and Figure 26 with the area of the strain field used for defect 

assessment indicated by the white dashed rectangle. A characteristic pattern is visible in 
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the strain field at the defect location, consisting of a high strain area in the centre with 

low strain areas to its left and right.  

 

Figure 25: Ultrasound time-of-flight C-scan of the delaminations formed by a 12 J impact on a crossply 

laminate (top) and the corresponding surface strain field (bottom) with the 25 mm square region used for 

image decomposition shown in white. 
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Figure 26: Ultrasound time-of-flight C-scan of the delaminations formed by a 12 J impact on a quasi-isotropic 

laminate (top) and the corresponding surface strain field (bottom) with the 25 mm square region used for 

image decomposition shown in white. 

The magnitude of the strain pattern caused by the impact damage can be seen to 

vary with impact energy. As the impact energy was increased, the pattern become clearer. 

This can be seen for crossply and quasi-isotropic coupons in Figure 27 and Figure 28 

respectively. 
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Figure 27: Strain fields observed in crossply coupons with increasing impact energies of 0 J, 5 J, 8 J and 10 J 

(reading left-to-right from top-left). 



 

65 

 

 

Figure 28: Strain fields observed in quasi-isotropic coupons with increasing impact energies of 0 J, 5 J, 10 J and 

15 J (reading left-to-right from top-left). 

For the strain-based defect assessment to be performed, data from a virgin 

coupon was required as a reference. For the crossply coupons, only one virgin coupon was 

available and this was used for comparison with the defective crossply coupons. For the 

quasi-isotropic coupons, there was data from six virgin coupons and thus, the most 

suitable had to be selected as the reference strain field against which to compare the 

defective coupons. Some variability was observed in the failure load for the six virgin 

quasi-isotropic coupons, as shown in Table 4. The ultimate bending moments for the six 

coupons had a mean of 52.95 Nm and standard deviation of 4.96 Nm; however, it was 

clear that the failure load for coupon RC4 was substantially lower than for the other five 

coupons. The maximum normed residual technique, a method of identifying outliers 

described in [14], was used and confirmed that RC4 was an outlier. This indicated that RC4 

was unsuitable for use as the reference coupon. The mean and standard deviation of the 

five virgin quasi-isotropic coupons, excluding RC4, were found to be 54.95 Nm and 

1.01 Nm respectively and no further outliers were identified. Coupon RC1 had a failure 

load closest to the mean and, hence, it was chosen as the reference coupon for the quasi-

isotropic coupons. 
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Table 4: Ultimate bending moments for the six virgin quasi-isotropic coupons. 

Coupon 

Identifier 

Ultimate Bending 

Moment (Nm) 

RC1 55.08 

RC2 53.89 

RC3 55.23 

RC4 42.99 

RC5 56.42 

RC6 54.11 

 

Robust Bayesian linear regression, described in Chapter 4, was used to fit a 

predictive function for the residual strength to the measured defect severities. Four 

regression models were constructed for each batch of coupons making predictions based 

on: the defect area measured using ultrasound, the Manhattan distance between feature 

vectors, Pearson dissimilarity between feature vectors and Euclidean distance between 

feature vectors. The defect area measured using ultrasound was shown to be the most 

effective ultrasound metric for use in residual strength predictions in Chapter 4 and 

therefore is the only ultrasound defect measurement used in this chapter. The 

construction of the four regression models per batch of coupons allowed a direct 

comparison of the predictions generated using each of the measurements. The 

measurements and the fitted regression models for the defect assessments using defect 

area and Manhattan distance are shown in Figure 29 and Figure 30. These regression 

models could be used to generate predictions of the residual strength of defective 

components made from an identical laminate found to contain impact damage. The 

credible interval around the line-of-best-fit, shown as the grey region on the graphs in the 

two figures, indicates the range of most probable residual strength values that could be 

exhibited by a laminate with a measured defect severity. The probability that the true 

residual strength would be contained in the credible interval is 95% and thus the lower 

bound of the interval could be used as a conservative estimate of residual strength with 

only a 2.5% chance that the residual strength would be lower. 
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Figure 29: Regression models relating defect severity measurements to the residual strength of defective 

crossply composites using the ultrasound-based defect severity (top) and the Manhattan distance for strain-

based assessments (bottom). 



 

68 

 

 

Figure 30: Regression models relating defect severity measurements to the residual strength of defective 

quasi-isotropic composites using the ultrasound-based defect severity (top) and the Manhattan distance for 

strain-based assessments (bottom). 

 Patki and Patterson used three defect severity metrics when performing strain-

based assessments [5]. These were the Euclidean distance, Pearson dissimilarity, and 

cosine dissimilarity. For continuity, these defect metrics were also explored in this study. 

As previously discussed, when comparing two feature vectors of Tchebichef shape 

descriptors, the cosine similarity and Pearson correlation are close to identical. When 

plotting the results there was no discernible difference between the values obtained with 

either metric and no difference in prediction accuracy. Therefore, only the Euclidean 

distance and Pearson dissimilarity are plotted in Figure 31 and Figure 32. 
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Figure 31: Strain-based defect assessments of crossply coupons using Pearson dissimilarity (top) and Euclidean 

distance (bottom). 
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Figure 32: Strain-based defect assessments of quasi-isotropic coupons using Pearson dissimilarity (top) and 

Euclidean distance (bottom). 

To make quantitative comparisons between the predictive capabilities of the 

models based on ultrasonic and strain-based defect assessments, it was necessary to 

calculate their average prediction uncertainty. This was achieved by calculating the 

LOOCV performance metric introduced in Chapter 4. The best performing defect 

assessment technique would have the lowest value of the LOOCV performance metric, 

because it is a measure of the average prediction uncertainty. The performance metrics 

for the ultrasound and strain-based defect predictions are shown in Table 5.  
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Table 5: The LOOCV performance metrics for the ultrasound-based predictions and the strain-based 

predictions of residual strength for crossply and quasi-isotropic laminates. 

Coupon Layup LOOCV of 

Ultrasound-based 

Predictions (Nm) 

LOOCV of Strain-based Predictions (Nm) 

Manhattan 

Distance 

Euclidean 

Distance 

Pearson 

Dissimilarity 

Crossply  2.96 0.97 2.79 1.85 

Quasi-isotropic  5.84 4.43 7.19 5.33 

 

5.5. Discussion 

 The ultrasound time-of-flight C-scans of the defects in both the crossply and 

quasi-isotropic coupons have been used to measure the projected defect area caused by 

the drop-weight impactor. There is more noise evident in the C-scans of the defects in the 

crossply than the quasi-isotropic laminates. This noise is likely caused by areas of fibre-

breakage that are more likely in the crossply material and which, unlike delaminations, 

cause the ultrasound energy to scatter rather than be reflected back to the probe. The 

strain-field is not adversely affected by different failure modes and thus the noise in the 

data is uniform regardless of the modes present. A characteristic pattern can be observed 

in the strain data for impacted laminates, shown in Figure 25 and Figure 26. This 

characteristic pattern becomes more visible as the energy of impact increases, this can be 

seen in Figure 27. The Manhattan distances between feature vectors representing the 

strain fields in the defective coupons and the reference virgin coupon were then 

calculated and used as the strain-based measure of defect severity. When the Manhattan 

distance was plotted against the residual strength of the defective coupons, as show in 

the bottom of Figure 29 and Figure 30, a strong linear correlation was observed. A linear 

correlation was also observed for the ultrasound-based defect severity measurements; 

but, the spread of data points around the line-of-best-fit was much wider, and thus, 

predictions based on this ultrasound data would be less accurate. As Patki and Patterson 

used the Euclidean distance and Pearson dissimilarity metrics for strain-based defect 

assessments, these metrics have also been used in this study. A linear correlation can be 

observed between the two defect metrics and the residual strength in Figure 31 and 

Figure 32. 
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The predictive power of the three strain based defect metrics and the single 

ultrasound-based regression models were assessed using the LOOCV performance metric, 

which estimates the average prediction uncertainty of each of the regression models. Of 

the three strain-based defect metrics, the Manhattan distance was, as expected, the most 

effective for predicting the residual strength of the defective coupons. As the predictions 

of residual strength were the most accurate when using the Manhattan distance, this is 

the dissimilarity metric recommended to compare feature vectors of shape descriptors 

for a strain-based defect assessment. When the LOOCV performance metrics were 

compared for the crossply coupons, the average prediction uncertainty was found to be 

approximately three times larger for ultrasound-based predictions than the 

corresponding uncertainty for strain-based predictions using the Manhattan distance. 

This indicates that the strain-based methodology represents a substantial improvement 

in ability to assess the severity of a defect compared to ultrasonic measurements. Thus, if 

the strain-based defect assessment was used in place of an ultrasound-based method 

then a reduction in the number of components being unnecessarily repaired or replaced 

could be expected. Although, for other defect types ultrasound or thermography may still 

be the most appropriate inspection technique. When comparisons are made between the 

ultrasound and strain-based LOOCV metrics for the quasi-isotropic coupons, a similar 

decrease in uncertainty is evident; however, the LOOCV metric for ultrasound-based 

predictions is 1.32 times more than for the strain-based predictions using the Manhattan 

distance. This difference in performance may be due to the distribution of delaminations 

in the two different laminates, but still represents a significant increase in the accuracy of 

predictions. 

 For strain-based defect assessments to be applied to aerospace structures, strain 

must be induced within the inspected components. This is likely to be the most significant 

hurdle for the application of this technique, as the induced strain must exceed the 

minimum resolution of the measurement system. For an elastic material, the magnitude 

of the strain-field varies linearly with the applied load, thus the value of the shape 

descriptors representing that strain field also have a linear relationship with load [48]. The 

Manhattan distance between two feature vectors therefore scales with the load used to 

induce the strain fields that the feature vectors represent. And, the ability for the strain-

based defect assessment to measure small values of Manhattan distance is related to the 

measurement uncertainty of the DIC system. The DIC system used in this thesis was found 
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to have a measurement uncertainty of 44 μϵ. A lower strain measurement uncertainty of 

29 μϵ has been achieved using a similar measurement system [79] and a DIC system from 

a different manufacturer was found to have a measurement uncertainty of 30 μϵ [53]. The 

higher uncertainty of the DIC system used in this thesis is likely due to the high stereo 

angle of the cameras, resulting in a reduction in the accuracy of in-plane measurements 

[77]. Defects that cause the strain field to vary with a Manhattan distance close to the 

measurement uncertainty would be indistinguishable from a virgin coupon. This is not 

necessarily a significant problem for structural assessments, as such a defect would not 

be expected to reduce the residual strength of the composite. For instance, if one of the 

crossply coupons contained a through-width delamination, then the bending moment at 

which the delamination propagates, 𝑀𝑝, and the amount the strain field is affected by the 

delamination, ∆𝜖, can be estimated using a simple one-dimensional model based on 

buckling [90, 91]. 

When using the model, the bending moment at which the delamination would 

propagate, 𝑀𝑝, can be estimated in terms of the delamination length, 𝐿𝑑. In the model, 

the strain energy release rate, 𝐺𝐼, is related to the axial strains in the material at the 

delamination when buckling occurs, 𝜖𝑏, and when propagation occurs,  𝜖𝑑, by: 

22 

𝐺𝐼 =
𝐸𝑎𝑡

2
(𝜖𝑑 − 𝜖𝑏)(𝜖𝑑 + 3𝜖𝑏)         (22) 

where 𝐸 is the elastic modulus of the laminate calculated from data in [54], 𝑎 is the ratio 

of ply thickness to laminate thickness and 𝑡 is the laminate thickness. 𝜖𝑏, the axial strain 

at which the material below the delamination would buckle, is given by [91]:    

23 

𝜖𝑏 =
𝜋2𝑎2𝑡2

3𝐿𝑑
2         (23) 

and, 𝜖𝑑, the axial strain at the delamination when propagation occurs, can be calculated 

by assuming simple bending and based on [91]: 

24 

𝜖𝑑 =
6𝑀𝑝

𝐸𝑤𝑡2(1−𝑎)2        (24) 

where 𝑤 is the coupon width and 𝑀𝑝 is the bending moment at which propagation occurs. 

The parameters for Equations (22), (23) and (24) are defined in Table 6, with the material 

properties taken from [54] and dimensions based on the crossply coupons tested in this 
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chapter. The bending moment at which the delamination starts to propagate can then be 

calculated by finding the roots to the quadratic in Equation (22).  

Table 6: Parameters used for predicting the propagation loads for a through thickness laminate. 

Parameter Value 

𝐺𝐼 550 N/m [54] 

𝐸 76.7 GPa 

𝐸𝑑𝑎𝑚 71.2 GPa  

𝑎 1
11⁄   

𝑡 3 mm 

𝑤 40 mm 

𝐿𝑖 25 mm 

 

By using Equations (22), (23) and (24), the bending moment at which propagation 

occurs can be obtained for any length of delamination. However, to demonstrate that 

insignificant defects have only a minimal effect on the strain field, the propagation 

bending moment needs to be related to how much the strain field is affected by the 

delamination. Thus, the amount of change to the strain-field in the inspected square area, 

at an applied inspection bending moment, 𝑀𝑖 = 20 Nm, was estimated. To achieve this, it 

was assumed that the delaminated 0⁰ ply does not contribute to the stiffness of the 

coupon, resulting in a reduced modulus of elasticity, 𝐸𝑑𝑎𝑚, due to the missing ply, and a 

reduction in the coupon thickness. The strain on the coupon surface at a delaminated 

location can then be calculated using simple bending as: 

25 

𝜖𝑖,𝑑 =
6𝑀𝑖

𝐸𝑑𝑎𝑚𝑤𝑡2(1−𝑎)2       (25) 

which would be higher than the surface strain at a virgin location, given by: 

26 

𝜖𝑖,𝑣 =
6𝑀𝑖

𝐸𝑤𝑡2        (26) 
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The amount the mean surface strain has changed from a virgin coupon can then be 

calculated using the strains given by Equations (25) and (26) and the size of the 

delamination relative to the size of the inspected area, 𝐿𝑖. The strain difference, ∆𝜖, 

between a virgin and a defective coupon can therefore be calculated as: 

27 

∆𝜖 =
𝐿𝑑

𝐿𝑖
(𝜖𝑖,𝑑 − 𝜖𝑖,𝑣)        (27)  

Hence, the bending moment required to cause propagation can be calculated for a range 

of different sized delaminations and plotted against the change in the strain field, as 

shown in Figure 33. The vertical line in Figure 33 indicates the smallest measurable strain 

difference between a virgin and defective coupon, which was set to the 95% confidence 

interval for strain measurement using the DIC system, which is equal to four times the 

system measurement uncertainty. Therefore, Figure 33 shows that a delamination that 

does not result in a measurable change to the strain-field, i.e. to the left of the dashed 

line, would not be expected to propagate and does not reduce the residual strength of 

the coupon. Consequently, if the difference in the strain-field between the virgin and 

defective states is less than the measurement resolution of the DIC system, the defect can 

be ignored.  

 

Figure 33: The moment, 𝑀𝑝, to cause propagation of a delamination (solid line) as a function of the strain 

difference, ∆𝜖, relative to a virgin coupon, developed around the delamination when an inspection moment of 

20 Nm is applied (dotted line).  The graph indicates the inspection moment will not induce propagation and 

the minimum measurable strain difference (dashed line) corresponds to a delamination that will only 

propagate due to a moment larger than the ultimate moment of the virgin coupon (chain line). 
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For ultrasonic assessments, the size of a detectable defect is closely linked with the 

resolution of the assessment technique, but the size of defect does not indicate the risk 

associated with the presence of that defect. For instance, a small delamination in a highly-

stressed area of a structure would likely cause a greater reduction in residual strength 

than a large delamination in a low-stressed area, but the ultrasound inspection is more 

likely to detect the large delamination. This could lead to defects being missed that could 

significantly reduce the strength of a structure whilst large defects, that may be 

insignificant, are detected. With a strain-based inspection, there is a correlation between 

how the defect affects the residual strength and how much it changes the strain-field. 

Therefore, undetectable defects would not be expected to affect the residual strength 

and can be safely ignored. The required measurement uncertainty for a strain-based 

assessment can be defined by considering the minimum residual strength of the defective 

structure. This means that for a strain-based inspection the required measurement 

resolution is simple to define, and may lead to fewer situations where critical defects are 

missed.  

5.6. Conclusions 

A novel method of assessing defective composites with measurements of the 

resulting strain field has been used to make predictions of the residual strength of crossply 

and quasi-isotropic carbon fibre composite coupons with barely visible impact damage 

(BVID). A large number of coupons were manufactured and impact, with a known level of 

impact energy, applied using a drop-weight impact tower. The coupons were then loaded 

in bending to induce strain and full-field strain data captured using digital image 

correlation. The dimensionality of the strain fields was reduced using image 

decomposition resulting in feature vectors that represent the strain on the surface of each 

coupon. The defects were quantified by numerically comparing the feature vector for 

each defective coupon with the feature vector for a virgin coupon using three different 

dissimilarity metrics: Euclidean distance, Pearson dissimilarity and Manhattan distance. 

Each of these dissimilarity metrics resulted in a strain-based measure of defect severity 

that was found to linearly correlate with the residual strength of the defective coupons. 

An ultrasound-based defect assessment was also performed on the coupons allowing for 

a direct comparison between the new methodology and an established inspection 

technique.  
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 Robust Bayesian regression was used to fit a linear function to the measures of 

defect severity and the residual strengths of the coupons. The uncertainty in predictions 

made using the Euclidean distance and Pearson dissimilarity was found to be higher than 

for predictions made using the Manhattan distance and as such the Manhattan distance 

is suggested as the most appropriate dissimilarity metric for strain-based defect 

assessments. The uncertainty in the predictions made using the strain-based 

methodology were one-third and three-quarters of the uncertainty in predictions based 

on ultrasound measurements for the crossply and quasi-isotropic coupons respectively. 

This indicates that the strain-based predictions significantly outperformed the ultrasound 

predictions. Since ultrasound only measures the size and shape of defects, not all of the 

required information is available to accurately predict the residual strength of a defective 

composite. For strain-based assessments, there is a direct connection between the strain 

field in proximity to the defect and the mechanisms driving damage propagation and thus 

the predictions of residual strength are likely to be more accurate.   
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6. Manufacture and Characterisation of In-plane Fibre-

waviness Defects 

6.1. Introduction 

 Carbon-fibre composite materials exhibit high levels of specific strength along the 

fibre direction. However, if instead of having the desired orientation, there are 

unintended local variations in orientation, the material can be substantially weaker than 

the design strength. This variation in alignment is termed fibre-waviness, as the shape of 

the misaligned fibres are often approximately sinusoidal. Fibre-waviness can be split into 

two forms: out-of-plane, where the plies in the laminate are misaligned in the thickness 

direction; and in-plane, where the fibres within a ply are misaligned [64]. Waviness has 

the effect of locally reducing both the stiffness and the strength of the plies and 

consequently the limit load for the component. Since fibre-waviness could threaten the 

safety of a structure, it is important to explore how such a defect affects the load-bearing 

characteristics of a structure.  

 During the literature review, methods of producing in-plane fibre-waviness were 

identified. One promising technique [64] was to lay prepreg plies over a flexible curved 

surface. Once the laminate was laid-up, the curved surface was then flattened. This 

caused the fibres on the upper surface of the laminate to buckle, resulting in coupons with 

high levels of in-plane fibre-waviness uniformly distributed throughout the laminate. 

However, to develop an inspection technique, it is necessary to have a localised defect. 

This is to demonstrate that the assessment can locate defects and thus be classified as at 

least a Level 2 technique when using Rytter’s classifications [1]. Localised defects also 

ensure that the defect is far away from load application points. This prevents interactions 

between the contact forces and the defect leading to premature failure. For this study, a 

new technique was developed for creating localised waviness defects based on [64]. The 

defects produced by the new manufacturing technique were then characterised using: an 

established ultrasonic technique to measure the orientation of fibres, a novel technique 

involving residual strain measurements, and the strain-based defect assessment applied 

in Chapter 5. Whilst a technique for measuring the fibre-orientation using ultrasound has 

previously been developed [65], a method of linking such measurements to residual 

strength is still required. Therefore, a simple ultrasound-based defect severity metric for 
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fibre-waviness is introduced. This metric allows for the severity of waviness in an area to 

be quantified with a single value. Predictions of residual strength were then made using 

the statistical framework in Chapter 4 and comparisons made between the strain-based 

predictions and ultrasound-based predictions. 

 This chapter is based on a paper entitled, “Experimental Methods for the 

Manufacture and Characterisation of In-plane Fibre-waviness Defects” intended for 

submission to Composites Part A: Applied Science and Manufacturing. 

6.2. Experimental Method 

6.2.1. Fabrication of Coupons Containing Waviness Defects 

Quasi-isotropic laminates were produced with six levels of waviness severity. Six 

coupons were produced at each level to explore the variability of the defect generation 

technique. This resulted in a large set of 36 coupons. The laminates were manufactured 

using RP507UT210 (PRF, UK) unidirectional prepreg with a [02/902/452/-452]S layup. This 

is the same layup that was used for the impacted quasi-isotropic coupons in Chapter 5. 

Each level of waviness was produced using a milled aluminium former. The profile of each 

former had an arc at its centre from which flat surfaces extended on either side, a 

photograph of one former is shown in Figure 34. Prepreg plies were laid up over each 

former so that the plies closest to the arc surface of the former have a shorter path than 

the plies further from the arc surface. Once the prepreg laminate was laid up it was 

removed from the former and flattened between two plates using only minimal force 

provided by hand. In this uncured state, the laminates had a nominal thickness, 𝑡𝑢, of 

3.65 mm. When the prepreg laminates were flattened, the fibres in the plies on the top 

surface buckled to accommodate the constraint within the flattened laminate. These 

buckled fibres are the cause of the in-plane fibre-waviness. The severity of the waviness 

in the uncured laminates produced by each former was quantified by the percentage 

reduction in length when curved, 𝑙𝑐𝑢𝑟𝑣𝑒𝑑 , to their length when flattened, 𝑙𝑓𝑙𝑎𝑡, of the 

fibres on the top of the laminate at the arc section. This can also be expressed in terms of 

the arc radius, 𝑟, and uncured laminate thickness, 𝑡𝑢, as: 

28 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑊𝑎𝑣𝑖𝑛𝑒𝑠𝑠 =  
𝑙𝑐𝑢𝑟𝑣𝑒𝑑−𝑙𝑓𝑙𝑎𝑡

𝑙𝑐𝑢𝑟𝑣𝑒𝑑
=

𝑡𝑢

𝑟+𝑡𝑢
    (28) 
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By varying the angle between the flat surfaces extending from either side of the arc in the 

former, the arc length and thus the length of the waviness defect can be controlled. The 

arc length for all coupons was kept constant at 20 mm. The six levels of nominal waviness 

chosen were: 0%, 10%, 15%, 17.5%, 20% and 25%. The arc radii and angle between the 

two flat surfaces for the five formers are listed in Table 7. 

 

Figure 34: Photograph of a former for creating coupons with a nominal waviness of 15%. 

Table 7: Key dimensions of the formers to obtain various levels of nominal waviness over a 20 mm length of 

coupon. 

Nominal Waviness, (%) Arc radius, 𝒓, (mm) Corner angle, (⁰) 

10.0 32.9 145.1 

15.0 20.7 124.6 

17.5 17.2 113.4 

20.0 14.6 101.5 

25.0 11.0 75.4 

 

 Then, the laminates were cured between flat plates in a hot press (APV-3530, 

Meyer, Germany) according to the manufacturer’s instructions. The cure was conducted 

over 45 minutes at a temperature of 130 °C. The press applied a constant pressure of 

2.5 bar to the laminates whilst heating, curing and cooling. Once the laminate was cured, 

the hot press was left to cool to room temperature at a natural rate. The laminates were 

then cut into 40 by 220 mm coupons using a wet diamond saw (Versatile 103450, Vitrex, 
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USA). Care was taken to ensure the long edge of the coupons was parallel to the 0° 

direction of the fibres and that the wavy area was close to the coupon centre. This 

resulted in the 0⁰ fibres in the top and bottom plies running parallel to the X-direction for 

measurements, indicated on Figure 35.  

 

Figure 35: Photograph of a coupon with a nominal waviness of 25%, showing the speckle pattern and 

measurement coordinate system. 

 To examine the effect of high levels of waviness, two coupons were produced 

with the top 0⁰ plies replaced with 90⁰ plies. This corresponds to the worst possible case 

of fibre-waviness as it is the complete misalignment of fibres and thus was used to 

determine how much the ultimate bending moment can be reduced due to fibre-

waviness. These coupons were cured using the same process described previously and cut 

to the same size as the other coupons. 

6.2.2. Ultrasonic Characterisation 

 Each coupon was inspected using the pulse-echo ultrasound technique described 

in Chapter 3. For the inspection, the gate on the ultrasonic flaw detector was positioned 

to detect only the echoes that came from the first ply interface, which is immediately 

below the ply containing the waviness defect. The amplitude of the peaks passing through 

the gate were recorded resulting in amplitude C-scans of the defect. The fibre bundles in 

the 0° ply were visible in the texture within the C-scans and thus, the local orientation of 

the fibres could be measured. This was achieved by performing the 2D discrete Fourier 

transform on square subsets of the C-scan. The subset size used was 75 pixels (7.5 mm) 

and the subsets had a spacing of 10 pixels (1 mm). Prior to calculating the Fourier 

transform of the subset, a radial Hann window was applied, this limits spectral leakage 

which would cause the peak at the centre of the spectral image to broaden [65]. A 

windowed subset is shown at the top of Figure 36. The power spectrum image obtained 

had a roughly elliptical shape at its centre which was at right angles to the orientation of 
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the texture in the spatial image, as shown at the bottom of Figure 36. Thus, by measuring 

the orientation of the power spectrum ellipse, the local fibre-orientation was obtained. 

This technique, of using ultrasound to measure fibre-orientation, is described in detail in 

[65].  

 

Figure 36: A subset with applied Hann window (top) and its spectral image (bottom) taken from an amplitude 

C-scan of a waviness defect in a 17.5% nominal waviness coupon. 

6.2.3. Digital Image Correlation and Thermoelastic Stress Analysis of Waviness 

Coupons 

 TSA was performed on one coupon at each level of nominal waviness, six in total. 

The opposite surface of the coupon to the waviness defect was inspected, with the 

inspected surface constantly in tension and the defective surface in compression. A 

60 mm by 40 mm section of each coupon was sprayed matte black in order to perform 
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the TSA analysis described in Chapter 3. The coupons were loaded under displacement 

control as the force applied by the load machine was intended to be low relative to the 

range of its load cell. A cyclic displacement of ±0.3 mm with a mean displacement of 

0.5 mm was applied at 20 Hz. This is equivalent to a cyclic load of ±1 Nm, with a peak load 

of 2.67 Nm. An integration time of 10 minutes was used to increase the signal-to-noise 

ratio of the thermoelastic signal. Once TSA inspections had been performed, these 

coupons were resprayed with a speckle pattern to enable a direct comparison between 

the two measurement techniques. 

 DIC was used to measure strain on the surface of all the waviness coupons. A 

speckle pattern was applied to a 60 by 40 mm section of each coupon at the location of 

the fibre-waviness defect on the opposite surface to the defect, a sprayed coupon is 

shown in Figure 35. The coupons were then loaded in the four-point bending rig, so that 

the defective ply was placed into compression when loaded. The coupons were first 

inspected using the strain-based defect assessment described in Chapter 5. Subsequently, 

the coupons were loaded to failure whilst DIC was used to observe the progression to 

failure. For the tests to failure, the lower half of the bending rig was moved towards the 

upper load noses at a constant displacement rate of 0.8 mm/min. The DIC system was set 

to capture images every 15 s, this resulted in a bending-rig displacement of 0.2 mm 

between each image. The test was stopped when the stiffness of the coupon was reduced 

to approximately half its initial value. 

6.3. Results 

 After the laminates were cured and cut into coupons it was observed that despite 

being cured between flat plates, the coupons were slightly curved along their length in 

the X-direction. This curvature was caused by residual strains in the laminate. As the 

curvature of the coupons was small, the residual strains in the coupons that caused the 

curvature were determined from the out-of-plane displacements [92]. The residual strains 

in the direction along the length of the coupon were calculated as: 

29 

𝜖𝑥,𝑟𝑒𝑠 = −
𝑡𝑐

2

𝜕2𝑤

𝜕𝑥2        (29) 

where 𝑡𝑐 is the cured thickness of the laminate and 𝑤 is the displacement of the defect-

free surface from a flat plane. For each coupon, the DIC reference image was processed 
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to measure the shape before any loads were applied, resulting in the data as shown at 

the top of Figure 37. The second partial derivative of this shape data was then calculated 

using the central difference method [92] with a step size of 8 mm, resulting in the residual 

strain field shown at the bottom of Figure 37. 

 

Figure 37: DIC measurements of the surface deviation from a flat plane for an unloaded coupon with a nominal 

waviness of 17.5% (top) and the associated residual strain field (bottom). 

 The fibre-waviness was apparent; in the ultrasound data, in the DIC strain when 

the coupons were loaded, and also, in the residual strain maps when no load was present. 

It was also possible to identify the same spatial distribution of the waviness defect in each 

coupon using the three distinct inspection techniques. Data from a coupon that had a 

nominal waviness of 25% is shown in Figure 38. A strip of highly wavy fibres is visible 

across the width of the coupon, at x = -2 mm in the ultrasound data, and a corresponding 

area of high strain is visible in the strain field and the residual strain field. A less severe 

strip of waviness is also visible in all three data sets, at x = 17 mm. 
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Figure 38: A coupon that had a nominal waviness of 25%, inspected with: ultrasound (top), surface strain at a 

load of 22 Nm (middle) and residual strain measurements (bottom). 

 The overall waviness measured using ultrasound was quantified by calculating the 

root mean square (RMS) of the fibre orientation fields. By calculating the RMS of the 

ultrasound data, both local misalignment due to the waviness defect and any gross 

misalignment of the plies was quantified. When waviness was present, a correlation 

between the nominal waviness and the RMS of the measured waviness was observed and 

is shown in Figure 39. Piecewise robust Bayesian regression, described in Chapter 3, was 

used to determine a function linking the nominal waviness to the measured waviness 
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severity after curing. The grey region shown in Figure 39 is the 95% credible interval and 

indicates the most probable range of the measured waviness after curing for a given 

nominal waviness. 

 

Figure 39: The ultrasound measured waviness for coupons after curing for six different levels of nominal 

waviness. 

 The ultimate bending moment of the coupons containing fibre-waviness was also 

found to correlate with the RMS of the measured waviness, as shown in Figure 40. A linear 

correlation between the measured waviness and ultimate bending moment was observed 

when the measured waviness was less than 10⁰. When the measured waviness was above 

10⁰, the coupons failed with an average ultimate bending moment of 27.7 Nm, regardless 

of the measured value of waviness. The two coupons with the top 0⁰ plies replaced by 90⁰ 

plies were loaded to failure and found to fail at 30.3 and 29.4 Nm. These coupons had an 

RMS of measured waviness of 90⁰. The effectiveness of using ultrasound measurements 

of waviness to predict the strength of laminates was then explored. Coupons with an RMS 

of waviness below 10⁰ were used to fit two robust Bayesian linear regression models, as 

described in Chapter 4. The input for the regression models were: the RMS of ultrasound 

measured waviness, and the mean of the residual strain field. It was clear from the graphs 
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of the two fitted regression models, in Figure 41, that both measurements have a strong 

linear correlation with the ultimate bending moment. The average prediction uncertainty 

of the two regression models was estimated using the LOOCV performance metric. The 

average prediction uncertainty was 3.94 Nm for ultrasound-based predictions and 

2.24 Nm for predictions based on residual strain measurements.   

 

Figure 40: The effect of waviness after curing on the ultimate bending moment for all coupons. 

 

Figure 41: Graphs for predicting the ultimate bending moment of coupons using RMS of waviness measured 

with ultrasound (left) and the mean of the residual strain field (right). 
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 The strain-based defect assessment conducted in Chapter 5 was also conducted 

on the same reduced set of waviness specimens. A correlation was observed between the 

Manhattan distance and the residual strength, shown Figure 42. The average prediction 

uncertainty for the strain-based defect assessment of fibre-waviness specimens was 

5.32 Nm. 

 

Figure 42: Predictions of residual strength made using the strain-based defect assessment technique for fibre-

waviness coupons. 

TSA was also performed on six of the waviness coupons, with one coupon at each 

level of nominal waviness inspected. The thermoelastic signal fields for the six waviness 

coupons are shown in Figure 43. The DIC strain-fields for the same coupons are shown in 

Figure 44. These strain-fields are of the first strain invariant, which would be directly 

proportional to the thermoelastic fields if the material was isotropic. Similarities can be 

observed between the patterns visible in the TSA data, shown in Figure 43, and those 

measured using DIC, in Figure 44. The same pattern can be observed in the two images 

for the 25% nominal waviness coupon and hotspots at the same locations in both figures 

can be identified for the 17.5% and 20% nominal waviness coupons. 
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Figure 43: Full field maps of the thermoelastic signal for six waviness coupons. Colour is used to show the 

magnitude of the thermoelastic signal in raw camera units. 
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Figure 44: DIC strain fields of fibre-waviness defects. Colour indicates the magnitude of surface first strain 

invariant. 

 Image decomposition was used to quantify the similarities in shape between the 

two data sources. First, a 35 mm wide square section of each of the TSA and DIC images 

was selected. Image decomposition was conducted on each of these square images. For 

the decomposition process, shape descriptors corresponding to the Tchebichef image 

moments up to an order of ten were computed. The first shape descriptor for each feature 

vector was discarded as it is always equal to the mean of the image it represents and thus, 

does not contain useful information for shape analysis. The DIC and TSA shape descriptors 

were then plotted against each other as a scatter diagram, as shown by crosses at the 

bottom of Figure 45. The line-of-best-fit for the shape descriptors, calculated using least-

squares regression, is also shown. The Pearson correlation was calculated for each pair of 

feature vectors representing the TSA and DIC data for a single coupon. If the shapes in the 

TSA and DIC data were identical, then the Pearson correlation would be equal to 1. If there 

was no correlation between the data then the value would be approximately 0. The 

Pearson correlations for the six coupons are shown in Table 8. 
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Figure 45: Using shape descriptors (bottom) to compare a DIC measured strain field (top-left) and a TSA 

thermoelastic signal field (top-right) for the same coupon. 

Table 8: Pearson correlation between the DIC and TSA feature vectors representing the six waviness coupons. 

Nominal Waviness, (%) Pearson Correlation, 𝝆, (-) 

0.0 0.242 

10.0 -0.064 

15.0 0.145 

17.5 0.591 

20.0 0.681 

25.0 0.708 

 

It is also possible to compare the ultrasound fibre orientation fields and the DIC 

strain field. However, as the fibre-orientation can be both negative and positive, it first 

must be converted to a quantity that is directly relatable to strain. Smith et al. used a 
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fibre-orientation field to modify an FE model of a component [71]. The same methodology 

can be used with the data collected in this study to convert ultrasound measurements of 

waviness into predictions of strain on the tensile surface of the coupons. A generic model 

of the coupons used in this study was created in Abaqus 6.14 (Dassault Systems, France) 

using 136,960 brick elements (type C3D8R) of which 76,800 elements formed a dense 

mesh at middle of the simulated coupon, the mesh is shown in Figure 46. This model used 

the material properties given by Gong et al. [54] for a similar composite. The fibre-

orientation field measured using ultrasound was then used to define the material 

orientation for the individual elements of the model corresponding to the same location 

as in the physical coupon. The strain field on the surface of the simulated coupon was 

then predicted for a bending-rig displacement of 5 mm. 

 

Figure 46: Abaqus FE mesh of a fibre-waviness coupon during a four-point bend. 

Comparisons of the simulated and measured strain fields for each waviness 

coupon were then made using the validation technique outlined in CEN Workshop 

Agreement 16799:2014 [52]. Shape descriptors up to an order of ten were used to 

describe the simulated and measured strain-fields for each coupon which were then 

compared, the validation diagram for one coupon is shown in Figure 47. The model was 

validated for 34 out of 36 coupons. The two coupons that were not validated were a 20% 

and a 25% waviness coupon. For these two coupons, the predicted strain at the centre of 

the waviness defect was significantly lower than the measured DIC strain.  
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Figure 47: Predictions of surface strain (top-left) and DIC measurements (top-right) for a 25% waviness coupon. 

The validation diagram (bottom) shows that the model is valid given the uncertainty of the measurement 

system, the inset shows an enlarged version of the boxed region on the main graph. 

Strain fields on the surface of the fibre-waviness coupons were captured whilst 

loading the coupons to failure. These strain fields allowed the progression towards failure 

of the fibre-waviness defects to be observed. The load displacement curve for a coupon 

that had a nominal waviness of 25% is shown in Figure 48. In the top graph, four different 

points are indicated by square markers, the strain fields captured at these points are 

shown below the graph. The first strain-field was captured at a subcritical load, just prior 

to the start of damage propagation, the subsequent three strain fields show the damage 

during the propagation process. 
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Figure 48: Load-displacement graph for a coupon that had a nominal waviness of 25% loaded to failure with 

four points on the load curve marked (top) and the strain-fields at these points (bottom). 

6.4. Discussion 

 Waviness defects in composite laminates can be caused by: misalignments in the 

unidirectional prepreg tape used to produce the laminate; the geometry of the tooling for 

the desired component shape; or the orientation of the reinforcement fibres [93]. 

Thermal stresses produced during the curing process can also result in waviness defects 

[94]. The fibre-waviness defects in this study were produced by inducing axial strain in the 

top surface of the uncured laminate causing the fibres to buckle. This is not a typical 

process by which fibre-waviness defects occur in industry, but it does result in defects that 
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are reproducible and suitable analogues for the study of both the mechanical behaviour 

of the defects and the NDE techniques used to detect them.  

Three distinct techniques have been used to inspect all of the coupons. The first 

technique was the use of ultrasound to measure the fibre orientation in the top ply of the 

coupons, allowing the defects to be located and their severity quantified. The second 

technique utilised DIC to measure the strain redistribution due to the waviness defect. 

Finally, the curvature of the coupons was used to locate defects. The curvature was 

caused by residual stresses in the laminate at the defect location. These residual stresses 

are due to the mismatch of thermal expansion coefficients between the laminate layers. 

Which, in turn, is due to the orthotropy of the unidirectional plies [95]. If the laminate 

layup is symmetric, the stresses produced during cooling are balanced, resulting in a flat 

laminate. For this study the laminates had a symmetric quasi-isotropic layup and thus the 

residual stresses should be balanced; however, at the waviness defects the fibre 

misalignment results in localised areas where the residual stresses are not balanced. 

These unbalanced residual stresses and the associated residual strains result in a slight 

curvature at the location of the defect. By calculating the second partial derivative of the 

out-of-plane displacement these unbalanced residual strains can be evaluated and the 

residual strain-fields obtained, as shown at the bottom of Figure 37 and Figure 38. The 

shape data used for calculating the residual strain-fields was measured by the same DIC 

system used to calculate surface strain in the loaded coupons. Whilst the raw data for 

these two measurements were obtained from the same source, the processing of the data 

is completely different and similar measurements of residual strain would be obtained by 

any suitably sensitive shape measurement technique. Similarities in the spatial 

distribution of the defects detected by the three inspection techniques were observed for 

all coupons with significant fibre-waviness.  

A relationship was found between the nominal waviness and the ultrasound 

measured waviness after the coupons were cured. When the nominal waviness was over 

10%, a linear correlation was observed, with the data points being widely spread above 

and below the line-of-best-fit. The spread of data is likely due to the stochastic process by 

which the fibres buckle and thus form the defect. When the nominal waviness was low, 

no measurable change was observed in the post-cure waviness measurements. By 

utilising piecewise-linear robust Bayesian regression the point at which the nominal 
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waviness causes a measurable change in the fibre-orientation can be estimated and 

occurs at approximately 7%. This is likely caused by the flexible uncured laminate 

expanding during the curing process allowing the fibres to unbuckle and realign with the 

ply direction. If the nominal waviness was minor, then the unbuckling could have allowed 

the fibres to return to their defect free orientation. 

A correlation is evident in Figure 40 between the RMS of the fibre-waviness and 

the ultimate bending moment for the coupons. For low levels of measured fibre-waviness, 

a linear relation exists between the measured waviness and residual strength. As the 

waviness in the coupons increased, this linear correlation ceased and the coupons failed 

with a mean value of 27.7 Nm. This is because the stiffness in the gross fibre direction of 

the 0⁰ ply containing the defect cannot be reduced to less than the transverse stiffness of 

the ply. Two coupons produced with the top 0⁰ ply replaced with a 90⁰ ply demonstrate 

the reduction in ultimate bending moment when the stiffness of the defective ply is 

decreased to a minimum. The two coupons failed at an average bending moment of 

29.9 Nm which is slightly higher than the average failure load for severe fibre-waviness. 

This is because the fibre-waviness defect also acts a stress concentrator, causing higher 

stresses at the defect than if the stiffness of the ply was uniformly at a minimum.  

The correlation between the ultrasound measurements and ultimate bending 

moment means that strength predictions can be made using these measurements. The 

accuracy of these predictions was quantified only for coupons containing waviness up to 

an RMS of 10⁰ as the relation was linear in this range. The mean of the measured residual 

strain field was also used as a predictor to examine if the residual strains produced by 

waviness are important for predicting ultimate strength. One coupon, with a nominal 

waviness of 0%, was observed to have a mean residual strain of -58 μϵ. This coupon had 

the highest ultimate bending moment of all the tested coupons. The negative mean 

residual strain could have been caused by a thermal gradient through the thickness of the 

coupon during curing. As the regression model was robust against outliers, the data from 

this coupon was not omitted. When the LOOCV performance metric was calculated for 

the two regression models shown in Figure 41, it was found that the predictions obtained 

using residual strain measurements had an uncertainty that was only 56% of that for 

ultrasound based predictions. This suggests that the residual strains formed at the defect 

during curing have a significant effect on the mechanical properties of the laminate, and 
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thus, computational models that attempt to predict the strength of laminates containing 

fibre-waviness could be improved by incorporating the residual stresses at the location of 

the defect. This also implies that residual strains obtained from optical shape 

measurements could be used to locate and quantify the severity of waviness defects, as 

long as the laminate has a constant thickness and the defect is not in one of the middle 

plies. Although, the equation to calculate residual strain is more complicated when the 

specimen is non-flat [92]. 

The strain-based defect assessment was also conducted on the fibre-waviness 

coupons. When observing the graph in Figure 42 it is clear there is more spread in the 

values around the line-of-best-fit compared to the graphs in Figure 41. This is confirmed 

when considering the LOOCV performance metric which is 5.32 Nm for the strain-based 

predictions compared to the 3.94 Nm for the ultrasound based predictions. This indicates 

that the strain-based defect assessment conducted in Chapter 5 does not result in a 

significant decrease in prediction uncertainty relative to ultrasound-based predictions for 

waviness defects. However, it should be noted that the line-of-best-fit is close to those 

calculated in Chapter 5. When the fibre-waviness data is plotted on the bottom graph of 

Figure 30 the data points corresponding to the waviness coupons are mostly contained 

within the credible interval, this is shown in Figure 49. If the regression model that was 

fitted to the impact data could perfectly predict the residual strength of the waviness 

coupons then 95% of the waviness data points would be expected in the credible interval. 

This was not achieved, as only 83% of the waviness data points are contained within the 

credible interval calculated using the impact damage data. But, this does indicate that the 

parameters for the line-of-best-fit for a composite laminate may be the same regardless 

of the type of defect and thus the parameters could be considered as material properties 

that could be applied to a wide range of defect types with minimal need for calibration. 

Experiments would need to be conducted on a greater number of distinct defect types to 

confirm this hypothesis.   
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Figure 49: Strain-based defect assessment graph for impacted quasi-isotropic coupons (crosses) with fibre-

waviness data points (circles) plotted as well. 

 To explore other potential measurement techniques TSA has been used to 

inspect waviness defects in six coupons. To confirm that TSA was able to locate the 

defects, comparisons were made between the TSA data and DIC data for the same 

coupons. The similarity between the TSA data and the DIC strain-fields were quantified 

using image decomposition to obtain feature vectors and then calculating the Pearson 

correlation between each pair of vectors. The Pearson correlation was close to zero for 

the 0%, 10% and 15% coupons, indicating no discernible similarities between the DIC and 

TSA data for those coupons. For the 17.5%, 20% and 25% coupons, the Pearson 

correlation was greater than 0.5, suggesting that the data was similar, as shown in Table 

8. Although correlations were found, they were not particularly strong. For example, the 

correlation was only 0.705 for the 25% waviness coupon. The low values of Pearson 

correlation was likely caused by the anisotropy of the composite laminate, and the 

measurement noise of the DIC and TSA systems. The captured data, shown in Figure 43, 

indicates that the severity of a defect could be measured using TSA, as the magnitude of 

the thermoelastic signal increases with nominal waviness. For the TSA inspection, a 

maximum load of just 2.67 Nm was sufficient to detect the defect for the 17.5%, 20% and 

25% nominal waviness coupons. The defect may be detectable by DIC at lower loads but 

it is unlikely to be observable at 2.67 Nm as the DIC measurement noise would be too 

high. Therefore, TSA could be used to inspect stiffer structures where high levels of strain 

are difficult to apply. As TSA was only conducted on six coupons, it was not possible to 
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determine if the strain-based defect assessment could be performed using TSA data to 

make residual strength predictions. 

An FE model has been produced for each coupon and strain fields for the tensile 

surface of the coupons predicted. This allows for a direct comparison between the DIC 

and ultrasound data. The model was validated for all of the coupons except for two. The 

two FE models that could not be validated predicted lower levels of strain than was 

measured in the DIC strain fields. Despite this, the high number of validated coupons 

suggests that the ultrasound technique is capable of almost completely characterising the 

waviness defect, which may explain why the ultrasound-based predictions of residual 

strength are better than the strain-based predictions. It may be possible to combine the 

FE model developed in this study with a fracture mechanics model to predict the failure 

of the coupons, this is similar to [54]. However, to create an FE model of an aerospace 

component containing waviness and predict its failure load would require excessive 

computational resources and probably be unsuitable for industrial applications. 

Finally, DIC has been used to observe the progression towards failure of all the 

coupons. A typical example of this data for a coupon with a nominal waviness of 25% is 

shown in Figure 48. At a subcritical load, strain field ‘a’ showed two strips of approximately 

equal levels of strain running parallel to the y-axis at x = -7 mm and x = +7 mm. After strain 

field ‘a’ was captured, a crack was observed forming through the 0⁰ ply on the top surface 

at x = -7 mm, running parallel to the y-direction. The formation of this crack corresponded 

with the end of the linear relation between bending displacement and measured 

moment, confirming that damage was being created.  This crack caused a substantial 

strain concentration that was visible in strain field ‘b’. When the bending moment 

reached 12 mm a sudden drop in the stiffness occurred, this corresponded with a 

delamination that formed and immediately buckled. The effect of this delamination can 

also be observed in strain field ‘c’ with a large area of high strain running between 

x = - 18 mm and x = 8 mm. This area of high strain increased in size by growing further in 

the negative x-direction as the bending displacement was increased, as can be seen in 

strain-field ‘d’. This progression to failure, whereby a crack forms through the 0° ply at the 

defect location, from which a delamination grows, was observed in all of the coupons with 

a mean residual strain over 40 μϵ.  
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6.5. Conclusions 

 A method of creating controlled levels of in-plane fibre-waviness in composite 

laminates has been developed and used to produce a large number of coupons at six 

levels of nominal waviness. This method allows the size, position and severity of the 

defect to be controlled and thus is suited for experimental characterisation of waviness 

defects that might occur in industry. The manufactured coupons were inspected using 

two non-destructive techniques and a novel assessment technique based on residual 

strains. By creating a large batch of coupons, the capabilities of the new residual strain-

based inspection technique could be explored and was shown to be capable of both 

detecting and characterising waviness defects. Three robust Bayesian regression models, 

capable of predicting the ultimate strength of the coupons in bending, were fitted to the 

ultrasound, residual strain data and the strain-based defect assessment performed using 

DIC. The predictions of ultimate bending moment based on the residual strain 

measurements were found to have an uncertainty of just 2.24 Nm, compared to 3.94 Nm 

for ultrasound based predictions and 5.32 Nm for the strain-based predictions. This 

suggests that residual strains could be used, under certain conditions, to inspect laminates 

for waviness defects. It also indicates that residual strains appear to have a significant 

effect on the failure of laminates containing waviness defects and thus incorporating 

residual strains into computational models of the defect could result in improved 

simulations of its behaviour. The use of these new techniques, for creating and 

characterising in-plane waviness defects, has the potential to enhance our understanding 

of the influence of fibre-waviness defects on the behaviour of composite structures. 
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7. Discussion 

The aim of this project was to increase the quality and confidence in residual 

strength information gained from the non-destructive evaluation of composite defects 

using strain-based inspections, in addition to currently applied ultrasonic practices for 

composite structures. The objectives of this project were to: 

 develop the statistical methods for predicting the remnant properties of defective 

structures based on non-destructive measurements. 

 develop a technique for determining the severity of defects using full-field strain-

data. 

 demonstrate the effectiveness of strain-based defect assessments relative to 

current practices of ultrasonically inspecting aircraft. 

This chapter draws together the findings of this research project, relating them to the 

objectives of the project and the knowledge gaps identified in Chapter 2. Future work is 

suggested at the end of this chapter, which could be conducted to further improve NDE 

techniques for the assessment of defects.  

7.1. Creating Defects in Composite Coupons 

The efforts to complete the second objective of this project could have been 

approached theoretically. However, to demonstrate the potential for this technique to be 

applied in industry, it was important that substantial experimental work was conducted. 

To fully explore the behaviour of a defect assessment technique, specimens that 

represent the types of defect encountered by industry were required. These specimens 

could then be used to numerically quantify the accuracy of predictions made using the 

assessment techniques. Two types of defect in carbon-fibre laminates were explored in 

this study. These were impact damage and in-plane fibre-waviness, both of which are 

commonly encountered in industry. Well-established techniques of creating impact 

damage existed prior to this study [82] and thus this form of defect was created using a 

drop-weight tower. This apparatus can be used to produce similar defects in a laboratory, 

as those caused by tool drops and hail strikes during the operation of aerospace 

structures. In this study, crossply and quasi-isotropic coupons were impacted using a 

20 mm diameter tup at a range of energies. In most cases these impact events resulted in 

a set of large delaminations, with some of the quasi-isotropic specimens containing 
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40 mm long defective regions when examined using ultrasound, as shown in Figure 12. 

Despite the size of the delaminations, the only visible damage on the surface of the 

coupons were small dimples at the location where the impactor was in contact with the 

surface. This type of impact damage is termed barely visible impact damage and is of 

significant concern for composite structures. This is because the defect is difficult to visibly 

locate, but causes substantial reductions to the strength of the structure. In the case of 

some coupons containing barely visible impact damage, a 50% reduction in strength was 

observed, this is shown in Figure 14. Creating impact damage did not require the 

development of a new experimental technique. This was not the case for in-plane 

waviness, as a satisfactory technique of generating the defect did not exist.  

A waviness generation technique, developed by Wisnom and Atkinson [64], was 

found during the literature review that was capable of creating in-plane fibre-waviness 

defects. This technique generated waviness that was spread evenly throughout a coupon, 

but waviness defects are typically localised in components, such as those shown in [65]. 

Therefore, a new technique for generating waviness was developed that resulted in local 

defects. Such a defect is also useful for demonstrating that a non-destructive inspection 

technique is capable of both detecting and locating a defect. The new waviness 

generation technique developed in this study used specially dimensioned aluminium 

formers to control the position, extent and severity of the defect. By using a rigid former, 

the nominal waviness of a coupon can be accurately controlled, ensuring the defect 

generation process is repeatable. This is in contrast to the Wisnom and Atkinson former, 

which used a flexible aluminium plate that was then deformed to produce waviness. In 

this study, a large batch of 36 coupons were created using the rigid formers, presenting 

the opportunity to explore the mechanical properties of coupons containing this type of 

defect. Previous studies of in-plane waviness have used small batches of coupons, for 

example one study of in-plane waviness only used nine specimens for mechanical tests 

[64]. As studies have not been conducted on a large set of in-plane waviness defects, their 

mechanical properties have been studied in greater depth in this thesis. 

A correlation between the nominal waviness, defined by the dimensions of the 

former, and the waviness measured using ultrasound inspections was observed, this is 

shown in Figure 39. Such a graph could be used by a manufacturer to specify the 

dimensions of a former that would produce in-plane waviness defects with the same level 
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of severity as those encountered in a structure. This dataset also presented the 

opportunity to use the piecewise robust Bayesian regression algorithm developed in 

Chapter 4. The piecewise Bayesian regression model identified a threshold nominal 

waviness of 7%. Below this threshold, ultrasound would not be expected to detect any 

waviness in a cured coupon. It was suggested that this threshold was due to fibres 

unbuckling whilst the laminate cured, resulting in coupons with low nominal waviness 

returning to the virgin state. This could be confirmed by manufacturing a batch of coupons 

with a nominal waviness of 5%, as these coupons would not be expected to contain 

waviness after curing if unbuckling occurred. 

The waviness specimens were found to be slightly curved due to residual strains 

at the defect location. The suggested cause of these residual strains were thermal stresses 

due to local variations in thermal expansion, which is a function of the fibre orientation. 

These residual strains were measured using DIC shape measurements. The reference 

images for DIC were captured when the coupons were unloaded and thus the curvature 

due to residual strains was measured using these images. The locations of high residual 

strain corresponded with locations with high levels of misalignment measured using 

ultrasound. The use of residual strain measurements to locate waviness is novel and has 

not been suggested in any currently published literature. The coupons were then loaded 

in bending and DIC performed on the opposite surface to the waviness defect. Locations 

that exhibited high levels of strain corresponded with the wavy locations detected with 

ultrasound and residual strain measurements, confirming that all three techniques are 

capable of detecting and sizing waviness defects. When the waviness specimens were 

loaded to failure, the waviness defects caused reductions in residual strength to 

approximately 50% of the virgin strength. A correlation was observed between the 

waviness measured using ultrasound and the residual strength. This correlation continued 

as waviness increased until a critical value of measured waviness. At this point further 

increases in waviness did not result in any decrease in strength, this transition can be seen 

in Figure 40. The transition is due to the waviness defect being unable to reduce the 

stiffness of the defective ply to less than the transverse stiffness of a virgin ply. An 

additional experiment was conducted on two coupons which had the defective 0⁰ ply 

replaced with a virgin 90⁰ ply. The failure load of these coupons were slightly higher than 

the failure load of the severe waviness coupons. The cause of this minor discrepancy were 

the stress concentrations due to the waviness defects, which resulted in higher stresses 
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at the defective area and thus failure at lower loads during testing. This observation, that 

waviness cannot reduce residual strength below a critical value, is useful for defining the 

range of nominal waviness for future research studies.  

7.2. Predicting the Residual Strength of Laminates Containing Defects   

 A new method of predicting the residual strength of defective laminates based on 

non-destructive measurements was developed. This was the first knowledge gap 

identified during the literature review and corresponds closely with the first objective of 

the project. Such predictions needed a quantified level of uncertainty, so that estimates 

of the residual strength of a structure were conservative. These conservative estimates 

are needed by industry to ensure the safety of a structure. Predictions and their 

uncertainties can be obtained using classical regression, which had been applied to 

predicting the compressive strength of a laminate based on ultrasound measurements of 

defect size [12]. The problem with classical regression is that the technique assumes the 

data is distributed around the line-of-best-fit as a normal distribution. If data outliers are 

present, this assumption does not hold and thus the estimated parameters of the line-of-

best-fit are likely to be incorrect. To rectify this issue, robust Bayesian linear regression 

was introduced. Whilst robust Bayesian regression had been developed in other studies 

[15, 24], it had not been applied to predicting the properties of composite materials and 

thus its strengths were the focus of Chapter 4.  

  Robust Bayesian linear regression uses a Student’s t-distribution to describe the 

distribution of residual strength measurements around the line-of-best-fit. This 

probability distribution can account for the presence of outliers by varying the heaviness 

of its tails using a normality parameter. The normality parameter is tuned during the 

fitting process so that the t-distribution is similar to a normal distribution when no outliers 

are present, or has heavy-tails if outliers are present. The strength of its robustness to 

outliers was demonstrated in Figure 19, where artificially generated linear data containing 

a single outlier was fitted using both classical and robust Bayesian linear regression. In the 

figure, the classical regression line-of-best-fit gradient is significantly different to the 

linear relation used to generate the data. The confidence interval generated by classical 

regression was also very wide. In an industrial application this could result in components 

being unnecessarily repaired. The Bayesian regression line follows the data well and the 

credible interval was narrower. Bayesian regression was also shown to outperform 
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classical regression when only small amounts of data was available. In these situations, 

Bayesian regression results in wide credible intervals for predictions, that lead to more 

conservative predictions than those obtained using classical regression, this is shown in 

Figure 17. A drawback of using robust Bayesian regression is that it requires considerably 

more computation (taking approximately 30 s), to fit the empirical model compared to 

classical regression (taking less than 0.02 s). However, this is unlikely to limit the industrial 

applicability of the statistical technique, as once an empirical model has been fitted, 

residual strength predictions can be obtained almost instantaneously.  Piecewise robust 

Bayesian regression was also introduced in Chapter 4 and shown to have the same 

property of robustness to outliers as the robust Bayesian linear regression model, as 

shown in Figure 21. This form of Bayesian regression was necessary when fitting an 

empirical model of residual strength to the data from the entire batch of waviness 

coupons, as shown in Figure 40. 

 Finally, the LOOCV performance metric was used to quantify the accuracy of 

predictions generated using different NDE measurements. In Chapter 4, this metric was 

shown to be more effective for comparing different empirical models than the commonly 

applied coefficient of determination, 𝑅2. This is because 𝑅2 only measures how well an 

empirical model fits the residual strength data, it does not estimate the accuracy of the 

model’s predictions. This was demonstrated when applying Bayesian and classical 

regression to data containing outliers, with the results shown in Table 3. In this situation, 

𝑅2 identified classical regression as the best performing regression model despite the 

regression line failing to follow the data trend. The use of 𝑅2 is common in engineering 

and was used to quantify the accuracy of predictions by Prichard and Hogg [12]. The 

LOOCV performance metric estimates the average prediction uncertainty. Therefore, it 

was used to compare the predictions made with the diverse set of NDE techniques 

described in this thesis.  

The LOOCV performance metric can be used to select the best performing 

empirical model by choosing the model with the lowest LOOCV value. For example, in 

Chapter 4 LOOCV was used to determine the most effective ultrasound measurement for 

characterising impact damage. This determined that the defect area was the best 

ultrasonic damage metric, with a LOOCV value of 2.52 Nm and 5.33 Nm for the crossply 

and quasi-isotropic laminates respectively. This was 77% lower for both laminate types 
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than the average prediction uncertainties when using defect width, 3.29 Nm and 6.92 Nm 

respectively. This quantitative comparison between different empirical models is not 

possible when using 𝑅2, as the quantity is dimensionless and is typically very close to unity 

for most models. By making quantitative comparisons between different assessment 

techniques, the cost benefit of using one technique over another can be clearly identified. 

A disadvantage of using the LOOCV performance metric is the increased computation 

required relative to that for 𝑅2. This is because the regression model must be fitted the 

same number of times as the size of the dataset for LOOCV, compared to just once for 𝑅2. 

This could cause difficulties when large residual strength datasets are used. In such 

situations a related technique called k-fold cross validation [88] could be used, which 

limits the amount of computation required whilst still estimating the average uncertainty 

of future predictions. 

 The statistical framework established in Chapter 4 was applied throughout the 

subsequent chapters without modifications, demonstrating that it can be applied to a 

wide range of non-destructive measurements. By establishing this framework, the first 

objective of this project was completed. The LOOCV performance metric was an 

important component of this framework, as it enables non-subjective comparisons 

between NDE techniques. Thus, the performance metric was an essential tool to achieve 

the third objective. 

7.3. Strain-Based Defect Assessments 

 A basic defect assessment technique was previously developed by Patki and 

Patterson [5], but this technique was focused on predicting impact energy based on 

surface strain on impacted coupons. Also, the previous study only used the defect 

assessment on crossply glass-fibre laminates. To develop the concept further, this study 

applied the assessment technique to two new material types that are commonly 

encountered in the commercial aerospace industry, this is described in Chapter 5. By 

testing the technique using different composite materials, the reproducibility of the 

results could be shown. The technique was also applied to a new type of defect, in-plane 

fibre-waviness. The development of this strain-based assessment and it application to 

different types of defect was conducted to complete the second objective of this project. 

The strain-based defect assessment used DIC to measure strain fields on the surface of 

defective coupons. The strain-fields were then compared with the strain-field on a virgin 
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coupon. This comparison was performed using the technique of image decomposition. 

Image decomposition reduced the dimensionality of each strain-field to a representative 

set of shape descriptors, which were collated into a feature vector. The feature vectors 

for the virgin and defective coupons were then numerically compared using the 

Manhattan distance, resulting in a single number representing the severity of the defect. 

This defect severity metric was used as an input for an empirical model of residual 

strength, generated using the robust Bayesian linear regression technique developed in 

Chapter 4. Image decomposition allows the entire strain field to be used for characterising 

the defect, as opposed to methods that utilise pointwise measurements [34] or simple 

statistics [35] to describe changes to the strain field and thus discard data. 

 The first stage of the strain-based defect assessment was to measure surface 

strain on the coupons. Therefore, a load had to be applied to each coupon to induce 

measurable strains. For the DIC data, strain was induced by placing the coupons in a four-

point bending rig and applying a rig displacement of 6 mm. This induced a bending 

moment of approximately 20 Nm across the central defective region of the coupon. The 

application of loads could cause issues when utilising the technique in industry, as the 

loads aerospace structures are expected to withstand can be very high. This means the 

laminates that are to be inspected are likely to have a high level of stiffness. In Figure 33, 

this issue is illustrated for the simple case of a simulated delamination in a coupon. The 

strain difference, ∆𝜖, that the defect causes during an inspection is proportional to the 

inspection load. Thus, if the induced strain was too low, then a delamination which could 

propagate would not be detected due to the DIC measurement uncertainty. For the 

impact damage and waviness inspections, a low load was sufficient to detect defects that 

may cause premature failure, but for an aerospace structure large mechanical testing 

equipment may be required to apply a suitable load. In these situations, a different 

method could be used to locate and characterise defects, one candidate is TSA.  

TSA was used in Chapter 6 to detect waviness defects in six of the quasi-isotropic 

coupons. The TSA data was compared with DIC measured first strain invariant fields, a 

quantity similar to that measured by TSA. When the shape descriptors representing the 

two data sources were compared, similarities were detected in the coupons with high 

levels of waviness. This indicates that TSA could potentially be used as an input to the 

strain-based defect assessment technique. The TSA data was captured whilst a cyclic 
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excitation was applied to the bending rig. This cyclic excitation had a peak load of just 

2.67 Nm, substantially lower than the load applied for the DIC inspections. Whilst this 

decreased the forces applied to the structure, it does introduce the problem of applying 

a cyclic excitation to an aerospace structure. A potential solution is to use a shaker system 

to apply loads to a structure, this method has been used for TSA inspections of high 

pressure steam pipework in an industrial setting [37].    

 Whilst there is the potential to use other measurement techniques to perform 

strain-based defect assessments, for this study the focus has been on DIC measurements. 

The strain-based defect assessments of impact damage demonstrated a significant 

increase in the accuracy of residual strength predictions compared to predictions using 

ultrasound measurements. The strain-based predictions were three times more accurate 

for crossply coupons and 1.32 times more accurate for the quasi-isotropic coupons, when 

comparing the LOOCV performance metrics. This increase in prediction accuracy is 

because the ultrasound inspection measures the size of delaminations, but is unable to 

measure other failure modes present in the laminate such as fibre-breakage and matrix 

cracking. As the strain-field is affected by all the different forms of microscale damage, it 

is able to completely characterise the defect leading to more accurate predictions. 

In Chapter 6, the strain-based defect assessment was also applied to waviness 

defects. For this type of defect, the ultrasound-based predictions outperformed the 

strain-based predictions, with the average prediction uncertainty being 74% of that for 

the strain-based predictions. The cause of this disparity was considered and it was 

suggested that as the fibre-waviness defect does not consist of failure modes other than 

misaligned fibres, the ultrasound technique is capable of completely characterising the 

defect. Further evidence for this was introduced when exploring the FE model created 

using ultrasound measured waviness data. When the simulated strain fields and those 

measured using DIC were compared, visual similarities were observed, an example is 

shown in Figure 47. This was confirmed by performing validation on all 36 of the simulated 

coupons, with validation successful for 34 of the coupons. If the DIC data contained more 

information regarding the defect, then agreement between the model and experimental 

measurements would not be expected. This suggests that for waviness defects, the 

difference in prediction performance between the ultrasound and strain-based 
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techniques may be more strongly related to the accuracy of the measurement systems 

than the quantity the techniques measure. 

Despite the strain-based defect assessment underperforming when used to 

assess waviness defects, it was shown to be capable of assessing multiple defect types. 

Whilst advanced ultrasound machines are capable of simultaneously obtaining all the raw 

data required to detect waviness and impact damage, the processing of the data is 

completely distinct. The defect severity metrics obtained from the two ultrasound 

inspection techniques are also different. One of the strengths of the strain-based defect 

assessment is its universality. The defect severity metrics obtained when assessing the 

waviness defects were comparable to those for the impact damage defects, as shown in 

Figure 49. This means that the same empirical model could be used for assessing many 

defect types, drastically reducing the number of tests required to link non-destructive 

measurements to residual strength predictions.   

A third set of measurements were also performed on the waviness defects. 

Residual strain fields were measured on the surface of the coupons and the mean of the 

residual strain fields used as a defect metric. An immediate benefit of performing residual 

strain-based inspections is that the component can be inspected in an unloaded state. 

This eliminates the issues that would be encountered when loading large components. 

The predictions based on residual strain measurements were found to have a LOOCV 

performance metric of just 2.24 Nm. This is the lowest LOOCV value for any defect type 

and assessment type applied to the quasi-isotropic laminates in this thesis. This could 

indicate that the residual strains caused by waviness defects play an important role in the 

failure of a structure. Which would be expected, as failure is driven by both the residual 

strains and applied strains. This effect could potentially be used as the basis for a new 

inspection technique for composites that uses optical shape measurements. Additional 

infrastructure is unlikely to be required, as optical shape measurements are already a part 

of the quality assurance process for aircraft manufacturers. A residual strain based 

inspection would only be possible if the defect that is being inspected was present during 

the curing of the component and thus residual strains were created due to the thermal 

process. A residual strain-based inspection would not be possible for impact damage, as 

the creation of delaminations would not result in residual strains.  
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All of the inspection techniques demonstrated in this thesis have been advanced 

towards Rytter’s Level 4 category [1]. Rytter defined this category of inspection 

techniques as; those capable of estimating the remnant properties of a defective 

component. By determining the residual strength of a defective laminate, as opposed to 

an arbitrary measure of defect severity, an engineer assessing a structure can make 

informed decisions regarding the need for repairs, without subjective judgement. The 

best performing Level 4 technique for predicting residual strength can be determined by 

comparing the average prediction uncertainty. The defect assessments have shown that 

the strain-based defect assessment was effective for impact damage but not as effective 

for waviness defects. Despite this, strain was still shown to be a useful quantity with which 

to assess defects, as the strength predictions based on residual strain for waviness 

coupons were found to outperform predictions made with any other inspection 

technique. This reinforces the statement made at the start of this thesis, that it is strain 

data that provides the most useful information about how a defect will cause failure, not 

the defect size and shape information that ultrasound and thermography inspections 

provide.  

The experiments detailed in this thesis have demonstrated the effectiveness of 

using strain-fields to predict the residual strength of defective components. The strain-

based defect assessment was applied to two different types of laminate and two different 

types of defect, suggesting that the technique is robust and universal. This indicates the 

methodology of the technique is correctly defined and thus the second objective of this 

project has been completed. By quantifying the performance of the strain and residual 

strain-based inspections relative to ultrasonic inspections, the third objective of this 

research has been completed. 

7.5. Future Work  

  To further demonstrate that a strain-based defect assessment is suitable for 

industry, it must be applied to specimens with geometries closer to those encountered in 

aerospace structures. All of the virgin coupons inspected in this study were expected to 

have a uniform strain field when inspected. Aerospace components are unlikely to have 

such a strain field. The strain-based defect assessment is expected to be capable of 

inspecting specimens with non-uniform strain fields. This is because the strain field on a 

defective component is always compared with the strain on a virgin component. This 
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would need to be tested and the accuracy of strain-based predictions determined for such 

specimens. One possible experiment is to inspect for delaminations caused by hole 

drilling. Hole drilling for rivets is a common process applied to composites laminates. By 

varying the tool-speed and feed-rate whilst drilling a specimen, the severity of 

delaminations could be controlled [96]. The virgin specimens would then have a stress 

concentration caused by the hole and thus the potential for strain-based inspections of 

more realistic components can be demonstrated. To achieve this, a method of performing 

image decomposition on non-square images would be required, as strain data would not 

be present at the location of the hole. Gram–Schmidt orthogonalisation could be used to 

decompose these images by adopting a similar method to that used in [48].  

The strain-based defect analysis could be performed using TSA. This would reduce 

the magnitude of loads applied to the components to induce strains. TSA was 

demonstrated for detecting in-plane waviness in Chapter 6, where similarities between 

the TSA and DIC data were confirmed by comparing shape descriptors. If a large set of 

specimens were produced and inspected using TSA, then its performance as an input for 

the strain-based defect assessments could be determined.  

The residual strain inspection introduced in Chapter 6 is not limited to flat 

components. It is possible for residual strains to be calculated from shape data for any 

component, as long as the material used to manufacture the component has a constant 

thickness throughout the inspected area. The residual strain at a location, 𝑥, can then be 

calculated as [92]: 

30 

𝜖𝑥,𝑟𝑒𝑠 = −
𝑡𝑐

2−𝑡𝑐
𝜕2𝑤𝑖
𝜕𝑥2

(
𝜕2𝑤

𝜕𝑥2 −
𝜕2𝑤𝑖

𝜕𝑥2 )     (30) 

where 𝑡𝑐 is the thickness of the laminate, 𝑤 is the displacement of the cured laminate 

surface from the intended surface and 𝑤𝑖 is the displacement of the intended surface 

from a flat surface. The 𝑤𝑖 measurements could be obtained directly from the 

components design or from shape measurements of the mould used to form the 

component. Work would have to be conducted to develop a methodology for applying 

equation (30), as combining shape data from two sources could cause difficulties. The 

noise in the residual strain measurements could be higher as two shape measurement 

fields are required by equation (30) and thus a method of determining the uncertainties 
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of the residual strain measurements would be necessary. However, if the residual strain 

technique was successfully extended to non-flat components it could provide a novel non-

contact method of detecting certain defects, using equipment that is already common in 

the aerospace and automotive industries. 

  The relationship between residual strain and coupon strength for in-plane fibre 

waviness could be confirmed using the experimental data that has been collected for this 

thesis. The FE model produced in Chapter 6 could be enhanced by incorporating failure 

mechanics and residual strain predictions. Delaminations and their growth can be 

simulated in the FE model with the addition of a layer of cohesive elements between the 

wavy ply and the rest of the laminate. The residual strain caused by the defect could be 

predicted using the thermal expansion properties for the material and simulating the 

coupon cooling after it is cured. The validity of the predicted residual strain fields could 

be determined by comparing the predicted data with experimentally measured residual 

strain fields. Finally, each of the 36 models could then be used to predict the ultimate 

bending moment with and without residual strains. The RMS of the prediction errors 

would indicate if consideration of residual strains increased the accuracy of predictions. 
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8. Conclusions 

Composite materials are increasingly utilised in aircraft structures to reduce 

weight. However, these materials are sensitive to defects and thus non-destructive tests 

are conducted to determine the quality of structures. Once a defect is found, it is often 

difficult to determine how it will affect the remnant properties of the structure. This 

causes residual strength predictions to have high levels of uncertainty, which can result in 

unnecessary repairs. This adds to the cost of operating composite structures. Despite the 

issues with characterising composite defects, whilst conducting the literature review for 

this project little research on developing techniques to predict the strength of composites 

was found. Currently, the most common non-destructive techniques applied in industry 

are ultrasound and thermography, these techniques are able to locate defects and 

measure their size and shape. But the size and shape of a defect is not necessarily the 

most useful information regarding how a defect will result in failure. This research project 

developed a strain-based defect assessment that measured the effect of a defect on 

surface strain fields, and used this data to accurately predict residual strength. 

Major contributions to knowledge have been presented in this thesis. Journal 

papers covering all of these contributions have been prepared. These papers are at 

various stages of publication; with one paper published [97], a second under review [98] 

and a third close to submission [99]. The major contributions are as follows: 

A statistical framework for making predictions of the residual strength of 

defective coupons based on non-destructive measurements. The framework used robust 

Bayesian regression to fit empirical models that were robust to data outliers and produced 

conservative predictions of strength when minimal data was available. The regression 

model was further improved, resulting in a piecewise robust Bayesian regression model 

for use when the residual strength data had a non-linear behaviour. Leave-one-out-cross-

validation, a method for estimating the average uncertainty of predictions, was suggested 

to compare the predictive power of different damage assessment techniques.  This 

framework has been published in the Journal of Nondestructive Evaluation, where it was 

applied to ultrasound measurements of impact damage [97]. This contribution 

corresponds to the first knowledge gap identified in Chapter 2. 
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A strain-based defect assessment was used to make predictions of the residual 

strength of defective laminates. The assessment technique was applied to two different 

carbon-fibre laminates and two different defects. For impact damage, the assessment 

technique was shown to be substantially more effective at predicting residual strength 

than ultrasound based measurements. A paper on using the strain based defect 

assessment for impact damage has been published in Composite Structures [98]. This 

contribution corresponds to the second knowledge gap identified in Chapter 2 and its 

application to waviness defects also contributes to the third knowledge gap. 

A new method of creating coupons containing varying levels of in-plane fibre-

waviness was developed. By using this method, flat coupons containing waviness defects 

can be created with control over the defect’s location, size and severity. The method was 

used to produce a large batch of coupons, with which the mechanical behaviour of in-

plane waviness defects were explored. This method is described in a paper that will be 

submitted to Composites Part A: Applied Science and Technology [99]. This contribution 

corresponds to the third knowledge gap identified in Chapter 2. 

A novel inspection method for detecting defects using residual strain 

measurements was developed. By processing shape data captured using DIC, residual 

strain fields on the surface of laminates were obtained. Waviness defects could be located 

in these residual strain fields and the severity of these defects quantified. Predictions of 

bending strength based on residual strength measurements were found to have very low 

levels of uncertainty. This inspection method is described in a paper that will be submitted 

to Composites Part A: Applied Science and Technology [99]. This contribution to 

knowledge results from the efforts to fill the third knowledge gap. 
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Appendix A: R Code for Bayesian Regression 

The code used to fit the Bayesian regression models is included in this appendix. 

To run the code, the software R and JAGS must be installed. The package runjags must 

also be installed in R. The code below is run in R and is used to input data into JAGS which 

then fits the regression model. Once the model has been fitted, the R code processes and 

displays the JAGS output. The JAGS code describing the two Bayesian regression models 

are in Appendix B and C. 

# Clear all previous work 

graphics.off() 

rm(list=ls()) 

 

# Load data for regression 

# Data is saved as X and Y columns in a comma separated values (CSV) file. 

# The top row of the CSV file indicates the x-range for the credible interval 

data = read.csv('C:\\R\\data.csv', header=F) 

x <- data[,1] 

y <- data[,2] 

 

# Time the fitting process 

startTime = proc.time() 

 

# Determine the range of locations to sample from the posterior  

#    predictive distribution, based on values at the top of data.csv 

sampX <- seq(x[1], y[1], length=50) 

x <- x[2:length(x)] 

y <- y[2:length(y)] 

 

# Determine number of chains to use and number of samples per chain.  

# One processor core is left free for other computations. 

nChains = detectCores() - 1 

nSamples = ceiling(500000/nChains) 

 

# Run the model in parallel, 1 chain per core. 

# Different JAGS models can be selected by changing the filename in  

#    the model parameter. 

runJagsOut <- run.jags( method = "rjparallel", 

                  model = "C:\\R\\prbRegression.bug", 

                  data = list('x' = x, 'y' = y, 'sampX' = sampX), 

                  n.chains = nChains, 

                  adapt = 500, 

                  burnin = 4000,  

                  sample = nSamples, 

                  summarise=F, 

                  plots=F, 

                  thin=1, 

                  monitor=c('outY')) 

 

# Extract the samples of outY from the model 

codaSamples = as.mcmc.list( runJagsOut ) 

 

# Calculate the percentiles for the credible interval 

quantileData = NULL 

sTot = length(sampX) 

for(i in 1:sTot) { 

    

   quantiles = c(quantile(unlist(codaSamples[,i]),  

                          probs = c(0.025, 0.5, 0.975),  

                          names = FALSE)) 

    

   quantileData = rbind(quantileData, c(sampX[i], quantiles)) 
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} 

 

# Display the fitting time 

endTime = proc.time() 

show(endTime - startTime) 

 

# Plot the data and fitted model 

plot(x,y) 

lines(quantileData[,1],quantileData[,2]) 

lines(quantileData[,1],quantileData[,3]) 

lines(quantileData[,1],quantileData[,4]) 

 

  



 

127 

 

Appendix B: JAGS Code for Robust Bayesian Linear Regression 

 

# JAGS model file, saved in rblRegression.bug 

#  

 

# Perform initial calculations prior to Bayesian analysis 

data { 

 

   # Calculate total input data points and output sample points 

   inTotal <- length(y) 

   predTotal <- length(sampX) 

    

   # Normalise the input data 

   xm <- mean(x) 

   ym <- mean(y) 

   xsd <- sd(x) 

   ysd <- sd(y) 

   for ( i in 1:length(y) ) { 

    

      inX[i] <- ( x[i] - xm ) / xsd 

      inY[i] <- ( y[i] - ym ) / ysd 

       

   } 

 

   # Normalise the output sample locations 

   for(i in 1:length(sampX)) { 

      predX[i] <- ( sampX[i] - xm ) / xsd 

   } 

    

} 

   

# The robust Bayesian linear regression model 

model { 

 

   # Fit the parameters to the availble data 

   for ( i in 1:inTotal ) { 

     

      # Fit the line 

      inY[i] ~ dt( betaInt + betaGra * inX[i] , 1/sigma^2 , nu ) 

      

   } 

 

   # Define prior distributions for the line parameters 

   betaInt ~ dnorm( 0 , 1/(100)^2 ) 

   betaGra ~ dnorm( 0 , 1/(100)^2 ) 

    

   # Define prior distributions for the residuals  

   sigma ~ dunif( 1.0E-3 , 1.0E+3 ) 

   nu <- nuMinusOne+1 

   nuMinusOne ~ dexp(1/29) 

 

     

   # Create a sample of the noise for the current iteration of parameters 

   predNoise ~ dt(0,1/sigma^2, nu) 

     

   # Sample from the posterior predictive distribution 

   for (j in 1:predTotal) { 

      predY[j] <- (betaInt + betaGra * predX[j]) * ysd + ym 

      outY[j] <- predY[j] + predNoise * ysd 

   } 

     

}  
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Appendix C: JAGS Code for Piecewise Robust Bayesian 

Regression 

 

# JAGS model file, saved in prbRegression.bug 

#  

 

# Perform initial calculations prior to Bayesian Analysis 

data { 

 

   # Calculate total input data points and output sample points 

   inTotal <- length(y) 

   predTotal <- length(sampX) 

    

   # Normalise the input data 

   xm <- mean(x) 

   ym <- mean(y) 

   xsd <- sd(x) 

   ysd <- sd(y) 

   for ( i in 1:length(y) ) { 

    

      inX[i] <- ( x[i] - xm ) / xsd 

      inY[i] <- ( y[i] - ym ) / ysd 

       

   } 

 

   # Normalise the output sample locations 

   for(i in 1:length(sampX)) { 

      predX[i] <- ( sampX[i] - xm ) / xsd 

   } 

    

} 

   

# The piecewise robust Bayesian regression model 

model { 

 

   # Fit the parameters to the available data 

   for ( i in 1:inTotal ) { 

       

      # The Y value of the data if it is on the linear portion 

      inLine[i] <- betaInt + betaGra * inX[i] 

       

      # Fit the line. Linear section on left. Constant section on right. 

      inY[i] ~ dt(ifelse(inX[i] < betaSeg, inLine[i], predConst), 1/sigma^2, nu) 

       

      # Fit the line. Constant section on left. Linear section on right.     

      #inY[i] ~ dt(ifelse(inX[i] < betaSeg, predConst, inLine[i]), 1/sigma^2, nu) 

         

   } 

    

   # The Y value for the constant section of the line 

   predConst <- betaInt + betaGra * betaSeg 

 

   # Define prior distributions for the line parameters 

   betaInt ~ dnorm( 0 , 1/(10)^2 ) 

   betaGra ~ dnorm( 0 , 1/(10)^2 ) 

   betaSeg ~ dunif(min(inX), max(inX)) 

    

   # Define prior distributions for the residuals 

   sigma ~ dnorm( 1.0E-3 , 1.0E+3 ) 

   nu <- nuMinusOne + 1 

   nuMinusOne ~ dexp(1/29) 

     

   # Create a sample of the noise for the current iteration of parameters 

   predNoise ~ dt(0,1/sigma^2, nu) 

     

   #Sample from the posterior predictive distribution 
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   for (j in 1:predTotal) { 

       

      # Calculate the posterior predictive distribution sample, without noise. 

      predLine[j] <- betaInt + betaGra * predX[j] 

      predY[j] <- ifelse(predX[j] < betaSeg, predLine[j], predConst) * ysd + ym 

       

      #predY[j] <- ifelse(predX[j] < betaSeg, predConst, predLine[j]) * ysd + ym 

       

      # Add noise to the posterior predictive distribution 

      outY[j] <- predY[j] + predNoise * ysd 

       

   } 

      

} 


