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Abstract: In a globally identifiable Bayesian system identification problem, the uncertainty of 
model parameters can be quantified by their ‘posterior covariance matrix’ calculated for a 
particular data set. When the data is modeled to be distributed as the likelihood function (i.e., no 
modeling error), a statistical law analogous to the Law of Large Numbers results, where the 
posterior covariance matrix is asymptotic to a deterministic quantity that depends on the 
‘information content’ of data rather than its particular (stochastic) details. This was referred as 
the ‘uncertainty law’ in a recent study of the achievable precision of modal parameters in 
operational modal analysis. Deriving the uncertainty law involves asymptotics techniques and 
leveraging on the mathematical structure of the likelihood function, which was found to be 
tedious. As a sequel to the development, this work shows that for large data size and up to a 
Gaussian approximation of the posterior distribution, the uncertainty law is asymptotic to the 
inverse of the Fisher information matrix, which coincides with the tightest Cramér-Rao Bound in 
classical statistics. A parametric study is presented to illustrate the theoretical results in the 
context of operational modal analysis. As a direct application with practical relevance, the 
relationship provides a systematic means for deriving the uncertainty laws in operational modal 
analysis. It can also be applied in general Bayesian system identification problems. 

Key words: Uncertainty law; Bayesian system identification; Fisher information; Operational 
modal analysis 

 

1 Introduction 

Bayesian system identification is concerned with making inference about some set of model 
parameters � based on measured data � in the context of a mathematical model that relates � and � . Without much loss of generality, assume that �  and �  are continuous-valued. The 
identification result about � is encapsulated by its ‘posterior’ (i.e., given data) probability density 
function (PDF) ���|��. Using Bayes theorem, it is given by 

 ���|�� � 1���� ���|������ (1)
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where ���|�� is called the ‘likelihood function’, giving the modeled PDF of � for a given �; ���� is called the ‘prior distribution’, reflecting one’s knowledge about � in the absence of data; ���� is a normalizing constant because it does not depend on �. All PDFs here are conditional on 
the assumed model but this has been omitted in notation for simplicity. 
The identification uncertainty of � can be quantified by its covariance matrix associated with the 
posterior PDF. In globally identifiable problems [1–3], the posterior PDF has a unique regular 
maximum at the ‘most probable value’ (MPV) of parameters, or equivalently, a unique regular 
minimum of the function −ln [���|������] , referred as ‘NF’ here. A second order Taylor 
approximation of the NL leads to a Gaussian approximation of the posterior PDF. This 
approximation can be justified by the centralized shape of the posterior PDF. Under some 
regularity conditions [4], it becomes asymptotically correct for large data size, which has been 
investigated in the mathematics of ‘Laplace type integrals’ [5–7]. Under the Gaussian 
approximation, the posterior covariance matrix is equal to the inverse of the Hessian of NF at the 
MPV. When the system is not globally identifiable, the approximation is not applicable and one 
may resort to more general tools such as Monte Carlo methods [8–10]. 
Beyond quantification, managing identification uncertainty requires one to understand how it 
depends on the test configuration. This has both scientific significance in discovering 
identification precision limits and practical significance in experimental design and budgeting. 
Typically, the MPV and covariance matrix corresponding to the posterior PDF are calculated in a 
Bayesian identification algorithm for a given data set. The value of the covariance matrix reflects 
the identification uncertainty of � for the given data set, but it does not offer any insight on how 
the identification uncertainty depends on the test configuration that leads to the data. A single set 
of result does not serve the purpose of uncertainty management. Investigating the relationship 
through a parametric study with data sets of different configurations could be one option. This is 
only empirical, however, not to mention that the effect of test configuration has yet to be 
quantified. 
It turns out that when the distribution of data is assumed to follow the likelihood function, i.e., no 
modeling error, a statistical law analogous to the Law of Large Numbers (LLN) in classical 
probability results. The posterior covariance matrix is asymptotic to a deterministic quantity that 
depends on the ‘information content’ of data rather than its particular details. This was referred 
as the ‘uncertainty law’ in a recent study of the achievable precision of modal parameters in 
operational modal analysis [11,12]. Deriving the uncertainty law was found to be tedious, 
involving asymptotics techniques and leveraging on the mathematical structure of the likelihood 
function. As a sequel to the development, this work shows that for large data size the uncertainty 
law is asymptotic to the inverse of the Fisher information matrix (FIM), which coincides with the 
Cramér-Rao Bound (CRB) in classical statistics [13,14]. This connection in the mathematics 
between Bayesian and frequentist statistics can be regarded as a continuation of the discussion in 
[15], which attempted to bridge the two definitions of identification uncertainty in a limited 
heuristic context. From a utility perspective, the connection established in this work allows the 
uncertainty laws for other unexplored cases (e.g., close modes, multiple setups) to be derived 
more systematically and effectively. 



This paper is outlined as follow. Bayesian system identification is first reviewed based on 
Gaussian approximation for globally identifiable problems. The asymptotic equivalence of the 
posterior covariance matrix and the inverse of FIM is then established, assuming no modeling 
error and sufficiently long data. As an illustration, the long-data asymptotic expressions of the 
Hessian of NL obtained in [6] are re-derived by taking advantage of the CRB, showing the utility 
of the asymptotic equivalence. Finally, empirical studies based synthetic and experimental data 
are presented to further validate the asymptotic equivalence and the quality of approximation 
under non-asymptotic situations. 

2 Bayesian System Identification 

Consider a Bayesian system identification problem with a sufficiently large amount of data � ����, ��, … , ��� , where theoretically � → ∞ . For instructional purpose, assume that ���, ��, … , ��� are independent and identically distributed (i.i.d.) for given �; comments for the 
general case shall be made later. The likelihood function is given by 

 ���|�� � � ����|���
���  (2)

For large data size, the prior PDF ����  is a slowly varying function of �  compared to the 
likelihood function ���|��. The posterior PDF is then insensitive to the choice of the prior PDF. 
The latter can be practically taken as a constant over the parameter domain, i.e., a uniform 
distribution, so that the posterior PDF is directly proportional to the likelihood function. 
Consequently, one has 

 ���|�� ∝ �����,�� (3)

where 

  ��, �� � − ln ���|�� � − ! ln ����|���
���  (4)

is the NL. Assuming that the problem is globally identifiable, the MPV �"��� (say) uniquely 
minimizes  ��, �� with respect to (w.r.t.) �, where its dependence on � has been emphasized. At 
the MPV �"���, the gradient of  ��, �� w.r.t. � is a zero vector and the Hessian matrix w.r.t. � is 
a positive definite matrix, i.e., 

 
#� ��, ��|���"��� � $ 

#�� ��, ��%���"��� & $ 
(5)

where the ‘&’ for a matrix denotes that it is a positive definite matrix and the subscript � in # 
denotes that the gradient is taken w.r.t. �. Since ���, ��, … , ��� are independent,  

 
#� ��, �� � − ∑ #� ln ����|������   

#�� ��, �� � − ∑ #�� ln ����|������   
(6)



Under a second order approximation of the NL about the MPV, the posterior PDF is 
approximated by a Gaussian PDF with mean �"��� and covariance matrix 

 ("��� � )#�� *�", �+,��
 (7)

where the dependence on � has been emphasized; and #�� *�", �+ denotes the Hessian of  NL 

w.r.t. � and evaluated at �"���. This approximation is simple and elegant. All one needs is the 
MPV and the Hessian at that location. One does not need to explore the whole posterior PDF 
since a Gaussian PDF is completely defined by the mean vector and the covariance matrix. The 
quality of Gaussian approximation to the posterior PDF ���|�� depends on how close  ��, �� is 
to a quadratic function of � . Under some regularity conditions [4], the posterior PDF is 
asymptotically Gaussian, in which case the Gaussian approximation is equivalent to the Laplace 
asymptotic approximation. 

3 Long-data asymptotic behavior of posterior covariance matrix 

Assume no modeling error, so that the data � is indeed distributed as the modeled likelihood 
function ���|�-� with some ‘actual parameter’ value �- . The existence of �-  is a frequentist 
concept introduced here to bridge the mathematics between Bayesian and frequentist statistics. 
We shall argue that, for large �, 

 ("��� � .��-���)/ 0 1�����/��,  (8)

where /  denotes the identity matrix; the term 1�����/��  denotes that the remainder in the 
bracket depends on � and is of the order ���/�; 

 .��-� � E[#�� ��-, ��|�-] � 4 #�� ��-, �����|�-�5� (9)

is the ‘Fisher information matrix’ (FIM) for � ; E[∙ |�-]  denotes the expectation when �  is 
distributed as ���|�-�; and 

 #�� ��-, �� � #�� ��, ��%���7  (10)

The FIM is originally defined in a classical statistical, i.e., ‘non-Bayesian’ context. It indicates 
how difficult it is to estimate �-: parameters with greater information can be estimated more 
easily, requiring less data to achieve a required precision. The FIM has been used for 
experimental design; see, e.g., [16] in stochastic structural dynamics. 
In terms of asymptotic relationship, Eqn. (8) reads 

 (" ~ .��-��� ,   � → ∞ (11)

As uncertainty law is defined as the leading order of the posterior covariance under some 
asymptotic conditions, the above shows that it is simply the inverse of the FIM for 
asymptotically large data size. In a frequentist context where � is assumed to be distributed as 



���|�-�, the inverse of the FIM is the Cramér-Rao bound (CRB), which says that any unbiased 
estimator 9��� for �- will have a covariance matrix bounded by the following inequality: 

 cov[9���|�-] ≥ .��-��� (12)

Here, cov[9���|�-] denotes the covariance matrix of 9��� when � is distributed as ���|�-�. 
Equation (12) is a matrix inequality that should be interpreted as the LHS minus the RHS being a 
positive semi-definite matrix. Note that the CRB here is the ‘tightest’ one involving all 
parameters in the identification problem. In statistical applications, looser (weaker) bounds with 
a lower-dimensional FIM involving only some of the parameters are often derived for 
mathematical tractability. See, e.g., [17] that derives the bounds for modal identification with 
free vibration data. The asymptotic result of the posterior covariance matrix bridges the 
mathematics between the Bayesian and non-Bayesian quantification of identification uncertainty, 
although their philosophies are different. 
Equation (8) can be argued as follow. For a given �, the MPV �"��� maximizes the likelihood 
function ���|��  w.r.t. � . It is then mathematically equivalent to the maximum likelihood 
estimator, which is known to be an asymptotically unbiased estimator of �- [18]. In addition, 
reasoning from Eqn. (6), the posterior covariance matrix is 1������. One can then write 

 �"��� � )/ 0 1�����/��,�- (13)

Assuming that the NF has third order derivatives w.r.t. �, we have 

 #�� *�", �+ � #�� ��-, ��)/ 0 1�����/��,  (14)

Since ���, ��, … , ��� are i.i.d, the second derivatives in the sum on the RHS of Eqn. (6) are i.i.d. 
as well. By the LLN, their average converges to the expectation of a single term: 

 
�
� #�� ��-, �� → E[#�� ln ����|�-� |�-] � .���-�  (15)

where .�  is the FIM based on the sample �� . Again, ���, ��, … , ��� are i.i.d. and so .��-� ��.���-�. Combining these gives 

 #�� *�", �+ � .��-�)/ 0 1�����/��,  (16)

Equation (8) then follows because matrix inverse is a continuous mapping. 
An intuitive observation of the above result is that the uncertainty law is asymptotically the 
expectation of the posterior covariance, under the ‘frequentist’ context of ‘identically repeated 
experiments’. When interpreting the uncertainty law, the data is unknown. For conceptual 
understanding or planning purpose, it is intuitive to integrate out the effect of stochastic data � to 
obtain an averaged value, i.e. to take expectation of ("��� with � distributed as ���|�-� for some 
actual parameter value �-. Understanding the uncertainty law as the expectation of the posterior 
covariance provides an intuitive perspective to see their relationship. The fusion of Bayesian and 
frequentist concept here is adopted to bridge the two schools of thoughts. It should not be 



confused with the Bayesian nature of the posterior covariance matrix, which depends on a 
particular data set and there is no notion of actual parameter or ‘inherent uncertainty’.  
The asymptotic behavior of posterior covariance developed above is based on models with i.i.d. 
observations. For the general case when the observations may be correlated or not identically 
distributed, the argument can be extended to hold by virtue of the general version of the LLN 
[19], but we do not pursue it here. Rather, we explore the utility of this asymptotic equivalence to 
derive the uncertainty laws in operational modal analysis. 

4 Operational Modal Analysis 

The mathematical equivalence between the uncertainty law and the inverse of FIM holds for 
general globally identifiable problems under the assumptions mentioned in the last section. Here, 
we focus on the uncertainty law of operational modal analysis (OMA), which aims at identifying 
the modal parameters (e.g. modal frequencies, damping ratios and mode shapes) of a structure 
using ambient vibration data [20–22]. The uncertainty law of OMA for well-separated modes 
was derived in [11] from first principle. The asymptotic conditions involve long data and small 
damping. Substituting the stochastic representation of the scaled fast Fourier transform (FFT) of 
data into the second derivatives of NF leads to an expression comprising sums of random terms, 
whose leading order is its expectation for long data. The derivation was found to be tedious, 
although the final expressions were remarkably simple and intuitive. Since OMA is a globally 
identifiable problem, the theory in the last section can be applied to allow for a more systematic 
derivation of the uncertainty laws for long data via the FIM. For this purpose, we re-derive the 
uncertainty law for long data. The objective is to illustrate how the asymptotic equivalence can 
lead to a systematic and effective derivation for future exploration of uncertainty laws for other 
cases, e.g., multiple modes and multiple setups. 

4.1 Problem statement 

Let the acceleration time history data measured at > degrees of freedom (DoFs) of a structure 

under ambient vibration be ?@A"B ∈ DE: G � 0,1, … , � − 1I and abbreviated as ?@A"BI, where � is the 

number of samples per data channel. Modeled as a stationary stochastic process, its scaled FFT is 
defined as 

 J" � � KΔM/� ! @A"B���NOB�/����
B�-  (17)

where ΔM (sec) is the sampling period and O is the imaginary unit. For P Q �R, J" � corresponds to 

the frequency f� � P/�ΔM (Hz), where �R � int[�/2] 0 1 (int[∙] denotes the integer part) is the 

index at the Nyquist frequency. The FFT in Eqn. (17) is scaled by the factor KΔM/�  so that the 

expectation of J" �J" �∗  (‘*’ denotes conjugate transpose) is equal to the power spectral density 
(PSD) matrix of the data process. 
In practice, only the FFTs on a selected frequency band, denoted by �J" �� , containing the 
mode(s) of interest are used for identification. This trades off between the information used for 
identification (the wider the better) and modeling error risk (the narrower the better) [23]. Within 
the selected band, it is assumed that 



 J" � � J� 0 X� (18)

where J�  and X�  denote respectively the scaled FFT of the theoretical structural dynamic 
response and the prediction error (e.g., data noise). For well-separated modes, one can select a 
frequency band dominated by only one vibration mode such that 

 J� � YZ��� (19)

where Y ∈ DE is the partial mode shape confined to measured DoFs; �� ∈ [ is the scaled FFT of 
the modal excitation; Z� ∈ [ is the transfer function given by 

 Z� � 1�1 − \��� − O�2]\�� (20)

] is the damping ratio; \� � ^/f� is the ratio of the natural frequency ^ to the FFT frequency f�. 
In OMA, the modal excitation �� is not measured and it is modeled statistically. Assuming zero-
mean stationary modal excitation, �� has a complex Gaussian distribution. Its variance (i.e., PSD 
of the process) is assumed to be a constant _ in the selected band. The prediction errors at 
different channels are also assumed to be complex Gaussian distributed with zero mean and 
variance _` within the selected band, which can be justified based on the principle of maximum 
entropy [1]. Further assuming statistical independence between the modal excitation and 
prediction errors yields a jointly independent complex Gaussian distribution for �J" �� with zero 
mean and each with a covariance matrix (or theoretical PSD of data) given by 

 a� � _b�YcYc d 0 _`/E (21)

where /E ∈ DEeE denotes the identity matrix; 

 b� � 1�1 − \���� 0 �2]\��� (22)

is a dynamic amplification factor; and 

 Yc � ‖Y‖��Y (23)

is the normalized mode shape, where ‖∙‖ denotes the Euclidean norm, i.e., square root of the sum 
of squares. 
The complex Gaussian distribution for �J" �� is supported by the theoretical result that the scaled 
FFTs of a stationary process are asymptotically independent complex Gaussian distributed for 
long data [24]. As the data in OMA is stationary and its size is usually large enough, this 
assumption holds in general. The above frequency-domain model only makes use of the FFT 
information in the selected band, which significantly simplifies the identification model. The 
PSD of the modal excitation and prediction error need only be flat within the selected band, 
relaxing the conventional white noise assumption and making the method more robust than time-
domain methods. Other bands with irrelevant information or which are difficult to model are 
legitimately ignored, therefore avoiding modeling error. This does not require any signal pre-
processing such as filtering or averaging. 



In summary, the problem of OMA is to identify parameters � � �^, ], Y, _, _`� given the FFTs �J" ��. The likelihood function is  

 �*�J" ��%�+ � � �*J" �%�+
�

 (24)

where the product is taken over all frequency indices P in the selected band;  

 �*J" �%�+ � g�E
|a�| exp[−J" �∗ a���J" �] (25)

and |∙| denotes the matrix determinant; a� is given in Eqn. (21). Accordingly, the NF is given by 

  *�, �J" ��+ � >�k ln g 0 ! ln|a�|
�

0 ! J" �∗ a���J" �
�

 (26)

where the sum is over all P in the selected band. Without loss of generality, a joint uniform prior 
PDF is assumed for �. The posterior distribution is then given by 

 �*�%�J" ��+ ∝ ���*�,�J"l�+ (27)

The data size in OMA is typically long and a Gaussian approximation is applied to approximate 
the posterior PDF as in Section 2. The Bayesian FFT approach was first formulated in [25]. 
Efficient algorithms have been developed for determining the MPV and the Hessian of the NF. A 
recent review with applications in civil engineering can be found in [26]. 

4.2 Deriving uncertainty laws via FIM 

The connection between the uncertainty law and the FIM allows one to derive it in a systematic 
manner through an expectation rather than asymptotic analysis of the NL, which turns out to 
involve much insights on the mathematical structure of the NL [11] . Here we re-derive the 
uncertainty law for well-separated modes via the FIM. Let  m�no� denote the derivative of the NF 
w.r.t. variables p and q, and evaluated at the MPV for given �J" �� distributed as the likelihood 

function �*�J" ��%�+. In the present context, Eqn. (16) reads 

  m�no� � rno)1 0 1��k��/��, (28)

where rno is the entry corresponding to parameter pair �p, q� in the FIM; and �k is the number of 

FFT points in the selected band. This implies that  m�no�~rno if rno ≠ 0. Otherwise, the leading 

order of  m�no� needs to be determined by other means. As the FFT data is zero-mean complex 
Gaussian, it is a standard result in statistics that the FIM is given by [27] 

 rno � ∑ tr[a���a��n�a���a��o�]�   (29)

where a superscripted variable denotes a partial derivative w.r.t. it, and tr[∙] denotes the ‘trace’ of 
the subject matrix, i.e., sum of diagonal entries. Although the FIM is the expectation of second-



order partial derivative of NF, it turns out that only the first-order partial derivative of a�  is 
needed in the case of zero-mean complex Gaussian distribution. 
The trace in Eqn. (29) can be evaluated effectively using the eigenvector decomposition of a�. 
Let �uv ∈ DE: w � 1,2, … , >�  be an orthonormal basis in DE  with u� � Yc . Substituting /E �∑ uvuvdEv��  into Eqn. (21) yields 

 a� � �_b� 0 _`�u�u�d 0 _` ∑ uvuvdEv��   (30)

This shows that the eigenvectors of a� are u�, u�, …, uE with corresponding eigenvalues _b� 0_` and _` , … , _`. Its inverse can then be obtained by operating on the eigenvalues: 

 a��� � �_b� 0 _`���u�u�d 0 _�̀� ∑ uvuvdEv��   (31)

The partial derivatives can be obtained conveniently using Eqn. (30) by noting that the 
eigenvectors only depend on the mode shape Yc  and the eigenvalues only depend on the 
remaining parameters �^, ], _, _`� . Details can be found in Appendix A and the results are 
summarized in Table 1. In the table, derivatives involving the dynamic amplification factor are 
written in terms of the derivatives of its reciprocal, which are mathematically easier: 

 
�b�����k� � 4^��\���\�� − 1 0 2]�� 

�b�����y� � 8]\�� 
(32)

 

Table 1: The entry rno in the FIM for �k → ∞; �� � _`/_b� and ‖Y‖ � 1 

 q
 p  ^, ] _ _` Y 

^, ] ! b���b�����n��b�����o�
�1 0 �����

   sym. 

_ −_�� ! b��b�����o�
�1 0 �����

 _�� !�1 0 �����
�

   

_` −_�� ! �b�����o�
�1 0 �����

 _�� ! b���
�1 0 �����

 _�̀� {�> − 1��k 0 ! ����1 0 �����
|  

Y $ $ $ {2 !�1 0 ���������
�

| �/E − YcYc d� 

 
Note that the symbols �^, ], Y, _, _`� in Table 1 denote the actual parameter value that lead to the 
data, following the context in Section 3. In addition to long data asymptotics as is done here, 
small damping asymptotics and asymptotic decoupling are needed to obtain the final asymptotic 
expressions that relate the posterior uncertainty explicitly to test configurations (instead of sums 
as in Table 1). These are beyond the scope of this paper. Interested readers may refer to [11] for 
more details. 
 



5 Empirical Studies 

In order to validate the long-data asymptotic behavior of the posterior covariance matrix, 
empirical studies are presented here for Bayesian OMA with synthetic and experimental data of 
increasing lengths. Data length effect is studied through the ‘normalized data length’ �} � data 
duration / natural period. Note that �} is proportional to the number of FFT points in the selected 
band (�k). It is directly related to the maximum amount of information available in data for 

inferring the mode of interest and is therefore an intuitive measure in the context of modal 
identification [13]. In the examples, three quantities of uncertainty should be distinguished. The 
‘posterior variance’ (denoted by a cross in the figures) refers to the conventional posterior 
variance of a parameter calculated in the Bayesian identification algorithm for a given data set. It 
is equal to the diagonal entry (corresponding to the parameter) in the posterior covariance matrix, 
which is the inverse of the Hessian of NL at the MPV (for a given data set). The CRB (denoted 
by a triangle) refers to the (tightest) Cramér-Rao Bound, equal to the inverse of the FIM 
(involving all parameters). The FIM is equal to the expectation of the Hessian of NL at the actual 

parameter value, which is a legitimate quantity in the examples where the data is generated 
synthetically. The ‘uncertainty law’ (denoted by a circle) refers to the leading order of the 
posterior variance for long data (but not necessarily small damping), calculated as the inverse of 
the FIM using the expressions in Table 1 but evaluated at the MPV. Note that the FIM involved 
in the calculation of uncertainty law is not equal to the actual value involved in the CRB, which 
is evaluated at the actual parameter value. Calculating the uncertainty law does not involve the 
actual parameter value; the latter is not a legitimate quantity in a Bayesian context and need not 
exist for real data. As the examples will illustrate, the above three quantities converge to the 
same value as the data size increases. In real applications with given data, the posterior 
covariance and uncertainty law can be calculated, but not the CRB or FIM because the actual 
parameter value is not known or does not even exist. Despite its name, the CRB (the inverse of 
the FIM) does not lower-bound either the posterior variance or the uncertainty law. The name is 
used merely to be consistent with the conventional terminology in classical statistics. 

5.1 Single-DoF system 

The first example is a single-DoF system under Gaussian white noise excitation ~�M� with a 
modal force (per unit mass) PSD of _ � 1�����/�� (1 �� �  9.81 e 10�� �/��), satisfying the 
governing equation 

 pA 0 2]�p� 0 ��p � ~�M� (33)

where � �  2g ��5/��� (i.e., 1 ��) and ] � 2%. Synthetic acceleration data is generated with 
a sampling frequency of 10 ��  and contaminated by i.i.d. channel noise with a PSD _`  � 25 �����/�� . The resulting modal signal-to-noise (s/n) ratio, defined as the PSD ratio of 
response to noise at the natural frequency, is � � _/4_`]� � 25. This quality of data can be 
readily achieved in typical ambient vibration tests. The PSD calculated using 1000 sec of data is 
shown in Figure 1. 

Selecting a frequency band of [0.7,1.3] ��, the Bayesian FFT method is applied to identify 
the modal parameters. The results are shown in Figure 2 for different data lengths. The dashed 



line denotes the actual value of the modal parameter that generated the data. The identified result 
for each data length is shown with a dot at the posterior MPV and an error bar covering two 
posterior standard deviations. It is seen that as the data length increases the error bar 
systematically narrows. There is no evidence of bias, as reflected by the fact that the error bar 
covers the actual value regardless of data length. 
 

  
Figure 1: PSD spectrum, single-DoF example. 

Bracket: frequency band used in Bayesian FFT algorithm. 
 

  
Figure 2: Identified modal parameters, single-DoF example. 

Dot: MPV; error bar: ±two standard deviations. Dashed line: actual value. �} = data length/natural period 
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The posterior standard deviation and covariance of modal parameters, both denoted by a 
circle, are shown in Figure 3 and Figure 4, respectively. The former is equal to the square root of 
the posterior covariance and the latter is equal to the corresponding off-diagonal entry in the 
posterior covariance matrix. As expected, the posterior standard deviation generally decreases 
with data length, by virtual of increasing amount of information for identification. The decrease 
need not be monotonic, however, as the identification uncertainty for a given data set still 
depends on the particular details of data (which is stochastic). The uncertainty law (circle) also 
has a general decreasing trend. Recalling that the uncertainty law is calculated via the analytical 
expressions in Table 1, its apparently random fluctuation is due to the fluctuation in the MPV 
calculated for different data lengths, which is close but not equal to the actual value. Evaluating 
the expressions at the actual value (and taking inverse) gives the CRB (triangle), which displays 
a smooth monotonic decreasing trend. The posterior covariance, uncertainty law and CRB all 
converges to the same value as the data length increases, validating the long-data asymptotic 
equivalence established in Eqn. (8). The uncertainty law appears to be closer to the posterior 
covariance than the CRB especially for short durations. This is an observation that is generally 
true (see also the next example), although it is not accounted by the theory. Note that the CRB 
cannot be calculated in real applications because the actual parameter value is not known or it 
does not even exist. As mentioned before this subsection, the CRB does not lower-bound either 
the posterior variance or the uncertainty law.  

 

  
Figure 3: Posterior standard deviation of modal parameters (cross), single-DoF example. 

Circle: uncertainty law (MPV); triangular: CRB. �} = data length/natural period 

f
[H
z
]

S
[(
g
)2
/H
z
]

S
e

[(
g
)2
/H
z
]



 
Figure 4: Posterior covariance of modal parameters (cross), single-DoF example. 
Circle: uncertainty law (MPV); triangular: CRB. �} = data length/natural period 

 

5.2 Eight-DoF shear-type building 

The second example is an eight-storied shearing-type building with a uniform floor mass of 100 M�> and an interstory stiffness of 115.94 P�/��. The first three frequencies are calculated 
to be 1, 2.97 and 4.83 ��. A damping ratio of 1% is assumed for all modes. The structure is 
subjected to i.i.d. Gaussian white noise excitations at all floors, each with a PSD of 0.8 ��/��. 
Synthetic acceleration data is generated at a sampling frequency of 50 �� and contaminated by 
i.i.d. channel noise with a PSD of 50 �����/��. The first three mode shapes (normalized with 
unit norm) are shown in Figure 5. Uniaxial acceleration data is measured at the 3rd, 4th and 7th 
floors. Correspondingly, the modal s/n ratios are � � 16.2, 20.4 and 4.3 for the first to third 
modes. Note that the modal s/n ratio is proportional to the sum of squares of mode shape values 
at the measured DoFs. Figure 6 show the PSD and singular value (SV) spectrum (i.e., 
eigenvalues of PSD matrix) of data (1000 ��� duration), respectively. 
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Figure 5: Mode shapes of the first three modes, eight-DoF example. 

Vertical dashed line: measured DoFs. 

 
Figure 6: PSD and SV spectrum, eight-DoF example. 

Bracket: frequency bands used in Bayesian FFT algorithm. 

Second mode 

Consider identifying the second mode based on FFT data in the frequency band [2.8, 3.12] ��. 
Figure 7 shows the results for normalized data length from 100 to 10000. Similar to Figure 2, as 
the data length increases, the MPV (dot) converges (in a random manner) to the actual value 
(dashed line) and the error bar shortens. The corresponding posterior standard deviations of 
modal parameters (circles) are shown in Figure 8 and Figure 9. For mode shape which is a 
vector-valued quantity, the coefficient of variation (c.o.v.) is defined as the square root of the 
trace of posterior covariance matrix [11]. The differences between the posterior covariance, 
uncertainty law and CRB are apparent for short data durations but they diminish for long 
durations. Again, this validates the asymptotic equivalence established in this work. 
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Figure 7: Identified modal parameters, second mode, eight-DoF example. 

Dot: MPV; error bar: ±two standard deviations. Dashed line: actual value. �} = data length/natural period 

  
Figure 8: Posterior standard deviation of modal parameters (cross), second mode, eight-DoF example. 

Circle: uncertainty law (MPV); triangular: CRB. �} = data length/natural period 
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Figure 9: Posterior standard deviation of mode shape (cross), second mode, eight-DoF example. 

Circle: uncertainty law; triangular: CRB. �} = data length/natural period 
 
 
Third mode 

Next, consider identifying the third mode using FFT data within the frequency band [4.68, 5.0] ��. This mode is considered to illustrate the effect of low s/n ratio. As mentioned in 
the beginning of this section, the modal s/n of this mode is only � � 4.3, which is quite low. 
Figure 10 shows the identification results, analogous to Figure 7. The identification uncertainty 
is significantly larger than that of the second mode. In Figure 11 and Figure 12, the posterior 
standard deviation and uncertainty law have a similar (or slightly lower) proximity as those for 
the second mode, but now they differ significantly from the CRB especially for short data. Such 
difference is due to the difference between the MPV and the actual value of modal parameters, 
the latter being used by the CRB. The difference between the MPV and the actual value can be 
large for short data but it diminishes as the data length increases. The posterior standard 
deviation, uncertainty law and CRB still converge to visually the same value, as predicted by the 
asymptotic equivalence.  
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Figure 10: Identified modal parameters, third mode, eight-DoF example. 
Dot: MPV; error bar: ±two standard deviations. Dashed line: actual value. �} = data length/natural period 

 

Figure 11: Posterior standard deviation of parameters, third mode, eight-DoF example. 
Circle: uncertainty law; triangular: CRB. �} = data length/natural period 
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Figure 12: Posterior standard deviation of mode shape, third mode, eight-DoF example. 
Circle: uncertainty law; triangular: CRB. �} = data length/natural period 

 

5.3 Four-story laboratory frame 

An example with laboratory data is next presented to illustrate the connection of uncertainty law 
and the FIM with real data. A laboratory OMA test was performed on a four-story aluminium 
frame, measuring 30 �� e  20 �� in plan and with a uniform story height of 25 ��, as shown 
in Figure 13a. The four corners of each floor were instrumented with two piezoelectric 
accelerometers along the horizontal x- and y- directions, giving a total of 32 measured DoFs 
(Figure 13b). Ambient data was recorded for 1000 ��� at 2048 Hz. It was later decimated to 256 �� for analysis. The measured time history at DoFs 25 and 26 are shown in Figure 14a). 
The PSD and SV spectrum of data (1000 sec duration) are shown in Figure 14b). 
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a) Photo     b) Measured DoFs 

Figure 13: Laboratory shear frame. 
 
Consider identifying the mode based on FFT data in the frequency band [9.1, 9.7] ��. Figure 15 
shows the results for normalized data length from 100  to 10000  and the mode shape (x-
translation) is the MPV at �} � 10000. Unlike previous examples based on synthetic data, there 
is no ‘true model’ in this example and the notion of the actual parameter values of modal 
properties is irrelevant. For the MPV, although intuition may expect it to converge as the data 
length increases, it need not do so in real experiments because of model errors due to, e.g., 
changing environment, damping mechanisms. Consistent with the intuition about increasing 
information, the error bar generally shortens as the data duration increases, though not 
necessarily in a monotonic manner. The corresponding posterior standard deviations of modal 
parameters (circles) are shown in Figure 16 and Figure 17. The CRB is not relevant in this case. 
Similar to the previous examples, the uncertainty laws are at good proximity to the posterior 
variances even for short data.  
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a) Measured time history at DoFs 25 and 26 (detrended) 

 
b) PSD and SV spectrum (Bracket: frequency bands used in Bayesian FFT algorithm) 

Figure 14: Measured data, laboratory shear frame. 
 

     
a) Modal parameters        b) Mode shape 

Figure 15: Identified modal parameters, laboratory shear frame. 
Dot: MPV; error bar: ±two standard deviations. 
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Figure 16: Posterior standard deviation of modal parameters (cross), laboratory shear frame. 

Circle: uncertainty law (MPV). �} = data length/natural period 

 
Figure 17: Posterior standard deviation of mode shape (cross), laboratory shear frame. 

Circle: uncertainty law. �} = data length/natural period 
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6 Conclusions 

This paper has investigated the asymptotic behavior of the posterior covariance matrix in 
Bayesian system identification. Based on Gaussian approximation of the posterior distribution in 
a globally identifiable problem, it is found that the posterior covariance matrix is asymptotically 
equal to the inverse of the Fisher information matrix (FIM), which coincides with the tightest 
Cramér-Rao Bound (CRB, involving all parameters). Despite its name, the CRB does not lower-
bound either the posterior variance (for given data) or its leading order (uncertainty law). 
The mathematical connection with the CRB offers a systematic means for deriving the 
uncertainty laws in operational modal analysis, which aims at understanding the relationship 
between identification uncertainty and test configuration. To illustrate the utility of this 
connection, the uncertainty law for well-separated modes is re-derived through the FIM and 
examined by synthetic and experimental data. As the FIM has an analytical form, the derivation 
is more systematic and elegant than the previous one that required insights about the asymptotic 
mathematical structure of the log-likelihood function. The synthetic data examples demonstrate 
that when there is no modeling error the posterior variance, uncertainty law (long data) and CRB 
all converge to the same value as the data duration increases. The synthetic and experimental 
data examples suggest that the uncertainty law is at good proximity with the posterior variance 
even under non-asymptotic situations. 
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8 Appendix A 

In this appendix, we derive the expressions for the leading order of  m�no� shown in Tab. 1 based 
on its relation with the FIM. Starting with the eigenvector decomposition of a� in Eqn. (30), for p � ^, ], _, _`, differentiation simply operates on the eigenvalues: 

 a��n� � �_b� 0 _`��n�u�u�d 0 _ �̀n� ∑ uvuvdEv��   (A.1)

The same also applies to the product. For p � ^, ], _, _`, 

 a���a��n�a���a��o� � ���l����������l�������
���l����� u�u�d 0 ����������

��� ∑ uvuvdEv��   (A.2)

Taking trace, noting tr)uvuvd, � 1 and summing over P yields 

 rno � ∑ ���l����������l�������
���l������ 0 �> − 1��k ����������

���   (A.3)

The terms rnY  ( p � ^ , ] , _ , _` ) and rYY  involve differentiation w.r.t. Y . Analysis can be 

simplified by making use of the orthogonality between Y and the gradient of Yc � ‖Y‖��Y. Let Y � [��, … , �E]d and �v be a > e 1 vector whose wth entry is the only non-zero entry equal to 1. 
Then, 



 Yc � ¡� � #Yc�v    #Yc � ¢ £Yc
£ ¤ … £Yc

£ ¥¦ � /E − YcYcd    (‖Y‖ � 1) (A.4)

It follows that 

 �#Yc�d � #Yc     �#Yc��#Yc� � #Yc     �#Yc�Y � $    Yd�#Yc� � $ (A.5)

 a�� ¡� � _b�)Yc � ¡�Ycd 0 YcYc � ¡�d, � _b�)#Yc�vYcd 0 Yc�vd#Yc, (A.6)

Using these results, it can be shown that, for ‖Y‖ � 1 and p � ^, ], _, _`, 

 a���a��n� � ���l�������
��l���`l� YcYcd 0 �����

�� #Yc   (A.7)

 a���a�� ¡� � �1 0 �����Yc�vd�#Yc� 0 �����#Yc��vYcd (A.8)

 a���a��n�a���a�� ¡� � �_b� 0 _`��n�
_b��1 0 ���� Yc�vd�#Yc� 0 _ �̀n�

_`�� #Yc�vYcd (A.9)

 a���a�� ¡�a���a�� §� � �1 0 ���������)Yc�vd�#Yc��BYcd 0 �#Yc��v�Bd�#Yc�, (A.10)

where �� � _`/_b�. 
Taking trace on Eqn. (A.9) and summing over P gives 

 rn ¡ � 0  (A.11)

because tr)Yc�vd�#Yc�, � tr)�#Yc�Yc�vd, � 0  and tr[#Yc�vYcd] � tr[Ycd#Yc�v] � 0  (cyclic 

property of trace). This indicates that the leading order of  m�n ¡� is not given by FIM. Direct 

investigation of  m�n ¡�, which is a sum of �k random terms, shows that it is 1��k�/��. 

On the other hand, taking trace on Eqn. (A.10) and summing over P gives 

 r ¡ § � [2 ∑ �1 0 ���������� ]�vd�#Yc��B  (A.12)

where we have simplified using the cyclic property of trace: 

 

tr)Yc�vd�#Yc��BYcd, � tr)YcdYc�vd�#Yc��B, � �vd�#Yc��B  

tr)�#Yc��v�Bd�#Yc�, � tr)�Bd�#Yc��#Yc��v, � �Bd�#Yc��v � �vd�#Yc��B  

 

(A.13)

Since �vd�#Yc��B is simply the �w, G�-entry of #Yc , Eqn. (A.12) implies 

 rYY � [2 ∑ �1 0 ���������� ]�#Yc� � [2 ∑ �1 0 ���������� ]�/E − YcYcd�  (A.14)

Applying Eqns. (A.3), (A.11) and (A.14) gives the expressions in Table 1.  
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5. Erdélyi A. Asymptotic expansions. New York: Dover Publications; 1956. 

6. Bleistein N, Handelsman RA. Asymptotic expansions of integrals. New York: Dover 
Publications; 1986. 

7. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data 

analysis. Third Edit. Boca Raton: Chapman & Hall/CRC; 2014. 

8. Liu JS. Monte Carlo strategies in scientific computing. New York: Springer; 2001. 

9. Robert CP, Casella G. Monte Carlo Statistical Methods. New York: Springer; 2004. 

10. Straub D, Papaioannou I. Bayesian Updating with Structural Reliability Methods. Journal 

of Engineering Mechanics 2015; 141(3): 4014134. DOI: 10.1061/(ASCE)EM.1943-
7889.0000839. 

11. Au SK. Uncertainty law in ambient modal identification - Part I: Theory. Mechanical 

Systems and Signal Processing 2014; 48(1–2): 15–33. DOI: 10.1016/j.ymssp.2013.07.016. 

12. Au SK. Uncertainty law in ambient modal identification---Part II: Implication and field 
verification. Mechanical Systems and Signal Processing 2014; 48(1–2): 34–48. DOI: 
10.1016/j.ymssp.2013.07.017. 

13. Cramér H. Mathematical Methods of Statistics. Princeton: Princeton University Press; 
1946. 

14. Rao CR. Information and the accuracy attainable in the estimation of statistical parameters. 
Bulletin of the Calcutta Mathematical Society 1945; 37: 81–89. 

15. Au SK. Connecting Bayesian and frequentist quantification of parameter uncertainty in 
system identification. Mechanical Systems and Signal Processing 2012; 29: 328–342. DOI: 
10.1016/j.ymssp.2012.01.010. 

16. Castro-Triguero R, Saavedra Flores EI, DiazDelaO FA, Friswell MI, Gallego R. Optimal 
sensor placement in timber structures by means of a multi-scale approach with material 
uncertainty. Structural Control and Health Monitoring 2014; 21(12): 1437–1452. DOI: 
10.1002/stc.1654. 



17. Hernandez EM, Polanco NR. A lower bound for the variance of frequency and damping 
ratio identified from noisy vibration measurements. Structural Control and Health 

Monitoring 2016; 23(1): 5–19. DOI: 10.1002/stc.1757. 

18. Keener RW. Theoretical statistics : topics for a core course. Springer; 2010. 

19. DasGupta A. Asymptotic Theory of Statistics and Probability. 1st ed. New York, NY: 
Springer New York; 2008. DOI: 10.1007/978-0-387-75971-5. 

20. Çatbaş FN, Kijewski-Correa T, Aktan AE, editors. Structural Identification of 

Constructed Systems: Approaches, Methods, and Technologies for Effective Practice of 

St-Id. Reston, VA: American Society of Civil Engineers; 2013. DOI: 
10.1061/9780784411971. 

21. Reynders E. System Identification Methods for (Operational) Modal Analysis: Review 
and Comparison. Archives of Computational Methods in Engineering 2012; 19(1): 51–124. 
DOI: 10.1007/s11831-012-9069-x. 

22. Brincker R, Ventura C. Introduction to operational modal analysis. Chichester: Wiley; 
2015. 

23. Au SK. Model validity and frequency band selection in operational modal analysis. 
Mechanical Systems and Signal Processing 2016; 81: 339–359. DOI: 
10.1016/j.ymssp.2016.03.025. 

24. Brillinger DR. Time series : data analysis and theory. Philadelphia: SIAM; 2001. DOI: 
http://dx.doi.org/10.1137/1.9780898719246. 

25. Yuen K, Katafygiotis L. Bayesian fast Fourier transform approach for modal updating 
using ambient data. Advances in Structural Engineering 2003; 6(2): 81–95. DOI: 
10.1260/136943303769013183. 

26. Au SK, Zhang FL, Ni YC. Bayesian operational modal analysis: Theory, computation, 
practice. Computers & Structures 2013; 126: 3–14. DOI: 
10.1016/j.compstruc.2012.12.015. 

27. Tong YL. The Multivariate Normal Distribution. New York, NY: Springer New York; 
1990. DOI: 10.1007/978-1-4613-9655-0. 

 


