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Multi-scale failure of porous materials is an important phenomenon in nature and in material 9 

physics – from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and 10 

earthquakes. A key unsolved research question is how to accurately forecast the time of system-11 

sized catastrophic failure, based on observations of precursory events such as acoustic emissions 12 

(AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale 13 

associated with precursory events has not been well quantified, resulting in forecasting tools that 14 

are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time 15 

depends on the inter-flaw distance in the starting material. We use new experimental datasets for 16 

the deformation of porous materials to infer the critical crack length at failure from a static 17 

damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy 18 

of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. 19 

A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs 20 

when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted 21 

failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, 22 

we provide a quantitative and pragmatic correction for the systematic error in the forecast failure 23 

time, valid for structurally isotropic porous materials, which could be tested against larger-scale 24 

natural failure events, with suitable scaling for the relevant inter-flaw distances. 25 



Keywords: porous materials; inter-pore length; acoustic emission; precursors; rock failure; damage 26 

mechanics. 27 

 28 

1. Introduction 29 

All materials contain flaws with a large range of length scales, from kilometre-sized fractures in the 30 

crust (Hatton et al., 1994), to meter-sized cavities (Castro et al., 2002) and fractures in rocks and 31 

synthetic materials (Allègre et al., 1982), down to micro- and nano-pores and density fluctuations in 32 

thin-film glasses (Guyer and Dauskardt, 2004) and crystals. These flawed materials eventually rupture 33 

in catastrophic failure events when applied stresses become sufficiently large to produce system-34 

spanning fractures (Sammis and Ashby, 1986). Recent efforts have converged and found that two 35 

observations dominate the physics of failure of these systems. First, the flaws in the system concentrate 36 

stress relative to the unflawed domains of the material and therefore the flaw fraction in the material 37 

exerts a first-order control on the far-field stress required for macroscopic failure (Kemeny and Cook, 38 

1986; Sammis and Ashby, 1986; Vasseur et al., 2013). Second, the size of flaws and the inter-flaw length 39 

determine the extent to which the cracks that emanate from flaws will interfere (Bažant, 2004; Sornette 40 

and Andersen, 1998). These two paradigms underpin all elastic models of rupture events in 41 

heterogeneous solids and predict that, as the material approaches macroscopic failure, the rate of energy 42 

released as acoustic emissions (AEs) by microscopic failure events accelerates (Kilburn, 2012; Lockner 43 

et al., 1991; Scholz, 1968; Turcotte and Newman, 2003; Vasseur et al., 2015; Voight, 1989). When first 44 

proposed, the finding that these bulk-material accelerations in the rate of energy release or event number 45 

approaches a singularity that coincided with the failure time provided a tantalizing possibility that 46 

material failure could be forecast accurately using indirect observations such as micro-earthquakes or 47 

AEs prior to wholesale rupture (Voight, 1989). Indeed a large effort has been expended in assessing the 48 

utility of this tool for forecasting hazardous failure phenomena in nature (Bell et al., 2011; Bell and 49 

Kilburn, 2013; Hao et al., 2016; Kilburn et al., 2017; Robertson and Kilburn, 2016; Voight, 1988). 50 

However, the still-limited success of these methods (Bell et al., 2013) has highlighted complexities in 51 



the approach to failure of heterogeneous materials that must be addressed if forecasting tools are going 52 

to be of the widest utility. 53 

 54 

2. Micromechanical models for the uniaxial deformation of porous materials 55 

Here we present a linear elastic model to demonstrate quantitatively how stress is distributed around a 56 

circular (2D) or spherical (3D) cavity in an infinite solid and exposed to a far-field stress. Then we 57 

follow previous work to scale that concept to a porous body with finite dimensions in order to predict 58 

the failure stress of a porous material as a function of the porosity 𝜙 and the pore radius 𝑎. We focus on 59 

the uniaxial case in which far-field stresses are applied in one direction only, and later we discuss how 60 

our findings could be extended to more complex stress configurations in principle. Finally, we explore 61 

other characteristic length scales in natural materials that may be more relevant than the pore size; 62 

namely, the inter-pore and inter-particle distances. 63 

 64 

2.1. The concentration of uniaxial applied stress around circular and spherical pores 65 

First we use a linear elastic model for the stress distribution around a circular (2D) or spherical (3D) 66 

cavity. For the 2D case we opt for the solution credited to Kirsch (1898) and to Goodier (1933) for the 67 

3D case, repeated in variable completeness in subsequent work (Jaeger et al., 2009; Soutas-Little, 1999) 68 

with which the stress components can be computed for each spatial position around a cavity of radius 𝑎 69 

and which, for completeness, we reproduce here. We use the Cartesian coordinate system with the far-70 

field stress applied in the 𝑧-direction and the centre of the pore positioned at (𝑥, 𝑦, 𝑧) = 0. A line of 71 

length 𝑟 away from the pore centre in any direction subtends an angle with the 𝑧-axis of 𝜃 and an angle 72 

with the 𝑥- or 𝑦- axes of 𝜓. In what follows, we normalize each axis (𝑥, 𝑦, 𝑧) and the radial direction 𝑟 73 

by 𝑎 and the individual stress components 𝜏𝑖𝑗 by the far-field applied stress 𝜎1, yielding a coordinate 74 

system and stress tensor components for which a bar above the parameter denotes its normalized value. 75 



We introduce the 2D and 3D stress components in the supplementary file as Eqs (S1)-(S3) and Eqs (S4)-76 

(S7). 77 

In Figure 1, we present the normalized stress as a colour map around a 2D circular cavity (Fig 1a) and 78 

a 3D spherical cavity using 𝜈 = 0.25 (Fig 1b), which is a first-order approximation for crustal rocks 79 

(assuming the two Lamé parameters are equal). The lobes of concentrated stress are compressive in the 80 

region of the solid surrounding the 𝑧-axis and are tensile in the region of the solid about the 𝑥-axis (2D) 81 

or the 𝑥-𝑦 plane (3D). It is in these lobes of concentrated stress that fractures would be most likely to 82 

initiate. For this reason, in Figure 1c we additionally show the stress resolved along the 𝑧-axis (𝜃 =83 

𝜋/2) and along the 𝑥-axis (2D) or the 𝑥-𝑦 plane (3D) (𝜃 = 0). 84 

 85 

2.2. Approximate methods for predicting the stress required for rupture 86 

The deformation of elastic porous media results in cracks that propagate from interfaces at which stress 87 

is locally concentrated relative to the far-field applied load (Sammis and Ashby, 1986). Sammis and 88 

Ashby (1986) present a static so-called pore-crack model to compute the degree to which stress is 89 

concentrated around cavities (a cavity stress intensity factor 𝐾𝐼𝑖) and the degree to which cracks that 90 

grow from those cavities interact (a crack interaction stress intensity factor 𝐾𝐼𝑖𝑖). Their solutions are cast 91 

as simple functions of the sample porosity 𝜙, rendering them easy to use and to compare with measured 92 

data (Zhu et al., 2011). Where the pore-crack model is used, only the solution for 2D is usually compared 93 

with experimental data (Baud et al., 2014; Zhu et al., 2011). Here we apply the pore-crack model 94 

(Sammis and Ashby, 1986) in uniaxial conditions where the sum of 𝐾𝐼𝑖 and 𝐾𝐼𝑖𝑖 is the total stress 95 

intensity 𝐾𝐼 . 96 

When a far-field stress 𝜎1 is applied (𝜎2 = 𝜎3 = 0) onto a material rupture begins only when the local 97 

stress 𝜎 exceeds 𝜎𝑐. At this point a fracture can initiate to a distance 𝑐 away from the pore or cavity at 98 

which distance 𝜎 = 𝜎𝑐, and beyond which 𝜎 < 𝜎𝑐. This distance 𝑐 is the equilibrium crack length for 99 

the stress state at a given time and, defined in non-dimensional form as 𝑐̅ = 𝑐/𝑎. Then 𝑐̅ as a function 100 



of a normalized stress 𝜎 = 𝜎√𝜋𝑎/𝐾𝐼𝑐 (where 𝐾𝐼𝑐 is the fracture toughness or critical stress intensity 101 

required for crack propagation in the solid) for the 3D and uniaxial case, is as follows (Sammis and 102 

Ashby, 1986) 103 

𝜎 = (
0.62√𝑐̅

(1 + 𝑐̅)4.1 +
√2𝜙(1 + 𝑐̅)

𝜋
)

−1

 (1) 

where the first term on the right-hand side of Eq. (1) describes the growth of a crack from a single pore, 104 

while the second term is a crack-interaction term related to the porosity 𝝓 (see Sammis & Ashby (1986) 105 

for full description). This model neglects time-dependency and therefore it is implicitly assumed that 106 

the cracks grow more quickly than the far-field stress changes. This is similar to saying that the strain 107 

rate is sufficiently low that the damage is in equilibrium with the stress at all times. 108 

Eq. (1) provides us with a tool to assess when linear elastic mechanics predicts failure for a porous 109 

material loaded uniaxially by assessing Eq. (1) when 𝒅�̅�/𝒅�̅� = 𝟎. This condition clearly demarks the 110 

onset point beyond which increased crack growth will manifest as a stress drop. In practice, the sample 111 

can remain coherent for a relatively small region of crack lengths above this point, but, following Zhu 112 

et al. (2011), we approximate the failure point as described. At this point, we can define the equilibrium 113 

normalized crack length that is failure in this model as 𝒄�̅� = 𝒄𝒄/𝒂 where 𝒄�̅� is a function of 𝝓 only. 114 

Differentiating Eq. (1) with respect to �̅� and setting 𝒅�̅�/𝒅�̅� = 𝟎 then yields an expression for the 115 

porosity 116 

𝜙 = 2𝜋2(1 + 𝑐�̅�) (
2.542√𝑐�̅�

(1 + 𝑐�̅�)5.1
−

0.31

(1 + 𝑐�̅�)4.1√𝑐�̅�

)

2

 (2) 

so that the equilibrium crack length at failure 𝒄�̅� can be found numerically for a given 𝝓.  117 

 118 

2.3. The inter-flaw length and pore sizes in porous materials 119 



In natural rocks as well as synthetic porous materials, the pore space is rarely an array of spherical 120 

cavities (e.g. Vasseur et al., 2013). Indeed, for sandstone, limestone, welded volcanic materials including 121 

ignimbrites, among many other lithologies, it is more relevant to think of the solid matrix as an array of 122 

near-spherical objects (grains) and the pore space as the convolute inter-sphere void (Vasseur et al., 123 

2016). In this scenario, we can apply metrics for the characteristic length scales of the system based on 124 

theoretical models for the description of microstructure in random heterogeneous materials (Torquato, 125 

2013). This is an advance on using simple concepts of “pore sizes”, which are typically scaled to bulk 126 

porosity simply by assuming regular simple arrays of monodisperse pores in a unit volume (Zhu et al., 127 

2011).  128 

If we think of our model geological material as a packing of spherical grains with radius 𝑅 and that these 129 

grains are able to freely overlap or inter-penetrate, then we can account for porosities lower than the 130 

maximum packing porosity of grains. In this case, we use a nearest-neighbour function to find the 131 

average inter-pore lengths in a heterogeneous grain pack. The nearest-neighbour function in a random 132 

system of interacting spheres can be evaluated from the probability 𝐹(𝑟)𝑑𝑟 that an arbitrary sphere 133 

centre in the system lies at a distance between 𝑟 and 𝑟 + 𝑑𝑟 from another sphere centre. The nth moment 134 

of 𝐹(𝑟) is given by (Torquato et al., 1990) 135 

〈�̅�𝑛〉 = ∫ �̅�𝑛𝐹(�̅�)𝑑�̅�
∞

0

 (3) 

where a bar above a symbol denotes a parameter normalized by the sphere radius ℛ (i.e. �̅� = 𝑟/ℛ and 136 

𝐹(�̅�) = 𝐹(𝑟)ℛ). The first moment (i.e. 𝑛 = 1) gives the mean nearest-neighbour distance between 137 

spheres 𝑙 ̅ ≡ 〈�̅�〉. In our case the spheres can either represent the pores (i.e. ℛ = 𝑎), yielding inter-pore 138 

distances termed 𝑙1, or the particles (i.e. ℛ = 𝑅), yielding inter-particle distances termed 𝑙2. In the case 139 

where the spheres are monodisperse and fully penetrable, the nearest-neighbour function for finding 𝑙1 140 

or 𝑙2 is (Torquato et al., 1990) 141 

𝐹(�̅�) = 3𝜂�̅�2 exp(−𝜂�̅�3) (4) 



where 𝜂 represents the sphere reduced density (i.e. the product of sphere number density and 142 

sphere volume). Combining Eq. (4) with Eq. (3) and taking 𝑛 = 1, results in an analytical expression 143 

𝑙�̅� =
Γ(4/3)

𝜂1/3
 (5) 

where Γ is the gamma function, and 𝜂 = − ln(1 − 𝜙) when 𝑖 = 1 (the case when 𝑙1̅ = 𝑙1/𝑎) and 𝜂 =144 

− ln 𝜙 when 𝑖 = 2 (the case when 𝑙2̅ = 𝑙2/𝑅). We can think of 𝑙1 as a characteristic inter-pore distance 145 

which we will use to estimate the average distance a crack must bridge to connect two pores, and 𝑙2 as 146 

a characteristic inter-particle distance which we can think of as a more rigorous proxy for pore size in 147 

heterogeneous random media. In Figure 2 we show how both 𝑙1̅ and 𝑙2̅ vary with 𝜙 for overlapping 148 

monodisperse spheres (spherical pores in the case of 𝑙1̅ and spherical particles in the case of 𝑙2̅). 149 

For comparison, we can also use the model of Lu and Torquato (1992) to predict the characteristic pore 150 

radius between random heterogeneous overlapping particles. To do this, we use Eq. (4) to get a pore-151 

size density function 𝑃(𝑎) (here 𝜂 = − ln 𝜙) 152 

�̅�(�̅�) =
𝐹(1 + �̅�)

𝜙
=

3𝜂(1 + �̅�)2

𝜙
exp(−𝜂(1 + �̅�)3) (6) 

where �̅� = 𝑎/𝑅 and �̅�(�̅�) = 𝑃(𝑎)𝑅. The nth moment of 𝑃(𝑎) is given by 153 

〈�̅�𝑛〉 = ∫ �̅�𝑛�̅�(�̅�)𝑑�̅�
∞

0

 (7) 

and the first moment (i.e. 𝑛 = 1) gives the mean pore radius 〈�̅�〉. 154 

 155 

3. Experimental materials and methods 156 

3.1. Materials, experimental deformation and data acquisition 157 



We use experimental data from samples of a range of different porous geological media including 158 

sandstone, limestone, volcanic welded debris, and synthetic analogues for quartz-rich sandstone of 159 

sintered glass beads (c.f. Blair et al., 1993). While these data are associated with experiments from 160 

published studies (Heap et al., 2013; Heap et al., 2015; Wadsworth et al., 2016), the acoustic data are 161 

analysed here for the first time in terms of the critical crack length inferred from a micromechanical 162 

model. Fig 3 shows photomicrographs of characteristic sample microstructure collected either using 163 

scanning electron microscopy or optical microscopy. We selected this range of samples to encompass 164 

the simplest case of a two-phase system of solid and pores (synthetic analogues for quartz-rich 165 

sandstones; Fig 3a-c), and the more complex cases of multiphase natural materials relevant to crustal 166 

rocks (quartz-rich sandstones, volcanic clastic rocks, and clastic limestones; Fig 3d-f). 167 

The porosity of all materials was determined using helium pycnometry and the mean particle sizes 〈𝑅〉 168 

were estimated using optical microscopy. For the sandstone samples 〈𝑅〉 ≈ 2.5 10-4 m (Wadsworth et 169 

al., 2016), for the limestone samples 〈𝑅〉 ≈ 2.5 10-4 m (Heap et al., 2013), for the welded volcanic debris 170 

〈𝑅〉 ≈ 2 10-4 m (Heap et al., 2015), and for the synthetic sintered glass beads, 〈𝑅〉 ≈ 7.6 10-5 m (Vasseur 171 

et al., 2016, 2015). All samples were dried and deformed under uniaxial loading at a constant strain rate 172 

of 10-5 s-1. Acoustic emission data was collected continuously during deformation at acquisition rates of 173 

20 MHz, synchronized with the mechanical data acquisition.  174 

In uniaxial tests, the time at which the samples rupture completely, 𝑡𝑐 , is simply the point at which the 175 

measured stress drops significantly and is therefore trivial to pick. At a strain rate of 10-5 s-1 the peak 176 

stress 𝜎𝑐 typically occurs at 𝑡 = 𝑡𝑐 or just prior to 𝑡𝑐 , consistent with the failure criterion 𝑑𝜎/𝑑𝑐̅ = 0 177 

assumed above in deriving Eq. (2). 178 

 179 

3.2. Retrospective ‘forecasting’ of the failure time  180 

Retrospective forecasting, or ‘hindcasting’ is a necessary though not sufficient step in assessing the 181 

predictability of non-linear complex systems.  It can provide a ‘best-case scenario’ for forecasting in 182 



prospect near the failure time, but can also provide insight into phenomena not yet included in current 183 

models.  Here we test a commonly-applied model for failure forecasting using precursory changes in 184 

the rate of acoustic emissions – high-frequency elastic wave packets generated by the rapid release of 185 

strain energy during local micro-crack rupture – during deformation. Specifically, we monitor the 186 

number of events per unit time Ω̇, the parameter most commonly used to forecast failure of a system due 187 

to its sensitivity to deformation (Lavallée et al., 2013, 2008; Vasseur et al., 2015; Voight, 1988). The 188 

variety of lithologies tested allows us to study failure forecasting in a controlled manner, and to isolate 189 

the fundamental controls on the evolution of Ω̇ and the accuracy of the forecast failure time. 190 

One of the most common ways to relate the rate of an observable signal Ω̇ that is precursory to the 191 

forecast failure time 𝑡𝑝 is the Time-Reversed Omori Law (TROL; Vasseur et al., 2015) 192 

Ω̇(𝑡) = 𝑘(𝑡𝑝 − 𝑡)−𝑝 (8) 

where 𝑘 is a scaling factor and 𝑝 parameterizes the rate of acceleration of Ω̇. Here the approach of Ω̇ to 193 

failure is an inverse power-law, with a well-defined singularity at 𝑡𝑝, as expected for a system 194 

approaching a critical point defined by a system-sized event. Note that in the following we refer to 𝑡𝑐  as 195 

the observed failure time. Following the procedure described in detail in Bell et al. (2013) we applied 196 

the TROL to catalogues of AE events in order to retrospectively forecast failure. This law has three free 197 

parameters (𝑘, 𝑝 and 𝑡𝑝) to adjust, which are not known a priori. The Maximum Likelihood (ML) 198 

method is applied to the TROL and has been shown to provide statistically stable and repeatable 199 

estimates of its parameters (Bell et al., 2013). Additionally, this method uses the timing of individual 200 

AE events rather than event rates determined in equally spaced bins (as is commonly the case when 201 

applying standard failure forecast methods). The ML solution is found by minimizing the negative log-202 

likelihood function using a downhill simplex algorithm. In an interval (𝑡0, 𝑡1) and for 𝑛 number of 203 

observations, the log-likelihood function for the TROL is given by 204 

ln(𝐿) = ∑ ln(𝑘(𝑡𝑝 − 𝑡𝑖)
−𝑝

)
𝑛

𝑖=1
+

𝑘

1 − 𝑝
((𝑡𝑝 − 𝑡1)

1−𝑝
− (𝑡𝑝 − 𝑡0)

1−𝑝
) (9) 



for 𝑝 ≠ 1 and 205 

ln(𝐿) = ∑ ln (𝑘(𝑡𝑝 − 𝑡𝑖)
−1

)
𝑛

𝑖=1
+ 𝑘(ln(𝑡𝑝 − 𝑡1) − ln(𝑡𝑝 − 𝑡0)) (10) 

for 𝑝 = 1. This yields a retrospective forecasted failure time 𝑡𝑝 based on precursory signals only.   206 

Alternatively, the approach of �̇� to failure may be exponential: �̇�(𝒕) = 𝒉 𝐞𝐱𝐩(𝒒𝒕), where 𝒉 is another 207 

scaling parameter and 𝒒 controls the evolution of �̇�. The exponential model can be fit in the same way 208 

using another form of the ML method but does not have the same degree of forecast power as there is 209 

no unambiguous singularity in �̇� at any time. The ML solution for the exponential law is 210 

ln(𝐿) = 𝑞 ∑ 𝑡𝑖

𝑛

𝑖=1
+ 𝑛 ln(ℎ) −

ℎ

𝑞
(exp (𝑞𝑡1) − exp(𝑞𝑡0)) (11) 

The forecasting window was restricted to 90% of the known failure time 𝒕𝒄. In cases where the TROL 211 

is an appropriate model for the underlying process, the analysis by Bell et al. (2011b) indicates a typical 212 

random error (precision) of ±6% at 95% confidence or so when the forecast was made at 90% of 𝒕𝒄. 213 

Hence any difference between forecast and observed 𝒕𝒄 above ±6% or so is diagnostic of a systematic 214 

error or bias (loss of accuracy) at this level of confidence, requiring a correction to the TROL. 215 

The Bayesian Information Criterion (BIC) is a statistical tool to quantify the relative performance of 216 

different models in describing a dataset (i.e. when making an inference, the preferred model is more 217 

likely to have the lower BIC value). It is based on the likelihood 𝐿 of the observation given the model, 218 

with a weighting favouring the model with fewer parameters, and is given by 𝐵𝐼𝐶 = −2 ln(𝐿) +219 

𝑁 ln(𝑛) for which 𝑁 is the number of free parameters. Therefore, calculating the positive difference 220 

∆𝐵𝐼𝐶 between the BIC value of the TROL and the exponential law respectively helps discriminate 221 

which is the preferred model. As such, when the ∆𝐵𝐼𝐶 becomes negative it indicates a strong statistical 222 

preference for the TROL over the exponential law. 223 



4. Results and analysis 224 

4.1. Comparing results with the mechanical model 225 

Using the peak stress 𝝈𝒄 observed in the uniaxial compression experiments, we can test the 226 

micromechanical model presented. Applying Eq. (1) allows us to compute the normalized uniaxial 227 

stresses for every normalized crack length value for a given porosity (see Fig 4a inset for this result for 228 

four porosities). We can compute the normalized critical crack length 𝒄�̅� for a failure to occur in a sample 229 

of given porosity using Eq. (2), and then convert that to a critical peak stress required for failure 𝝈𝒄̅̅ ̅ 230 

using Eq. (1). The model and observed peak stresses can then be compared directly as a hypothesis test. 231 

As we know the mean particle radius for all of our experimental samples, we can compute a 232 

characteristic pore radius using either Eq. (5) to find 𝒍𝟐 or Eq. (7) to find 𝒂. We can use this to find the 233 

stress required for failure, termed the uniaxial compressive strength (UCS). In Fig 4 we show that when 234 

we perform this analysis using 𝒂 in the dimensional result for 𝒄𝒄 and 𝝈𝒄, the model performs poorly (Fig 235 

4a). Whereas when we use 𝜹𝒍𝟐 (with a calibrated 𝜹 = 𝟑/𝟐) in the result, we find that the predicted peak 236 

stress is in good agreement with the observed peak stress (Fig 4b). This validates the micromechanical 237 

model used here (Sammis and Ashby, 1986), and confirms 𝒍𝟐 as the best metric for the characteristic 238 

pore dimension. This is in contrast with previous work in which investigators use a characteristic pore 239 

radius 𝒂 in Eq. (2) (Zhu et al., 2011). The success of using 𝒍𝟐 (Fig 4b), demonstrates that the challenges 240 

associated with defining and measuring 𝒍𝟐 in rocks can be circumvented and represents an advance on 241 

previous approaches. 242 

 243 

4.2. Predicting the rupture time 244 

We show in Fig 5 that all samples exhibit apparent acceleration of �̇� toward the observed failure time 245 

𝒕𝒄. Here we normalize the time data so that deformation begins at -1, and 𝒕𝒄 occurs at 0 (Fig 5). Across 246 

the full range of porosities tested, these accelerations are well-fit by a power-law TROL (see Eq. (8)). 247 

While we plot the cumulative number of events for the model and observed data in Fig 5, the model was 248 

fitted on the rate data, so that the data points remain independent. Here we do not show explicitly the 249 



best-fit 𝒑, which lie below 1 and compare favourably with previously published values for synthetic 250 

tests (Bell et al., 2013) and deformation experiments (Cornelius and Scott, 1993; Voight, 1989). The 251 

best-fit 𝒕𝒑 diverges from 𝒕𝒄 as 𝝓 → 𝟎, indicating that the power-law extends systematically beyond 𝒕𝒄 252 

toward its singularity at 𝒕𝒑 > 𝒕𝒄. The time deficit between the forecast and observed failure time exceeds 253 

the estimated precision of ±6% or so described above, and increases systematically as porosity 254 

decreases: the systematic error is as high as 100% at a porosity of 3% (Fig 5).  255 

The observation in Figure 5 is consistent with those of Vasseur et al. (2015; data from this study is 256 

repeated here for context and comparison) and Jiang et al. (2016), whereby system-sized failure can 257 

only forecast failure accurately (i.e. within the calculated precision of the ML method) in highly 258 

heterogeneous, porous samples. Conversely it does not provide accurate forecasts of failure in relatively 259 

homogeneous, low-porosity materials. Vasseur et al. (2015) also showed that failure of porous materials 260 

is best described by an inverse power-law acceleration at high porosity, and by the exponential 261 

acceleration at low porosity (𝝓 < 𝟎. 𝟑; Fig 6 inset). However, the low-porosity trends are not necessarily 262 

exponential in nature and this is an effect of the non-existence of a power-law singularity in these data. 263 

Additionally the failure time is not defined by the dynamics underlying the exponential model and 264 

failure forecasts using this model must be based on other metrics. These observations highlight a current 265 

shortcoming in our ability to forecast system-sized material failure in natural and synthetic porous 266 

media, which we now address. 267 

The first clue to accounting for the systematic bias in the failure time is illustrated in Figure 7a.  Here 268 

we see a strong positive correlation between the bias, expressed as the ratio of the predicted to the 269 

observed failure time, and the inter-pore distance 𝒍�̅�(𝝓). This implies that failure is poorly resolved 270 

when the distance between two pores is large and thus that the crack-length required to connect two 271 

pores should also be large. If we apply the micromechanical model used to accurately predict the failure 272 

stress, we would expect that 𝟐𝒄𝒄 is the crack length required to connect two pores (given that a crack 273 

grows from each pore at the same time; dashed line in Fig 7b). But as porosity decreases, there is a 274 

systematic deviation from the micromechanical model result for 𝒄�̅�(𝝓) from 𝒍�̅�(𝝓), calculated using 275 

Eq. (2) and (5) respectively. We find a correlative relation between the normalized failure forecast and 276 



the normalized critical crack length, such that 𝒕𝒑/𝒕𝒄 ≈ 𝟐𝒄�̅�/𝜹 (with 𝒄�̅� = 𝒄𝒄/𝒍𝟐) and hence 𝒕𝒑/𝒕𝒄 as a 277 

function of 𝒍�̅� (solid line in Fig 7b). We infer that this represents a distance deficit between the crack 278 

length and the length required to connect two pores, which is larger for low porosity samples than for 279 

high porosity samples. We note a strong correlation between this increasing distance deficit (between 280 

the dashed and solid lines in Fig 7b) and the increasing forecast bias with respect to decreasing porosity 281 

previously illustrated in Figure 5. The implication is that low porosity materials have relatively large 282 

distances that must be spanned by cracks in order to fail, and that this leads to late time, rapid time-283 

dependent crack growth rather than equilibrium crack growth predicted by the static model here 284 

presented. This also seems to correlate with the shift from AE accelerations that are well-predicted by 285 

power laws (and accurately forecast failure) to those that are better predicted by exponential 286 

accelerations and which cannot accurately forecast failure. 287 

Finally, we use the distance deficit of Figure 7b to correct for the bias in the forecast failure time, as 288 

illustrated in Figure 7c. The agreement is very good within the remaining (random) scatter in the data 289 

about the optimal line.  This figure validates the modification to the TROL we have made using the 290 

microstructural and micromechanical models presented, and the empirical results of Figure 7a and 7b. 291 

 292 

5. Discussion and conclusions 293 

Our work shows that as the nearest-neighbour distance approaches the pore size, i.e. 𝒍�̅� → 𝟏, the forecast 294 

failure time becomes more accurate, and that this transition can be associated with the case where 𝟐𝒄�̅� =295 

𝒍�̅�. More specifically, if the equilibrium crack length at failure approaches half the total distance between 296 

pores which must be bridged to achieve failure, then the precursory AE rate indeed exhibits an inverse 297 

power law approach to a critical singularity that coincides with the observation of catastrophic failure. 298 

However, when the nearest-neighbour distance is much greater than the pore size 𝒍�̅� ≫ 𝟏, then the 299 

forecast is not successful and there is a length-deficit between the equilibrium crack length �̅� and the 300 

distance that must be bridged 𝒍�̅�. This implies that there is not a simple approach to a critical failure 301 

point for systems in which there is a length-deficit: instead failure occurs suddenly and early. This is 302 



consistent with the observation that the approach to failure is better described by an exponential than a 303 

power-law evolution in the AE rate on a statistical basis for these samples (Fig 6 inset). Finally, this 304 

finding suggests that it is the inter-pore length (the nearest-neighbour distance) that is more important 305 

than the porosity of a medium in determining whether a crack can propagate the required half-distance 306 

between two neighbouring pores to precipitate failure.  307 

Although we focus on the uniaxial loading case for experimental convenience, the full triaxial 308 

micromechanical model provided by Sammis and Ashby (1986) could be used to extend the results to 309 

the compressional stress field relevant to the Earth’s crust.  There is no reason to anticipate a distance 310 

deficit term would not act as a control on the early failure time in this case, though this may take a 311 

different functional form to the results presented here, which itself may be dependent on confining 312 

pressure.  This remains to be tested in future work. We also note the materials here tested are structurally 313 

isotropic, so there is no directional dependence of the inter-pore length scaling.  This is not necessarily 314 

true at all scales in natural and synthetic systems, so the effect of anisotropy remains to be examined. 315 

There is large variability in the accuracy and reliability of forecast attempts using the classic failure 316 

forecast method (De la Cruz-Reyna and Reyes-Dávila, 2001; Kilburn, 2003; Kilburn and Voight, 1998; 317 

Ortiz et al., 2003; Smith et al., 2007; Smith and Kilburn, 2010; Voight and Cornelius, 1991) or the TROL 318 

(Bell et al., 2013) or variations thereof (Boué et al., 2015; Salvage and Neuberg, 2016). This applies 319 

even for fully retrospective forecasting of volcanic eruption time, based on precursory earthquakes at 320 

different volcanoes worldwide. This demonstrates that there is a wide range of error in applying this 321 

method to natural data, and that these tools are not always of the widest utility for real time monitoring. 322 

While we have proposed a correction that works well in a controlled laboratory setting, it is unlikely 323 

that pore-scale heterogeneity controls volcano- or fault-scale rupture. However, it is likely that there are 324 

larger length scale domains of heterogeneity in those crustal systems, which control the flaw-to-flaw 325 

fracture propagation events precursory to system-sized rupture. Our model therefore suggests that if 326 

these larger scale flaws can be identified, then it is their inter-flaw distances that would most likely scale 327 

the error in forecasts. Nevertheless, in qualitative terms, our model suggests that it is the most apparently 328 

heterogeneous systems, with the lowest inter-flaw distances, that might be expected to be well forecast 329 



using the variants of the failure forecasting method outlined above.  One example could be the Mt St 330 

Helens volcano (USA) in 1985-86, which had a systematic error in the forecast failure time of <0.1 331 

expressed as a time since the start of the acceleration (Voight and Cornelius, 1991). 332 

In the volcanic case, there is a crucial distinction to be drawn between events that can be interpreted to 333 

be the result of magma fracturing during ascent (Kendrick et al., 2014; Neuberg et al., 2006) in an 334 

established conduit and those that are likely related to the fracturing of crustal rocks during the initiation 335 

of eruption and magma propagation to the surface (Kilburn et al., 2017; Lamb et al., 2017). An example 336 

of the latter interpretation was made on the basis of the patterns of evolution of low-frequency events 337 

preceding individual eruption episodes at Soufriere Hills volcano (Montserrat) (Neuberg et al., 2006), 338 

and an example of the latter is the signal evolution without eruption at Campi Flegrei (Italy) (Kilburn et 339 

al., 2017). Our experiments are explicitly suited to explain the brittle mechanics involved in the latter 340 

process of crustal fracturing ahead of a vanguard magma batch on its way to the surface. But 341 

additionally, our results are applicable to the highest viscosity systems in the former case of fracturing 342 

of magma itself (Lavallée et al., 2008). 343 

In summary this study provides a simple explanation for the substantial variability in the success of 344 

forecast attempts for system-sized catastrophic failure in natural and artificial systems (Bell and Kilburn, 345 

2013, 2012) and the quantitative correction we provide offers the opportunity to scale lab-forecasts to 346 

natural systems, if a convincing scaling for lengths between large scale flaws can be identified. 347 

 348 
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Figures 482 

 483 

 484 

Figure 1 – Stress around pores in 2D and 3D. The distances are normalized by the cavity radius 𝑎. a. 485 

The total stress distribution around a circular pore in an infinite plate (2D) mapped out in the positive 486 

quadrant of the 𝑥 − 𝑧 plane as calculated by combining Eqs (S1)-(S3). b. The total stress distribution 487 

around a spherical pore in an infinite body (3D) mapped out in the positive quadrant of 𝑥 − 𝑧 plane as 488 

calculated by combining Eqs (S4)-(S7). c. The total stress resolved along the 𝑧-axis (𝜃 = 𝜋/2) and along 489 

the 𝑥-axis (2D) or the 𝑥-𝑦 plane (3D) (𝜃 = 0). 490 

 491 



 492 

Figure 2 – The calculated mean nearest-neighbour distance between overlapping spheres in a statistically 493 

random heterogeneous medium as a function of porosity using Eq. (5) and (7). 𝑙1 corresponds to the 494 

case where the spheres are the pores (porosity is thus the sphere volume fraction) and is then an inter-495 

pore distance. 𝑙2 corresponds to the inverse case where the spheres are the particles (porosity is thus the 496 

volume fraction exterior to the spheres) and is then an inter-particle length. 〈𝑎〉 corresponds to the mean 497 

pore radius between solid spheres. 498 

 499 



 500 

Figure 3 – Characteristic photomicrographs of the samples used in this study: a suite of a-c synthetic 501 

porous glasses and d-f natural samples. Black represents the gas phase, white and shades of grey the 502 

solid phase. a.-c. Sintered glass beads from Vasseur et al. (2015) with varying porosity. d. Darley Dale 503 

(UK) sandstone from Wadsworth et al. (2016). e. Mt Meager (Canada) welded volcanic debris from 504 

Heap et al. (2015). f. Mt Climiti (Italy) carbonate from Heap et al. (2013). Note that all materials are 505 

porous, variably densified, initially granular materials with simple microstructures a-c or increasingly 506 

complex microstructures d-f. In particular, the limestone f is multiphase and finer grained that the other 507 

samples a-e. 508 
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 510 

Figure 4 – Calculated versus measured uniaxial compressive strength (UCS) using a the inferred mean 511 

pore radius 〈𝑎〉 from Eq. (7) and b the inferred inter-particle distance 𝑙2 from Eq. (5) for all the samples 512 

studied here and colour-coded for porosity. Inset – the evolution of stress 𝜎 with crack length 𝑐 for 4 513 

different porosity values as calculated from Eq. (1) for a sample subjected to uniaxial loading. 514 
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 516 

Figure 5 – Examples of failure forecasting for two sample types studied herein (a-d sintered glass beads; 517 

Vasseur et al. (2015) and e-h welded volcanic debris; Heap et al. (2015)) with varying porosity. The 518 

colourful thick solid lines represent the raw data, while the black thin solid lines represent the model 519 

output. The predicted (from the model) 𝑡𝑝 and the actual failure times 𝑡𝑐  are marked by vertical dashed 520 

and dotted lines, respectively. One can notice how the time deficit between 𝑡𝑝 and 𝑡𝑐  reduces as porosity 521 

increases and how this corresponds well with a decrease in distance deficit as shown in Fig 7. 522 
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 524 

Figure 6 – The dependence of the forecast error (cast as the ratio between the predicted failure time 𝑡𝑝 525 

from the TROL and the observed failure time 𝑡𝑐) on the sample porosity 𝜙 (or heterogeneity index 𝐻 526 

defined in Vasseur et al. (2015)) for a range of rock types and material analogues (Heap et al., 2013, 527 

2015; Vasseur et al., 2015; Wadsworth et al., 2016). Inset – the transition from an exponential to a power 528 

law approach of the acoustic emission rate to failure on a statistical basis (see text for definition of the 529 

statistical ∆𝐵𝐼𝐶 criterion). The vertical grey bar marks the approximate transition between a power-law 530 

and an exponential approach to failure and is the same as in Fig 7. 531 
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 533 

Figure 7 – Testing the micromechanical origin of errors in failure prediction. a. The ratio between the 534 

predicted failure time 𝑡𝑝 from the TROL and the observed failure time 𝑡𝑐  as a function of the normalized 535 

mean nearest-neighbour length 𝑙1̅. The vertical grey line represents the transition between low 𝑙1̅ where 536 

the acoustic emission output as failure is approached is a power-law and high 𝑙1̅ where this approach to 537 

failure is an exponential function (see Fig 6 inset). b. The equilibrium crack lengths at failure from a 538 

micromechanical model for deformation of porous solids compared with the mean nearest-neighbour 539 

length (solid line calibrated in Fig 2; Sammis and Ashby, 1986). Shown for comparison are the data 540 

from panel a (grey data) showing that the failure forecast discrepancy grows as the critical crack length 541 

at failure becomes less than the half-distance between pores. c. The empirical correction proposed herein 542 

provides well-resolved failure forecasts. 543 
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