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PERRON IDENTITY FOR ARBITRARY BROKEN
LINES.

OLEG KARPENKOV, MATTY VAN-SON

Abstract. In this paper we study the values of Markov-Davenport
forms, which are specially normalized binary quadratic forms. We
generalize the Perron identity for ordinary continued fractions for
sails to the case of arbitrary broken lines.
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Introduction

In this paper we give a geometric interpretation and generalization
of the Perron identity relating minima of Markov-Davenport forms and
their corresponding continued fractions, which says that for such a form
f there exists a sequence (ai) of positive integers such that

min
Ω

∣

∣f
∣

∣ = inf
i∈Z

(

1

ai + [0; ai+1 : ai+2 : . . .] + [0; ai−1 : ai−2 : . . .]

)

,

where Ω = Z
2 \ {(0, 0)}, and [a1 : . . . : an] is the continued fraction of

the sequence (a1, . . . , an).
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The above formula was shown by A.Markov in his study of Markov-
Davenport forms and the Markov spectrum below 3 in [6]. The state-
ment holds for the whole Markov spectrum (see for example [7], and [1]).
Our main result (Theorem 2.2) generalizes this formula to the case of
arbitrary values of forms and the continued fractions of arbitrary bro-
ken lines. The theory of continued fractions for arbitrary broken lines
was studied in papers [4, 2, 3] (see also [5]).

Organization of the paper. We start in Section 1 with necessary
definitions and preliminary discussions. We also discuss the classical
relation of the Markov spectrum and indefinite forms. In Section 2 we
formulate and prove the main result of this paper, and give examples.

Acknowledgement. The first author is partially supported by EP-
SRC grant EP/N014499/1 (LCMH).

1. Basic notions, definitions, and background

1.1. Markov-Davenport forms. Let f(x, y) be a binary quadratic
form with two distinct real linear factors

f(x, y) = (ax− by)(cx− dy),

for some real numbers a, b, c, and d. The discriminant of this form is

∆(f) = (ad− bc)2.

Definition 1.1. The Markov-Davenport form f̂ related to f is defined
as

f̂ =
f

√

∆(f)
.

Remark 1.2. In fact for any pair of distinct lines through the origin
there exist precisely two Markov-Davenport forms, which differ by a
sign.

1.2. Background. In this subsection we collect some classical facts
which we generalise further in this paper. Let us recall the following
general result. Let A be a doubly infinite sequence

. . . , a−1, a0, a1, . . . , ai, . . .

of positive integers, and for each integer i define

λi(A) = ai + [0; ai+1 : ai+2 : . . .] + [0; ai−1 : ai−2 : . . .],

where [ai; ai+1 : . . .] is the regular continued fraction of the sequence
(ai, ai+1, . . .). Define the value M(A) to be

M(A) = sup
i∈Z

λi(A).
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The set of values M(A) for all doubly infinite sequences of positive
integers A is called the Markov Spectrum. If M(A)<3 then A is purely
periodic (see [1]). In that case, the sequence A is related to an indefinite
binary quadratic form f(x, y), see for example [1]. Let m(f) be the
Markov minimum of f , defined by

m(f) = min
(x,y)∈Ω

|f(x, y)|,

with Ω = Z
2 \ (0, 0), and let ∆(f) denote the discriminant of f . Then,

from the paper [6] from Markov, we have the following result:

(1)
m(f)
√

∆(f)
= inf

i∈Z

(

1

ai + [0; ai+1 : ai+2 : . . .] + [0; ai−1 : ai−2 : . . .]

)

.

We generalise Equation (1), using notions of Integer Geometry, to de-
scribe a relationship between non-regular continued fractions and the
value of the related Markov-Davenport form f/

√

∆(f) at any point on
the plane.

1.3. LLS sequences for broken lines. In this subsection we recall
the definition of LLS sequence in [5, p. 138], and formally set the ex-
pression for the cross product of two-dimensional vectors. We work in
the oriented two-dimensional plane with the origin O = (0, 0).
First let

f1(x, y) = ax− by, and

f2(x, y) = cx− dy,

for real numbers a, b, c, and d, and let ∆(f) = (ad− bc)2. We set

f(x, y) =
f1(x, y)f2(x, y)

√

∆(f)
.

We start with the following general definition.

Definition 1.3. Consider the Markov-Davenport form f . A broken
line A0 . . . An is an f -broken line if the following conditions hold:

• f1(A0) = 0;
• f2(An) = 0;
• all edges of the broken line are of positive length;
• for every k = 1, . . . , n the line Ak−1Ak does not pass through
the origin.

Let us define the oriented Euclidean area via formal cross product
expression for two-dimensional vectors.
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Definition 1.4. Let X = (x1, x2), Y = (y1, y2), V = (v1, v2), and
W = (w1, w2). Set

|XY × VW | = (x1 − y1)(v2 − w2)− (v1 − w1)(x2 − y2).

We call this expression the oriented Euclidean area for the parallelo-
gram spanned by XY and VW .

Remark 1.5. The oriented Euclidean area for the parallelogram spanned
by XY and VW may be negative.

Definition 1.6. Given an f -broken line A0 . . . An define

a2k = |OAk ×OAk+1|, k = 0, . . . , n;

a2k−1 =
|AkAk−1 × AkAk+1|

a2k−2a2k
, k = 1, . . . , n.

The sequence (a0, . . . , a2n) is called the LLS sequence for the broken
line. This sequence encodes the integer angles and integer lengths of
the broken line, as can be found in [5]. The expression [a0; . . . : a2n]
is said to be the continued fraction for the broken line A0 . . . An. Note
that the values ai may be negative, but not 0.

In the proofs in Section 2 we need the following result:

Theorem 1.7. ([5, Corollary 11.11, p. 144].) Consider a broken line

A0 . . . An that has the LLS sequence (a0, . . . , a2n), with A0 = (1, 0),
A1 = (1, a0), and An = (x, y). Let

α = [a0; a1 : . . . : a2n]

be the corresponding continued fraction for this broken line. Then

y

x
= α.

For the case of an infinite value for α = [a0; a1 : . . . : a2n],

x

y
= 0.

2. Theorem on values of Markov-Davenport forms

2.1. Formulation. Let us introduce a useful choice of orientation of
the linear factors of Markov-Davenport forms.

Definition 2.1. Let

f(x, y) = (ax− by)(cx− dy),
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f1(x, y)=0

f2(x, y)=0

A2

A0

O

A1

f1(x, y)=0

f2(x, y)=0

A0

A1

A2

A3

A4

A5

A6

A7

O

Figure 1. Well oriented f -broken lines.

and let A0 . . . An be an f -broken line, with A0 = (x0, y0), An = (xn, yn).
Then we say that A0 . . . An is a well oriented f -broken line if

ax0 − by0 = 0

cxn − dyn = 0

when ad− bc > 0, or
axn − byn = 0

cx0 − dy0 = 0

when ad− bc < 0.

We state the main result of this paper.

Theorem 2.2. Let f̂ be a Markov-Davenport form related to f as in

Definition 1.1 and let L = A0 . . . An+m be a well oriented f -broken line

(here n and m are arbitrary positive integers). Let

(a0, a1, . . . , a2n+2m)

be the LLS sequence of L, and let k = m+ n+ 1. Then

(2) f̂(Ak) =
1

a2k−1 + [0; a2k−2 : . . . : a0] + [0; a2k : . . . : a2n+2m]
.

2.2. Examples. Before proving the theorem we illustrate its state-
ment with the following examples. Let

f(x, y) = (x+ y)(x− 2y).
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(i) Let A0A1A2 be an f -broken line, with A0=(2, 1), A1=(3, 1), and
A2=(2,−2). Figure 1 (Left) shows the solutions to f(x, y) = 0,
and the broken line A0A1A2.

We have that

f(A1)
√

∆(f)
=

f(3, 1)√
9

=
4

3

=
1

−3

8
+

1

8
+

1

1

=
1

−3/8 + [0; 8] + [0; 1]

=
1

a1 + [0; a0] + [0; a2]
,

where (a0, a1, a2) is the LLS sequence of the broken line A.

(ii) Let A = A0 . . . A7 be the broken line with vertices at integer
points as in Figure 1 (Right), and again we consider (3, 1), which
is now A4. Then f(x, y) = f1(x, y)f2(x, y) is given by

f(x, y) = (x− 2y)(x+ y),

the discriminant is ∆(f) = 3, and

f(A4)
√

∆(f)
=

f(3, 1)√
9

=
4

3

=
1

−1

4
+

1

4
+

3

4

=
1

−1

4
+ L1 + L2

,

where

L1 =

[

0; 2 :
3

8
: 4 : − 3

20
: −5 : − 1

30
: 6

]

, and

L2 =

[

0;−4 :
1

8
: −4 : − 1

20
: 10

]



PERRON IDENTITY FOR ARBITRARY BROKEN LINES. 7

are the continued fractions of the LLS sequences of the broken
lines A0 . . . A4 and A4 . . . A7 respectively.

Remark 2.3. We see from these examples that when calculating the
value of the form f̂ at the point Ak, the choice of the well oriented
f -broken line does not affect the value of the right hand side of the
Perron identity, so long as it contains the point Ak as a vertex.

2.3. Proofs. We first give a Lemma which will be ueful in the proof
of Theorem 2.2.

Lemma 2.4. Let f̂ be a Markov-Davenport form related to f as in
Definition 1.1, with

f(x, y) = (ax− by)(cx− dy),

and a, c not both zero. Let B0B1B2 be an oriented f -broken line, and
let

(b0, b1, b2)

be the LLS sequence of B0B1B2. Then

1

b1 + [0; b0] + [0; b2]
=

(axk − byk)(cxk − dyk)

(ad− bc)
.

Proof. From Definition 1.6 we have that the LLS sequence for the bro-
ken line is

b0 = |OB0 ×OB1|,
b2 = |OB1 ×OB2|,

b1 =
|B1B0 × B1B2|

b0b2
.

We calculate these values, with the points B0 = (β0, γ0), B2 = (β2, γ2),
B1 = (xk, yk), and O being the origin. Then

b0 =

∣

∣

∣

∣

β0 γ0
xk yk

∣

∣

∣

∣

= β0yk − xkγ0,

b2 =

∣

∣

∣

∣

xk yk
β2 γ2

∣

∣

∣

∣

= xkγ2 − ykβ2,

b1 =

∣

∣

∣

∣

xk − β0 yk − γ0
xk − β2 yk − γ2

∣

∣

∣

∣

= β0γ2 − β2γ0 − β0yk + xkγ0 − xkγ2 + ykβ2.

So

b0 + b1 + b2 = β0γ2 − β2γ0,
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and we get

1

b1 + [0; b0] + [0; b2]
=

1

b1

b2b0
+

1

b2
+

1

b0

=
b2b0

b1 + b2 + b0

=
(β0yk − xkγ0)(xkγ2 − ykβ2)

β0γ2 − β2γ0
.

By the definition ofB0 andB2 we have that f1(β0, γ0) = 0 and f2(β2, γ2) =
0. Now we rearrange these two equations to get

β0 =
b

a
γ0,

β2 =
d

c
γ2,

and substitute them into the expression

(β0yk − xkγ0)(xkγ2 − ykβ2)

β0γ2 − β2γ0

to get

1

b1 + [0; b0] + [0; b2]
=

(β0yk − xkγ0)(xkγ2 − ykβ2)

β0γ2 − β2γ0

=

(

b

a
γ0yk − xkγ0

)(

xkγ2 −
d

c
γ2yk

)

b

a
γ0γ2 −

d

c
γ0γ2

=
γ0γ2(byk − axk)(cxk − dyk)

γ0γ2(bc− ad)

=
(axk − byk)(cxk − dyk)

(ad− bc)
.

�

Proof of Theorem 2.2. Let f(x, y) be the form

f(x, y) = f1(x, y)f2(x, y),

where
f1(x, y) = (ax− by), and

f2(x, y) = (cx− dy).
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f1(x, y)=0

f2(x, y)=0

B

CA0

Ak−1
Ak

Ak+1

An

O

Figure 2. The two well oriented f -broken lines
A0 . . . An and BAkC.

We assume that a and c are not both zero. If they are both zero, then
the solutions to f1 = 0 and f2 = 0 coincide. Without loss of generality
we assume that

f1(A0) = 0, and

f2(An) = 0.

Since L is a well oriented f -broken line, this fixes the discriminant
∆(f) = ad− bd to be positive.
Let the points B = (β1, β2) and C = (γ1, γ2) be the intersections of

the line segments OA0 and AkAk−1, and OAn and AkAk+1 respectively,
as in Figure 2. Then by Theorem 1.7, the continued fractions of the
broken lines BAk and A0 . . . Ak coincide, as do the continued fractions
of the broken lines AkC and Ak . . . An. The angles at Ak are the same
for both broken lines BAkC and A0 . . . An, and so the corresponding
elements of the LLS sequences also equal.
This allows us to replace the two broken lines A0 . . . Ak and Ak . . . An

with the broken lines CAk and AkB respectively. Let the coordinates
of Ak be (xk, yk).
The discriminant is ∆(f) = (ad − bc)2, so the value of the Markov-

Davenport form at Ak is

f(xk, yk)

|ad− bc| =
(axk − byk)(cxk − dyk)

|ad− bc| .

Let the LLS sequence for the broken line BAkC be

(b0, b1, b2).



10 OLEG KARPENKOV, MATTY VAN-SON

We have from Lemma 2.4 that
1

b1 + [0; b0] + [0; b2]
=

(axk − byk)(cxk − dyk)

(ad− bc)
.

Finally we know that ad− bc > 0, and so

f̂(Ak) =
f(xk, yk)

|ad− bc|

=
1

b1 + [0; b0] + [0; b2]

=
1

a2k−1 + [0; a2k−2 : . . . : a0] + [0; a2k : . . . : a2n+2m]
.

�

Remark 2.5. If we had chosen the non oriented broken line CAnB,
our value would be

1

b1 + [0; b0] + [0; b2]
= −(axk − byk)(cxk − dyk)

(ad− bc)
.
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