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Abstract

Congestion games are one of the most prominent classes of games in non-
cooperative game theory as they model a large collection of important applica-
tions in networks, such as selfish routing in traffic or telecommunications. For
this reason, congestion games have been a driving force in recent research and
my thesis lies on two major extensions of this class of games.

The first extension considers congestion games embedded in a social network
where players are not necessarily selfish and might care about others. We call
this class social context congestion games and study how the social interactions
among players affect it. In particular, we study existence of approximate pure
Nash equilibria and our main result is the following. For any given set of cost
functions, we provide a threshold value such that: for the class of social con-
text congestion games with cost functions within the given set, sequences of
improvement steps of players, are guaranteed to converge to an approximate
pure Nash equilibrium if and only if the improvement step factor is larger than
this threshold value.

The second topic considers weighted congestion games under a fair cost shar-
ing system which depends on the weight of each player, the (weighted) Shapley
values. This class considers weighted congestion games where (weighted) Shap-
ley values are used as an alternative (to proportional shares) for distributing the
total cost of each resource among its users. We study the efficiency of this class
of games in terms of the price of anarchy and the price of stability. Regard-
ing the price of anarchy, we show general tight bounds, which apply to general
equilibrium concepts. For the price of stability, we prove an upper bound for
the special case of Shapley values. This bound holds for general sets of cost
functions and is tight in special cases of interest, such as bounded degree poly-
nomials. Also for bounded degree polynomials, we show that a slight deviation
from the Shapley value has a huge impact on the price of stability. In fact, the
price of stability becomes as bad as the price of anarchy. For this model, we
also study computation of equilibria. We propose an algorithm to compute ap-
proximate pure Nash equilibria which executes a polynomial number of strategy
updates. Due to the complex nature of Shapley values, computing a single strat-
egy update is hard, however, applying sampling techniques allow us to achieve
polynomial running time.

We generalise the previous model allowing each player to control multiple
flows. For this generalised model, we study existence and efficiency of equilibria.
We exhibit a separation from the original model (each player controls only one
flow) by proving that Shapley values are the only cost-sharing method that
guarantees pure Nash equilibria existence in the generalised model. Also, we
prove that the price of anarchy and price of stability become no larger than in
the original model.
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Chapter 1

Introduction

The general research area of my PhD lies on a relatively new multidisciplinary
research field, called algorithmic game theory. Before I focus on my PhD topic
within this area, I give a brief introduction regarding how algorithmic game
theory originated and what the main scope of this emerging area is. To start
with, I present an example:

Imagine there were 5 intelligent rational pirates, A, B, C, D, E, who
found a treasure of 100 gold coins. To share this treasure, the pirates
decided to follow an historical hierarchy protocol:

• Assume the hierarchy of pirates follows alphabetical order.

• The most senior pirate, A, proposes a distribution plan.

• Then all pirates vote for whether to accept this distribution or
not (the proposer has the casting vote).

• If the majority votes YES, the treasure is shared on the pro-
posed plan and the problem is solved.

• If majority votes NO, the proposer is thrown to the sea from
the pirate ship and the next most senior pirate, B, proposes a
new distribution.

• This process is repeated until a distribution plan is accepted.

What is the outcome of this situation?
The Pirate Game

The above structure is a formal description of a strategic situation where inter-
active agents (pirates) are called to make decisions. The purpose of this example
is to introduce the reader to a strategic state of mind that agents need to follow
in order to maximise their share in a strategic environment. Such a situation
is called a game and each agent involved is called a player. The decisions that
players make are towards a desirable state. In other words, we can see the series
of a player’s decisions as the pursuit of a goal. The action of each player has
an impact on the interests of others and each player takes this into considera-
tion before his next move. In the Pirate Game, examples of strategic questions
include the following. Can a pirate maximise his treasure share by following a
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AN INTRODUCTION TO ALGORITHMIC GAME THEORY.

specific action? What actions should each pirate avoid? Is the best action to
collaborate or get in conflict with others? If to collaborate, then with whom?

Of a similar nature to the Pirate Game, a wide range of situations occur in
real life which require solutions. Examples of such situations lie from routing the
road traffic to political negotiations and property auctions. To study and solve
problems of this nature, mathematical tools are required to model the conflict
and cooperation of interactive players. This study topic is called game theory
[84, 66, 63, 77, 68, 82], and is split in cooperative and noncooperative game
theory. Cooperative game thoery studies strategic interactions of coalitions of
players where each player wishes to maximise the profit of the coalition she
belongs to. This area also studies ways to divide the profit of a coalition among
its members [14, 29]. On the other hand, the scope of noncooperative game
theory [66] is to formulate and analyse strategic interactions from an individual
perspective, where the driving force of each player is its self interest [64]. But
what do strategic interactions mean? How can we model such an environment
in a mathematical way? And what is the best available tool to do this?

One can think about a strategy as a set of planned actions (decisions) that
can probably lead to a desirable state. Applied to real life, this set of actions
cannot always follow a predefined structure as external factors usually interfere
and cause deviations to paths towards states different than the desirable one.
Given such a distraction, a ‘plan’ (formed from a strategy) adjusts to the new
circumstances and re-calculates the next action towards the desirable outcome
that was initially set. Here is an interesting description of a strategy,

“Strategy is much more than a plan. A plan supposes a sequence
of events that allows one to move with confidence from one state of
affairs to another. Strategy is required when others might frustrate
one’s plans because they have different and possibly opposing inter-
ests and concerns. The inherent unpredictability of human affairs,
due to the chance events as well as the efforts of opponents and the
missteps of friends, provides strategy with its challenge and drama.
Strategy is often expected to start with a description of a desired end
state, but in practice there is rarely an orderly movement to goals set
in advance. Instead, the process evolves through a series of states,
each one not quite what was anticipated or hoped for, requiring a
reappraisal and modification of the original strategy, including ulti-
mate objectives. The picture of strategy. . . is one that is fluid and
flexible, governed by the starting point and not the end point.”

- Sir Lawrence Freedman [80], King’s College London.

Since strategies consists of a set of actions/rules that defines a sequence of
operations, the ideal tool to express and study strategies, seems to be algorithms
(for more regarding the framework of algorithms, see [26]). Using algorithms,
actions can be performed and applied to a situation. In practice, the more
realistic a situation is, the more complex its algorithmic modelling would be.
A big part of recent research focuses on using algorithms to make strategic
decisions on various aspects of people’s lives [55]. This increases the need to
combine more and more interdisciplinary areas in modern algorithm design.
Real life examples, where algorithms are used for decision making, include route
navigation, offering mortgages, hiring job applicants, stock trading, sentencing
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1.1. THESIS OUTLINE

criminals, preference suggestion and auction resolutions [25]. This trend grows
so rapidly and sometimes without debate, which makes it a controversial topic
[44, 27, 36, 60].

A catalytical role on viewing game theory as a tool for understanding strate-
gic behavior, was played by the Internet. Why? Since the 1980s, the Internet
started creating a new emerging economy by enhancing competition and in-
creasing market contestability. It accelerated the transfer of information over
a network of networks consisting of business, academic and government inter-
linked sectors. As a framework of interactions of many, game theory seemed
ideal for studying the strategic behaviour of everyone interacting within it. On
the other hand, algorithms seem to be the framework for modelling strategic
decision making. The combination and intersection of the above, i.e. the In-
ternet, strategic decision making and algorithms, generated the new research
field, Algorithmic game theory. Its scope is to design algorithms in strategic
environments. Examples of such environments are: sponsored auctions in Inter-
net search engines, load balancing computing which improves the distribution of
workloads across multiple resources, strategic voting in elections where a voter
might not support his most preferable candidate in order to avoid an unwanted
outcome, and routing where players select a path among available edges (re-
sources) in a congested network. The goal of each player is to select a strategy
that minimises its individual cost.

Our research lies in one of the most important class of games in noncoopera-
tive algorithmic game theory, the congestion games (see Section 1.3). One of the
main reasons of its importance is that they model a large range of applications
based on routing. This class has been extensively studied and important results
have been presented in the last decades (see Section 1.3 for known results).
Our research focuses on extensions of such games, such as altruistic conges-
tion games and cost-sharing in congestion games (see thesis outline 1.1). The
research questions we address regard existence, convergence, efficiency and com-
putation of stable outcomes including pure Nash equilibria, where each player
in the game is ‘happy’ with her current strategy, thus no player is incentivised
to choose an alternative strategy (see basic game theory definitions in page 12).
To summarise the organisation of my thesis, I present a thesis outline in the
next section, which also briefly describes the content of each chapter.

1.1 Thesis Outline

Chapter 1

· describes how algorithmic game theory was created,

· introduces the model of congestion games

· introduces social context congestion games with examples on the
model, related work and a description of the thesis contribution,

· introduces (weighted) Shapley value congestion games with examples,
related work and a description of the thesis contribution.

11



1.2. PRELIMINARIES

Chapter 2

· gives in detail the model of social context congestion games

· focuses on existence of approximate pure Nash equilibria and presents
the mathematical analysis of our results,

· splits the thesis contribution into general social context and symmet-
ric binary social context,

· concludes with a discussion on results and open questions,

· can be found in [39].

Chapter 3

· gives in detail the model of Shapley value congestion games with
polynomial cost functions,

· presents the mathematical analysis of a polynomial running time al-
gorithm that computes approximate equilibria,

· concludes with open questions and a discussion on a comparison of
our algorithm to a previously known one which we built on.

· can be found in [33].

Chapter 4

· gives in detail a generalisation of the previous model, the (weighted)
Shapley value congestion games with multi-commodity players, where
each player may control multiple flows instead of one,

· focuses on existence and efficiency of equilbria of this class,

· explains which properties carry over to the generalised model,

· presents the mathematical analysis of our results in these areas,

· concludes with a discussion on results and open questions.

· can be found in [37, 38].

Appendix

· presents proofs of technical lemmas.

1.2 Preliminaries

In this section, I present formal definitions of basic terms used in this thesis.

Definition 1. Strategy. For a player i, let Pi be the finite set of her available
strategies and let Pi be her chosen strategy.

12



1.2. PRELIMINARIES

Definition 2. Strategy profile or state or outcome. Given the strate-
gies of all players in the game, the vector P = (P1, P2, . . . , Pn) is called a strategy
profile.

Definition 3. Cost of a player. For a given strategy profile P , let Xi :
P → R be a function that assigns a cost to player i.

Definition 4. Game. A game is given by a tuple Γ = (N, (Pi)i∈N , (Xi)i∈N )
where N is a finite set of players, (Pi)i∈N the vector with strategies of players
and (Xi)i∈N the vector with players’ costs.

Definition 5. Dominant strategy. For a player i, let P−i be the vector of
the strategies pf all players except player’s i. Then, a strategy Pi is dominant if
Xi(P ) < Xi(P

′
i , P−i) for all P ′i different than Pi and all P−i ∈ P−i.

Definition 6. Pure Nash equilibrium (PNE). A strategy profile in which
it holds that

Xi(P ) ≤ Xi(P
′
i , P−i)

for each player i and any other strategy P ′i .

Definition 7. Approximate pure Nash equilibrium (ρ-PNE). A strategy
profile in which it holds that, for ρ ≥ 1,

Xi(P ) ≤ ρ ·Xi(P
′
i , P−i)

for each player i and any other strategy P ′i .

Definition 8. Social cost. The social cost is defined as the sum of the costs
of all players in the game, SC(P ) =

∑
i∈N Xi(P ).

Alternative definitions of social cost exist, defined for example by the minimum
or the maximum player cost.

Definition 9. Optimum outcome. Over all stratgy profiles P , we define as
optimum the strategy profile with the minimum social cost, OPT = min

P
SC(P ).

Note that it may not be in everyone’s self interest to reach this optimum state.
For this reason, players are often forced to collaborate (and reach the optimum
outcome) by a central authority.

We now define two basic tools which we use to measure the efficiency of
equilibria in a game, the price of anarchy and the price of stability.

Definition 10. Price of Anarchy (PoA). Let Z be the set of all outcomes
and ZN the set of pure Nash equilibria of the game. Then the price of anarchy

is defined as PoA =
maxP∈ZN SC(P )

OPT .

Definition 11. ρ-approximate Price of Anarchy (ρ-PoA). Given a pa-
rameter ρ ≥ 1, let ZNρ the set of approximate pure Nash equilibria of the
game. Then the ρ-approximate price of anarchy (ρ-PoA) is defined as ρ-PoA =
maxP∈ZNρ

SC(P )

OPT .
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1.3. AN INTRODUCTION TO CONGESTION GAMES.

Definition 12. Price of Stability (PoS). The price of stability is defined

as PoS =
minP∈ZN SC(P )

OPT .

For a class of games, the PoA and PoS are defined as the largest such ratios
among all games in the class.

The existence of equilibria (PNE) and their quality (PoA, PoS) have been
key research questions in various classes of games for decades.

1.3 An Introduction to Congestion Games

The class of congestion games is one of the most prominent classes of games in
noncooperative game theory [62, 69] as they model a large collection of impor-
tant applications in networks, such as selfish routing in traffic or telecommu-
nications [76, 21, 7]. For this reason, they have been a driving force in recent
research and their study gave new insights on these practical problems. In a
congestion game, there is a set of resources and players compete with each other
over the resources. Each player selects a subset of resources as a strategy. Each
resource is associated with a cost function which is assumed to be continuous,
non-decreasing and nonnegative. A resource cost function expresses the delay
on the resource and depends on the number of its users. In general, when the
demand (users) on a resource is increased, the quality of the service that users
experience on this resource deteriorates. This is a cost minimisation game, in
a sense that the goal of each player is to choose the strategy that minimises
her cost. Congestion games are split into two categories, the atomic1 and non-
atomic2 congestion games. In this thesis we focus on the atomic case.

1.3.1 Weighted (atomic) Congestion Games

A game in this class is given by a tuple

(N, (wi)i∈N , E, (Pi)i∈N , (ce)e∈E),

where

• N is the set of players,

• wi is a positive number that expresses the weight of player i ∈ N ,

• E is the set of resources,

• Pi ⊆ 2E is the set of strategies of player i,

• ce is the cost (latency) function of a resource e ∈ E, which is continuous,
non-decreasing and non-negative,

• in a profile P , Se(P ) is set of users of a resource e, while the congestion
on e is defined as the sum of weights of its users, fe(P ) =

∑
i∈Se(P ) wi,

• the cost of a player is given by Xi(P ) = wi ·
∑
e∈Pi ce(fe(P )), and each

player wishes to minimise her cost (cost minimisation game).

1In the atomic case, there are N discrete players in the game.
2In the non-atomic case, the players are continuous in a sense of a flow.
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1.3. AN INTRODUCTION TO CONGESTION GAMES

Figure 1.1: (a) An atomic (unweighted) network congestion game from [7] with N =
{1, 2, 3, 4}, the cost functions of each resource are mentioned in the middle of each
edge, i.e, resource u→ v has a constant function of 0, and resource v → u has a linear
cost function x, (b) its optimum profile and (c) worst equilibrium outcome.models and examples 467
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Example 18.7 (Nonexistence in weighted atomic instances) Consider the net-
work shown in Figure 18.4. Extend this network to an atomic selfish routing game
by adding two players, both with source s and sink t , with traffic amounts r1 = 1
and r2 = 2.
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We leave verification of (1)–(4) to the reader.
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Figure 18.3. The AAE example (Example 18.6). In atomic instances with affine cost functions,
different equilibrium flows can have different costs, and the price of anarchy can be as large
as 5/2.

Example 18.7 (Nonexistence in weighted atomic instances) Consider the net-
work shown in Figure 18.4. Extend this network to an atomic selfish routing game
by adding two players, both with source s and sink t , with traffic amounts r1 = 1
and r2 = 2.

We claim that there is no equilibrium flow in this atomic instance. To prove
this, let P1, P2, P3, and P4 denote the paths s → t , s → v → t , s → w → t ,
and s → v → w → t , respectively. The following four statements then imply the
claim.

(1) If player 2 takes path P1 or P2, then the unique response by player 1 that minimizes

its cost is the path P4.

(2) If player 2 takes path P3 or P4, then the unique best response by player 1 is the

path P1.

(3) If player 1 takes the path P4, then the unique best response by player 2 is the

path P3.

(4) If player 1 takes the path P1, then the unique best response by player 2 is the

path P2.

We leave verification of (1)–(4) to the reader.

On the other hand, Section 18.3.2 proves that every atomic instance in which all
players route the same amount of traffic admits at least one equilibrium flow. We call
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w

v

47x

x2 + 443x2

6x2x + 33 13x

Figure 18.4. An atomic instance with no equilibrium flow (Example 18.7).

(c)

This is the general description of atomic weighted congestion games. However,
there are the following important subclasses of these games:

(i) unweighted or simply congestion games where wi = 1 for all players i ∈ N ,

(ii) symmetric congestion games, where the sets of available strategies of all
players are the same,

(iii) singleton congestion games, where each player can use only one resource
in each strategy, and

(iv) network congestion games, where the congestion occurs on a given network
G = (V,E) in a sense that players simultaneously want to find the optimal
path for their flows from a source si ∈ V to a destination ti ∈ V on that
network. The set of edges E equals the set of resources in this subclass.

To clarify the atomic model, I present an unweighted network congestion
game1 (Figure 1.1 (a)) and describe in detail the process of measuring its inef-
ficiency by computing its price of anarchy and price of stability (see p. 12 for
definitions).

Example 1. Consider the unweighted network congestion game illustrated in
Figure 1.1(a). What is its PoA and PoS?

I There is a set of players N = {1, 2, 3, 4} with identical weights equal to 1
(unweighted case) and each player i ∈ N wishes to go from si to ti. Observe
that each player has two options (available strategies), a single- and a two-
edge path. The price of anarchy (see definition 10) is the ratio of the worst
equilibrium cost over the optimum. We focus first on finding the optimum,
which is the outcome with the minimum social cost. We can find that the social
cost is minimised when every player choose her single-edge path from her source
to her destination. Thus, player 1 chooses the path u → v, player 2 chooses
u → w, player 3 chooses v → w and player 4 chooses w → v. This strategy

1This network congestion game can be found in Figure 1, page 62 of [7].

15



1.3. AN INTRODUCTION TO CONGESTION GAMES

profile is illustrated in Figure 1.1 (b). Given a strategy profile, the social cost
equals to the sum of players’ costs (see p. 12 for definition), then

OPT = w2
1 + w2

2 + w2
3 + w2

4 = 4.

Second, we compute the cost in a worst pure Nash equilibrium instance. Observe
that if each player chooses her two-edge path from her source to her destination,
this yields to a pure Nash equilibrium as no player wants to deviate from this
instance. The social cost equals to the sum of players costs, thus we get

SC(P ) =X1(P ) +X2(P ) +X3(P ) +X4(P )

=[w1 · (w1 + w3) + w2
1] + [w2 · (w2 + w3) + w2 · (w2 + w4)]+

+ [w3 · (w1 + w3) + w2
3] + [w4 · (w2 + w4) + w2

4] = 10.

Therefore the PoA is at least 5
2 . On the other hand, to compute the price of

stability, we need to find the equilibrium that minimises the social cost. In this
case, observe that the optimum is also an equilibrium, thus PoS = 1. J

Existence of Equilibria

The class of (unweighted) congestion games was first introduced by Rosenthal
[69] in 1973, where he shows that such games always possess pure Nash equi-
libria. In particular, he proves that a series of cost improvement finite steps of
players (deviations) always reach a pure Nash equilibrium instead of running
into cycles.

Theorem 1.3.1 (Rosenthal 1973). For every (unweighted) congestion game,
every sequence of improvement steps is finite.

The proof of this result is based on constructing a function, called exact
potential function, which assigns a value to each outcome of the game and has
the following interesting property. If a single player deviates and improves her
cost by δ, then also the potential function improves by the same amount δ.
More formally, if a player deviates from Pi to another strategy P ′i , then

Φ(P )− Φ(P ′) = Xi(P )−Xi(P
′), (1.1)

where P ′ = (P−i, P
′
i ). The potential function for atomic congestion games that

Rosenthal presented is

Φ(P ) =
∑
e∈E

|Se(P )|∑
k=1

ce(k). (1.2)

Example 2. For a player’s deviation in Figure 1.1 (a), show that the potential
function property holds for the two different strategy profiles that occur due to
this deviation.

I To simpify, set e1 = (u, v), e2 = (v, w), e3 = (w, u), e4 = (v, u), e5 = (u,w)
and e6 = (w, v). Focus on player 2 and let P be the outcome where player 1
uses e1, player 2 uses e1, e2, player 3 uses e2 and player 4 uses e6. This is an
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1.3. AN INTRODUCTION TO CONGESTION GAMES

unweighted instance, thus all weights are equal to 1. Observe that the cost of
player 2 is equal to X2(P ) = w2 · (w1 + w2) + w2 · (w2 + w3) = 4 and that
Rosenthal’s potential function (1.2) gives

Φ(P ) =

|Se1 (P )|∑
k=1

ce1(k) +

|Se2 (P )|∑
k=1

ce2(k) +

|Se6 (P )|∑
k=1

ce6(k).

Since |Se1(P )| = |Se2(P )| = 2, |Se6(P )| = 1 and ce1(x) = ce2(x) = ce6(x) = x,
we get that Φ(P ) = 1 + 2 + 1 + 2 + 1 = 7. Let P ′ = (P ′2, P−2) be the outcome
where players use the same strategies as in outcome P apart from player 2 who
deviates to P ′2 = {e5} from the P2 = {e1, e2} she was using before. Note that
this is the optimum outcome illustrated in Figure 1.1 (b). This move reduces
player’s 2 cost to X2(P ′) = w2 = 1, while the potential function gives a value of
Φ(P ′) = 1 + 1 + 1 + 1 = 4 in this outcome. Observe that the desirable property
holds: player’s 2 deviation from P2 to P ′2 reduces the potential function by an
amount equal to her cost improvement, Φ(P )− Φ(P ′) = X2(P )−X2(P ′). J

Since any improvement step of players would decrease Φ(P ), observe that a
series of such improvements will at the end reach a profile where no player can
improve anymore. In other words, a minimum of the potential function Φ(P ) is
a pure Nash equilibrium. Thus, games admitting an (exact) potential function,
always possess a pure Nash equilibrium. Such games are called (exact) potential
games. Later in 1996, Monderer and Shapley showed that the class of conges-
tion games coincides with the class of finite potential games [62], which implies
that every atomic congestion game has a pure Nash equilibrium. However, as
soon as we deviate to the weighted congestion games where players can have
non-identical weights, then existence of equilibria is not guaranteed anymore.
Examples of weighted atomic instances admitting no pure Nash equilibria are
described in [59], [35] and [42]. On the positive side, Fotakis et al. [35] prove
that by restricting to linear cost functions, weighted (atomic) congestion games
are weighted1 potential games. To prove this, they use the potential function

Φ(P ) =
∑
i∈[n]

wi ·
∑
e∈Pi

(ce(fe(P )) + ce(wi))) .

Computation of Equilibria

As mentioned in previous section, pure Nash equilibria in congestion games
exist. However, can we reach at them? How difficult is it to compute a pure
Nash equilibrium in a congestion game?

To answer this question, Fabrikant et al. [30] relate the complexity of equi-
libria search in congestion games to the complexity of finding local optima in
local search problems. In particular, authors prove that computing a pure Nash
equilibrium in atomic congestion games is PLS-complete, even for the symmet-
ric case where all players have the same strategy set. To do this, they show

1Similar to the property of exact potential games (1.1), a weighted potential game admits
a potential function Φ(P ) with the property: Φ(P )− Φ(P ′) = wi · (Xi(P )−Xi(P ′)).
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1.3. AN INTRODUCTION TO CONGESTION GAMES

Figure 1.2: Complexity results for PNE computation in atomic congestion games.

symmetric game general game

congestion game PLS-complete [30, 1] PLS-complete [30]

network congestion game Polynomial time [30] PLS-complete [30]

a reduction from the problem POS-NAE-MAX-3SAT2. For the same problem,
Ackermann et al.[1] show the same result with a reduction fro a different prob-
lem, the Max Cut problem. On the positive side, by restricting to symmetric
network congestion games, a pure Nash equilibrium can be computed in poly-
nomial time. This result is shown via a reduction to Min Cost Flow problem
[30]. Figure 1.2 gives a table of the main complexity results.

PoA and PoS in Atomic (weighted) Congestion Games

Another important line of research is to measure the quality of an equilibrium.
In this section, I present a brief background of how the techniques of measuring
equilibria efficiency have been evolved over the recent years.

How bad can the total cost of an equilibrium be? How far is this value from
the optimum? The main tools to measure efficiency of equilibria are the price
of anarchy and price of stability (see definitions 10 and 12). The notion of PoA
was introduced by Koutsoupias and Papadimitriou [21], and the PoS was firstly
proposed by Schulz and Stier Moses [78], and formally defined by Anshelevich
et al. [5]. Since then, the study on investigating quality of equilibria has been a
driving force in recent research. In the area of congestion games, Christodoulou
and Koutsoupias [21] computes the PoA for linear unweighted congestion games
and their results are easily extended to the weighted case. Their approach to
prove the PoA upper bound follows an interesting technique, which is explained
as follows. This technique is based on the next lemma.

Lemma 1. For every pair of nonnegative integers x, y: x·(y+1) ≤ 1
3 ·x2+ 5

3 ·y2.

Christodoulou and Koutsoupias [21] use the previous lemma to prove that, for
P an equilibrium and P ′ any other outcome,∑

i

Xi(P−i, P
′
i ) ≤

1

3
· SC(P ′) +

5

3
· SC(P ),

which, by rearranging, gives that PoA for linear congestion games is at most 5
2 .

Awerbuch et al. [7] independently give the same results by following a similar
technique. For polynomial functions, Aland et al. [3] give an exact PoA value.
They also use a similar to the above technique, however, they generalise Lemma
1 as follows. The analysis of [3] optimises λ

1−µ such that for all polynomials c
with nonnegative coefficients and maximum degree d, and for all nonnegative
integers x, y, it must hold that

y · c(x+ 1) ≤ λ · y · c(y) + µ · x · c(x). (1.3)

2(Positive - Not all equal - Maximum - 3SAT): Each clause has a positive integer weight
and includes three element which can be either positive literals or constants, 0 or 1. A clause
is satisfied iff there is at least one element with value 1 and at least one with 0. The goal is
to find the assignment that maximises the sum of the weights of the satisfied clauses.
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Figure 1.3: (Table 1.1 in [3]) The PoA in atomic congestion games: Comparison of
results of [21, 7, 3].

Exact Upper Lower Upper Lower
d Φd value [3] bound [21] bound [21] bound [3] bound [7]

1 1.618 2.500 2.500 2.500 2.618 2.618
2 2.148 9.583 10.00 9.909
3 2.630 41.54 47.00 47.82 5.000
4 3.080 267.6 269.0 21.33 277.0 15.00
5 3.506 1514 2154 42.67 1858 52.00
6 3.915 12 345 15 187 85.33 14 099 203.0
7 4.309 98 734 169 247 170.7 118 926 877.0
8 4.692 802 603 1 451 906 14 762 1 101 126 4140

To prove their bounds for the unweighted case, [21] sets µ = 1
2 in (1.3) and esti-

mates the parameter λ. On the other hand, [3] optimises over both parameters
λ, µ and achieves exact PoA values for the weighted and unweighted case clos-
ing the bound gaps from [21, 7]. In particular, the PoA for weighted congestion
games equals Φd+1

d , where Φd is the unique real solution to (x + 1)d = xd+1,
and for unweighted congestion games, the PoA equals to

(k + 1)2·d+1 − kd+1 · (k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = bΦcd. For comparison between [21, 7, 3], see Figure 1.3. Roughgarden
generalises this technique for general cost functions and name it as the smooth-
ness framework [73]. He also showed that bounds obtained in this way apply to
general equilibrium concepts. For the approximate PoA (see definition 11) and
linear cost functions, the same author gives tight bounds [71]. For polynomial
cost functions, tight bounds were given by Christodoulou et al. [22], however,
for the approximate PoS, they give weaker bounds. For weighted atomic con-
gestion games, Bhawalkar et al. [8] characterise the PoA as a function of the
allowable resource cost functions.

For PoS in congestion games, results are only known for the unweighted
case. Christodoulou and Koutsoupias [21] study linear congestion games, while
Christodoulou and Gairing [20] present tight bounds for the more general case
of polynomial cost functions. More related work can be found in Efficiency of
equilibria of Section 1.5.2.
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1.4 Social Context in Congestion Games

Game theory deals with the mathematical study of interaction between rational
players. A prevalent assumption is that the players are selfish and they act upon
their own well-being. But what if they don’t? Recently, attention has been given
to more general settings where players do not behave entirely selfishly, but they
might exhibit altruistic or spiteful behavior. For example, players may partially
disregard their own ‘happiness’ to influence the well-being of others. Study-
ing such alternative behaviours is mainly motivated by the fact that altruism
or spite are phenomena that frequently occur in real life. Consequently, it is
desirable to incorporate such behaviours in game-theoretical analyses. Despite
some recent efforts [54], [6], the impact of social context in fundamental results
of noncooperative1 game theory is not well understood.

One of this thesis goals is to study how social interactions affect the class
of congestion games. The next section introduces how social interactions of
players (social context) can be embodied in a game. This merge yields to a
social context game, which is then adjusted to congestion games (social context
congestion games). The main research question we address concerns existence
of approximate pure Nash equilibria in this class [39].

1.4.1 An Introduction to The Model

Given a game Γ (see definition 4), a social context game is generated by consid-
ering a neighborhood graph over the players of the game Γ and an aggregation
function that determines how the game is affected by that graph. In general,
these two terms form a social context Ξ and are being described in the next
paragraph. Each vertex of this graph represents one player. Every player is
connected with other players through the edges of this directed graph. A di-
rected edge between vertices (players) i and j indicates a friendship between
players i and j. Otherwise, if there is no edge between two vertices, there is
no friendship between the players associated with these vertices. The perceived
cost Xi(P,Ξ) of a player is defined by the aggregation function applied on the
personal costs (original payoffs in the base game) of herself and her friends.

A congestion game is extended by embedding a social context on it and we
call such games social context congestion games. This extension of standard
congestion games (Section 1.3) is also a cost minimisation game in which the
difference is that each player wishes to minimise her perceived cost instead of
her personal cost. In this model, the perceived cost is defined by the following
linear combination of all players’ personal costs,

Xi(P,Ξ) =
∑
j∈N

ξij ·Xj(P ),

where ξij monetises how much player i cares about player j. If i cares for j as
much as j cares for i, for every pair of players (i, j), then this is a symmetric
social context. Otherwise, it is called asymmetric social context. Throughout

1Even though this model allows altruism among players, it differs from cooperative game
theory. In the latter [14, 29], a player can join another coalition (group of players collaborating
to maximise collective payoff) if this move would increase the payoff share she receives as a
member of the current coalition. In this model, social interactions among players are given as
input in the game.

20



1.4. SOCIAL CONTEXT IN CONGESTION GAMES

Figure 1.4: A social context congestion game with 13 players (each box represent one
player), where the interest of player 2 towards player 6, 8 and 10 is expressed by the
numbers on the edges of the neighborhood graph.

x
e1 :

2x
e2 :

1
e3 :

this model, we assume that for every player i, ξii = 1. To clarify the model, I
present an example on computing the perceived cost of a player.

Example 3. Computing the perceived cost of player 2 in the social context
congestion game of Figure 1.4.

I There are three resources e1, e2, e3 with ce1(x) = x, ce2(x) = 2x and ce3(x) =
1. The users on a resource are represented by the rectangulars assigned to that
resource while users’ names are given by the numbers inside the boxes. Focus
on player 2 who uses resource e1. Note that she cares for player 6 by a value of
1, for player 8 by a value of 1

2 and for player 10 by a value of 1
3 . This gives a

perceived cost for player 2 of

X2(P,Ξ) = 6 + 1 · 6 +
1

2
· 23 +

1

3
· 1.

J

1.4.2 Related Work and Contribution

In this section, I present known results in related areas of social context con-
gestion games, and I also present my thesis contribution to this area. For the
detailed mathematical analysis of the contribution, see Chapter 2 in p. 35.

What is previously known: The impact of altruism and spite in games
has been widely studied [4, 6, 10, 13, 18, 17, 54, 53, 67, 52]. [54] studied the
existence of pure Nash equilibria in social context games. They showed that such
games admit an exact potential function if and only if they are isomorphic to a
social context congestion game with linear cost functions. They also showed that
singleton congestion games with binary social context might not admit a pure
Nash equilibrium for concave cost functions.1 For convex cost functions they
left the existence of a pure Nash equilibrium as an open problem. [10] studied
social context congestion games with different aggregation functions. Altruism
in congestion games has also been studied in a different model [52, 53]. The
efficiency of Nash equilibria through the price of anarchy in games with social
context and in altruistic games has been studied in [4, 13, 18, 17, 67].

Thesis contribution: The existence of pure Nash equilibria is a desirable
property of games. Unfortunately, in congestion games this property is very
fragile and several generalisations of congestion games do not possess such states

1Our analysis contrast this by showing that they admit 4/3-approximate pure Nash equi-
libria (see Table 2.2.1).
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Figure 1.5: Threshold values µ(C) for some classes of cost functions and comparison
to the anarchy value β(C) by Roughgarden [72]. Polynomials are of maximum degree
d and have non-negative coefficients.

Cost functions C µ(C) β(C)
concave 4/3 ≈ 1.333 4/3 ≈ 1.333

polynomials d
0 1 1
1 4/3 = 1.333 4/3 = 1.333

2 8/5 = 1.6 3
√

3/(3
√

3− 2) ≈ 1.626

3 81/43 = 1.884 4 3
√

4(4 3
√

4− 3) ≈ 1.895

4 243/113 = 2.1504 5 4
√

5(5 4
√

5− 4) ≈ 2.1505
d θ(d/ log d) θ(d/ log d)

exponentials αx, α > 1 α unbounded

in general, including social context congestion games [6]. A natural question to
ask is how much we have to relax the equilibrium condition in order to guarantee
the existence of pure equilibria. More precisely, we are interested in the existence
of a ρ-approximate pure Nash equilibrium, a pure strategy profile in which no
player can improve by a factor ρ > 1.

For the class of social context congestion games with cost functions from any
given set of allowed cost functions, we study the existence of approximate pure
Nash equilibria and provide a threshold value such that the following holds.
For this subclass of social context congestion games with cost functions from a
given set, sequences of players’ deviations, where players improve by at least a
factor ρ, are guaranteed to converge to a ρ-approximate pure Nash equilibrium
if and only if the improvement factor ρ is larger than the threshold value.Last,
we make an interesting observation: our threshold value is related and always
upper bounded by Roughgarden’s anarchy value [72] (see Figure 2.2.1). For
more details, see Chapter 2.
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1.5 Cost-Sharing in Weighted Congestion Games

The second part of my research lies on weighted congestion games, an extension
of congestion games where each player has a weight that expresses how much
she ‘harms’ the network with her presence or the cost she adds to the total
cost of the network. Depending on the weight of each player, we investigate
distribution methods of the resource cost among her users. The cost sharing
methods we study is the (weighted) Shapley values and the research questions
we address concern computation, existence and efficiency of equilibria [33], [37],
[38].

1.5.1 An Introduction to The Model

A weighted congestion game is described as follows. There is a set N of players
and a set E of resources. Each player i ∈ N has a positive weight wi and she
gets to select the subset of the resources she prefers to use. The resources she
can pick are given by her set of possible strategies Pi. When all players decide,
each resource e ∈ E generates a joint cost Ce(fe), where fe is the total weight
of the users of e and Ce is the cost function of e. The joint cost of a resource
is covered by its users Se in a sense that

∑
i∈Se χie = Ce(fe), where χie is the

cost share of player i on resource e.

Cost-sharing method. Given a class of games, the way the total cost is dis-
tributed to players is given by a cost-sharing method. For example in a weighted
congestion game, each resource has a total cost (joint cost) that depends on the
number of players who use this resource. A cost-sharing method distributes the
joint cost among the players who use this resource, thus the cost share each
player pays is determined by the chosen method. Certain examples of cost-
sharing methods include proportional sharing (PS) and the weighted Shapley
values (SV). In PS (see Example 4), the cost share of a player is proportional
to her flow weight, i.e., χie = (wi/fe) · Ce(fe).

Example 4. Compute the proportional shares of the red and blue players of the
routing game in Figure 1.6 (a).

I Focus on the red player. If α is the fraction of her weight over the total
weight on the resource, then α is the fraction of the total recourse cost she
would pay, her proportional share. Her weight over the total weight is 1

4 , thus
her proportional share is

Xred(P ) =
∑
e∈Pi

χie(P ) = χie1(P ) =
wred

wred + wblue
· Ce1(wred + wblue)

=
1

4
· 64 = 16.

Similar, we compute the proportional share of the blue player,

Xblue(P ) =
∑
e∈Pi

χie(P ) = χie1(P ) =
wblue

wred + wblue
· Ce1(wred + wblue)

=
3

4
· 64 = 48.

J
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Figure 1.6: (a) A routing game with two players, red and blue: the red player controls
a flow with weight w1 = 1 and the blue player controls a flow with weight w2 = 3. Let
e1, e2 be the top and the bottom link, accordingly, with ce1(x) = x3 and ce2(x) = 16·x.
(b) The marginal cost contributions of both players when they enter the resource.

(a) 3
ts

16 · x

x3 → 64

1

(b)

Order:1 3

c′(x)

1 2 3 4

x

1

63

Order: 13

c′(x)

1 2 3 4

x

37

27

Another cost-sharing method is the weighted SV (see Example 5), which is
the expected marginal cost contribution of a player over all orderings of players.
To clarify, I first explain what a marginal cost contribution is and then I focus
on the computation of its expectation. Let π be an ordering of the users of
resource e. This ordering is the order in which players enter the resource. Then
the marginal cost contribution of a player i ∈ Se expresses the increase in
the resource total cost occured by the entrance of player i. Define as F i,πe (P ) =∑j<i
j∈Se(P ) wj the sum of the weights of the players that enter the resource before

player i in ordering π. Then, formally, the marginal cost contribution is given
by

Ce(F
i,π
e (P ) + wi)− Ce(F i,πe (P )).

For a given distribution Π over orderings, the weighted Shapley value equals to
the expectation of the marginal contributions, which is given by

Eπ∼Π[Ce(F
i,π
e (P ) + wi)− Ce(F i,πe (P ))].

The distribution Π is given by a sampling parameter λi for each player i. The
last player in the ordering is picked proportional to the sampling parameters λi.
For example, the first drawn from the distribution player goes last in the or-
dering, the second drawn player goes second from the last, and this process is
repeated iteratively for the remaining players.

The cost-sharing methods used in this thesis is a large subclass of weighted
Shapley values where the sampling weight of a player i is given by (wi)

γ , where
wi is player i’s weight and γ is any number.
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Example 5. Given that the sampling weight of a player equals its weight, what
are the weighted Shapley values of the red and blue players of the routing game
in Figure 1.6 (a)?

I By assumption, λred = wred = 1 and λblue = wblue = 3. Recall that the first
player being sampled (drawn by the distribution) is positioned at the end of
the ordering, the second sampled player is positioned second from the last, etc.
The only difference is that the distribution over the orderings depends on the
sampling weights. Thus, the weighted Shapley value for each player is given by
the following sum. The first term expresses the probability of the red player
being first in the ordering (red player is drawn last) which equals the probability
of the blue player being last in the ordering (drawn first), since there are only
two players. This is then multiplied by red player’s marginal contribution when
she enters first the resource. The second term expresses the probability that the
red player is being drawn first (thus she is last in the ordering) multiplied with
her marginal contribution in this case. For simplicity, I omit from the formula
the outcome symbol, P . We have:

Xred = χie1 =
λblue

λblue + λred
· (Ce1(1)− 0) +

λred

λblue + λred
· (Ce1(4)− Ce1(3))

=
3

4
· 1 +

1

4
· 37 = 10.

Similar, we compute the weighted Shapley value of the blue player, and get

Xblue = χie1 =
λred

λblue + λred
· (Ce1(3)− 0) +

λblue

λblue + λred
· (Ce1(4)− Ce1(1))

=
1

4
· 27 +

3

4
· 63 = 54.

To confirm the computation, note that Xblue +Xred = Ce(fe) = 64 for all three
examples in this section. J

For γ = 0, this class reduces to a special case where λi are equal for all i and
the cost share of a player is her average marginal cost increase over all orderings
of the users of e (see Example 8). This special case is called Shapley values.

Example 6. What are the Shapley values of the red and blue players of the
routing game in Figure 1.6 (a)?
I Since there are only two players, the total possible players’ orderings are
two. If red player enters first the resource, her marginal cost contribution in the
resource is Ce1(1) − Ce1(0). If the red player enters second, her marginal cost
contribution is Ce1(4)−Ce1(3). Then the Shapley value of the red player equals

Xred =
∑
e∈Pi

χie = χie1 =
Ce1(1)− 0

2
+
Ce1(4)− Ce1(3)

2
=

1

2
+

37

2
= 19.

Similar, we compute the Shapley value of the blue player, and get

Xblue =
∑
e∈Pi

χie = χie1 =
Ce1(3)− 0

2
+
Ce1(4)− Ce1(1)

2
=

27

2
+

63

2
= 45.

Figure 1.6 (b) illustrates the marginal cost contributions for both players. J

Despite the fact that Shapley and proportional sharing follow different com-
putational procedures, there is a class of cost functions for which they coincide.
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1.5. COST-SHARING IN WEIGHTED CONGESTION GAMES

Proposition 1.1. The cost-sharing method of Shapley values is identical to
proportional sharing if and only if the resource cost functions are affine.

I would like to note that the statement of this proposition was mentioned as
an observation in [57], however, no proof was given. For that reason, I present
a detailed proof.

Proof. Consider a resource with cost function c(x) = α · x + β. Let x<i be
a random variable for the total weight on the resource before player i in the
ordering and F−i the total weight of all players excluding player i. We prove
that Shapley values with affine functions equals the proportional shares. By
definition, the Shapley value of a player i is the expected value over all orderings
of her marginal contribution, that is

E[(x<i + wi) · c(x<i + wi)− x<i · c(x<i)]
= E[(x<i + wi) ·

(
α · (x<i + wi) + β

)
− x<i ·

(
α · x<i + β

)
]

= E[α(x<i + wi)
2 + β · (x<i + wi)− α · (x<i)2 − β · x<i]

= E[2 · α · x<i · wi + α · w2
i + β · wi]

= 2 · α ·E[x<i] · wi + α · w2
i + β · wi

= wi · (2 · α ·E[x<i] + α · wi + β). (1.4)

Note that variable x<i can take values in the interval [0, F−i] with the maximum
value occuring when player i is last in the ordering. Therefore the expected value

of x<i equals to F−i−0
2 . Substituting this to (1.4), we get that

E[(x<i + wi) · c(x<i + wi)− x<i · c(x<i)] = wi ·
(
α ·
(
F−i + wi

)
+ β

)
= wi · c(wi + F−i),

which is the proportional sharing. In the remaining part of the proof, we show
by contradiction that affine functions c are the only functions satisfying equality
between Shapley values and proportional shares of players. Consider two arbi-
trary players, say players 1 and 2 with weights w1 and w2. Assume that their
Shapley values equal to their proportional shares, then for player 1, we have

1

2
· (w1 · c(w1) + (w1 + w2) · c(w1 + w2)− w2 · c(w2)) = w1 · c(w1 + w2)

⇔ w1 · c(w1) + w2 · c(w1 + w2)− w2 · c(w2) = w1 · c(w1 + w2)

⇔ w1

w2
=
c(w1 + w2)− c(w2)

c(w1 + w2)− c(w1)
. (1.5)

Since w1, w2 are arbitrary numbers, assume w.l.o.g. that w1 ≤ w2 and that c
is not an affine function, therefore it has a non-linear progression (the slope of
c from w1 to w2 is smaller than its slope from w2 to w1 + w2). That is,

c(w2)− c(w1)

w2 − w1
<
c(w1 + w2)− c(w2)

w1
⇒ w1

w2
<
c(w1 + w2)− c(w2)

c(w1 + w2)− c(w1)
,

which contradicts (4.7).
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Figure 1.7: A routing game with two players, r and b (red and blue, accordingly):
Player r controls a commodity with weight wr = 1 and player b controls two commodi-
ties b1, b2 with weights wb1 = 1 and wb2 = 2. Let e1, e2 be the top and the bottom
link, accordingly, with ce1(x) = x3 and ce2(x) = 16 · x. (a) Player r with the large
commodity b2 of player b use e1, while the small commodity b1 of player b use e2, (b)
player b swaps her commodities compare to a, (c) both players use e1.

(a) (b) (c)

Generalised Model (Multi-Commodity per Player)

My research on cost-sharing is extended to a generalisation of the previous
model: Consider a graph where multiple flows want to reach their destination
starting from a single source. Each flow has its own source, destination and
weight. I refer to such flows as commodities. The generalisation in this model
is that a player can control either one or multiple commodities in the graph.
The players compete between them for resources and each player chooses the
resources she will use for each commodity she controls. The total cost on a re-
source is called joint cost and is given by Ce(fe) = fe ·ce(fe) where fe is the total
flow on e and ce the resource cost function. Compare to the single-commodity
model, there is a slight different notation with f ie to be the sum of the commodi-
ties’ flow player i assigns on e. The joint cost is paid by the users of resource e,
the players who assign positive flow on e, i.e.,

∑
i:fie>0 χie = Ce(fe). For details

of the multi-commodity model, see Section 4.1. Settings such as routing road
traffic which is controlled by competing ride-sharing applications or routing in
communication networks where connections are operated by competing service
providers lie within this framework. For the rest of the thesis, I refer to the
original model and the gerenalised model as single- and as multi-commodity per
player model, respectively.

Example 7. Focus on proportional sharing method and compute the cost of
both players of the routing game instance in Figure 1.7(a). Is this a PNE?

I Following the approach in the original model (see Example 4), the cost of
each player is,

Xr(P ) =
∑
e∈Pr,

χr,e(P ) = χr,e1(P ) =
wr

wr + wb2
· Ce1(wr + wb2) =

1

1 + 2
· Ce1(1 + 2) =

1

3
· 27 = 9.

and for the blue player,
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Xb(P ) =
∑
e∈Pb

χb,e(P ) = χb,e1(P ) + χb,e2(P )

=
wb2

wr + wb2
· Ce1(wr + wb2) + Ce2(wb1)

=
2

1 + 2
· Ce1(1 + 2) + Ce2(1)

=
2

3
· 27 + 16 = 34.

Note that if player r deviates to e2, her cost increases to 16. Similar for player b,
any other allocation of her commodities increases her current cost of 34. Thus
this outcome is a PNE. J

Example 8. What is the optimal outcome of the instance in Figure 1.7 (a)?.
Is this also a PNE?

I The optimal outcome is illustrated in Figure 1.7 (b), where the social cost is
minimised to 4 + 4 + 32 = 40. Note that this is not an equilibrium as player b
would swap her commodities, improving her cost to 34 from 36. J

Example 9. Consider the outcome where both commodities of player b use the
top resource. Is this a PNE?

I This instance is given by Figure 1.7 (c). The difference with Figure 1.6 (a) is
that blue player can reassign part of her total flow 3. By Example 4, we know
that Xr(P ) = 16 and Xb(P ) = 48. If the blue player assigns her commodity b1
of weight 1 to e2, then we get Figure 1.7 (a), where the cost of player b reduces
to 34 as opposed to 48. Thus this is not a PNE. J
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1.5.2 Related Work and Contribution

In this section, I present the contribution of my thesis on cost-sharing in weighted
congestion games with single- and multi-commodity players. The results lie on
three different aspects (described in the following order):

• Computation of approximate pure Nash equilibria

• Existence of equilibria

• Efficiency of equilibria

In the beginning of each section, it is indicated whether results hold for single-
or multi-commodity players.

Computation of Approximate Pure Nash Equilibria

Our results regarding computation of equilibria hold only for the original model
where each player controls a single commodity.

What is previously known: Kollias and Roughgarden [57] prove that
Shapley value weighted congestion games restore the existence of a potential
function and therefore the existence of pure Nash equilibria to such games. Po-
tential functions immediately give rise to a simple and natural search procedure
to find an equilibrium by performing iterative improvement steps starting from
an arbitrary state. Unfortunately, this process may take exponentially many
steps, even in the simple case of unweighted congestion games1 and linear cost
functions [1]. Moreover, computing a pure Nash equilibrium in these games is
intractable as the problem is PLS-complete [30], even with only three players [2]
or for affine linear cost functions [1]. Note that the latter result directly car-
ries over to our game class with Shapley cost-sharing due to Proposition 1.1,
which states that Shapley values and proportional shares coincide for affine cost
functions.

Given these intractability results, it is natural to ask for approximation which
is formally captured by the concept of an ρ-approximate pure Nash equilibrium.
Chien and Sinclair [19] study the convergence towards (1 + ε)-approximate pure
Nash equilibria in symmetric congestion games in polynomial time under a mild
assumption on the cost functions. In contrast, Skopalik and Vòcking show that
this result cannot be generalised to asymmetric games and that computing a
ρ-approximate pure Nash equilibrium is PLS-hard in general [81]. Of special
interest to our work is an algorithm proposed by Caragiannis et al. [11], which
computes a (2+ε)-approximate equilibrium for linear cost functions and a dO(d)-
approximate equilibrium for polynomial cost functions with degree of d. Authors
of [11] extend their algorithm for the weighted case [12] of congestion games and

get the following results. For linear cost functions, they compute
(

3+
√

5
2 + ε

)
-

approximate equilibria while, for polynomial cost functions, their computable
approximation factor increases to d2d+o(d).

Thesis contribution: We focus on SV weighted congestion games with
polynomial resource cost functions and propose an algorithm with a polynomial

1Note that in the unweighted case of congestion games, proportional sharing and Shapley
cost sharing coincide.
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1.5. COST-SHARING IN WEIGHTED CONGESTION GAMES

Figure 1.8: Results for computation of approximate pure Nash equilibria in congestion
games with standard, proportional and Shapley value player costs (on a resource),
for linear and polynomial rsource cost functions of maximum degree d. The thesis
contribution is in blue colour.

Proportional Shapley values

Unweighted Weighted
Ce(ne(P )) wi · Ce(fe(P )) Eπ∼Π[Ce(f

i,π
e + wi)− Ce(f i,πe )]

linear 2 + ε, [11] 3+
√

5
2

+O(γ), [12] equal to proportional
(Proposition 1.1)

polynomial dO(d), [11] d2·d+o(d), [12]
(
d

ln 2

)d · poly(d), [33](
d

ln 2

)d · poly(d), [33]

number of strategy updates for computing ρ-approximate pure Nash equilibria.
This is the first algorithmic result regarding computation of equilibria in this
class, however, our algorithm builds on the algorithmic ideas of [12] as follows.

The algorithm of [12] computes approximate pure Nash equilibria in polyno-
mial weighted congestion games (proportional sharing). To use this algorithm, it
is neccessary to bound the potential function of this class of games. However, it
is known that weighted congestion games with polynomial cost functions d > 1
may not possess a pure Nash equilibrium [59, 35, 42], thus they do not admit
a potential function. To overcome this, [12] constructs a new class of poten-
tial games, the Ψ games, which they use to ‘approximate’ the class of weighted
congestion games. This additional approximation is embedded in their final
computable approximation factor. More specifically, they approximate a state
of Ψ games with its corresponding weighted congestion game by showing that

XProp
i (P ) ≤ XΨ

i (P ) ≤ d! ·XProp
i (P ),

whereXProp
i (P ) is the cost of player i under proportional sharing andXΨ

i (P ) her
cost in a Ψ game. At the end, [12] achieves computation of d2d+o(d)-approximate
pure Nash equilibria with a polynomial time of strategy updates.

The way to adjust this algorithm in our model is the following. Since Shap-
ley value weighted congestion games are potential games [57], the novel idea is
to approximate this class of games to weighted congestion games (proportional
sharing). With algebraic computations, we exhibit an interesting general rela-
tion between the Shapley cost share of a player and her proportional cost share.
In particular, we prove that for a player i and state P ,

2

d+ 1
·XSV

i (P ) ≤ XProp
i (P ) ≤ d+ 3

4
·XSV

i (P ). (1.6)

where d is the maximum polynomial degree. Using this relation, for SV weighted
congestion games with polynomial cost functions of degree at most d, our algo-
rithm achieves computation of approximate pure Nash with an approximation

factor asymptotically close to
(
d

ln 2

)d · poly(d). Similar to [12], our algorithm
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computes a sequence of improvement steps of polynomial length reaching a ρ-
approximate Nash equilibrium. Hence, it performs only a polynomial number
of strategy updates. We show that our algorithm can also be used to compute
ρ-approximate pure Nash equilibria for weighted congestion games (with propor-

tional sharing) which improves the factor of d2·d+o(d) in [12] to
(

d
ln(2)

)d
·poly(d).

Since for each improvement step, we need to compute the Shapley values
(which is known to be computationally hard), we do not have a real polynomial
time. To resolve this, we show that by applying sampling techniques, it allow
us to derive a randomized polynomial running time algorithm which computes
an approximate pure Nash equilibrium with high probability.

As a byproduct of this work, we derive bounds on the approximate price of
anarchy in Shapley values congestion games which we use to bound the ineffi-
ciency of approximate stable outcomes.

Existence of Equilibria

We focus on the genaralised model, where each player may control multiple com-
modities and study existence of pure Nash equilibria. We even investigate the
case where a player can ditribute the flow of a commodity among her available
resources (splittable case). Figure 1.9 gives a comparison of our results to the
previously known (single-commodity per player).

What is previously known: On weighted congestion games, the most
common method to share the resource’s total cost among her users is the pro-
portional sharing. However, PS method lacks a desirable property, it does not
always guarantee existence of pure Nash equilibria. Assume that C is the set
of resource cost functions. It is known that if C consists of only affine or only
exponential functions, then existence of equilibria is guaranteed [47]. If C is re-
stricted to only affine functions, then [48] shows that weighted congestion games
are exact potential games.

Regarding existence of approximate equilibria under proportional sharing,
a recent study is by Hansknecht, Klimm and Skopalik [45], who develop tech-
niques to obtain ρ-approximate potential functions (which prove convergence of
ρ-improvement steps). For concave functions, they show upper bounds for the
approximation factor of 3

2 and for polynomials of maximum degree d, an upper
bound of d+ 1.

Using Shapley values instead of proportinal sharing, Kollias and Roughgar-
den [57] show that such games are potential games, therefore they guarantee
existence of pure Nash equilibria [57]. A characterisation for a much wider
class of cost sharing methods was given by Gopalakrishnan et al. [43]. More
specifically, [43] shows that the only cost sharing method that guarantees pure
Nash equilibria in games is a generalisation of weighted Shapley values. In
our model, this result applies as follows. Weighted SV with sampling weights
λi =

(
f ie
)γ

is the only cost sharing method that guarantees pure Nash equi-
libria in single-commodity weighted congestion games for general convex cost
functions. However, it is unknown whether this property carries over to the
multi-commodity per player case.

Thesis contribution: As soon as we extend to the multi-commodity per
player model [38], we prove that the only cost sharing method that admits
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Figure 1.9: Results for existence of pure Nash equilibria in atomic (weighted) SV
congestion games with single- and multi-commodity players for continuous and non-
decreasing (convex) cost functions. The thesis contribution is in blue colour.

Commodities: Single Multiple Multiple

Unsplittable Unsplittable Splittable

SV Potential Potential Potential
λi =

(
f ie
)γ
, γ = 0 Games [57] Games [38] Games [38]

weighted SV PNE [43] No PNE [38] No PNE [38]
λi =

(
f ie
)γ
, γ ∈ R

pure Nash equilibria restricts to Shapley values, where all players have identical
sampling weights. This is the first result giving this separation from the single-
commodity model regarding existence of equilibria. We also focus on a splittable
version of the multi-commodity model where each commodity can split and
distribute her flow in any way among her strategies. We show that such games
under SV remain potential games, while, under weighted SV, we give instances
with no pure Nash equilibria. Figure 1.9 exhibits a summary of these results.

Efficiency of Equilibria

We study the efficiency of equilibria in this class of games by computing the
price of anarchy and the price of stability. The PoA is a ratio which compares
the worst equilibrium to the optimum. On the other hand, the PoS compares
the best pure Nash equilibrium to the optimum. Our results hold for the multi-
commodity per player model, thus also for the single-commodity one.
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Figure 1.10: Results for efficiency of equilibria in atomic congestion games under vari-
ous cost-sharing methods with single- and multi-commodity players, and cost functions
satisfying natural assumptions (see page 78). The thesis contribution is in blue colour.

Commodities: Single Multiple

PoA PoS PoA PoS

SV tight bounds upper bound tight bounds upper bound
[57] (tight for [38] (tight for

polynomials) polynomials)
[37] [38]

general tight bounds tight bounds
cost-sharing [37] [38]
methods

What is previously known: Using Shapley values in weighted conges-
tion games (as an alternative to proportional sharing), was introduced in [57]
where authors give tight bounds on PoA. Gkatzelis et al. [41] show that, among
all cost-sharing methods that guarantee existence of pure Nash equilibria in
weighted congestion games, Shapley values minimise the worst PoA and pro-
portional sharing is near optimal in general, for convex cost functions and single-
commodity players. Authors in [56], [75] also discuss the optimality of SV for
the extended model with non-anonymous costs by using set functions. Network
cost sharing games with fixed resource costs was studied in [16] while variants
of it were studied in [83] and [23]. Note that constant resource costs allow
concave resource cost functions which we disallow in our model. For example,
let the cost function of a resource e be ce(ne) = 2, where ne > 0 the number
of users of e. Then ce(0) = 0 and ce(ne) = 2 for any ne > 0, which gives
a concave function. Looking at the same setting as my contribution but for
other than Shapley cost sharing methods, [49] gives efficiency bounds that de-
pend on cost functions and cost sharing methods. The methods they study are

(a) average cost sharing where Xi(P ) =
fie(P )·Ce(fie(P ))

fe(P ) , (b) marginal cost pric-

ing where Xi(P ) = f ie(P ) · C ′e(f ie(P )) and (c) incremental cost sharing where
Xi(P ) = Ce(fe(P ))− Ce(fe(P )− f ie(P )).

For network cost-sharing games, the price of Stability was introduced in [5],
which was further studied in [15, 16, 57] for weighted players and various cost-
sharing methods. For undirected network games with Shapley cost sharing, [5]
gives a PoS bound of Hk

1, which was later improved by [28]. In a more general
setting with non-anonymous but submodular cost functions, [75] bounds the
PoS for Shapley values. Klimm and Schmand [56] focus on non-anonymous
costs allowing any cost function and parameterising by the number of players.
For arbitrary cost functions, they prove that PoS equals to Θ(nlogn) and, for
supermodular functions, equals to n.

Thesis contribution: We study the efficiency of (weighted) SV weighted
congestion games through price of anarchy and price of stability. We give the
recipe for computing the price of anarchy (PoA) and the price of stability (PoS)

1Hk is the harmonic sum: Hk =
∑k
i=1

1
i
.
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of cost-sharing methods in weighted congestion games with multi-commodity
players. In addition to the multi-commodity player extension, we greatly gen-
eralise our PoA results to general cost sharing methods and general (convex)
cost functions satisfying natural assumptions. In particular, we present general
tight price of anarchy bounds, which are robust, thus, they also apply to general
equilibrium concepts. We then turn to the price of stability and prove an upper
bound for the Shapley values cost-sharing method, which holds for general sets
of (convex) cost functions and which is tight in special cases of interest, such as
bounded degree polynomials. To prove this upper bound, we use the potential
of such games2. Also, for bounded degree polynomials, we have a somehow
surprising result, showing that a slight deviation from the Shapley value has a
huge impact on the price of stability. In fact, as soon as you deviate to weight
dependant sampling weights (weighted Shapley values), the price of stability
becomes as bad as the price of anarchy. Figure 1.10 summarises these results.

2Shapley values (SV) congestion games with multi-commodity players are exact potential
games (see Theorem 4.2.1 in page 79).
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Chapter 2

Social Context in
Congestion Games

This chapter formally presents an analysis of my thesis contribution in the class
of social context congestion games, which was introduced in Section 1.3.1. We
study the existence of approximate pure Nash equilibria in social context con-
gestion games. This class of games consists of congestion games embedded in a
social context in a sense that players may express altruistic behaviors towards
others. For any given set of allowed cost functions C, we provide a thresh-
old value µ(C), and show that for the class of social context congestion games
with cost functions from C, ρ-Nash dynamics are guaranteed to converge to ρ-
approximate pure Nash equilibrium if and only if ρ > µ(C). Interestingly, µ(C)
is related and always upper bounded by Roughgarden’s anarchy value [72].

2.1 The Model

Let N be a non-empty finite set of n players and let E be a non-empty finite set
of m resources. A congestion game is a tuple (N,E, (Pi)i∈N , (ce)e∈E), where
each player chooses her pure strategy Pi ⊆ E from a given set of available
strategies P ⊆ 2E . A state or strategy profile P = (P1, . . . , Pn) specifies a
strategy for every player. Each resource e ∈ E is associated with a cost or delay
function ce : N → E+. The load ne(P ) of resource e in a state P is the number
of players using resource e, i.e., ne(P ) = |i ∈ N : e ∈ Pi|. The personal cost of
a player i is given by Xi(P ) =

∑
e∈Pi ce(ne(P )).

We extend the definition of congestion games by embedding in it a social
context. A social context is defined by an n×n matrix Ξ = (ξij)i,j∈N where ξij¿0
expresses player i’s interest towards player j. A social context is symmetric, if
ξij = ξji for all i, j ∈ N . Otherwise, the context assymetric. Throughout, we
assume that ξii ≥ ξij for all i, j ∈ N and that the self-interest value for every
player i is scaled to ξii = 1. This implies that ξij ≤ 1.

The perceived cost of a player i ∈ N is given by a linear combination of his
personal cost and a weighted sum of personal costs of the remaining players,

Xi(P,Ξ) = Xi(P ) +
∑

j∈N,j 6=i

ξij ·Xj(P ) =
∑
j∈N

ξij ·Xj(P ).
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The social context extension of congestion games is classified as a cost min-
imisation game where every player wishes to minimise his perceived cost.

Improvement move (better response). In a social context congestion game,
we call a unilateral deviation of some player i ∈ N from P to (P ′i , P−i) an
improvement move if

Xi(Pi, P−i,Ξ) > Xi(P
′
i , P−i,Ξ).

ρ-improvement move. For a ρ ≥ 1, such a unilateral deviation is called a
ρ-improvement move for player i if

Xi(Pi, P−i,Ξ) > ρ ·Xi(P
′
i , P−i,Ξ).

ρ-Nash dynamics. A sequence of ρ-improvement moves is called ρ-Nash dy-
namics. Thus, for each step in ρ-Nash dynamics, there exists a player i who
decreases his perceived cost by more than a factor ρ.

Pure Nash equilibrium. A pure Nash equilibrium in a game with social
context is a state P ∈ P where no player can improve its perceived costs, i.e.,

Xi(Pi, P−i,Ξ) ≤ Xi(P
′
i , P−i,Ξ)

for every player i and alternative strategy P ′i .

ρ-approximate pure Nash equilibrium. For a ρ ≥ 1, a ρ-approximate pure
Nash equilibrium is a state P ∈ P where

Xi(Pi, P−i,Ξ) ≤ ρ ·Xi(P
′
i , P−i,Ξ)

for every player i and alternative strategy P ′i .

ρ-potential function. For ρ ≥ 1, a function Φ is called a ρ-potential function
if Xi(Pi, P−i,Ξ) > ρ ·Xi(Pi, P−i,Ξ) implies Φ(P ) > Φ(P ′i , P−i). For ρ = 1, this
definition coincides with the definition of generalised potential functions in [62].
Such a function is called an exact potential function if Xi(P ) −Xi(P

′
i , P−i) =

Φ(P )− Φ(P ′i , P−i) for every state P , player i ∈ N and strategy P ′i ∈ Pi.

2.2 General Social Context

This section focuses on congestion games with general1 social context, where we
study existence of approximate pure Nash equilibria.

2.2.1 The Threshold Value µ(C)
For any given set of allowed cost functions C, we provide a threshold value
µ(C), and show that for the class of social context congestion games with cost
functions from C, ρ-Nash dynamics are guaranteed to converge to ρ-approximate
pure Nash equilibrium if and only if ρ > µ(C). The threshold value µ(C) is
defined as follows.

1There are no restrictions on values ξij other than ξij ∈ [0, 1].
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Figure 2.1: Threshold values µ(C) for some classes of cost functions and comparison
to the anarchy value β(C) by Roughgarden [72]. Polynomials are of maximum degree
d and have non-negative coefficients.

Cost functions C µ(C) β(C)
concave 4/3 ≈ 1.333 4/3 ≈ 1.333

polynomials d
0 1 1
1 4/3 = 1.333 4/3 = 1.333

2 8/5 = 1.6 3
√

3/(3
√

3− 2) ≈ 1.626

3 81/43 = 1.884 4 3
√

4(4 3
√

4− 3) ≈ 1.895

4 243/113 = 2.1504 5 4
√

5(5 4
√

5− 4) ≈ 2.1505
d θ(d/ log d) θ(d/ log d)

exponentials αx, α > 1 α unbounded

Definition 13. For a set of allowed cost functions C, define

µ(C) = sup
c∈C

sup
x∈N

{
x · c(x)

(x− 1) · c(x− 1) + c(x)

}
.

An interesting observation is that µ(C) is related to the anarchy value β(C)
introduced by Roughgarden [72]. He showed that the price of anarchy of non-
atomic congestion games with cost functions in C is upper bounded by

β(C) = sup
c∈C

sup
x,y≥0

{
x · c(x)

y · c(y) + (x− y) · c(x)

}
.

Observe that µ(C) ≤ β(C) for all sets of cost functions C, since µ(C) is more
restrictive, i.e., it requires y = x − 1 and x ∈ N . For some sets of functions
C such as polynomials of maximum degree d with non-negative coefficients,
µ(C) ≈ β(C). However, µ(C) can also be significantly better, i.e., for exponential
cost functions. Figure 2.2.1 summarises specific values of µ(C) and β(C) for
certain cost functions C.

For general cost functions, µ(C) can also be unbounded. Consider, for ex-
ample, a convex function where c(x− 1) = 0 and c(x) = 1. For such functions,
one can easily adapt our analysis to show that ρ-improvements cycle for some
ρ = Θ(n). In section 2.3, we show that if we restrict to symmetric social con-
text, there can be a cycle of Θ(

√
n)-improvements even for singleton games with

binary context on two resources with convex cost functions. We also show that
in this case Θ(

√
n) is the worst possible.

2.2.2 Upper Bound

We start with the upper bound, i.e., by showing convergence for any α > µ(C).

Theorem 2.2.1. In social context congestion games with cost functions in C, ρ-
Nash dynamics converge to an ρ-approximate Nash equilibrium for any ρ > µ(C).

Proof. Denote φei (P ) =
∑
j∈[n]:e∈Pj ξij . Assume by way of contradiction that

there exists a cycle of ρ-improving steps. On this cycle fix a step P → P ′, where
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P ′ = (P−i, P
′
i ) for some player i, such that

Xi(P ) =
∑
e∈Pi

ce(ne(P )) ≤ Xi(P
′) =

∑
e∈P ′i

ce(ne(P
′)). (2.1)

The step P → P ′ with P ′ = (P−i, P
′
i ), for player i, must exist, since otherwise

each step in the cycle reduces her cost, thus each step improves Rosenthal’s
potential function [69], which leads in a pure Nash equilibrium. This contradicts
the cycle assumption we make in the beginning of the proof. In this step, player
i improves by a factor ∑

e∈E φ
e
i (P ) · ce(ne(P ))∑

e∈E φ
e
i (P

′) · ce(ne(P ′))
,

where the numerator expresses i′s perceived cost in outcome P , and the de-
nominator her perceived cost in P ′. By splitting the resources in the sum of
e ∈ Pi \ P ′i and e ∈ P ′i \ Pi, we can upperbound this factor by

≤
∑
e∈Pi\P ′i

φei (P ) · ce(ne(P )) +
∑
e∈P ′i\Pi

φei (P ) · ce(ne(P ))∑
e∈Pi\P ′i

φei (P
′) · ce(ne(P ′)) +

∑
e∈P ′i\Pi

φei (P
′) · ce(ne(P ′))

.

Since player i makes this step (due to our assumption) which does not reduce
her personal cost, we have that for all e ∈ P ′i \ Pi, ce(ne(P ′)) ≥ ce(ne(P )) and
φei (P

′) = φei (P ) + 1 (resource e in P ′ includes player i as a user). Similarly,
for e ∈ Pi \ P ′i , we have ce(ne(P

′)) = ce(ne(P ) − 1) and φei (P
′) = φei (P ) −

1. Moreover, (2.1) implies
∑
e∈Pi\P ′i

ce(ne(P )) ≤ ∑e∈P ′i\Pi
ce(ne(P

′)). Using

these, we can upper bound our factor by∑
e∈Pi\P ′i

φei (P ) · ce(ne(P )) +
∑
e∈P ′i\Pi

φei (P ) · ce(ne(P ))∑
e∈Pi\P ′i

φei (P
′) · ce(ne(P ′)) +

∑
e∈P ′i\Pi

(φei (P ) + 1) · ce(ne(P ′))

≤
∑
e∈Pi\P ′i

φei (P ) · ce(ne(P ))∑
e∈Pi\P ′i

φei (P
′) · ce(ne(P ′)) +

∑
e∈P ′i\Pi

ce(ne(P ′))

≤
∑
e∈Pi\P ′i

φei (P ) · ce(ne(P ))∑
e∈Pi\P ′i

(φei (P )− 1) · ce(ne(P )− 1) +
∑
e∈Pi\P ′i

ce(ne(P ))

≤ max
e∈Pi\P ′i

φei (P ) · ce(ne(P ))

(φei (P )− 1) · ce(ne(P )− 1) + ce(ne(P ))
.

where we used (2.1) in the second to last step. Observe, that this expression
is increasing in φei (P ) and for each e ∈ Pi, we have φei (P ) =

∑
j∈[n]:e∈Pj ξij ≤∑

j∈[n]:e∈Pj 1 = ne(P ). Thus

max
e∈Pi\P ′i

φei (P ) · ce(ne(P ))

(φei (P )− 1) · ce(ne(P )− 1) + ce(ne(P ))
.

≤ max
e∈Pi\P ′i

ne(P ) · ce(ne(P ))

(ne(P )− 1) · ce(ne(P )− 1) + ce(ne(P ))

≤ µ(C),
which is a contradiction to ρ > µ(C) .
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Figure 2.2: For x = 3, the lower bound cycling instance: (a) ; (b) ; (c) ;

(d) ; (e) ; (a). Directed arrows express friendships of the corresponding
vertex (player). The dashed line indicates a separation on users depending on
which resource they use, r1 or r2.

(a) (b)

(c) (d)

(e) (a)

2.2.3 Lower Bound

We proceed by providing a matching lower bound.

Theorem 2.2.2. Given a set of cost functions C, one can construct a single-
ton congestion game with (asymmetric) binary social context with cost functions
from C, where µ(C)-Nash dynamics cycle, even for |E| = 2 resources with iden-
tical latency functions.

Proof. Given C we construct a congestion game with asymmetric binary social
context as follows. Let c ∈ C be the cost function and x ∈ N the integer
that achieves µ(C) in Definition 13. Construct a game with two resources with
identical cost function d and a cyclic ordered set N = {0, . . . , 2x − 2} of n =
2 · x− 1 players. The asymmetric binary social context Ξ is defined as follows:
Each player i ∈ N considers the next x − 1 in N as friend, i.e., ξij = 1 if
j ∈ [i, i + x − 1] and ξij = 0, otherwise. Here intervals are considered modulo
2x− 1.

Define the initial state P where the x players in {0, . . . , x− 1} are assigned
to one resource and the remaining x − 1 players {x, . . . , 2x − 2} to the other
resource. In this profile, the perceived cost of player 0 is X0(P ) = x · c(x).
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By deviating to the other resource, player 0 can achieve a perceived cost of
c(x) + (x− 1) · c(x− 1). Thus, this is a ρ-improving step for

ρ =
x · c(x)

(x− 1) · c(x− 1) + c(x)
= µ(C).

By symmetry of social context Ξ, the remaining players can also iteratively
improve in the order {1, . . . , 2x − 2} by the same factor. We end up in a state
similar to P , except that each player is now assigned to the other resource.
Then Theorem 2.2.2 follows. Figure 2.2 illustrates this cycle for x = 3.

2.3 Symmetric Binary Social Context

This section restricts to symmetric binary1 social context. We consider conver-
gence of ρ-Nash dynamics in the class of social context congestion games.

2.3.1 Lower Bound

We start with the following lower bound which is a singleton congestion game
with symmetric binary social context.

Theorem 2.3.1. There exists a singleton congestion game with symmetric bi-
nary social context, where ρ-Nash dynamics cycle for ρ = 1

3
√

2
· √n, even for

|E| = 2 resources with identical convex latency functions.

Proof. We prove the theorem by constructing an instance of singleton congestion
games with binary social context Ξ and identical cost functions, where ρ-Nash
dynamics cycles.

Instance. Let m be any positive integer and consider a congestion game Γ
consisting of a set N of n = 6 ·m players and a set of two resources E = {e1, e2}.
Each player i has two strategies, Pi = {{e1}, {e2}}. The cost functions of the
resources are identical: ce1(x) = ce2(x) = c(x) with c(x) = 0 for x ≤ 3 ·m− 1,
c(3 · m) = 1√

3·m+1
and c(3 · m + 1) = 1. The friendships among players are

described in Figure 2.3 (a). More specifically, we partition the players in 6 sets
of m players each, such that Ai = {ai1, . . . , aim} and Bi = {bi1, . . . , bim}, for
i ∈ {1, 2, 3}. Then, the friendship edges form (i) a complete bipartite graph
between sets Ai and Bi for all i ∈ {1, 2, 3}, and (ii) a complete bipartite graph
between every pair of sets B1, B2, B3.

Cycle. In the initial state, the players from A1, B1 and A3 use resource e1 and
the players from B3, A2 and B2 use resource e2. This is illustrated in Figure
2.3 (b). We show that we can incrementally swap the players from A1 and B3

ending up in a state where B1, A3 and B3 use resource e1 and A2, B2 and A1

use resource e2. Since the cost functions are identical this state is symmetric to
the initial state and we can proceed in the same way by swapping A2 with B1

and afterwards A3 with B2.

1A social context where ξij = ξji, for every pair of players i, j and ξij can be either 0 or
1. Note that in this work, we have not investigated the symmetric non-binary.
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2.3. SYMMETRIC BINARY SOCIAL CONTEXT

Figure 2.3: (a) Illustration of players’ friendships (by undirected arcs) in the
lower bound instance as described in Theorem’s 2.3.1 proof, (b) the initial state
of the cycle, as described in the same proof.

(a) (b)

e1 e2 e1 e2

Observe that there are no friendship edges between any pair of players in
A1 ∪ B3. Thus, all we need to show is that player a11 can improve by at least
a factor ρ by deviating to resource e2 and afterwards b31 by deviating to e1. In
the initial state a11 has m internal and 0 external friends2. Thus deviating to
e2 will change its perceived cost by a factor

(m+ 1) · c(3 ·m)

c(3 ·m+ 1) +m · c(3 ·m− 1)
=

m+ 1√
3 ·m+ 1

>

√
m

3
.

After this move, b31 can deviate to e1, improving its perceived cost by a factor

(m+ 1) · c(3 ·m+ 1) + 2 ·m · c(3 ·m− 1)

(3 ·m+ 1) · c(3 ·m)
=

m+ 1√
3 ·m+ 1

>

√
m

3
.

The Theorem 2.3.1 follows, since m = n
6 .

Note that although this instance has a cycle of ρ-improvement moves for
ρ = Ω(

√
n), the state where A1, A2 and A3 use resource e1 and B1, B2 and

B3 use resource e2 is a pure Nash equilibrium. To see this, observe that the
perceived cost of some player a ∈ A1 ∪ A2 ∪ A3 is m+1√

3m+1
and deviating would

result in a larger perceived cost of m + 1. Similarly, the perceived cost some
player b ∈ B1 ∪ B2 ∪ B3 is

√
3m+ 1 and deviating would result in a perceived

cost of m+ 1 ≥
√

3m+ 1.
The conclusion is that even if there is a pure Nash equilibrium, we didn’t

achieve to prove convergence to this state. However, we provide the threshold
value for which, ρ-Hash Dynamics with ρ larger than the threshold converge to
a ρ-approximate pure Nash equilibrium.

2.3.2 Upper Bound

In the following theorem, shows that the existence of a ρ-improvement cycle
(starting from a specific configuration) implies that ρ ≤ O(

√
n). Our analysis

builds on ideas from the lower bound.
2As friends of a player i, we consider any other player j for which it holds that ξij > 0.

Internal friends of i are the friends of i who use the same resource as i, while her external
friends are her friends who use any other resource excepte the ones that i uses.

41



2.3. SYMMETRIC BINARY SOCIAL CONTEXT

Theorem 2.3.2. In social context congestion games for |E| = 2, for every cycle
(starting from a specific configuration) of ρ-improvement moves, it holds that
ρ ≤
√

2 · √n.

Proof. Assuming that a cycle exists, we prove an upper bound on the improve-
ment factor of the game. In particular, we firstly prove the existence of a special
pair of moves, called a balance-pair of moves. For every case, we compute and
maximise the improvement factors of the moves that form the balance-pair, say
ρ1 and ρ2. The main improvement factor ρ of the game is equal to the minimum
of factors ρ1, ρ2 and is computed by setting ρ1 and ρ2 equal.

Existence of a balance-pair of moves. We define by int(P ) a numerical
value that expresses how much players using the same resource care for each
other, that is, int(P ) =

∑
i,j:Pi=Pj

ξij , and we call this value total internal
interest of players in a profile P . Assume now that we have a cycle starting
from the profile with the minimum total internal interest, say P0. Choose the
next profile in the cycle, say Pl, such that n1(Pl) = n1(P0) and n2(Pl) = n2(P0).
Notice that the number of improving steps between profile P0 and Pl is even
and define that number with l. By definition of P0, we have

int(P0) ≤ int(Pl) (2.2)

which implies that these l steps do not decrease the total internal interest.
The number of steps from e1 to e2 equals to the number of steps from e2

to e1 which equals to l
2 . For each step from e1 to e2, there exists a step from

e2 to e1 that satisfies the following. The load vector (Se1 , Se2) before the e1 to
e2 step is the same as after the e2 to e1 step. A pair of steps satisfying this
property is called a balance-pair of moves.

Claim 1. In a cycle, there exists a balance-pair of moves that does not decrease
the total internal interest.

Proof. Assume that every balance-pair, between profiles P0 and Pl, decreases
the total internal interest. Then the total internal interest in P0 must be lower
than the total internal interest in Pl, which is contradicted by the definition of
P0, ineq.(2.2). Therefore there should exist at least one balance-pair of moves,
between P0 and Pl, that do not decrease the total internal interest, which proves
our claim.

Computing the improvement factor ρ. Consider a congestion game
under social context with two resources 1, 2. The delay functions are given by
c1, c2 and the loads by S1, S2, accordingly. Assume now that we have a cycle.
Then by Claim (1), there is a balance-pair of moves that do not decrease the
total internal interest. Assume w.l.o.g. that the first deviating move of the
balance-pair starts from resource 1. Then define A = c1(S1), B = c1(S1 + 1),
C = c2(S2) and D = c2(S2 +1). There are two cases: (1) the first step increases
and the second decreases the total interest and, (2) the first step decreases and
the second step increases the total internal interest. The ‘third’ case where both
steps increase the total internal interest is actually a subcase of the case (1).

Case 1: Increasing first step / decreasing second step
in total internal interest.
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Name as player 1, the player who deviates from resource 1 to resource 2, and
as player 2, the one who deviates from resource 2 to resource 1. Assume that
player 1 cares about his internal friends (in resource 1) by a value l, and, about
his external friends (in resource 2) by a value l+ k′, where k′ ≥ 0. Notice that,
by deviating, he increases the total internal interest by k′. Player 2 cares about
his external friends by a value m, and, about his internal friends by a value
m + k, where k ≤ k′. Notice that dy deviating, player 2 decreases the total
internal interest by k. The improvement factor of a deviating step Pi → P ′i of a
player i, equals to his perceived cost X(Pi,P−i,Ξ) over his new perceived cost
X(P ′i , P−i,Ξ), where X(Pi, P−i,Ξ) > X(P ′i , P−i,Ξ). The improvement factors
of player 1 and player 2 are given by ρ1 and ρ2, accordingly,

ρ1 =
l · (B + C) +B + k′ · C
l · (A+D) + (k′ + 1) ·D, ρ2 =

m · (A+D) + (k + 1) ·D
m · (B + C) +B + k · C . (2.3)

Subcase (i) : B−A ≤ D−C ⇒ B+C ≤ D+A. Observe that ρ1 is decreasing
in l and since ρ1 > 1, it is maximised for l = 0,

ρ1 ≤
B + k′ · C
(k′ + 1) ·D

≤ B + k · C
(k + 1) ·D (since C ≤ D and k ≤ k′). (2.4)

Player 2 cares about his internal and external friends by a value 2 ·m + k.
Since ξij ≤ 1, he has at least 2 ·m+ k friends. Therefore the number of players
can be lower bounded by 2 ·m + k + 1 and we derive an upper bound for m,
m ≤ 1

2 · (n− k − 1). Therefore ρ2 in (2.3), is maximised as follows,

ρ2 ≤
1
2 · (n− k − 1) · (A+D) + (k + 1) ·D
1
2 · (n− k − 1) · (B + C) +B + k · C

≤ (n− k − 1) ·D + 2 · (k + 1) ·D
(n− k − 1) · C + 2 ·B + 2 · k · C (A ≤ B)

=
(n+ k + 1) ·D

(n+ k − 1) · C + 2 ·B . (2.5)

By setting the maximised factors ρ1, ρ2 equal and solving for D, we have

(2.4) = (2.5) : D =

√
(B + k · C) · (C · (n+ k − 1) + 2 ·B)

(k + 1) · (n+ k + 1)
.

Substituting D to the maximised factor ρ2 in (2.5) (or to ρ1 in (2.4)), we have
the main factor of the game

ρ ≤
√

(B + k · C) · (n+ k + 1)

(k + 1) · (C · (n+ k − 1) + 2 ·B)

≤
√

(B + (n− 1) · C) · ((n+ n− 1 + 1))

2 ·B + (n− 1) · C

(
n ≥ 2 ·m+ k + 1⇒ n ≥ k + 1

⇒ 0 ≤ k ≤ n− 1
)

≤
√

2 · n.
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Subcase (ii) : B − A > D − C ⇒ B + C > D + A. Factor ρ2 is decreasing in
m and since ρ2 > 1, it is maximised for m = 0,

ρ2 ≤
(k + 1) ·D
B + k · C . (2.6)

Player 1 cares about his internal and external friends by a value 2 · l+ k. Since
ξij ≤ 1, he has at least 2 · l+ k friends. Therefore the number of players can be
lower bounded by 2·l+k+1 and we derive an upper bound for l, l ≤ 1

2 ·(n−k−1).
Therefore ρ1 in (2.3), is maximised as follows,

ρ1 ≤
1
2 · (n− k′ − 1) · (B + C) +B + k′ · C

1
2 · (n− k′ − 1) · (A+D) + (k′ + 1) ·D (l ≤ 1

2
· (n− k′ − 1))

≤ B · (n− k′ + 1) + C · (n+ k′ − 1)

D · (n+ k′ + 1)
(A ≥ 0)

≤ B · (n− k + 1) + C · (n+ k − 1)

D · (n+ k + 1)
. (since C ≤ D and k ≤ k′)

(2.7)

By setting the maximised factors ρ1, ρ2 equal and solving for D, we have

(2.7) = (2.6) : D =

√
(B · (n− k + 1) + C · (n+ k − 1)) · (B + k · C)

(k + 1) · (n+ k + 1)
.

Substituting D to the maximised factor ρ2 in (2.6) (or to ρ1 in (2.7)), we have
the main factor ρ of the game

ρ =

√
(B · (n− k + 1) + C · (n+ k − 1)) · (k + 1)

(n+ k + 1) · (B + k · C)

≤
√

(B · (n+ k + 1) + C · (n+ k + 1)) · n
(n+ k + 1) · (B + k · C)

(0 ≤ k ≤ n− 1)

=

√
(B + C) · n
B + k · C

≤ √n for k ≥ 1.

For 0 ≤ k < 1, we show that ρ < 2. By (2.7), we have

ρ1 ≤
B · (n+ 1) +D · (n+ 1)

D · (n+ 1)
(D ≥ C)

= 1 +
B

D
, (2.8)

while for factor ρ2, by (2.6), we have

ρ2 ≤
2 ·D
B

. (2.9)

Then either ρ1 or ρ2 is less than 2, which implies ρ = min(ρ1, ρ2) < 2 and
completes the proof of Case 1.

The proof for the other two cases is very similar.
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Case 2: Decreasing first step / increasing second step
in total internal interest.

In this case, the deviation of player 1 decreases the total internal interest. Since
this is a balance-pair, the second step (of player 2) must increase the total
internal interest. Player 1 cares about his external friends by a value l, and,
about his internal friends by a value l+k, where k ≥ 0. Player 2 cares about his
external friends by a value m, and, about his internal friends by a value m+ k′,
where k′ ≥ k. The factors are given by

ρ1 =
l · (B + C) + (k + 1) ·B
l · (A+D) + k ·A+D

ρ2 =
m · (A+D) + k′ ·A+D

m · (B + C) + (k′ + 1) ·B . (2.10)

Subcase (i) : B −A ≤ D−C ⇒ B +C ≤ D+A, which implies that factor ρ1

is maximised for l = 0,

ρ1 =
(k + 1) ·B
k ·A+D

. (2.11)

Similar to the other cases, by n ≥ 2 · m + k′ + 1, factor ρ2 is maximised for
m ≤ 1

2 · (n− k′ − 1),

ρ2 ≤
(n− k′ − 1) · (A+D) + 2 · k′ ·A+ 2 ·D
(n− k′ − 1) · (B + C) + (k′ + 1) · 2 ·B

≤ (n+ k′ − 1) ·A+ (n− k′ + 1) ·D
B · (n+ k′ + 1)

(C = 0)

≤ (n+ k − 1) ·A+ (n− k + 1) ·D
B · (n+ k + 1)

(since A ≤ B and k ≤ k′).
(2.12)

By setting factors ρ1, ρ2 equal and solving for B, we have

(2.11) = (2.12)⇒ B =

√
((n+ k − 1) ·A+ (n− k + 1) ·D) · (k ·A+D)

(k + 1) · (n+ k + 1)
.

Substituting B to the maximised factor ρ1 in (2.11) (or to ρ2 in (2.12)), we have

ρ ≤
√

(k + 1) · ((n+ k − 1) ·A+ (n− k + 1) ·D)

(k ·A+D) · (n+ k + 1)
(2.13)

and we examine the following two cases.

- k ≤ 1: By computing the derivative, factor ρ is maximised for A = 0.
Therefore,

ρ ≤
√

(k + 1) · (n− k + 1) ·D
D · (n+ k + 1)

≤
√

(n2 + 1) · (n2 + 1) ·D
D · (n+ 1)

(numerator: k = n/2

denominator: k = 0

)
≤ (n2 + 1)√

n
,
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which is O(
√
n).

- 0 ≤ k < 1:

(2.13)⇒ ρ ≤ 2 · (n ·A+ (n+ 1) ·D)

D · (n+ 1)
≤ 2 · (1 +

A

D
). (2.14)

By (2.12), we have

ρ2 ≤
(n+ k + 1) ·A+ (n− k + 1) ·D

A · (n+ k + 1)
(since A ≤ B)

≤ 1 +
D

A
. (2.15)

Therefore, if D ≥ A then A
D < 1

(2.14)
=⇒ ρ < 4. If D < A then D

A < 1
(2.15)
=⇒

α2 < 2⇒ ρ = min(ρ1, ρ2) < 2.

Subcase (ii) : B − A > D − C ⇒ B + C > D + A. Smilarly, factor ρ2 is
decreasing in m, therefore is maximised for m = 0,

ρ2 =
k′ ·A+D

(k′ + 1) ·B ≤
D

B
. (2.16)

By inequality n ≥ 2 ·m+ k′ + 1, factor ρ1 is maximised for l = 1
2 · (n− k′ − 1).

Therefore, substituting l in ρ1 in (2.10), we have

ρ1 ≤
1
2 · (n− k′ − 1) · (B + C) + (k′ + 1) ·B
1
2 · (n− k′ − 1) · (A+D) + k′ ·A+D

=
(n− k′ − 1) · (B + C) + 2 · (k′ + 1) ·B

(n− k′ − 1) · (A+D) + 2 · k′ ·A+ 2 ·D

≤ (n− k′ − 1) ·B + 2 · (k′ + 1) ·B
(n− k′ − 1) ·A+ 2 · k′ ·A+ 2 ·D (C ≤ D)

=
(n+ k′ + 1) ·B

(n+ k′ − 1) ·A+ 2 ·D

≤ (n+ (n− 1) + 1) ·B
(n− 1) ·A+ 2 ·D (0 ≤ k′ ≤ n− 1)

≤ 2 · n ·B
(n− 1) ·A+D

≤ 2 · n ·B
D

. (2.17)

By setting factors ρ1, ρ2 equal and solving for B, we have

(2.17) = (2.16)⇒ B =
D√
2 · n

.

Substituting B to the maximised factor ρ1 in (2.17) (or to ρ2 in (2.16)), we have
that the main factor is upperbounded by

ρ ≤ 2 · n ·D
D ·
√

2 · n
=
√

2 · n. (2.18)
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Case 3: Both steps increases the total internal interest.

In this case, player 1 cares about his internal friends by a value l, and for his
external by a value l + k′1, where k′1 ≥ 0. Player 2 cares for his internal friends
by m, while for his external friends for m+ k′2, where k′2 ≥ 0. Then the factors
are given by

ρ1 =
l · (B + C) + k′1 · C +B

l · (A+D) + (k′1 + 1) ·D, ρ2 =
m · (A+D) + k′2 ·A+D

m · (B + C) + (k′2 + 1) ·B .

Since C ≤ D and A ≤ B, both factors are maximised as follows,

ρ1 =
l · (B + C) +B

l · (A+D) +D
, ρ2 =

m · (A+D) +D

m · (B + C) +B
. (2.19)

But this case is covered by Case (1) for k′ = k = 0.

This completes the proof of the three cases, thus the proof of Theorem
2.3.2.

2.4 Conclusion

The study on existence of approximate pure Nash equilibria focuses on general
social context (Section 2.2) and symmetric binary context (Section 2.3). We
allow ρ-improvement steps, that is, an improving step for a player would occur
only if she had a multiplicative ρ-gain, and prove convergence to ρ-approximate
pure Nash equilibria. For general social context, we give a specific value, called
the threshold value µ(C), which characterises convergence of ρ-Nash dynamics:
the latter converge if and only if ρ > µ(C). This threshold value depends on the
given set of allowable cost functions. Interestingly, µ(C) is upper bounded but
close to the price of anarchy of the Wardrop model, especially for polynomial
cost functions.

For symmetric binary social context, the bounds on the factor ρ depend
on the number of players: existence of ρ-improvement cycle implies that ρ ≤√

2 · √n, while non convergence of ρ-Nash dynamics is shown for ρ = 1
3
√

2
· √n.

These results are for two resources and identical convex functions. Extending
the results for n resources would be an interesting follow up to this work.

Another interesting future direction is to find how much social interactions of
players affect the efficiency of such games through PoA and PoS. In particular, it
would be interesting to improve already existing PoA/PoS results. For example,
in [9], they present a lower bound of 1 + 1√

2
and an upper bound of 2 for the

PoS for linear congestion games under altruistic1 social context. In [4], they
prove an upper bound of 7 for the PoA, also for linear congestion games under a
restricted altruistic social context. In addition to these thoughts, an interesting
idea would be to see how we could connect the players through friendships in
order to achieve best or worst Nash equilibrium.

1A social context can be altruistic or spiteful, where in the altruistic case a player cares
only positively for another player.
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Chapter 3

Computation of
Approximate Equilibria

This chapter presents a detailed analysis of the contribution for the model in-
troduced in Section 1.5, p. 23. We study the computation of approximate pure
Nash equilibria in Shapley value (SV) weighted congestion games, introduced
in [57]. This class of games considers weighted congestion games where Shapley
values are used as an alternative (to proportional shares) for distributing the
total cost of each resource among its users. We focus in the interesting subclass
of such games with polynomial resource cost functions and present an algorithm
that computes approximate pure Nash equilibria with a polynomial number of
strategy updates. Since computing a single strategy update is hard, we apply
sampling techniques which allow us to achieve polynomial running time. The
algorithm (Section 3.5) builds on the algorithmic ideas of [12], however, to the
best of our knowledge, this is the first algorithmic result on computation of ap-
proximate equilibria using other than proportional shares as player costs in this
setting. We present a novel relation that approximates the Shapley value of a
player by her proportional share and vice versa (Section 3.3). As side results, we
upper bound the approximate price of anarchy of such games (Section 3.4) and
significantly improve the best known factor for computing approximate pure
Nash equilibria in weighted congestion games of [12].

3.1 The Model

A weighted congestion game is given by G = (N,E, (wi)i∈N , (Pi)i∈N , (ce)e∈E),
where N is the set of players, E the set of resources, wi is the positive weight of
player i, Pi ⊆ 2E the strategy set of player i and ce the cost function of resource
e (drawn from a set C of allowable cost functions). In this work, C is the set of
polynomial functions with maximum degree d and non-negative coefficients.

Strategies. The set of outcomes of this game is given by P = P1×· · ·×Pn and,
for an outcome, we write P = (P1, . . . , Pn) ∈ P, where Pi ∈ Pi. Let (P−i, P

′
i )

be the outcome that results when only player i changes her strategy from Pi
to P ′i and let (PA, P

′
N\A) be the outcome that results when players i ∈ A play

their strategies in P and players i ∈ N \A the strategies in P ′.
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Resource Load. For an outcome P , the set of users of resource e is defined
by Se(P ) = {i : e ∈ Pi} and the total weight on e by fe(P ) =

∑
i∈Se(P ) wi.

Furthermore, let SAe (P ) = {i ∈ A : e ∈ Pi} and fAe (P ) =
∑
i∈SAe (P ) wi be

variants of these definitions for a subset of players A ⊆ N .

Cost Shares. The Shapley value of a player i on a resource e is given as a
function of the player’s identity, the resource cost function and her users A, i.e.,
χe(i, A, ce). For simplicity, I write χe(i, A), or χie(P ) when all users of e are
considered in a state P . Let Ce(x) = x ·ce(x). Then, the joint cost on a resource
e is given by Ce(fe(P )) = fe(P ) · ce(fe(P )) and the costs of players are such
that Ce(fe(P )) =

∑
i∈Se(P ) χie(P ). The total cost of a player i equals the sum

of her costs in the resources she uses, i.e. Xi(P ) =
∑
e∈Pi χie(P ). The social

cost is the total cost of the game which is given by

SC(P ) =
∑
e∈E

fe(P ) · ce(fe(P )) =
∑
e∈E

∑
i∈Se(P )

χie(P ) =
∑
i∈N

Xi(P ). (3.1)

For an A ⊆ N , the social cost of the set A equals SCA(P ) =
∑
i∈AXi(P ).

The cost-sharing method is important for our analysis, as it defines how the
joint cost on a resource e, is distributed among her users. In this paper, the
methods we focus on are the Shapley value and the proportional cost-sharing,
which we introduce in detail.

Shapley Values. For a set of players A, let Π(A) be the set of orderings
π : A → {1, . . . , |A|}. For a π ∈ Π(A), define as A<i,π = {j ∈ A : π(j) < π(i)}
the set of players preceding player i in π and as W<i,π

A =
∑
j∈A:π(j)<π(i) wj

the sum of their weights. For the uniform distribution over Π(A), the Shapley
value of a player i on resource e is given by the expectation of her marginal
contributions (marginal cost increases caused by i),

χe(i, A) = Eπ∼Π(A)

[
Ce

(
W<i,π
A + wi

)
− Ce

(
W<i,π
A

)]
.

Proportional Sharing. The cost of a player i on a resource under proportional
sharing is given by χProp

ie (P ) = wi ·ce(fe(P )). For the rest of the paper, we write

XProp
i (P ) =

∑
e∈E χ

Prop
ie (P ) to indicate when switch to proportional sharing.

ρ-Approximate Pure Nash Equilibrium. Given a parameter ρ ≥ 1 and
an outcome P , we call as ρ-move a deviation from Pi to P ′i where the player
improves her cost by at least a factor ρ, formally Xi(P ) ≥ ρ ·Xi(P−i, P

′
i ). We

call the state P an ρ-approximate pure Nash equilibrium (ρ-PNE) if and only if
no player is able to perform a ρ-move, formally it holds for every player i and
any other strategy P ′i ∈ Pi that Xi(P ) ≤ ρ ·Xi(P−i, P

′
i ).

ρ-Approximate Price of Anarchy. Given a parameter ρ ≥ 1, let Z be
the set of all outcomes and ZN the set of approximate pure Nash equilibria
of the game. Then the ρ-Approximate price of anarchy (ρ-PoA) is defined as

ρ-PoA =
maxP∈ZN SC(P )

minP∈Z SC(P ) .
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Kollias and Roughgarden [57] prove that weighted congestion games under
Shapley values are potential games. To do this, they use the following potential1

function:

Potential Function. Given an outcome P and an arbitrary ordering τ of the
players in N , the potential is given by

Φ(P ) =
∑
e∈E

Φe(P ) =
∑
e∈E

∑
i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}). (3.2)

where {j : τ(j) ≤ τ(i), j ∈ Se(P )} is the set of players j who are users of
resource e and before player i in the ordering τ .

A-Limited Potential. We now restrict this potential function by allowing only
a subset of players A ⊆ N to participate and define the A-limited potential as

ΦA(P ) =
∑
e∈E

ΦAe (P ) =
∑
e∈E

∑
i∈SAe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SAe (P )}). (3.3)

B-Partial Potential. Consider sets A and B such that B ⊆ A ⊆ N . Then the
B-partial potential of set A is defined by

ΦAB(P ) = ΦA(P )− ΦA\B(P ) =
∑
e∈E

ΦAe,B(P ) =
∑
e∈E

ΦAe (P )− ΦA\Be (P ). (3.4)

If the set B contains only one player, i.e., B = {{i}}, then we write ΦAi (P ) =
ΦAB(P ). In case of A = N , ΦNB (P ) = ΦB(P ) =

∑
e∈E Φe,B(P ). Intuitively,

ΦAB(P ) is the value that the players in B ⊆ A contribute to the A-limited
potential.

ρ-Stretch. Similar to ρ-PoA, we define a ratio with respect to the poten-
tial function. Let P̂ be the outcome that minimises the potential, i.e., P̂ =
minP ′∈P Φ(P ′). Then the ρ-stretch is defined as

ρ-Ω = max
P∈ρ-PNE

Φ(P )

Φ(P̂ )
. (3.5)

A-Limited ρ-Stretch. Additionally, we define a ρ-stretch restricted to players
in a subset A ⊆ N . Let ρ-PNEA ⊆ P be the set of ρ-approximate pure Nash
equilibria where only players in A participate. The rest of the players have a
fixed strategy P̄N\A. Then we define the A-limited ρ-stretch as

ρ-ΩA = max
P∈ρ-PNEA

Φ(P )

Φ(P̂ )
= max
P∈ρ-PNEA

Φ(PA, P̄N\A)

Φ(P̂A, P̄N\A)
. (3.6)

3.1.1 Algorithmic Approach and Outline

Our algorithm is based on ideas by Caragiannis et al. [12]. Intuitively, we parti-
tion the players’ costs into intervals [b1, b2], [b2, b3], . . . , [bm−1, bm] in decreasing
order. The cost values in one interval are within a polynomial factor. Note that

1The proof of why this is a potential function can be found in [57].
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this ensures that every sequence of ρ-moves for ρ > 1 of players with costs in
one or two intervals converges in polynomial time.

After an initialization, the algorithm proceeds in phases r from 1 to m− 1.
In each phase r, players with costs in the interval [br,+∞] do α-approximate
moves where α is close to the desired approximation factor. Players with costs
in the interval [br+1, br] make 1 + γ-moves for some small γ > 0. After a
polynomial number of steps no such moves are possible and we freeze all players
with costs in [br,+∞]. These players will never be allowed to move again. We
then proceed with the next phase. Note that at the time players are frozen,
they are in an α-approximate equilibrium. The purpose of the 1 + γ-moves of
players of the neighboring interval is to ensure that the costs of frozen players
do not change significantly in later phases. To that end we utilize a potential
function argument. We argue about the potential of sub games among a subset
of players. We can bound the potential value of an arbitrary q-approximate
equilibrium with the minimal potential value (using the stretch). Compared to
the approach in [12], we directly work with the exact potential function of the
game which significantly improves the results, but also requires a more involved
analysis. We show that the potential of the sub game in one phase is significantly
smaller than br. Therefore, the costs experienced by players moving in phase r
are considerably lower than the costs of any player in the interval [b1, br−1].

The analysis heavily depends on the stretch of the potential function which
we analyze in Section 3.4. The proof there is based on the technique of Sec-
tion 3.3 in which we approximate the Shapley with proportional cost sharing.
For the technical details in both sections we need some structural properties of
costs-shares and the restricted potentials which we show in the next section.

3.2 Shapley Value Weighted Congestion Games

The purpose of this section is to exploit properties of Shapley values (Section
3.2.1) and properties of its potential function (Section 3.2.2), which are impor-
tant for our analysis.

3.2.1 Properties of Shapley Values

The following properties of the Shapley values are extensively used in our proofs.

Proposition 3.1. Fix a resource e. Then for any set of players S and i ∈ S,
we have for j, j1, j2, j

′, j′1, j
′
2, i1, i2 6∈ S:

a. χe (i, S) ≤ χe (i, S ∪ {j}),

b. χe (i, S ∪ {j′}) ≥ χe (i, S ∪ {j1, j2}), with j′ 6= i and wj′ = wj1 + wj2 ,

c. χe (i, S ∪ {j1, j2}) ≥ χe (i, S ∪ {j′1, j′2}), with wj′1 = wj′2 =
wj1+wj2

2 ,

d. χe (i, S) ≥ χe (i1, S\{i} ∪ {i1}) + χe (i2, S\{i} ∪ {i1, i2}),
with wi1 = wi2 = wi

2 .
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Proof. (a) By the definition of Shapley values, we have

χe(i, S ∪ {j}) =
1

(k + 1)!

∑
π∈Π(S∪{j})

(
Ce

(
W<i,π
S∪{j} + wi

)
− Ce

(
W<i,π
S∪{j}

))
≥ 1

(k + 1)!

∑
π∈Π(S∪{j})

(
Ce

(
W<i,π
S + wi

)
− Ce

(
W<i,π
S

))
=

1

k!

∑
π∈Π(S)

(
Ce

(
W<i,π
S + wi

)
− Ce

(
W<i,π
S + wi

))
= χe(i, S).

For (b) and (c), consider χe (i, S ∪ {j1, j2}). Observe, that only for permu-
tations π ∈ Π(S ∪ {j1, j2}) where either j1 < i < j2 or j2 < i < j1 the corre-
sponding contribution to χe (i, S ∪ {j1, j2}) changes if we change the weight of
j1, j2 but keep their sum the same. Fix a permutation π ∈ Π(S ∪ {j1, j2}) with
j1 < i < j2 and pair it with the corresponding permutation π̂ where only j1 and
j2 are swapped. Then the contribution of π and π̂ to χe (i, S ∪ {j1, j2}) is

1

(k + 2)!
·
(
Ce

(
W<i,π
S + wj1 + wi

)
− Ce

(
W<i,π
S + wj1

))
+Ce

(
W<i,π
S + wj2 + wi

)
− Ce

(
W<i,π
S + wj2

))
. (3.7)

Since Ce(x+ wi)− Ce(x) is convex in x, we get that

(3.7) ≥ 1

(k + 2)!
·
(
Ce

(
W<i,π
S + wj′1 + wi

)
− Ce

(
W<i,π
S + wj′1

)
+Ce

(
W<i,π
S + wj′2 + wi

)
− Ce

(
W<i,π
S + wj′2

))
,

and

(3.7) ≤ 1

(k + 2)!
·
(
Ce

(
W<i,π
S + wj1 + wj2 + wi

)
− Ce

(
W<i,π
S + wj1 + wj2

)
+Ce

(
W<i,π
S + 0 + wi

)
− Ce

(
W<i,π
S + 0

))
.

Part (c) and (b) follow, respectively. Part (d) of the proposition is shown in
Lemma 24 of Chapter 4 for a generalisation of this model.

3.2.2 Properties of Limited and Partial Potentials

We proceed to the properties of the restricted types of the potential function
defined before (Proposition 3.2 and 3.3). At the end, we give relation between
partial potential and Shapley values (Lemma 2).

Proposition 3.2. Let A and B be sets of players such that B ⊆ A ⊆ N , P and
P ′ outcomes of the game such that the players in A ⊆ N use the same strategies
in both P and P ′, and z ∈ N an arbitrary player. Then
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(a) ΦAB(P ) ≤ ΦB(P ), (b) ΦAB(P ) = ΦAB(P ′), (c) Φz(P ) = Xz(P ).

Proof. (a) For each e ∈ E, let Ie(P ) = ΦAe (P )−Φ
A\B
e (P ). By definition of the

B-partial potential (3.4), we have

ΦAB(P ) = ΦA(P )− ΦA\B(P ) =
∑
e∈E

Ie(P ). (3.8)

By the definition of limited potential (3.3), for an arbitrary τ , define Ie(P ),
∀e ∈ E, as∑

i∈SAe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SAe (P )})−

∑
i∈SA\Be (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA\Be (P )}). (3.9)

Kollias and Roughgarden [57] proved that the potential is independent of the
ordering τ that players are considered. As mentioned before, ΦA(P ) is a restric-
tion of Φ(P ) where only players in A participate. Thus, independence from τ
also applies to the limited potential.

Firstly, we focus on the first term of (3.9) and choose an ordering where the
players in set A are first. Then we observe that by substituting SAe (P ) with
Se(P ), the cost share remains the same. This is due to the fact that any player
coming after the players in set A in the ordering has no impact in the cost
computation. These are the players who belong in set N \ A (since we assume
players in A are first). Therefore, the first term of (3.9) equals to∑

i∈SAe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

Following the same technique for the second term of (3.9), we choose an ordering

in which the players in A \ B are first. Then we can substitute S
A\B
e (P ) with

S
N\B
e (P ) without affecting the term’s value. Therefore, (3.9) is equivalent to∑
i∈SAe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})−

∑
i∈SA\Be (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\Be (P )}). (3.10)

For each e ∈ E, define I ′e(P ) to be equal to∑
i∈SN\Ae (P )

(
χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})−

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\Be (P )})
)
. (3.11)

Note that I ′e(P ) ≥ 0, ∀e ∈ E. Intuitively, the first term computes the cost with
respect to all players using resource e, Se(P ). Regarding the second term, if
we take away some of these players, i.e., players in B, then due to convexity
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the costs of the remaining players either remain the same or are reduced. This
depends on the position players in B had in the ordering. To simplify, for the
rest of this proof, let

χNi (P ) = χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}), (3.12)

χ
N\B
i (P ) = χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\Be (P )}). (3.13)

Since I ′e(P ) ≥ 0, we get that for each e ∈ E,

Ie(P ) ≤ Ie(P ) + I ′e(P )

which, by (3.10), (3.11), (3.12) and (3.13), is equivalent to∑
i∈SAe (P )

χNi (P )−
∑

i∈SA\Be (P )

χ
N\B
i (P ) ≤

≤
∑

i∈SAe (P )

χNi (P )−
∑

i∈SA\Be (P )

χ
N\B
i (P ) +

∑
i∈SN\Ae (P )

(
χNi (P )− χN\Bi (P )

)
.

(3.14)

By the assumption B ⊆ A ⊆ N , we get that (N \A) ∪ (A \B) = N \B. Thus,
inequality (62) becomes∑

i∈SAe (P )

χNi (P )−
∑

i∈SA\Be (P )

χ
N\B
i (P ) ≤

∑
i∈Se(P )

χNi (P )−
∑

i∈SN\Be (P )

χ
N\B
i (P ).

Substituting χNi (P ), χ
N\B
i (P ) from (3.12), (3.13), respectively, and using (3.10)

we get that the previous is equivalent to

Ie(P ) ≤ Φe(P )− ΦN\Be (P ) ⇔
∑
e∈E

Ie(P ) ≤
∑
e∈E

Φe(P )− ΦN\Be (P ).

By (3.8), we conclude to the desirable ΦAB(P ) ≤ ΦB(P ).

(b) By definition (3.4) of partial potential, we have

ΦAB(P ) = ΦA(P )− ΦA\B(P ) =
∑
e∈E

(
ΦAe (P )− ΦA\Be (P )

)
. (3.15)

For each e ∈ E and any A′ ⊆ A, observe that SA
′

e (P ) = SA
′

e (P ′), thus∑
i∈SAe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SAe (P )})

=
∑

i∈SAe (P ′)

χe(i, {j : τ(j) ≤ τ(i), j ∈ SAe (P ′)}).

Therefore, ΦAe (P ) = ΦAe (P ′). Similarly, we prove that Φ
A\B
e (P ) = Φ

A\B
e (P ′).

Using (3.15), we have

ΦAB(P ) =
∑
e∈E

(
ΦAe (P ′)− ΦA\Be (P ′)

)
= ΦAB(P ′).
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(c) Let P be an outcome of the game. The contribution Φz(P ) of player z
in the potential value is given by

Φ(P )− ΦN\{z}(P ) =
∑
e∈E

(
Φe(P )− ΦN\{z}e (P )

)
=
∑
e∈E

Ie(P ), (3.16)

where Ie(P ) equals∑
i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

−
∑

i∈SN\{z}e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\{z}e }).

Since the potential is independent of the players’ ordering, we choose the τ such
that player z is last. Then (3.16) equals to∑

e∈E
χe(z, {j : τ(j) ≤ τ(z), j ∈ Se(P )})

=
∑
e∈E

χe(z, j : j ∈ Se(P ))

=
∑
e∈E

χze(P ) = Xz(P ).

This completes the proof of Proposition 3.2.

Next, we show that the general potential property also holds for the partial
potential.

Proposition 3.3. Consider a subset B ⊆ N and a player i ∈ B. Given two
states, P and P ′, that differ only in the strategy of player i, then

ΦB(P )− ΦB(P ′) = Xi(P )−Xi(P
′). (3.17)

Proof. By definition of the partial potential (3.4),

ΦB(P )− ΦB(P ′) = Φ(P )− ΦN\B(P )−
(

Φ(P ′)− ΦN\B(P ′)
)

= Φ(P )− Φ(P ′).

Since the underlying game (considering all players in N) is a potential game [57],
we have that Φ(P )− Φ(P ′) = Xi(P )−Xi(P

′), which completes the proof.

In the following lemma, we give a relation between partial potential and
Shapley values.

Lemma 2. Given an outcome P of the game, a resource e and a subset B ⊆ N ,
it holds that

Φe,B(P ) ≤
∑
i∈B

χie(P ) ≤ Φe,B(P ) · (d+ 1),

where d is the maximum degree of the polynomial cost function.
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3.2. SHAPLEY VALUE WEIGHTED CONGESTION GAMES

Proof. By definition (3.4), we have

Φe,B(P ) = Φe(P )− ΦN\Be (P )

=
∑
e∈E

(
Φe(P )− ΦN\Be (P )

)
= Ie(P ). (3.18)

where Ie(P ) equals to

∑
i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

−
∑

i∈SN\Be (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\Be }). (3.19)

Then we break the first term of (3.19) to the sum of

∑
i∈SN\Be (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

+
∑

i∈SBe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

We choose an ordering τ in which all players in N \ B come first. Then the
previous sum is equivalent to

∑
i∈SN\Be (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\Be (P )})

+
∑

i∈SBe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

Substituting the previous sum to (3.19) (first term) gives that

Ie(P ) =
∑

i∈SBe (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

≤
∑

i∈SBe (P )

χe(i, j : j ∈ Se(P ))

=
∑

i∈SBe (P )

χie(P )

=
∑
i∈B

χie(P ).

Equation (3.18) completes the proof of the lower bound. For the upper bound
consider a fixed ordering of the players in D. The partial potential can be
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3.2. SHAPLEY VALUE WEIGHTED CONGESTION GAMES

written as

Φe,B(P ) =
(

Φe(P )− ΦN\Be (P )
)

=
∑

i∈SBe (P )

χe

(
i,
{
j : τ(j) ≤ τ(i), j ∈ SBe (P )

}
∪ SN\Be (P )

)

≥
∫ fNe (P )

f
N\B
e (P )

ce(x)dx

≥
[
x · ce(x)

d+ 1

]fNe (P )

f
N\B
e (P )

=
fNe (P ) · ce

(
fNe (P )

)
− fN\Be (P ) · ce

(
f
N\B
e (P )

)
d+ 1

=
fe (P ) · ce(fe (P ))

d+ 1
−
f
N\B
e (P ) · ce

(
f
N\B
e (P )

)
d+ 1

=

∑
i∈N χie(P )

d+ 1
−
f
N\B
e (P ) · ce

(
f
N\B
e (P )

)
d+ 1

, (3.20)

where the first inequality follows by repeatedly applying Proposition 3.1(c) and
3.1(d) and adding additional players of weight 0 (which do not change the cost
shares). The second inequality holds, since ce is a polynomial of maximum
degree d with non-negative coefficients.

Observe, that f
N\B
e (P ) · ce

(
f
N\B
e (P )

)
is the social cost of P on resource

e if only the players in N \ B are in the game. By Proposition 3.1(a), the cost
shares of those players can only increase if the players in B are joining the game,
i.e.:

fN\Be (P ) · ce
(
fN\Be (P )

)
≤

∑
i∈N\B

χie(P ).

Combining this with (3.20) completes the proof of the claim:

Φe,B(P ) ≥
∑
i∈N χie(P )

d+ 1
−
∑
i∈N\B χie(P )

d+ 1
=

∑
i∈B χie(P )

d+ 1
.

Summing up over all resources e ∈ E yields to the next corollary.

Corollary 1. Given an outcome P of the game and a subset B ⊆ N , it holds
that

ΦB(P ) ≤
∑
i∈B

Xi(P ) ≤ ΦB(P ) · (d+ 1).

Proof. By the definition of the partial potential (3.4) and by applying Lemma 2,
we directly have

ΦB(P ) =
∑
e∈E

Φe,B(P ) ≤
∑
e∈E

∑
i∈B

χie(P ) =
∑
i∈B

Xi(P )
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and ∑
i∈B

Xi(P ) =
∑
i∈B

∑
e∈E

χie(P ) =
∑
e∈E

∑
i∈B

χie(P )

≤
∑
e∈E

Φe,B(P ) · (d+ 1)

= ΦB(P ) · (d+ 1).

3.3 From Shapley to Proportional Sharing

In this section we approximate a state of Shapley value congestion games with
its corresponding weighted congestion game (with proportional sharing). This
approximation guarantee plays an important role in our proofs of the stretch
and for the computation.

Lemma 3. For a player i, a resource e and any state P , the following inequality
holds between her Shapley and proportional cost,

2

d+ 1
· χie(P ) ≤ χProp

ie (P ) ≤ d+ 3

4
· χie(P ).

For d = 1, the equality holds (Proposition 1.1).

Proof. Since ce is a polynomial of maximum degree d with non-negative coeffi-
cients, it is equivalent to show the inequalities for all monomial cost functions
ce(x) = xr, with r = {0, . . . , d}. Details of this reduction can be found in [31].
Fix some resource e with monomial cost function and a player i assigned to e,
i.e., e ∈ Pi. Denote Y = {j 6= i : e ∈ Pj} and w = wi. Define y =

∑
j∈Y wj

and z = w
y . By Proposition 3.1 (b), we can upper bound χie(P ) by replacing Y

with a single player of weight y, i.e.,

χie(P ) ≤ 1

2
·
(
(y + w)r+1 − yr+1

)
+

1

2
· wr+1

= yr+1 · 1

2
·
(
(z + 1)r+1 − 1 + zr+1

)
= yr+1 ·

zr+1 +
1

2
·
r∑
j=1

(
r + 1

j

)
· zj
 =: A

Similarly, by repeatedly using Proposition 3.1 (c) and by adding additional
players of weight 0, we can lower bound χie(P ) by

1

y
·
∫ y

0

(
(x+ w)r+1 − xr+1

)
dx

=
1

y
· 1

r + 2
·
(
(y + w)r+2 − yr+2 − wr+2

)
= yr+1 · 1

r + 2
·
(

(z + 1)
r+2 − 1− zr+2

)
= yr+1 · 1

r + 2
·
r+1∑
j=1

(
r + 2

j

)
· zj =: B.
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3.3. FROM SHAPLEY TO PROPORTIONAL SHARING

The proportional cost of player i , χProp
ie (P ), equals to

w · ce(y + w) = w · (y + w)r = yr+1 · z · (z + 1)r = yr+1 ·
r+1∑
j=1

(
r

j − 1

)
· zj .

To complete the proof we give an upper bound on A

χProp
ie (P )

and a lower bound

on B

χProp
ie (P )

. We have,

A

χProp
ie (P )

=
zr+1 + 1

2

∑r
j=1

(
r+1
j

)
· zj∑r+1

j=1

(
r
j−1

)
· zj

=
zr+1 + 1

2

∑r
j=1

(
r+1
j

)
· zj

zr+1 +
∑r
j=1

(
r
j−1

)
· zj ,

which is upper bounded by

A

χProp
ie (P )

≤ max

(
1, max

1≤j≤r

(
r+1
j

)
2 ·
(
r
j−1

)) = max

(
1, max

1≤j≤r

r + 1

2 · j

)
≤ d+ 1

2
.

(3.21)

This implies the lower bound on χProp
ie (P ) in the statement of the lemma. On

the other hand, by first order conditions,

B

χProp
ie (P )

=

1
r+2 ·

∑r+1
j=1

(
r+2
j

)
· zj∑r+1

j=1

(
r
j−1

)
· zj

,

which achieves its extreme values at the roots of

g(z) :=

r+1∑
j=1

r+1∑
k=1

(j − k)

(
r + 2

j

)(
r

k − 1

)
· zk+j−1.

Lemma 4. 1 The function g : z → ∑r+1
j=1

∑r+1
k=1(j − k)

(
r+2
j

)(
r

k−1

)
· zk+j−1 has

a unique positive real root at z = 1.

By Lemma 4, we conclude that B

χProp
ie (P )

is minimized for z = 1, i.e.,

B

χProp
ie (P )

≥
1
r+2 ·

∑r+1
j=1

(
r+2
j

)∑r+1
j=1

(
r
j−1

) =
1
r+2 · (2r+2 − 2)

2r
≥ 4

r + 3
≥ 4

d+ 3
,

which completes the proof of the upper bound in the lemma.

Summing up over all e ∈ E implies the following corollary for the players’
costs.

Corollary 2. For a player i and any state P , the following inequality holds
between her Shapley and proportional cost:

2

d+ 1
·Xi(P ) ≤ XProp

i (P ) ≤ d+ 3

4
·Xi(P ).

1The proof of this lemma can be found in [33].
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Lemma 5. Any ρ-approximate pure Nash equilibrium for a SV weighted con-

gestion game of degree d is a (d+3)·(d+1)
8 · ρ-approximate pure Nash equilibrium

for the weighted congestion game with proportional sharing.

Proof. Let P be a ρ-approximate pure Nash equilibrium in a SV weighted con-
gestion game. Using the equilibrium condition and Corollary 2, we get

XProp
i (P ) ≤ d+ 3

4
·Xi(P ) ≤ d+ 3

4
· ρ ·Xi(P−i, P

′
i )

≤ d+ 3

4
· d+ 1

2
· ρ ·XProp

i (P−i, P
′
i ).

Since pure Nash equilibria always exist in Shapley value weighted congestion

games [57], for ρ = 1 in the last statement implies existence of (d+3)·(d+1)
8 -

approximate equilibria in weighted congestion games.

3.4 Approximate Price of Anarchy and Stretch

The aim of this section is to provide an upper bound to the D-limited ρ-stretch
of the potential function of our model (Corollary 3), which is used as parameter
in the algorithm. Bounding the stretch, we bound the distance between the po-
tential value in an approximate equilibrium and the minimiser of the potential.
Intuitively, the statement in Corollary 3 indicates that the potential values of
all the approximate equilibria in a SV congestion game are relatively close.

3.4.1 An Upper Bound on ρ-PoA

First, we upper bound the approximate Price of Anarchy for Shapley value
weighted congestion games. This bound is later on used to prove the upper
bound of the stretch stated in Corollary 3.

Lemma 6. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-
tions. Then

ρ-PoA ≤ ρ · (2 1
d+1 − 1)−d

2−
d
d+1 · (1 + ρ)− ρ

.

Proof. Let P be an ρ-approximate pure Nash equilibrium and P ∗ the optimal
outcome. Then

SC(P ) =
∑
i∈N

∑
e∈Pi

χe(i, Se(P ))
Def. ρ-PNE

≤ ρ ·
∑
i∈N

∑
e∈P∗i

χe(i, Se(P ) ∪ {i}).

Due to the convexity of the cost functions, note that the cost share of any player
on any resource is always upperbounded by the marginal cost increase she causes
to the resource cost when she is last in the ordering,

χe(i, Se(P ) ∪ {i}) ≤ Ce(fe(P ) + wi)− Ce(fe(P )).
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3.4. APPROXIMATE PRICE OF ANARCHY AND STRETCH

Thus,

SC(P ) ≤ ρ ·

∑
i∈N

∑
e∈P∗i

Ce(fe(P ) + wi)− Ce(fe(P ))


≤ ρ ·

∑
e∈E

∑
i:e∈P∗i

Ce(fe(P ) + wi)− Ce(fe(P ))


≤ ρ ·

(∑
e∈E

Ce(fe(P ) + fe(P
∗))− Ce(fe(P ))

)
. (3.22)

The last inequality follows from assumption that Ce is a convex function in
players’ weights.

Claim 2. Let λ = 2
d
d+1 ·

(
2

1
d+1 − 1

)−d
and µ = 2

d
d+1 − 1, then for x, y > 0 and

d ≥ 1,it holds

(x+ y)d+1 − xd+1 ≤ λ · yd+1 + µ · xd+1.

Using this claim that was proven in [41], inequality (3.22) becomes

SC(P ) ≤ ρ ·
(∑
e∈E

λ · Ce(fe(P ∗)) + µ · Ce(fe(P ))

)
= ρ · λ · SC(P ∗) + ρ · µ · SC(P ).

Rearranging and substituting the values for λ and µ we get an upper bound on
the ρ-PoA,

ρ-PoA ≤ ρ · λ
1− ρ · µ =

ρ · 2 d
d+1 ·

(
2

1
d+1 − 1

)−d
1− ρ ·

(
2

d
d+1 − 1

) = ρ · 2

2
1
d+1

·

(
2

1
d+1 − 1

)−d
1− ρ · 2

2
1
d+1

+ ρ

=
2 · ρ

(
2

1
d+1 − 1

)−d
2

1
d+1 · (1 + ρ)− 2 · ρ

=
ρ · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + ρ)− ρ

.

3.4.2 An Upper Bound on the Stretch

As we do for the approximate PoA, we now derive an upper bound on the ρ-
stretch, which expresses a ratio between a local and the global optimum of the
potential function.

Lemma 7. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-
tions. Then an upper bound for the ρ-stretch of polynomial SV weighted con-
gestion games is

ρ-Ω ≤ ρ · (2 1
d+1 − 1)−d · (d+ 1)

2−
d
d+1 · (1 + ρ)− ρ

.
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Proof. Let P be a ρ-approximate equilibrium, P ∗ the optimal outcome and
P̂ = minP ′∈P Φ(P ′) the minimizer of the potential which is by definition a pure
Nash equilibrium. Then the ρ-approximate price of anarchy equals to

ρ-PoA = max
P∈ρ-PNE

SC(P )

SC(P ∗)
≥ max
P∈ρ-PNE

SC(P )

SC(P̂ )

Def. Φ
≥ max

P∈ρ-PNE

Φ(P )

SC(P̂ )
.

By Lemma 6 and Corollary 1 for A = N , the ρ-PoA is bounded as follows

max
P∈ρ-PNE

Φ(P )

(d+ 1) · Φ(P̂ )
≤ ρ-PoA ≤ ρ · (2 1

d+1 − 1)−d

2
−d
d+1 · (1 + ρ)− ρ

.

Rearranging the terms gives the desired upper bound of the ρ-stretch,

ρ-Ω = max
P∈ρ-PNE

Φ(P )

Φ(P̂ )
≤ ρ · (2 1

d+1 − 1)−d · (d+ 1)

2−
d
d+1 · (1 + ρ)− ρ

.

3.4.3 An Upper Bound on the ρ-Stretch

We now proceed to the upper bound of the D-limited ρ-stretch. To do this, we
use the ρ-PoA (Lemma 6) and Lemmas 8, 9, which we prove next.

Lemma 8. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions
and P̂ = minP ′∈P Φ(P ′). Then

SC(P )

SC(P̂ )
≤ ρ · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + ρ)− ρ

.

Proof. Let P be an ρ-approximate equilibrium and P ∗ the optimal outcome.
Let P̂ = minP ′∈P Φ(P ′) be the minimizer of the potential and by definition also
a pure Nash equilibrium. Then we can lower bound the ρ-approximate Price of
Anarchy as follows,

ρ-PoA = max
P∈ρ-PNE

SC(P )

SC(P ∗)
≥ max
P∈ρ-PNE

SC(P )

SC(P̂ )
. (3.23)

Combining (3.23) with Lemma 6, the ρ-PoA is bounded as follows,

max
P∈ρ-PNE

SC(P )

SC(P̂ )
≤ ρ-PoA ≤ ρ · (2 1

d+1 − 1)−d

2
−d
d+1 · (1 + ρ)− ρ

,

which completes the proof.

Lemma 9. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions
and D ⊆ N an arbitrary subset of players. Then

ρ-ΩD ≤
(d+ 1)2 · (d+ 3)

8
· SC(P )

SC(P̂ )
.
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Proof. To show the lemma we lower and upper bound the D-partial potential.
Let e be an arbitrary resource. By using Lemma 2 and Lemma 3, we get

Φe,D(P ) ≤
∑
i∈D

χie(P ) ≤ d+ 1

2
·
∑
i∈D

χProp
ie (P ). (3.24)

By definition of the proportional share χProp
ie , (3.24) becomes

Φe,D(P ) ≤ d+ 1

2
·
∑
i∈D

wi · ce(fe(P )) =
d+ 1

2
· fDe (P ) · ce(fe(P ))

=
d+ 1

2
· f

D
e (P )

fe(P )
· fe(P ) · ce(fe(P ))

=
d+ 1

2
· f

D
e (P )

fe(P )
·
∑
i∈N

χie(P ). (3.25)

Rearranging (3.25) gives the following relation of the per unit contribution to
ΦD and Φ,

Φe,D(P )

fDe (P )
≤ d+ 1

2
·
∑
i∈N χie(P )

fe(P )

and by summing up over all resources e, we get

ΦD(P )

WD
≤ d+ 1

2
· SC(P )

W
, (3.26)

where W =
∑
i∈N wi =

∑
e∈E fe(P ) and WD =

∑
i∈D wi =

∑
e∈E f

D
e (P ).

Similar to (3.25), we lower bound the D-partial potential with

Φe,D(P ) ≥ 1

d+ 1
·
∑
i∈D

χie(P ) ≥ 4

(d+ 1) · (d+ 3)
·
∑
i∈D

wi · ce(fe(P ))

=
4

(d+ 1) · (d+ 3)
· f

D
e (P )

fe(P )
·
∑
i∈N

χie(P ).

The first inequality uses Lemma 2 and the second uses Lemma 3. Again we get
a per unit contribution to ΦD and Φ on one resource and in the whole game,

Φe,D(P )

fDe (P )
≥ 4

(d+ 1) · (d+ 3)
·
∑
i∈N χie(P )

fe(P )

⇔ ΦD(P )

WD
≥ 4

(d+ 1) · (d+ 3)
· SC(P )

W
. (3.27)

Combining (3.26) with (3.27) and rearranging the terms proves the lemma,

ΦD(P )

ΦD(P̂ )
≤ d+ 1

2
· SC(P )

W
· WD

1
· (d+ 1) · (d+ 3)

4
· W

SC(P̂ )
· 1

WD

=
(d+ 1)2 · (d+ 3)

8
· SC(P )

SC(P̂ )
.
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By Lemma 8 and Lemma 9, we get the following desirable corollary.

Corollary 3. For ρ ≥ 1, d the maximum degree of the polynomial cost functions
and D ⊆ N an arbitrary subset of players,

ρ-ΩD ≤
(d+ 1)2 · (d+ 3)

8
· ρ · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + ρ)− ρ

.

3.5 Computation of Equilibria

To compute ρ-approximate pure Nash equilibria in Shapley cost-sharing games
we construct an algorithm based on the algorithmic idea by Caragiannis et
al. [12]. The main idea is to separate the players in different blocks depend-
ing on their costs. The players who are processed first are the ones with the
largest costs followed by the smaller ones. The size of the blocks and the dis-
tance between them is polynomially bounded by the number of players n and
the maximum degree d of the polynomial cost functions ce. Formally, we define
Xmax = maxi∈N Xi (P ) as the maximum cost among all players before running
the algorithm. Let BRi (0) be a state of the game in which only player i par-
ticipates and plays her best move. Then, define as Xmin = mini∈N Xi (BRi (0))
the minimum possible cost in the game. Let γ be an arbitrary constant such

that γ > 0, m = log
(
Xmax

Xmin

)
the number of different blocks and br = Xmax · g−r

the block size for any r ∈ [0,m], where g = 2 · n · (d+ 1) · γ−3.
The algorithm is now executed in m− 1 phases. Let P be the current state

of the game and, for each phase r ∈ [1,m−1], let P r be the state before phase r.

All players i with Xi (P ) ∈ [br,+∞] perform an s-move with s =
(

1
t-ΩD

− 2γ
)−1

(almost t-ΩD-approximate moves), while all players i with Xi (P ) ∈ [br+1, br]
perform a t-move with t = 1 + γ (almost pure moves). Let BRi (P ) be the best
response of player i in state P . The phase ends when the first and the second
group of players are in an s- and t-approximate equilibrium, respectively. At
the end of the phase, players with Xi (P ) > br have irrevocably decided their
strategy and have been added in the list of finished players. In addition, before
the described phases are executed, there is an initial phase in which all players
with Xi (P ) ≥ b1 can perform a t-move to prepare the first real phase.

For the analysis, let Dr be the set of deviating players in phase r and P r,i

denote the state after player i ∈ Dr has done her last move within phase r.

Theorem 3.5.1. An α-approximate pure Nash equilibrium with α ∈
(
d

ln 2

)d ·
poly(d) can be computed with a polynomial number of improvement steps.

Proof of Theorem 3.5.1. The main argument follows from bounding theD-partial
potential of the moving players in each phase (see Lemma 11). To that end,
we first prove that the partial potential is bounded by the sum of the costs of
players when they did their last move (Lemma 10).

Lemma 10. For every phase r, it holds that ΦDr (P r) ≤∑i∈Dr Xi

(
P r,i

)
.

Proof. Let Di
r ⊆ Dr the set of players who still have to perform their last

move after player i in phase r. Then by definition of the partial potential 3.2,
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Algorithm 1 Computation of approximate pure Nash equilibria

Xmax = maxi∈N Xi (P ), Xmin = mini∈N Xi (BRi (0)), m = log
(
Xmax

Xmin

)
γ > 0, g = 2 · n · (d+ 1) · γ−3, br = Xmax · g−r∀ ∈ [0,m]

t = 1 + γ, s =
(

1
t-ΩD

− 2γ
)−1

while there is a player i ∈ N with Xi (P ) ≥ b1 and who can perform a t-move
do
P ← (P−i,BRi (P ))

end while
for all phases r from 1 to m− 1 do

while there is a non-finished player i ∈ N either with Xi (P ) ∈ [br,+∞]
and who can perform a s-move or with Xi (P ) ∈ [br+1, br] and who can
perform a t-move do
P ← (P−i,BRi (P ))

end while
Add all players i ∈ N with Xi (P ) ≥ br to the set of finished players.

end for

ΦDr (P r) equals to

ΦN (P r)− ΦN\Dr (P r) =

|Dr|∑
i=1

(
ΦN\D

i
r (P r)− ΦN\D

i−1
r (P r)

)
=

|Dr|∑
i=1

Φ
N\Dir
i (P r).

(3.28)

For each player i, her strategy in state P r is identical to her strategy in P r,i.
By Proposition 3.2 ((a)), 3.2 ((b)) and 3.2 ((c)), we upperbound (3.28) by

|Dr|∑
i=1

Φ
N\Dir
i (P r) =

|Dr|∑
i=1

Φ
N\Dir
i (P r,i) ≤

|Dr|∑
i=1

Φi(P
r,i) =

|Dr|∑
i=1

Xi

(
P r,i

)
.

Bounding The Potential of Deviating Players

We now proceed to the key property of the algorithm. Using Lemma 10 and the
stretch of the previous section, we bound the potential of the moving players by
a multiplicative factor of the according block size as stated in Lemma 11.

Lemma 11. For every phase r, it holds that ΦDr
(
P r−1

)
≤ n

γ · br.

Proof. We show the lemma by contradiction. Thus, assume that ΦDr
(
P r−1

)
>

n
γ ·br. Let Sr, Tr ⊆ Dr, be the set of players whose last move is an s-move and a
t-move, accordingly, such that Sr∪Tr = Dr. First, we focus on the players in Sr.
Let i ∈ Sr be an arbitrary player. By definition of an s-move, player i decreases
her costs in her last move during phase r by at least (s − 1) · Xi

(
P r,i

)
. By

Proposition 3.3, any such improvement step also decreases the i-partial potential
by the same amount. Summing up over all players i ∈ Sr, we get a lower bound
on the total decrease of the Dr-partial potential between states P r−1 and P r:
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ΦDr (P
r−1)−ΦDr (P

r) ≥ (s−1) ·∑i∈Sr Xi(P
r,i). Rearranging, we upper bound

the partial potential as follows,

ΦDr (P
r) ≤ ΦDr (P

r−1)− (s− 1) ·
∑
i∈Sr

Xi(P
r,i)

≤ ΦDr (P
r−1)− (s− 1) ·

(∑
i∈Dr

Xi(P
r,i)−

∑
i∈Tr

Xi(P
r,i)

)

≤ ΦDr (P
r−1)− (s− 1) ·

(∑
i∈Dr

Xi(P
r,i)− n · br

)
≤ ΦDr (P

r−1)− (s− 1) · (ΦDr (P r)− n · br)
≤ ΦDr (P

r−1)− (s− 1) ·
(
ΦDr (P r)− γ · ΦDr

(
P r−1

))
≤ (1 + (s− 1) · γ) · ΦDr (P r−1)− (s− 1) · ΦDr (P r) ,

where the third inequality follows from the fact that the cost of a player i ∈ Tr
is upper bounded by the block border br, the fourth inequality by Lemma 10
and the fifth one by the assumption. Rearranging the terms gives

ΦDr (P
r) ≤ 1 + (s− 1) · γ

s
· ΦDr (P r−1). (3.29)

Let P̄ be an intermediate state between P r−1 and P r such that all players
in Sr have already finished their s-move and play their strategies in P r, while
the moving players in Tr play their strategies in P r−1. Consider a player i ∈ Tr.
The difference in her cost after her t-move is at most br. This is due to the fact
that her initial cost is at most br (by the block construction) and the minimum
cost she can improve to is zero. Then, by Proposition 3.3, the difference in
the cost of player i equals to the difference in the i-partial potential, that is,
Φi(P̄ ) − Φi(P

r) = Xi(P ) − Xi(P
′) ≤ br. Summing up over all players in Tr,

we get that the difference in the Dr-partial potential among states P̄ and P r

can be at most n · br. Then, we get the following upper bound on the partial
potential in state P̄ ,

ΦDr (P̄ ) ≤ ΦDr (P
r) + n · br ≤

1 + (s− 1) · γ
s

· ΦDr (P r−1) + γ · ΦDr
(
P r−1

)
=

(
1− γ
s

+ 2 · γ
)
· ΦDr (P r−1) <

(
1

s
+ 2 · γ

)
· ΦDr (P r−1),

where the second inequality holds by (3.29) and our assumption. Substituting
s, we get

ΦDr (P̄ ) <
1

t-ΩD
· ΦDr (P r−1) ⇒ ΦDr (P

r−1)

ΦDr (P̄ )
> t-ΩD (3.30)

Let P̂ be the Dr-partial potential minimiser. Since state P r−1 is an approximate
pure Nash equilibrium for the players in Dr, we upper bound (3.30) as follows,

max
P∈ρ−PNE

ΦDr (P )

ΦDr (P̂ )
>

ΦDr (P
r−1)

ΦDr (P̄ )
> t-ΩD

which, for ρ = t, contradicts the definition of ρ-Stretch. Thus, our initial as-
sumption does not hold and Lemma 11 is proved.
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Bounding The Running Time

It remains to show that the running time is bounded and that the approximation
factor holds. For the first, since the partial potential is bounded and each devi-
ation decreases the potential, we can limit the number of possible improvement
steps (Lemma 12).

Lemma 12. The algorithm uses a polynomial number of improvement steps.

Proof. At the beginning of the algorithm’s execution, the sum of all players’
costs is at most n ·Xmax. By Corollary 1, the potential is also upper bounded
by the same amount. In the initial phase, each deviating player makes a t-
move, therefore her cost improves by at least (t − 1) · b1 (since her cost is at
most b1). The potential function also decreases by at least (t − 1) · b1 in each
step. Using the definition of b1, we get that (t− 1) · b1 = γ · g−1 ·Xmax. Using
both observations, we can compute the maximum number of improvement steps
in the first phase,

n ·Xmax

γ · g−1 ·Xmax
= n · γ−1 · g = n · γ−1 · 2 · n · (d+ 1)

γ3

= 2 · n2 · (d+ 1) · γ−4.

Consider an arbitrary phase r ≥ 1. By Lemma 11, ΦDr (P
r−1) ≤ n

γ · br. Again,
we look at the possible cost improvement in a deviation which equals to the
potential decrease in this step. In this case, the cost improvement is at least
(t − 1) · br+1. By definition of br+1, we have that (t − 1) · br+1 = br · g−1 · γ.
Similar, the maximum number of improvement moves in this phase is

n
γ · br

br · g−1 · γ =
n · g
γ2

=
2 · n2 · (d+ 1) · γ−3

γ2
= 2 · n2 · (d+ 1) · γ−5.

In total, we have at most

2 · n2 · (d+ 1) · γ−4 + log

(
Xmax

Xmin

)
· 2 · n2 · (d+ 1) · γ−5

=

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

improvement steps.

Approximation Guarantee

We show next that every player who has already finished her moves will not get
much worse costs at the end of the algorithm (see Lemma 13) and that there is
no alternative strategy which is more attractive at the end (see Lemma 14).

Lemma 13. Let i be a player who makes her last move in phase r of the
algorithm. Then,

Xi

(
Pm−1

)
≤ (1 + γ2) ·Xi (P r) .
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Proof. We first show by contradiction the following. For j ≥ r, the increase in
the cost of player i from an arbitrary state P j to state P j+1 is upper bounded

by n·(d+1)
γ · bj+1. Thus, assume that

Xi

(
P j+1

)
−Xi

(
P j
)
>
n · (d+ 1)

γ
· bj+1.

Since player i does not deviate during phase j + 1, the increase in her cost is
caused by other players deviating to the resources she uses. Thus, there exists
a set of resources E′ ⊆ E such that each resource in E′ is used by player i and
by at least one player in Dj+1 at state P j+1. This yields to

∑
e∈E′

χie
(
P j+1

)
>
n · (d+ 1)

γ
· bj+1

⇒
∑
e∈E′ fe(P

j+1) · ce(fe(P j+1))

d+ 1
>
n

γ
· bj+1

⇔ SCDj+1
(P j+1)

d+ 1
>
n

γ
· bj+1

⇒ ΦDj+1
(P j+1) >

n

γ
· bj+1.

The last step uses Corollary 1. Since the potential decreases during the execu-
tion of the algorithm, we get

ΦDj+1
(P j) ≥ ΦDj+1

(P j+1) >
n

γ
· bj+1,

which contradicts Lemma 11. Therefore Xi

(
P j+1

)
≤ Xi

(
P j
)

+ n(d+1)
γ · bj+1,

which we use to show the lemma as follows,

Xi

(
Pm−1

)
≤ Xi

(
Pm−2

)
+
n · (d+ 1)

γ
· bm−1

≤ Xi (P r) +
n · (d+ 1)

γ

m−1∑
j=r+1

bj

= Xi (P r) +
n · (d+ 1)

γ

m−1∑
j=r+1

Xmax · g−j

= Xi (P r) +
n · (d+ 1)

γ

m−1∑
j=r+1

br · gr−j

≤ Xi (P r) +
n · (d+ 1)

γ
· 2 · br · g−1

≤ Xi (P r) +
2 · n · (d+ 1)

γ · g ·Xi (P r)

=

(
1 +

2 · n · (d+ 1)

γ · g

)
·Xi (P r) =

(
1 + γ2

)
·Xi (P r) .

69



3.5. COMPUTATION OF EQUILIBRIA

Lemma 14. Let i be a player who makes her last move in phase r and let P ′i
be an arbitrary strategy of i. Then,

Xi

(
Pm−1
−i , P ′i

)
≥ (1− γ) ·Xi

(
P r−i, P

′
i

)
.

Proof. Similarly to previous lemma, we first show by contradiction the follow-
ing. For two arbitrary successive phases j and j+1 and an arbitrary alternative

strategy P ′i of player i, Xi

(
P j+1
−i , P ′i

)
≥ Xi

(
P j−i, P

′
i

)
− n·(d+1)

γ · bj+1. To con-

tradict this, assume that

Xi

(
P j−i, P

′
i

)
−Xi

(
P j+1
−i , P ′i

)
>
n · (d+ 1)

γ
· bj+1.

Since player i does not deviate during phase j + 1, the increase in her costs is
caused by other players deviating to the resources she uses. Thus, there exists
a set of resources E′ ⊆ E such that each resource in E′ is used by player i and
by at least one player in Dj+1 at state P j+1. Therefore∑

e∈E′
χie

(
P j−i, P

′
i

)
>
n · (d+ 1)

γ
· bj+1

⇒
∑
e∈E′

χie

(
P j−i, Pi

)
>
n · (d+ 1)

γ
· bj+1.

Following exactly the same steps as in proof of Lemma 13, the previous yields to

a contradiction of Lemma 11. Thus, Xi

(
P j+1
−i , P ′i

)
≥ Xi

(
P j−i, P

′
i

)
− n·(d+1)

γ ·
bj+1, which we use to show the lemma’s statement as follows,

Xi

(
Pm−1
−i , P ′i

)
≥ Xi

(
Pm−2
−i , P ′i

)
− n · (d+ 1)

γ
· bm−1

≥ Xi

(
P r−i, P

′
i

)
− n · (d+ 1)

γ
·
m−1∑
j=r+1

bj

= Xi

(
P r−i, P

′
i

)
− n · (d+ 1)

γ
·
m−1∑
j=r+1

Xmax · g−j

= Xi

(
P r−i, P

′
i

)
− n · (d+ 1)

γ
·
m−1∑
j=r+1

br · gr−j

≥ Xi

(
P r−i, P

′
i

)
− n · (d+ 1)

γ
· 2 · br · g−1

br= Xi

(
P r−i, P

′
i

)
− 2 · n · (d+ 1)

γ · g ·Xi (P r)

g
= Xi

(
P r−i, P

′
i

)
− γ2 ·Xi (P r)

γ≤ 1
s≥ Xi

(
P r−i, P

′
i

)
− γ

s
·Xi (P r)

≥ Xi

(
P r−i, P

′
i

)
− γ ·Xi

(
P r−i, P

′) = (1− γ) ·Xi

(
P r−i, P

′
i

)
.

The second last inequality holds due to the s-approximate equilibrium for player
i in P r.
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Last,we bound the approximation factor of the whole algorithm (next lemma).

Lemma 15. After the last phase of the algorithm, every player i is in an α-
approximate pure Nash equilibrium with α = (1 +O(γ)) · t-ΩD.

Proof. Let i be an arbitrary player who took her last move in phase r and let
P ′i be an arbitrary other strategy of player i. We use Lemma 13 and Lemma 14
and the fact that player i has no incentive to make a s-move in phase r (by
definition of the algorithm):

Xi

(
Pm−1

)
Xi

(
Pm−1
−i , P ′i

) ≤ (1 + γ2) ·Xi (P r)

(1− γ) ·Xi

(
P r−i, P

′
i

)
≤
(

1 + γ2

1− γ

)
·
(

1

t-ΩD
− 2γ

)−1

≤
(

1 + γ2

1− γ

)
·
(

1

t-ΩD
− 2γ

)−1

By minimizing the first part, we can get arbitrary close to 1. For the second
part, we need to fix a γ with γ < 1

2t-ΩD
. Therefore, the expression can be

simplified to α = (1 +O(γ)) · t-ΩD.

The polynomial running time and the approximation factor of α = (1 +
O(γ)) · t-ΩD follow directly from Lemma 12 and Lemma 15. By Corollary 3,

t-ΩD ≤
(d+ 1)2 · (d+ 3)

8
· t · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + t)− t

with t = 1 + γ, which gives an approximation factor of

α = (1 +O(γ)) · (d+ 1)2 · (d+ 3)

8
· t · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + t)− t

.

The order of factor α follows from the next lemma (proof in Appendix) and this
completes the proof of the main theorem in this section, Theorem 3.5.1.

Lemma 16. The approximation factor α is in the order of
(
d

ln 2

)d · poly(d).

Approximation of Weighted Congestion Games

This algorithm can be used to compute also approximate pure Nash equilibria
in weighted congestion games (with proportional sharing). Such a game can

now be approximated by a Shapley game losing only a factor of (d+3)·(d+1)
8 (by

Lemma 5), which is included in poly(d).

Corollary 4. For any weighted congestion game with proportional sharing, an

α-approximate pure Nash equilibrium with α ∈
(
d

ln 2

)d · poly(d) can be computed
within a polynomial number of improvement steps.
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Algorithm 2 Approximation of the Shapley Value by Sampling

(r: phases of the algorithm)

for all r from 1 to log
(

2nc+3 ·maxi∈N |Pi| · |E| ·
(

1 + log
(
Xmax

Xmin

))
· d+1
γ9

)
do

for all j from 1 to k = 4(|Se(P )|−1)
µ2 do

Pick uniformly at random a permutation π of the players Se(P ) using
resource e
Compute the marginal contribution MCjie(P ) = Ce

(
W<i,π
Se(P ) + wi

)
−

Ce

(
W<i,π
Se(P )

)
end for
Let MCie(P ) = 1

k

∑k
j=1MCjie(P )

end for
Return the median of all MCie(P )

3.5.1 Sampling Shapley Values

The previous section gives a polynomial running time algorithm with respect
to the number of improvement steps. However, each improvement step requires
computation of multiple Shapley values, which can often be a computationally
hard problem [32]. For this reason, one can instead compute an approximated
Shapley value with sampling methods.

Theorem 3.5.2. For a constant γ, an α-approximate pure Nash equilibrium

with α ∈
(
d

ln 2

)d · poly(d) can be computed in polynomial time with high proba-
bility.

Proof. To achieve this, we use sampling techniques from [58, 61], which we ad-
just to our setting. More specifically, the theorem follows from that combination
of the Lemmas 17, 18 and 19. The sampling algorithm is stated in Figure 2.
The general idea of this algorithm is the following. For a player i, it runs for a
specific number of phases (log(. . .)) of Algorithm 1 (note that this number de-
pends on the cardinality of the strategy set of i, |Pi|). For each phase r it picks
at random k permutations of the players and for each permutation it computes
the marginal cost contribution of i. Then it computes the average value of the k
marginal contributions and at the end returns the median of all average values
(which have been computed for each phase r).

Computing Approximated SV with High Probability

Lemma 17. For a state P and an arbitrary but fixed constant c, Algorithm 2
computes a µ-approximation of χie(P ) for any player i in polynomial running
time with probability at least

1−
(
nc · n ·max

i∈N
Pi · |E| ·

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

)−1

.

Proof. The proof follows the analysis in [58]. LetX be the marginal contribution
of player i in a random permutation. Since Ce is a polynomial of degree d and
monotone, we have X ≥ 0. By the definition of the Shapley value, χie(P ) =
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E[X]. By the definition of the cost functions, the maximum possible value of X
is achieved when i is the last player in the ordering. This happens in 1/|Se(P )|
fraction of the permutations. X achieves the maximum value with probability
at least 1/|Se(P )| and the maximum value is at most |Se(P )| · χie(P ). This is
because of the following. Since the minimum value is 0, if the maximum value
was larger (or smaller) than |Se(P )| ·χie(P ), then the average value of X would
be larger (or smaller) than its expectation χie(P ) = E[X].

To upper bound the variance of X, we define a second random variable Y
whose value is |Se(P )| · χie(P ) with probability 1/n and 0 otherwise. Then,

V ar(X) ≤V ar(Y )

= E[Y 2]− E[Y ]2

=
1

2
|Se(P )|2 · χie(P )2 −

(
1

2
|Se(P )| · χie(P )

)2

= (|Se(P )| − 1) · χie(P )2.

Since

MCie(P ) =
1

k

k∑
j=1

MCjie(P ),

E
[
MCie(P )

]
= E[X] = χie(P ),

and the single permutations are independent of each other (random), we get

V ar
(
MCie(P )

)
=
V ar(X)

k

≤ 1

k
· (|Se(P )| − 1) · χie(P )2.

Using Chebyshev’s inequality, we get

Pr
[
|MCie(P )− χie(P )| ≥ µ · χie(P )

]
≤ V ar

(
MCie(P )

)
χie(P )2 · µ2

≤ (|Se(P )| − 1) · χie(P )2

k · χie(P )2 · µ2

=
|Se(P )| − 1

k · µ2

Let k = 4(|Se(P )|−1)
µ2 , then MCie(P ) is a µ-approximation for χie(P ) with

probability at least 3/4. By repeating this for

log

(
2nc+3 ·max

i∈N
Pi · |E| ·

(
1 + log

(
Xmax

Xmin

))
· (d+ 1) · γ−9

)
times, using the median value of all runs and applying Chernoff bounds, we
directly get a result with failure probability at most

1

nc · n ·maxi∈N Pi · |E| ·
(

1 + log
(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

.
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Computation of Improvement Steps with Sampling

Using sampling to compute an improvement step, an approximated Shapley
value has to be computed for each alternative strategy of a player and for each1

resource in the strategy. In the worst case, these computations has to be com-
puted for all players (until an improvement step is available).

Lemma 18. For a state P , running Algorithm 2 at most n · maxi∈N Pi · |E|
times computes an improvement step for an arbitrary player with probability at
least

1−
(
nc ·

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

)−1

.

Proof. The result follows directly by applying the union bound:

Pr[∃i ∈ N : ∃P ′i ∈ Pi : ∃e ∈ P ′i : |MCie(P−i, P
′
i )− χie(P−i, P ′i )| ≥ µ · χie(P−i, P ′i )]

≤ n ·maxi∈N Pi · |E|
nc · n ·maxi∈N Pi · |E| ·

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

≤ 1

nc ·
(

1 + log
(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

.

Bounding The Sampling Times

By Lemma 12 in page 68, we give a bound on the number of improvement steps.
Thus, we can bound the total number of samplings2 during Algorithm 1.

Lemma 19. During the whole execution of Algorithm 1, the sampling algorithm
for µ = 1 + γ is applied at most

n ·max
i∈N
Pi · |E| ·

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

times and the computation of the approximate pure Nash equilibrium is correct
with probability at least 1− n−c for an arbitrary constant c.

Proof. The result follows directly by applying the union bound:

Pr[∃ an improvement step in which the sampling fails]

≤

(
1 + log

(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

nc ·
(

1 + log
(
Xmax

Xmin

))
· 2 · n2 · (d+ 1) · γ−9

≤ 1

nc
.

1The computation of a Shapley value of a player is a local process in a sense that it is first
computed separately on each resource that the player uses and then we take the sum of these
values.

2We can always use the sampling algorithm for µ = 1 + γ.
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Summing up, we show that a µ-approximation of one Shapley value can
be computed in polynomial running time with high probability (Lemma 17)
and the sampling algorithm is running at most a polynomial number of times
(Lemma 19). Then Theorem 3.5.2 follows.

3.6 Conclusion

This chapter gives a polynomial running time algorithm with respect to the
improvement steps of players for computing approximate equilibria in Shapley
value weighted congestion games. Our algorithm builds on the algorithm of [12],
however adjusting [12]’s idea on our model requires a very careful and technical
adaptation due to the complex nature of Shapley values. This algorithm adjust-
ment helps us to provide new insights on the structure of approximate equilibria
of SV weighted congestion games. Another challenge for our model was that
each improvement step, during our algorithm’s execution, requires the compu-
tation of multiple Shapley values, which is a computationally hard problem.
We address this issue by computing approximated Shapley values in polyno-
mial running time using sampling techniques. This additional approximation
factor in the improvement steps can be embedded in the factor ρ of the ρ-Nash
dynamics. Thus, an execution of the algorithm with approximate steps has a
negligible impact on the final result.

An extra feature for our algorithm is that it can be also used for computing
approximate equilibria in weighted congestion games with a significantly better
approximation factor than that of [12]. More specifically, in [12], authors approx-
imate Ψ-games (potential games) to weighted congestion games (non-potential
games) and achieve computation of d2d+o(d)-approximate pure Nash equilibria.
As they also state, their work reveals the following interesting open problem. Is
it possible to find better1 approximation guarantee for approximate equilibria
computed in polynomial time? Our contribution closes this open problem as
follows. Our approach approximates SV weighted congestion games (potential
games) to weighted congestion games (non-potential games), which allow us
to compute approximate equilibria with the significantly better approximation

factor of O
((

d
ln 2

)d)
. We also note that a significant improvement of the ap-

proximation factor below O
((

d
ln 2

)d)
would require new algorithmic ideas as

the lower bound of the PoA in [40] immediately yields a corresponding lower
bound on the stretch.

As mentioned, the adaptation of [12] to our model requires a very technical
work. For this reason, it would be interesting to create a general framework
for this algorithm as a blackbox function. Then, for any class of games that
fulfils the neccessary criteria, this blackbox function tool would directly yield
a polynomial running time algorithm for computing approximate equilibria.
Another interest lies on exploiting more the notion of the stretch. We believe
this ratio is a promising future tool for other than its current usage, however no
other applications of it have been found yet. Last, as stated in [12], exploring
approximations of potential games to non-potential ones keeps the interest high.

1A conjecture of the authors of [12] is that their technique is tight only for the linear
weighted congestion games.
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Chapter 4

Cost Sharing in Generalised
Selfish Routing

This chapter formally presents the model and contribution in a generalised ver-
sion of the model of Chapter 3, which has been briefly introduced in Section
1.5.1, page 27. More specifically, this work studies the design of cost-sharing
methods in a generalised selfish routing model where each player may control
multiple flows in the graph. We require that our cost-sharing method and set of
cost functions satisfy certain natural conditions and we characterize the Shapley
value as the unique method that guarantees the existence of a pure equilibrium.
Focusing on the inefficiency of equilibria, we present general tight price of an-
archy bounds, which are robust and apply to general equilibrium concepts. We
then turn to the price of stability and prove an upper bound for the Shapley
value cost-sharing method, which holds for general sets of cost functions and
which is tight in special cases of interest, such as bounded degree polynomials.
Also for bounded degree polynomials, we conclude the paper with a somewhat
surprising result, showing that a slight deviation from the Shapley value has a
huge impact on the price of stability. In fact, for this case, the price of stability
becomes as bad as the price of anarchy. Our tight price of anarchy and price of
stability bounds apply both to single and multi-commodity selfish routing.

4.1 The Model

In this section we present the notation and preliminaries for our model in terms
of a multi-commodity player congestion game. In such a game, there is a set Q
of k commodities which are partitioned into n ≤ k non-empty and disjoint sub-
sets Q1, Q2, . . . Qn. Each set of commodities Qi, for i = 1, 2, . . . , n, is controlled
by an independent player. Denote N = {1, 2, . . . , n} the set of players. The
players in N share access to a set of resources E. Each resource e ∈ E has a
flow-dependent cost function Ce : R≥0 → R≥0.

Strategies. Each commodity q ∈ Q has a set of possible strategies Pq ⊆ 2E .
Associated with each commodity q is a weight wq, which has to be allocated to
a strategy in Pq. For a player i, a strategy Pi = (Pq)q∈Qi defines the strategy
for each commodity q player i controls. An outcome P = (P1, P2, . . . , Pn) is a
tuple of strategies of the n players.
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Resource Load. For an outcome P , the flow f ie(P ) of a player i on resource e
equals the sum of the weights of all her commodities using e, i.e., f ie(P ) =∑
q∈Qi,e∈Pq wq. For any T ⊆ N with |T | ≥ 2, let fTe (P ) be the vector with

the flows that each player in set T assigns to resource e. The total flow on a
resource e is given by fe(P ) =

∑
i∈N f

i
e(P ), while the set of users of e (players

who assign positive flow on e) for an outcome P is given by Se(P ).

Cost Shares. The cost sharing method of the game determines how the flow-
dependent joint cost of a resource Ce(fe(P )) is divided among its users. The
cost of a player on a resource is the share of Ce(fe(P )) assigned to her by
the chosen cost-sharing method and is defined as a function of the player’s
identity, the resource’s cost function and the vector of flows assigned to e,
i.e., χe(i, f

N
e (P ), Ce). For simplicity, let χe(i, f

N
e (P ), Ce) = χie(P ) when all

players are considered in a state P , otherwise, for players in T ⊆ N , we re-
strict to the notation χe(i, f

T
e (P )). For a resource e, the cost shares are such

that
∑
i∈Se(P ) χie(P ) = Ce(fe(P )). The total cost of a player is Xi(P ) =∑

e∈Pi χi.e.(P ) and the social cost of the game is given by the sum of the player
costs,

SC(P ) =
∑
i∈N

∑
e∈E

χie(P ) =
∑
i∈N

∑
e∈E

χe(i, f
N
e (P ), Ce) =

∑
e∈E

Ce(fe(P )). (4.1)

On the cost-sharing method and the set of allowable cost functions, we make
the following natural assumptions:

1. The cost functions of the game are drawn from a given set C of allowable
cost functions, such that every C ∈ C must be continuous, increasing and
convex. We also make the mild technical assumption that C is closed under
dilation, i.e., that if C(x) ∈ C, then also C(a · x) ∈ C for a > 0. Without
loss of generality, every C is also closed under scaling, i.e., if C(x) ∈ C, then
also a ·C(x) ∈ C for a > 0 (this is given by simple scaling and replication
arguments).

2. The second assumption states that the cost-sharing method only charges
players based on how they contribute to the joint cost (there is no other dis-
crimination among the players). To clarify, we give two examples: (i) Con-
sider a resource e with Ce(x) = x2 and two players 1, 2 with flows f1

e = 1,
f2
e = 2. We now modify them such that the cost function and their weights

become C̄e(x) = x2/4 and f̄1
e = 2, f̄2

e = 4. Our second assumption asks
that the new cost shares of the players remain the same as before the mod-
ification, i.e., χie = χ̄ie for i = 1, 2. (ii) Assume now we scale the joint
cost on a resource e by a positive factor α, i.e., C̄e(fe(P )) = α ·Ce(fe(P )).
Given that the same players assign the same flow on e, the new cost shares
of the players would be a scaled by factor α version of their initial cost
shares, i.e., χ̄ie = α · χie. In both examples we use simple scaling and
replication arguments.

3. Last, we make a fairness-related assumption which states that the cost
share of a player on a resource is a continuous, increasing and convex
function of her flow. This is something to expect from a reasonable cost-
sharing method, given that the joint cost on the resource is a continuous
increasing convex function of the resource’s total flow fe(P ). For example,
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if the cost share of a player i would increase in a slower than convex way in
the player’s weight, then (given that the joint cost is convex in resource’s
total flow) the rest of the users of this resource need to be charged ad-
ditionally to cover the increase in the joint cost from the increase of i’s
weight.

We now define a class of cost-sharing methods, the weighted Shapley values,
for this generalised model.

Weighted Shapley values. The weighted Shapley value defines how the cost
Ce(·) of resource e is distributed among the players using it. Given an ordering
π of N , let F<i,πe (P ) be the sum of flows of players preceding i in π. Then the
marginal cost increase caused by a player i’s flow is

Ce(F
<i,π
e (P ) + f ie(P ))− Ce(F<i,πe (P )).

For a given distribution Π over orderings, the cost share of player i on e is

Eπ∼Π[Ce(F
<i,π
e (P ) + f ie(P ))− Ce(F<i,πe (P ))].

For the weighted Shapley value, the distribution over orderings is given by a
sampling parameter λie(P ) for each player i. The last flow in the ordering is
picked proportional to the sampling parameters λie(P ). This process is then
repeated iteratively for the remaining players.

As in [41], we study a parameterized class of weighted Shapley values defined
by a parameter γ. For this class λie(P ) = f ie(P )

γ
for all players i and edges e.

For γ = 0, this reduces to the (unweighted) Shapley value, where we have a
uniform distribution over orderings.

4.2 Existence of Pure Nash Equilibria

In this section we focus on the existence of pure Nash equilibria. We require that
our cost-sharing method and our set of cost functions satisfy certain natural
conditions and we characterize the Shapley value as the unique method that
guarantees the existence of a pure Nash equilibrium.

In addition, at the end of this section, we present two ‘extensions’ of this
model and our results regarding PNE existence. Section 4.2.3 considers an
alternative weighted SV method where the cost shares are computed based on
the commodities weights (as opposed to our main model which is based on the
total flows of players). In section 4.2.4, we study a splittable variable of our
main model where each commodity can split and distribute her flow among her
strategies.

4.2.1 Shapley Values

Our first result proves that applying the Shapley value (when every sampling
parameter equal to 1), induces a potential game.

Theorem 4.2.1. Using the Shapley value to share player costs in multi-commodity
congestion games yields a potential game.
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Proof. Consider any ordering π of the players in N and let f≤i,πe (P ) denote the
vector that we get after truncating fNe (P ) by removing all entries for players
that succeed i in π. We prove that the following is a potential function of the
game.

Φ(P ) =
∑
e∈E

∑
i∈N

χe(i, f
≤i,π
e (P ), Ce). (4.2)

Note that (4.2) can be also written as

Φ(P ) =
∑
e∈E

∑
i∈N

χe(i, {j : π
(
f je (P )

)
≤ π

(
f ie(P )

)
, j ∈ Se(P )}), (4.3)

which is a generalisation of the potential function (3.2) of the single-commodity
per player model introduced in [57].

Hart and Mas-Colell [50] proved that (4.2) is independent of the ordering π
in which players’s flows are considered. Let P ′ = (P ′i , P−i). It suffices to show
that Φ(P )− Φ(P ′) equals the change in the cost of player i. Focus on a single
resource e and let π be one of the orderings that places flow of player i, f ie(P ),
in the last position. Then, the potential on e loses a term equal to

χe(i, f
≤i,π
e (P ), Ce) = χe(i, f

N
e (P ), Ce)

and gains a term equal to

χe(i, f
≤i,π
e (P ′i , P−i), Ce) = χe(i, f

N
e (P ′i , P−i), Ce),

which is precisely what happens to the cost of player i on e. Summing over all
edges completes the proof.

4.2.2 Weighted Shapley Values

One might expect that, similarly to standard congestion games, the same poten-
tial function argument would apply to weighted Shapley values as well. However,
as we prove next, this is not the case.

Theorem 4.2.2. There is a multi-commodity congestion game with no PNE
for any weighted Shapley value defined by sampling weights of the form f ie(P )γ

with γ > 0 or γ < 0.

Proof. We prove this theorem by showing two examples admitting no PNE, for
γ > 0 and γ < 0. We start with the γ > 0 case. Consider two players, 1 and 2,
who compete for two parallel (meaning each commodity must pick exactly one
of them) resources e,e′ with identical cost functions Ce(x) = Ce′(x) = x1+δ

with δ > 0 and γ
δ a large positive number (note that for δ = 0, we have

linear cost functions where in this case we have an equilibrium. As soon as
we deviate from linearity, we use convexity to construct an example with no
equilibrium). Player 1 controls a unit commodity p ∈ Q1. Player 2 controls
two commodities q, q′ ∈ Q2, with wq′ = 1 and wq = k, for k a very large
number. Recall, that the sampling weight of a player i on a resource e is given
by λie = (f ie)

γ
. This means that smaller weights are favoured when constructing

the weighted Shapley ordering.

We first prove the following lemma which we use in the instance afterwards.

80



4.2. EXISTENCE OF PURE NASH EQUILIBRIA

Lemma 20. For any positive δ and ε, there exists some k sufficiently large such
that

(1 + δ) · kδ + k1+δ ≤ (k + 1)1+δ ≤ (1 + ε) · (1 + δ) · kδ + k1+δ.

Proof. Both inequalities follow by the fact that

lim
k→∞

(k + 1)1+δ − k1+δ

(1 + δ) · kδ = lim
k→∞

k1+δ
((

1 + 1
k

)1+δ − 1
)

(1 + δ) · kδ

= lim
k→∞

(
1 + 1

k

)1+δ − 11+δ

(1 + δ) · 1
k

=
(x1+δ)′|x=1

1 + δ
= 1.

Suppose, without loss of generality, that player 1 places commodity p on
edge e. Then the best response of player 2 is to place the large commodity q
alone on e′ and the small commodity q′ on e. To see this, note that player 2’s
cost on this outcome will be

1

2
· (21+δ − 1) +

1

2
+ k1+δ

= 2δ + k1+δ. (4.4)

Then we show that any other outcome results in a larger cost for player 2. First,
let her large commodity be assigned with commodity p of player 1 on resource
e. This would result in a cost of at least

1

1 + kγ
· k1+δ +

kγ

1 + kγ
· ((k + 1)1+δ − 1) + 1. (4.5)

By Lemma 20, we get that

(4.5) ≥k
1+δ + kγ ·

(
(1 + δ) · kδ + k1+δ − 1

)
+ 1 + kγ

1 + kγ

= k1+δ +
(1 + δ) · kγ+δ + 1

1 + kγ
. (4.6)

Note that for our k and ε, the second term is larger than 2δ. Therefore (4.6)>
(4.4). If now both commodities of player 2 were assigned on e′, this would result
in a cost of

(k + 1)1+δ
Lemma 20
≥

(
k1+δ + (1 + δ) · kδ

)
> k1+δ + 2δ = (4.4).

We focus now on player 1. Her cost on resource e, given player 2’s best
strategy, is

2δ, (4.7)
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which is a fixed number larger than 1, since δ > 0. We show that player 1
would prefer to assign her commodity p on resource e′, together with the large
commodity q of player 2. In this outcome, player 1’s cost would be

kγ

1 + kγ
· 1 +

1

1 + kγ
·
(
(k + 1)1+δ − k1+δ

)
Lemma 20
≤ kγ

1 + kγ
+

(1 + ε) · (1 + δ) · kδ
1 + kγ

. (4.8)

which approaches 1 for large enough k, since γ > δ. Thus, (4.8) < (4.7) which
proves the desirable deviation. Therefore there is no equilibrium.

We now switch to the case with γ < 0. Consider players i = 1, 2, . . . , k, who
compete for two parallel resources e1, e2 with identical cost functions Ce1(x) =
Ce2(x) = x3. Player k controls two commodities p, q ∈ Qk with weights wp = k
and wq = 1. Each player i < k controls only one commodity ri ∈ Qi with
wri = 1. The sampling weight of a player i on a resource e is given by λie = (f ie)

γ
,

for γ < 0. Assume player k assigns commodity p to resource e1 and commodity
q to e2. In this case, note that it is a dominant strategy for players 1, . . . , k− 1
to use resource e2. For player k, this gives a cost share of

1

k
· Ce2(fe2) + Ce1(fe1) = k2 + k3. (4.9)

On the other hand, if she assigns commodity p to e2 and q to e1, by Lemma
24(b) in page 92, her cost can be arbitrarily close to 1 +k3, for large k, which is
strictly smaller than her previous cost (4.9). Therefore there is no PNE, which
completes the proof of Theorem 4.2.2.

4.2.3 Alternative Weighted Shapley Value Method.

One might consider a different way of generalising weighted Shapley values to
multi-commodity congestion games: Apply a weighted Shapley value on the
commodity weights by charging a player the sum of the weighted Shapley values
of the commodities controlled by her. These cost-sharing methods coincide
when all commodities have unit weights, which is equivalent to proportional
cost-sharing, i.e., every player pays a cost-share that is proportional to her flow
on any given resource. Below we use one such instance with unit commodities to
prove that all these methods do not guarantee pure Nash equilibrium existence.

One should note that a similar example has already been given by Rosen-
thal [70]. However, Rosenthal’s example uses concave cost functions, which we
disallow in our setting. In contrast, our example only uses convex functions.

Lemma 21. There is a congestion game with multi-commodity players and cu-
bic cost functions that admits no pure Nash equilibrium under weighted Shapley
value applied on commodity weights.

Proof. We prove the theorem by constructing an instance with unit commodities
such that best-response dynamics from any initial configuration cycles. This
cycle is based on an example in [34], where Fotakis et al. prove that network
unweighted congestion games with linear delays and equal cardinality coalitions
do not have the finite improvement property, therefore they admit no potential
function. Their model translates to a setting of our model where each player
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Table 4.1: Players’ costs in example of Lemma 21.
P1 P3

P2 20 + 8 5 + (13− 9 · ε)
20 + 8 (16− 9 · ε) + (13− 9 · ε)

P4 20 + 7 5 + 13
20 + (2− ε) (17− 4 · ε) + (5− 4 · ε)

controls an equal number of unit commodities. We strengthen their result by
proving non-existence of a pure Nash equilibria for (network) congestion games
with multi-commodity players and cubic cost functions.

Consider two players, 1 and 2, who control two commodities each, p, q ∈ Q1

and p′, q′ ∈ Q2 with wp = wq = wp′ = wq′ = 1. There is a set of resources E =
{1, 2, . . . , 6} with cost functions C1(x) = C5(x) = C6(x) = 5 · x3, C2(x) = x3,
C4(x) = 2 · x3 and C3(x) = (1 − ε) · x3, for small ε. The strategy sets for each
commodity are: Pp = {P1}, Pq = {P2, P4}, Pp

′
= {P1, P3} and Pq′ = {P2},

where P1 = {1}, P2 = {2, 3}, P3 = {3, 4, 5} and P4 = {4, 6}. Note that each
player has a fixed strategy for the first commodity and two possible strategies for
the second. Therefore there are four possible states. We model this instance as
a bimatrix game in Table 4.1, where player 1 is the row player and 2 the column
player. The costs are described as the sum of commodities’ costs for each player.
We claim that for any ε ∈

(
1
18 ,

3
2

)
, there is no pure Nash equilibrium.

We stregthen this result by showing non-existence of pure Nash equilibria
even for a network congestion game under this setting. The proof uses the
network in Figure 4.1, page 84.

Corollary 5. There is even a network congestion game with multi-commodity
players and cubic cost functions that admits no pure Nash equilibrium under
weighted Shapley value applied on commodity weights.

Proof. Consider the same set of players, commodities, resources and the associ-
ated cost functions, with those described in example of Lemma 21. In addition,
for each commodity z there is a source-destination pair (sz, tz) with at least one
path between them. In total, we have the following seven paths: P1 = (sp, 1, tp),
P2 = (sp′ , 1, tp′), P3 = (sp′ , 4, 5, 3, tp′), P4 = (sq′ , 2, 3, tq′), P5 = (sq, 2, 3, tq),
P6 = (sq, 4, 5, 3, tq), P7 = (sq, 4, 6, tq) and we see that the strategy sets for each

commodity are: Pp = {P1}, Pq = {P5, P6, P7}, Pp
′

= {P2, P3} and Pq′ = {P4}.
A graphical interpretation of this network is given in Figure 4.1. Note that com-
modity q ∈ Q1 has an additional strategy choice compared to the example of
Lemma 21, therefore the total states are increased to six. We now model this
instance as a bimatrix game, given by Table 4.2, where player 1 is the row
player and 2 the column player. Observe, that the additional strategy P7 for
commodity p is strictly dominated by P2 and P4, which implies the corollary.

4.2.4 Splittable Games

We conclude this chapter with results regarding equilibria existence on cost-
sharing in the splittable version [24, 46, 51, 65, 74] of congestion games with

83



4.2. EXISTENCE OF PURE NASH EQUILIBRIA

Figure 4.1: The network congestion game in Corollary 5.

sp

sp′

sq′

sq

tp

tp′

tq′

tq

x3 (1− ǫ) · x3

5 · x3

2 · x3 5 · x3

5 · x3

Table 4.2: Players’ costs in example of Corollary 5.
P1 P3

P2 20 + 8 5 + (13− 9ε)
20 + 8 (16− 9ε) + (13− 9ε)

P4 20 + 7 5 + 13
20 + (2− ε) (17− 4ε) + (5− 4ε)

P3 20 + (11− 4ε) 5 + (37− 9ε)
20 + (5− 4ε) (37− 9ε) + (10− 9ε)

multi-commodity players. In the splittable version of such games, the weight
wq of a commodity q ∈ Q can be split among its strategies in Pq; i.e., a frac-

tional strategy of commodity q ∈ Q is a vector Pq = (wq,P )P∈Pq ∈ R|P
q|

≥0 with∑
P∈Pq wq,P = wq. For the unsplittable version, vector Pq has only one non-zero

and equal to wq component, which is not necessarily the case for the splittable
games. For the single-commodity per player model, it is known that the propor-
tional sharing method, having players paying a cost share proportional to their
flows on each resource, guarantees existence of a pure Nash equilibrium [65].

Below we present two results with respect to the pure Nash equilibrium
existence property of cost-sharing methods.

Theorem 4.2.3. Using the Shapley value to share player costs in splittable
congestion games with multi-commodity players yields a potential game.

Proof. We prove this theorem by showing that these games are potential games.
We use the potential function that was used for the unsplittable case

Φ(P ) =
∑
e∈E

∑
i∈N

χ(i, f≤i,πe (P ), Ce).

The only difference for the splittable case, is that any fraction of the weight
of a commodity can deviate to another strategy. In our main model, Shapley
value is applied on the total flows players assign on a resource, f ie(P ), which
equals to the sum of the weight-fractions of the commodities of each player
on the resource, i.e.,

∑
q∈Qi,e∈Pi wq,P , as opposed to the

∑
q∈Qi,e∈Pi wq (for

the unsplittable case). But this difference has no affect in the proof steps of
Theorem 4.2.1, therefore the same proof steps as in Theorem 4.2.1 apply on
splittable games.
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Theorem 4.2.4. For a weighted Shapley value with parameter γ large enough,
there exists a splittable congestion game with single-commodity per player ad-
mitting no PNE.

Proof. We provide a sketch of the proof. For simplicity of the proof, we only
proof the case of γ =∞. This case captures the main idea of our proof. However,
our instance also provides a counter-example if γ is finite, but large enough.

Consider two players 1 and 2 who control one commodity each, q ∈ Q1

and q′ ∈ Q2 with wq = wq′ = 1. There is a set of three parallel resources
E = {1, 2, 3} with associated cost functions C1(x) = C3(x) = x and C2(x) = x3.
The strategy set of commodity q and q′ is Pq = {{1}, {2}} and Pq′ = {{2}, {3}},
respectively. Each commodity splits her flow of 1 between the available re-
sources. Since each player controls only one commodity, for the rest of the
proof we refer to players instead of the commodities.

First, consider the case where players assign different flows on the common
resource 2. Let y and z be these flows for player 1 and player 2, respectively.
Assume that both players are in a pure Nash equilibrium and, without loss of
generality, player 1 assigns more flow than player 2 on resource 2, that is, y > z.
Since γ = ∞, player 1 is certain to come last in the Shapley value ordering.
This gives the following costs for the players:

χ1,1 + χ1,2 = 1− y + (y + z)3 − z3

= 1− y +
(
y3 + 3 · z2 · y + 3 · z · y2

)
, (4.10)

χ2,3 + χ2,2 = 1− z + z3. (4.11)

Note that the cost share of player 2 depends only on her flow z and observe
that (4.11) is minimized for z = 1√

3
. Thus, either y ≤ 1√

3
, in which case player

2 can improve by slightly increasing x, or y > 1√
3

in which case we must have

z = 1√
3

by the Nash equilibrium condition. Substituting z = 1√
3

in (4.10), we

get y3 +
√

3 · y2, which is increasing in y. Thus, in this case, player 1 can
improve by slightly reducing y. Therefore there is no equilibrium when players
assign different flows on resource 2, which completes the first part of the proof.

Focus now on the case where players assign the same flow (y = z) on resource
2. Then their cost shares of both players are the same and equal to

χ1,1 + χ1,2 = 1− y +
1

2
· (2 · y)

3
= 1− y + 4 · y3. (4.12)

We claim that there is at least one player who can improve her cost decreasing
her flow on resource 2 by an ε small. Let player 1 be the player who deviates.
Then she comes first in the ordering and her cost becomes

χ1,1 + χ1,2 = 1− y + ε+ (y − ε)3,

which for small enough ε is less than her intial cost (4.12). This completes the
second part of the proof.

4.3 Inefficiency of Equilibria

In this section, we focus on the PoA and PoS of multi-commodity per player
congestion games and present general tight price of anarchy bounds (Section
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4.3.1), which are robust. We then turn to the price of stability and prove an
upper bound for the Shapley value cost-sharing method (Section 4.3.2).

4.3.1 Tight PoA Bounds for General Cost-Sharing

We first generalize the (λ, µ)-smoothness framework of [73] to accommodate any
cost-sharing method and set of possible cost functions. For any set S, define FS

to be the sum of components of the flow vector fS , that is FS =
∑
i∈S(fS)i, ∀S.

Suppose we identify positive parameters λ and µ < 1 such that for every cost
function in our allowable set C ∈ C, and every pair of sets of players T and T ∗,
we get ∑

i∈T∗
χ(i, fT∪{i}, C) ≤ λ · C(FT

∗
) + µ · C(FT ). (4.13)

Then, for P a PNE and P ∗ the optimal solution, we would get

SC(P )
(4.1)
=

∑
i∈N

∑
e∈E

χe(i, f
N
e (P ), Ce)

(??)

≤
∑
i∈N

∑
e∈E

χe(i, f
N
e (P ∗i , P−i), Ce). (4.14)

To simplify, let Te and T ∗e be the sets of players who assign positive flow on
resource e on an equilibrium outcome P and the optimal P ∗, accordingly. Thus,
Te = Se(P ) and T ∗e = Se(P

∗). Then

(4.14) =
∑
e∈E

∑
i∈N

χe(i, f
Te∪{i}
e (P ∗i , P−i), Ce)

(4.13)

≤
∑
e∈E

λ · Ce(FT
∗
e ) + µ · Ce(FTe)

=
∑
e∈E

λ · Ce

∑
i∈T∗e

(
fT
∗
e

)
i

+ µ · Ce
(∑
i∈Te

(
fTe
)
i

)

=
∑
e∈E

λ · Ce(fe(P ∗)) + µ · Ce(fe(P ))

(4.1)
= λ · SC(P ∗) + µ · SC(P ). (4.15)

Rearranging (4.15) yields a λ/(1−µ) upper bound on the POA. The same bound
can be easily shown to apply to MNE and more general concepts (correlated
and coarse correlated equilibria), though we omit the details (see, e.g., [73] for
more). We then get the following lemma.

Lemma 22. Consider the following optimization program with variables λ, µ.

Minimize
λ

1− µ (4.16)

Subject To µ ≤ 1 (4.17)∑
i∈T∗

ξ(i, fT∪{i}, C) ≤ λ · C(FT
∗
) + µ · C(FT ), (4.18)
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where constraint (4.18) needs to hold for any function C ∈ C, pair of sets T, T ∗ ⊆
N and any positive flow vector fS. Every feasible solution yields a λ/(1 − µ)
upper bound on the POA of the cost sharing method given by χ(i, fS , C) and
the set of cost functions C.

The upper bound holds for any cost-sharing method and set of cost functions.
We now proceed to show that the optimal solution to Program (4.16)-(4.18) gives
a tight upper bound when our assumptions described in Section 3.1 hold.

Theorem 4.3.1. Let (λ∗, µ∗) be the optimal point of Program (4.16)-(4.18).
The POA of the cost-sharing method given by χ(i, fS , C) and the set of cost
functions C is precisely λ∗/(1− µ∗).

Proof. Define ζ(y, x, C) for y, x > 0 as

ζ(y, x, C) = max
T∗:FT∗=y, T :FT=x

∑
i∈T∗

χ(i, fT∪{i}, C). (4.19)

With this definition, we can rewrite Program (4.16)-(4.18) as

Minimize
λ

1− µ (4.20)

Subject To

µ ≤ 1 (4.21)

ζ(y, x, C) ≤ λ · C(y) + µ · C(x), ∀C ∈ C and x, y ∈ R>0. (4.22)

Observe that for every constraint, we can scale the weights of the players by
a factor a, dilate the cost function by a factor 1/a and scale it by an arbitrary
factor, and keep the constraint intact (by Assumption 2). This suggests we
can assume that every constraint has y = 1 and C(1) = 1. Then we rewrite
Program (4.20)-(4.22) as

Minimize
λ

1− µ (4.23)

Subject To µ ≤ 1 (4.24)

ζ(1, x, C) ≤ λ+ µ · C(x), ∀C ∈ C and x ∈ R>0. (4.25)

The Lagrangian dual of Program (4.23)-(4.25) is

Maximize

inf
λ,µ

 λ

1− µ +
∑

C∈C,x>0

zCx · (ζ(1, x, C)− λ− µ · C(x)) + zµ · (µ− 1)


(4.26)

Subject To zCx, zµ ≥ 0. (4.27)

Our primal is a semi-infinite program with an objective that is continuous,
differentiable, and convex in the feasible region, and with linear constraints.
We get that strong duality holds (see also [79, 85] for a detailed treatment of
strong duality in this setting). We first treat the case when the optimal value
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of the primal is finite and is given by point (λ∗, µ∗). Before concluding our
proof we will explain how to deal with the case when the primal is infinite or
infeasible. The KKT conditions yield for the optimal λ∗, µ∗, z∗Cx:

1

1− µ∗ =
∑

c∈C,x>0

z∗Cx, (4.28)

λ∗

(1− µ∗)2
=

∑
C∈C,x>0

z∗Cx · C(x). (4.29)

Calling ηCx = z∗Cx/
∑
C∈C,x>0 z

∗
Cx and dividing (4.29) with (4.28) we get

λ∗

1− µ∗ =
∑

C∈C,x>0

ηCx · C(x). (4.30)

By (4.30) and the fact that all constraints for which z∗Cx > 0 are tight (by
complementary slackness), we get∑

C∈C,x>0

ηCx · ζ(1, x, C) =
∑

C∈C,x>0

ηCx · C(x). (4.31)

We now proceed to our matching lower bound which holds even for the
single-commodity per player model.

Lower bound construction. Let T = {(C, x) : z∗Cx > 0}. The construction
starts off with a single-commodity player i, who has flow 1 and, in the PNE,
uses a single resource ei by herself. The cost function of resource ei is an
arbitrary function from C such that Cei(1) 6= 0 (it is easy to see that such a
function exists, since C is closed under dilation, unless all function are 0, which
is a trivial case) scaled so that Cei(1) =

∑
(C,x)∈T ηCx · ζ(1, x, C). The other

option of player i is to use a set of resources, one for each (C, x) ∈ T with
cost functions ηCx · C(·). The resource corresponding to each (C, x) is used
in the PNE by a player set that is equivalent to the T that maximizes the
expression in (4.19) for the corresponding C, x. We now prove that player i
does not gain by deviating to her alternative strategy. The key point is that
due to convexity of the cost shares (assumption 3, page 78), the worst case T ∗

in definition (4.19) will always be a single player. Then we can see that the cost
share of i on each (C, x) resource in her potential deviation will be ηCx·ζ(1, x, C).
It then follows that she is indifferent between her two strategies. Note that the
PNE cost of i is

∑
(C,x)∈T ηCx · ζ(1, x, C), which by (4.30) and (4.31) is equal

to λ∗/(1− µ∗). Also note that if player i could use her alternative strategy by
herself, her cost would be 1.

We now make the following observation which allows us to complete the
lower bound construction: Focus on the players and resources of the previous
paragraph. Suppose we scale the weight of player i, as well as the weights of
the users of the resources in her alternative strategy by the same factor a > 0.
Then, suppose we dilate the cost functions of all these resources (the one used
by i in the PNE and the ones in her alternative strategy) by a factor 1/a
so that the costs generated by the players go back to the values they had in
the previous paragraph. Finally, suppose we scale the cost functions by an
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arbitrary factor b > 0. We observe that the fact that i has no incentive to
deviate is preserved (by assumption 2, page 78) and the ratio of PNE cost
versus alternative cost for i remains the same, i.e., λ∗/(1 − µ∗). This suggests
that for every player generated by our construction so far in the PNE, we can
repeat these steps by looking at her weight and PNE cost and appropriately
constructing her alternative strategy and the users therein. After repeating this
construction for a large number of layers M → ∞, we complete the instance
by creating a single resource for each of the players in the final layer. The cost
functions of these resources are arbitrary nonzero functions from C scaled and
dilated so that each one of these players is indifferent between her PNE strategy
and using the newly constructed resource.

Consider the outcome that has all players play their alternative strategies
and not the ones they use in the PNE. Every player other than the ones in the
final layer would have a cost λ∗/(1− µ∗) smaller, as we argued above. We can
now see that, by (4.31), the cost of every player in the PNE is the same as
that of the players in the resources of her alternative strategy. This means the
cost across levels of our construction is identical and the final layer is negligible,
since M →∞. This proves that the cost of the PNE is λ∗/(1−µ∗) times larger
than the outcome that has all players play their alternative strategies, which
gives the tight lower bound.

Note on case with primal infeasibility. Recall that during our analysis
we assumed that the primal program (4.23)-(4.25) had a finite optimal solution.
Now suppose the program is either infeasible or µ = 1, which means the min-
imizer yields an infinite value. This implies that, if we set µ arbitrarily close
to 1, then there exists some C ∈ C, such that, for any arbitrarily large λ, there
exists x > 0 such that ζ(1, x, C) > λ+µ ·C(x). We can rewrite this last expres-
sion as ζ(1, x, C)/C(x) > µ + λ/C(x), which shows we have C, x values such
that ζ(1, x, C) is arbitrarily close to C(x) or larger (since µ is arbitrarily close
to 1). We can then replace λ with λ′ such that the constraint becomes tight. It
is not hard to see that these facts give properties parallel to (4.30) and (4.31)
by setting ηCx = 1 for our C, x and every other such variable to 0. Then
our lower bound construction goes through for this arbitrarily large λ′/(1− µ),
which shows we can construct a lower bound with as high POA as desired. This
completes the proof of Theorem 4.3.1.

4.3.2 PoS for Shapley Values (γ = 0).

In this section we study the POS for the class of standard Shapley values, where
the sampling parameter of each player i is defined by λi(P ) = (f ie(P ))γ for γ = 0
and any outcome P .

Upper Bound

We start with an upper bound on the POS for the case that γ = 0, i.e., for the
standard Shapley value (SV) cost-sharing method.

Theorem 4.3.2. The POS of the SV with C the set of allowable cost functions

is at most maxC∈C,x>0
C(x)∫ x

0
C(x′)
x′ dx′

.
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Proof. We begin with the potential function of the game,

Φ(P ) =
∑
e∈E

∑
i∈N

χ(i, f≤i,πe (P ), Ce)

and we prove the following lemma which is the main tool for proving our upper
bound on the POS. Briefly, the lemma states the following. For any instance
with N players and any strategy profile, we can construct a new instance with
N + 1 players by splitting one player in half into two new players. Then this
can only reduce the potential value of the game. More precisely, we do this
by splitting in half the flow of each commodity controlled by a player i on a
resource creating two new commodities, which we assign to the new two players,
say i′ and i′′.

Lemma 23. Consider an outcome P of the game and assume that on a resource
e, we substitute the total flow of a player i with the flows of two other players

i′,i′′ such that f i
′

e (P̂ ) = f i
′′

e (P̂ ) =
fie(P )

2 . Then we claim that

Φe(P ) ≥ Φ′e(P̂ ),

where Φ′e(P̂ ) is the potential value of resource e after the substitution.

Proof. First, rename the flows such that the substituted one f ie(P ) to have the
highest index. Assign indices i′ and i′′ to the new ones, with i < i′ < i′′ in
ordering π. Then, for any resource e, the new potential value equals to

Φ′e(P̂ ) =

i−1∑
j=1

χe(j, f
≤j,π
e (P )) + χe(i

′, (f<i,πe (P ), f i
′

e (P̂ )))

+ χe(i
′′, (f<i,πe (P ), f i

′

e (P̂ ), f i
′′

e (P̂ ))).

Note that the contribution to the potential value of the flows before player’s i
flow is the same as before the substitution. Therefore it is enough to show that

χe(i, f
N
e (P )) ≥ χe(i

′, (f<i,πe (P ), f i
′

e (P̂ ))) +

χe(i
′′, (f<i,πe (P ), f i

′

e (P̂ ), f i
′′

e (P̂ ))). (4.32)

To simplify, in what follows in this proof, call

χ = χe(i, f
N
e (P )),

χ′ = χe(i
′, (f<i,πe (P ), f i

′

e (P̂ ))),

χ′′ = χe(i
′′, (f<i,πe (P ), f i

′

e (P̂ ), f i
′′

e (P̂ ))).

Define as Sie(π) the set of players preceding player i in π. Then, for every

ordering π and permutation τ i of set Sie(π)∪{i}, define as F<i,π,τ
i

e (P ) the sum
of players’ flows who precede i in both π and τ i. Let now |Se(P )| = r. By
definition of SV, we get

χ =
1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f ie(P )
)
− Ce

(
F<i,π,τ

i

e (P ))
))

, (4.33)

χ′ =
1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
))

. (4.34)
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For χ′′, since the position of f i
′

e (P̂ ) in the ordering is unspecified, we give
an upper bound for this value as follows. For any permutation τ , let A(τ) be
the marginal cost increase caused by f i

′′

e (P̂ ) when she precedes f i
′

e (P̂ ) in π, and
B(τ) when she succeeds. That is

A(τ) = Ce

(
F<i,π,τ

i

e (P ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
)
,

B(τ) = Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
.

(4.35)

Let now p equal the probability of f i
′

e (P̂ ) preceding f i
′′

e (P̂ ). Then SV definition
gives

χ′′ = (1− p) · 1

r!
·
∑
τ i

A(τ) + p · 1

r!
·
∑
τ i

B(τ). (4.36)

Due to convexity, A(τ) ≤ B(τ). Therefore, by substituting A(τ) with B(τ) in
definition (4.36), we get the following upper bound for χ′′,

χ′′ ≤ 1

r!

∑
τ i

B(τ). (4.37)

Using (4.34) and (4.37), we upperbound χ′ + χ′′ by

1

r!

∑
τ i

Ce

(
F<i,π,τ

i

e (P ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P )
)

+

+ Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ ) + f i
′′

e (P̂ )
)
− Ce

(
F<i,π,τ

i

e (P ) + f i
′

e (P̂ )
)
.

Since f i
′

e (P̂ ) = f i
′′

e (P̂ ) =
fie(P )

2 , we get

χ′ + χ′′ ≤ 1

r!

∑
τ i

(
Ce

(
F<i,π,τ

i

e (P ) + f ie(P )
)
− Ce

(
F<i,π,τ

i

e (P )
))

(4.33)
= χ,

which proves the desirable inequality (4.32) and completes Lemma’s 23 proof.

We now continue with the PoS upper bound. By repeatedly applying Lemma 23,
we can break the total flow on each resource in identical flows of infinitesimal
size without increasing the value of the potential. This implies that

Φe(P ) ≥
∫ fe(P )

0

Ce(x)

x
dx. (4.38)

Now call P ∗ the optimal outcome and P = arg minP ′ Φ(P ′) the minimizer of
the potential function, which is, by definition, also a PNE. Then

SC(P ∗)
(4.2)

≥ Φ(P ∗)
Def.P
≥ Φ(P )

(4.38)

≥
∑
e∈E

∫ fe(P )

0

Ce(x)

x
dxr

=

∑
e∈E

∫ fe(P )

0
Ce(x)
x dx∑

e∈E Ce(fe(P ))
· SC(P ) ≥ min

e∈E

∫ fe(P )

0
Ce(x)
x dx

Ce(fe(P ))
· SC(P ).
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Rearranging yields the upper bound PoS ≤ maxC∈C,x>0
C(x)∫ x

0
C(x′)
x′ dx′

, which com-

pletes the proof of Theorem 4.3.2.

Corollary 6. For polynomials with non-negative coefficients and degree at most d,
the POS of the SV is at most d+1, which asymptotically matches the lower bound
of [20] for the unweighted single-commodity per player case.

4.3.3 PoS for Weighted Shapley Values (γ 6= 0).

In this section we study the PoS for the class of weighted Shapley values, where
the sampling parameter of each player i is defined by λi(P ) = (f ie(P ))γ for any
γ 6= 0 and outcome P .

We show that this linear dependence on the maximum degree d of the poly-
nomial cost functions is very fragile. More precisely, for all values γ 6= 0, we
show an exponential (in d) lower bound which matches the corresponding lower
bound on the PoA in [41]. Our bound for γ > 0 even matches the upper bound
on the PoA [41], which holds for the weighted Shapley value in general. Our
constructions modify the corresponding instances in [41], making sure that they
have a unique Nash equilibrium.

Theorem 4.3.3. For polynomial cost functions with non-negative coefficients
and maximum degree d, the POS for the class of weighted Shapley values with
sampling parameters λie(P ) = (f ie(P ))γ is at least

(a) (2
1
d − 1)−d, for all γ > 0, and

(b) dd, for all γ < 0.

In the following we prove Theorem 4.3.3. To do so, we use Lemma 241, which
will be crucial for proving our lower bounds on the POS. We then introduce
an instance in Example 10 and show in Theorem 4.3.4 that it gives the lower
bound for γ > 0. Afterwards, Example 11 and Theorem 4.3.5, provide the
corresponding lower bound for γ < 0.

Lemma 24. Consider a resource e, a player i with flow f ie and a set T of k

players with total weight FTe , where f te =
FTe
k for t ∈ T . Assume that the set of

players {i}∪T ′, for some T ′ ⊆ T , is using a resource where players’ cost shares
are computed by weighted Shapley values with sampling weights λz(f

z
e ) = (fze )γ ,

for each player z. Let j ∈ T ′. Then (a) for γ > 0

lim
k→∞

χie =Ce

(
|T ′| · F

T
e

k
+ f ie

)
− Ce

(
|T ′| · f je

)
, (4.39)

lim
k→∞

χje =
1

|T ′| · Ce
(
|T ′| · F

T
e

k

)
, if |T ′| 6= ∅, (4.40)

and, (b) for γ < 0

lim
k→∞

χie = Ce(f
i
e), (4.41)

lim
k→∞

χje =
1

|T ′| ·
(
Ce

(
|T ′| · F

T
e

k
+ f ie

)
− Ce

(
f ie
))

, if |T ′| 6= ∅. (4.42)

1The proof of Lemma 24 is quite technical and provided in Appendix.
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PoS Lower Bound for Positive γ.

In this section, we give the proof for part (a) of Theorem 4.3.3. First, we describe
the example that gives our lower bound, for γ > 0, which is stated in Theorem
4.3.4 afterwards.

Example 10. Consider a complete k-ary tree G = (E,N) with l levels, where
the root is positioned at level 0. Each vertex of the tree corresponds to a resource
and each edge to a player. For 0 ≤ j ≤ l− 1, let Ej ⊂ E be the set of resources
(nodes) at level j and, for 0 ≤ j ≤ l−2, let Nj ⊂ N be the set of players (edges)
between levels j and j + 1 of the tree. The strategies of every player are the
endpoints of the edge she is associated with, i.e. a player associated with edge
(j, j− 1) has strategies {{j}, {j− 1}}. For 0 ≤ j ≤ l− 2, the flow f i of a player
i ∈ Nj is given by φl−j−2, where

φ = k ·
(

2
1
d − 1

)
. (4.43)

Define α = k
φd

and let 0 < ε < 1. The cost function of resources e ∈ Ej, is
given by

Ce(x) =
(
1 + εl−j

)
· αl−j−2 · xd,

and Ce(x) = (1 + ε) · kd−1 · xd,

for 0 ≤ j ≤ l − 2,

for j = l − 1.

Theorem 4.3.4. For polynomial cost functions with non-negative coefficients
and maximum degree d, the POS for the class of weighted Shapley values with
sampling parameters λi(f

i) = (f i)γ , with γ > 0, is at least(
2

1
d − 1

)−d
.

Proof. Choose the instance in Example 10. Then, let P be the outcome where
all players use the resource closer to the root, and P ∗ be the outcome where all
players use the resource further from the root. We prove by induction that P is
a unique Nash equilibrium with a total cost equal to (2

1
d − 1)−d times the total

cost of outcome P ∗.
Consider a player i ∈ Nl−2, i.e. a player connected to a leaf resource and

assume she uses the leaf resource, e ∈ El−1. Note that she is the only player
who can use this resource. Then player i’s cost share equals to

χie = (1 + ε) · kd−1. (4.44)

For k′ ≤ k, consider k′ players from set Nl−2 (including player i) and assume
they use the resource e closer to the root, e ∈ El−2. Choose the (worst) case
where a player b ∈ Nl−3 also uses resource e. We show that even in this case,
player i prefers the resource closer to the root. Using (59) of Lemma 24, player
i’s cost share is given by

lim
k→∞

χie =
1

k′
·
(
1 + ε2

)
· α · (k′ · φ)d

k′≤k
≤

(
1 + ε2

)
· kd−1, (4.45)
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where (4.45) is strictly smaller than (4.44), since 0 < ε < 1.
For l − 1 ≥ j′ ≥ j + 1, assume that each player of set Nj′ uses the strategy

closer to the root, e ∈ Ej′ . Then consider a player i ∈ Nj who uses the resource
e further from the root, e ∈ Ej+1. By assumption, this resource is also used by
k players from set Nj+1. Then, using (58) of Lemma 24, player i’s cost share is
given by

lim
k→∞

χie =
(
1 + εl−j−1

)
· αl−j−3 ·

((
k · φl−j−3 + φl−j−2

)d − (k · φl−j−3
)d)

=
(
1 + εl−j−1

)
· αl−j−3 · kd · φd·(l−j−3) ·

((
1 +

φ

k

)d
− 1d

)
.

=
(
1 + εl−j−1

)
·
(
α · φd

)l−j−3 · kd.
By substituting α, we have

lim
k→∞

χie = (1 + εl−j−1) · (kl−j−3+d). (4.46)

For k′ ≤ k, consider k′ players from set Nj (including player i) and assume they
use the resource e closer to the root, e ∈ Ej . Choose the (worst) case where one
player b ∈ Nj−1 also uses resource e. Then we show that player i still prefers to
use resource e ∈ Ej . By (59) of Lemma 24, i’s cost share equals to

lim
k→∞

χie =
1

k′
·
(
1 + εl−j

)
· αl−j−2 ·

(
k′ · φl−j−2

)d
=
(
1 + εl−j

)
· αl−j−2 · (k′)d−1 · φd·(l−j−2)

k′≤k
≤
(
1 + εl−j

)
·
(
α · φd

)l−j−2 · kd−1. (4.47)

By substituting α, we have

lim
k→∞

χie ≤
(
1 + εl−j

)
· kl−j−3+d,

which is strictly smaller than (4.46), since 0 < ε < 1.

PoS. Let P and P ∗ be the outcomes where each player chooses the strategy
closer and further from the root accordingly. In this section, we compute the
total costs of outcomes P and P ∗, and present a lower bound to the price of
Stability (PoS).

For outcome P, since every player chooses the resource closer to the root, no
player uses any resource e ∈ El−1, therefore the cost at the leaves of the tree
is zero. For 0 ≤ j ≤ l − 2, we proved that each player using a resource e ∈ Ej
incurs a cost of

(
1 + εl−j

)
· kl−j−3+d. Since each of the kj resources in Ej is

used by k players, the total cost at level j equals to∑
e∈Ej

Ce(fe(P )) = kj+1 ·
(
1 + εl−j

)
· kl−j−3+d

=
(
1 + εl−j

)
·
(
kl−2+d

)
.

Summing up for the l levels, we get that the social cost in outcome P equals to

SC(P ) =

l−1∑
j=0

∑
e∈Ej

Ce(fe(P )) = kl−2+d ·
(
l − 1 +

l∑
i=2

εi

)
. (4.48)
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For outcome P ∗, we now compute the cost of each player on each level.
Since every player chooses to use the resource further from the root, the cost of
resource e ∈ E0 is zero. For 1 ≤ j ≤ l − 2, each player using a resource e ∈ Ej
incurs a cost of(

1 + εl−j
)
· αl−j−2 · φ(l−j−1)·d =

(
1 + εl−j

)
·
(
α · φd

)l−j−2 · φd

=
(
1 + εl−j

)
· kl−j−2 · φd.

In this case, each of the kj resources in Ej is used by only one player, therefore
the total cost at level j equals to∑

e∈Ej

Ce(fe(P )) = kj ·
(
1 + εl−j

)
·
(
kl−j−2

)
=
(
1 + εl−j

)
· kl−2 · φd. (4.49)

Last, the cost of each player using a leaf resource, e ∈ El−1, equals to (1 + ε) ·
kd−1. Since there are kl−1 leaf resources, the total cost at level l − 1 equals to∑

e∈El−1

Ce(fe(P )) = kl−1 · (1 + ε) · kd−1 = (1 + ε) ·
(
kl−2+d

)
. (4.50)

Summing up for the l levels, we have that the social cost in outcome P ∗ equals
to

SC(P ∗) =

l−1∑
j=0

∑
e∈Ej

Ce(fe(P ))

=

l−2∑
j=1

∑
e∈Ej

Ce(fe(P )) +
∑

e∈El−1

Ce(fe(P ))

(4.49)
=

(4.50)
kl−2 · φd ·

(
l − 2 +

l∑
i=2

εi

)
+ (1 + ε) · kl−2+d

(4.43)
= kl−2+d ·

((
2

1
d − 1

)d
·
(
l − 2 +

l∑
i=2

εi

)
+ 1 + ε

)
. (4.51)

Using (4.48) and (4.51), the price of Stability (PoS) is lower bounded by

SC(P )

SC(P ∗)
=

l − 1 +
∑l
i=2 ε

i(
2

1
d − 1

)d
·
(
l − 2 +

∑l−1
i=2 ε

i
)

+ 1 + ε

As l→∞ and ε is arbitrary small, this ratio goes to
(

2
1
d − 1

)−d
, as desired.

PoS Lower Bound for Negative γ.

In this section, we give the proof for part (b) of Theorem 4.3.3. First, we
describe the example that gives our lower bound, for γ < 0, which is stated in
Theorem 4.3.5 afterwards.
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Example 11. Consider a complete k-ary tree G = (E,N) with l levels, where
the root is positioned at level 0. Each vertex of the tree corresponds to a resource
and each edge to a single-commodity player. For 0 ≤ j ≤ l − 1, let Ej ⊂ E be
the set of resources (nodes) at level j, and, for 0 ≤ j ≤ l− 2, let Nj ⊂ N be the
set of players (edges) between levels j and j + 1 of the tree. The strategies of
every player are the endpoints of the edge she is associated with, i.e. a player
associated with edge (j, j− 1) has strategies {{j}, {j− 1}}. The flow of a player
i ∈ Nj is given by φj, where

φ =
1

k · d . (4.52)

Define α = kd−1 · dd. The cost function of resources e ∈ Ej, is given by

Ce(x) = (1 + ε) · xd,

and Ce(x) =
(
1 + εj+1

)
· αj−1 · xd,

for j = 0,

for 1 ≤ j ≤ l − 1.

where ε is an arbitrarily small parameter.

Theorem 4.3.5. For polynomial cost functions with non-negative coefficients
and maximum degree d, the PoS for the class of weighted Shapley values with
sampling parameters λi(f

i) = (f i)γ , with γ < 0, is at least dd.

Proof. Choose the instance described in Example 11. Then, let P be the out-
come where all players use the resource further from the root, and P ∗ be the
outcome where all players use the resource closer to the root. We prove by in-
duction that P is a unique Nash equilibrium with a total cost equal to dd times
the total cost of outcome P ∗.

For k′ ≤ k, consider k′ players from set N0 icluding a player i and assume
they use the resource on the root, e ∈ E0. Then player i’s cost share equals to

lim
k→∞

χie =
1

k′
· Ce(fe(P )) =

1

k
· (1 + ε) · (k′)d

k′≥1

≥ 1 + ε. (4.53)

Assume now that player i deviates to resource e further from the root, e ∈ E1,
and she uses this resource together with k′ players from set N1, for k′ ≤ k. By
(60) of Lemma 24, player i’s cost share is given by

lim
k→∞

χie =
(
1 + ε2

)
· 1d = 1 + ε2

for large enough k, which is strictly lower than (4.53).
For 0 ≤ j′ ≤ j − 2, assume that each player of set Nj′ uses the strategy

further from the root, e ∈ Ej′+1. For k′ ≤ k, consider k′ players from set Nj−1

including a player i, and assume they use the resource e closer to the root,
e ∈ Ej−1. By assumption, this resource is also used by one player b ∈ Nj−2. We
show that player i prefers to deviate. Using (61) of Lemma 24, player i incurs
a cost of

lim
k→∞

χie =
1

k′
·
(
1 + εj

)
· αj−2 ·

((
k′ · φj−1 + φj−2

)d − φ(j−2)·d
)

k′≥1

≥
(
1 + εj

)
· αj−2 ·

((
φj−1 + φj−2

)d − φ(j−2)·d
)

=
(
1 + εj

)
· αj−2 · φ(j−2)·d ·

(
(φ+ 1)

d − 1
)
. (4.54)
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Define function g(x) = xd. Since g is convex and φ→ 0, we have that

(φ+ 1)
d − 1 ≥ φ · d.

Using the above inequality, we get

lim
k→∞

χie ≥ (4.54) ≥
(
1 + εj

)
· (α · φd)j−2 · φ · d

=
(
1 + εj

)
·
(

1

k

)j−2

· 1

k · d · d

=
(
1 + εj

)
· 1

kj−1
. (4.55)

Assume now that player i deviates to resource e further from the root, e ∈ Ej .
Choose the case where k′ players from set Nj also use this resource e, for a
k′ ≤ k. Then by (60) of Lemma, player i’s cost share is given by

lim
k→∞

χie =
(
1 + εj+1

)
· αj−1 ·

(
φj−1

)d
=
(
1 + εj+1

)
· 1

kj−1
,

which is strictly lower than (4.55).

PoS. First, we compute the total cost of the outcome P . Since every player
chooses the resource further from the root, the cost of resource e ∈ E0 (root)
is zero. As we proved, each player using a resource e ∈ Ej incurs a cost of(
1 + εj+1

)
· 1
kj−1 , for 1 ≤ j ≤ l − 1. Each of the kj resources in Ej is used by

only one player. Therefore the total cost at level j equals to∑
e∈Ej

Ce(fe(P )) = kj ·
(
1 + εj+1

)
· 1

kj−1
=
(
1 + εj+1

)
· k.

Computing the sum for the l levels, we have that the cost of outcome P equals

SC(P ) =

l−1∑
j=0

∑
e∈Ej

Ce(fe(P )) = k ·
(
l − 1 +

l∑
i=2

εi

)
. (4.56)

Now let P ∗ be the outcome where each player chooses the resource closer to
the root. The cost of level l − 1 (leaves) of the tree is zero. The cost at level 0
is (1 + ε) · kd. For 1 ≤ j ≤ l − 2, each resource e ∈ Ej incurs a cost of

(1 + εj+1) · αj−1 ·
(
k · φj

)d
= (1 + εj+1) · αj−1 · kd · (φj−1 · φ)d

= (1 + εj+1) · (α · wd)j−1 · (k · φ)d

= (1 + εj+1) · 1

kj−1 · dd .

Since there are kj resources in Ej , the total cost of level j of the tree is given
by ∑

e∈Ej

Ce(fe(P )) = kj · (1 + εj+1) · 1

kj−1 · dd =
(
1 + εj+1

)
· k
dd
.
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Summing up for all levels, we get that the social cost in outcome P ∗ equals to

SC(P ∗) =

l−1∑
j=0

∑
e∈Ej

Ce(fe(P )) =
∑
e∈E0

Ce(fe(P )) +

l−1∑
j=1

∑
e∈Ej

Ce(fe(P ))

= (1 + ε) · kd +

(
l − 1 +

l∑
i=2

εi

)
· k
dd
. (4.57)

Using (4.56) and (4.57), the price of Stability (PoS) is lower bounded by the
following ratio

SC(P )

SC(P ∗)
=

k ·
(
l − 1 +

∑l
i=2 ε

i
)

(1 + ε) · kd +
(
l − 1 +

∑l
i=2 ε

i
)
· k
dd

=
l − 1 +

∑l
i=2 ε

i

(1 + ε) · kd−1 +
(
l − 1 +

∑l
i=2 ε

i
)
· 1
dd

.

With l → ∞ and ε → 0, this ratio goes to dd for any k, which completes
Theorem’s 4.3.5 proof.

4.4 Conclusion

The class of generalised weighted Shapley values are the only methods that
guarantee existence of a PNE in games with single-commodity players [13]. We
prove that the special case of SV still keeps this desirable property even in games
with multi-commodity players. However this is not the case, as soon as we in-
troduce weight dependant sampling weights. We then exhibit a separation from
the single-commodity case by proving that a large subclass of weighted Shapley
values do not guarantee existence of a PNE in multi-commodity routing games.
In fact, we show that among all cost-sharing methods satisfying assumptions on
p. 78, the SV is the unique method which induces games that guarantee PNE.

The majority of research on price of anarchy in weighted congestion games
has been focused in proportional sharing (see Section 1.5.2, page 29). Our POA
results greatly generalise the work on cost-sharing methods for weighted conges-
tion games and give a recipe for tight bounds in a large array of applications.
We parameterize the POA by (i) the set of allowable cost functions and (ii)
the cost-sharing method. Our upper bounds are robust and apply to general
equilibrium concepts. Our upper bound applies to games with multi-commodity
players, while our lower bound uses an instance with single-commodity players,
which proves the POA coincides for the two models.

Results on the price of stability, with respect to congestion games, are
only known for polynomial unweighted games and single-commodity players,
for which [20] provides exact bounds. Work in [56, 75] studies the PoS of the
SV in related settings. Our PoS upper bound is the first for weighted conges-
tion games that applies to any class of convex costs. The approach we follow
allows an infinite number of players for our bounds to hold and parameterize
by the set of possible cost functions. For example, for polynomials of degree at
most d, we show that the PoS is at most d, even when n → ∞. Observe that
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for unweighted games proportional shares and Shapley values are identical (see
Proposition 1.1). Thus, the lower bound in [20], which approaches d, also ap-
plies to our setting, showing that our bound for polynomials is asymptotically
tight. Our lower bounds on the PoS for the parameterized class of weighted
Shapley values build on the corresponding lower bounds on the PoA in [41].
Our construction matches these bounds by ensuring that the instance possesses
a unique Nash equilibrium. Together with our upper bound this shows an inter-
esting contrast: For the special case of Shapley values, the PoS is exponentially
better than the PoA, but as soon as we give some weight dependent priorities
to the players, the PoA and the PoS essentially coincide.

For a splittable version of our model (Section 4.2.4), we give results regard-
ing PNE existence. A result from Orda et al. [65] implies the existence of pure
Nash equilibria in the multi-commodity splittable model, if the cost share of
a player on a resource is a convex function of her flow on the resource. This
result [65] is based on the Kakutani Fixed Point theorem. This immediately
gives us existence of pure Nash equilibria for the standard Shapley cost shar-
ing. We strengthen this result by showing that such games are exact potential
games [62], thus best response dynamics converge to a pure Nash equilibrium.
Understanding the POA of other cost-sharing methods both in the single- and
multi-commodity models is an interesting open question. Similarly, it is in-
teresting to further explore questions pertaining to the existence of pure Nash
equilibria in such games.
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Appendix

Proof of Lemma 16, page 71

Lemma. The approximation factor α is in the order of
(

d
ln(2)

)d
· poly(d).

Proof. We have that this factor α equals to

α = (1 +O(γ)) · (d+ 1)2 · (d+ 3)

8
· t · (2 1

d+1 − 1)−d

2−
d
d+1 · (1 + t)− t

,

where γ is a small positive constant and t = 1 + γ. Observe that factor α is
essentially in the order of

Θ(d3) ·
(

1

2
1
d+1 − 1

)d
.

To compute the order of the above, we focus on the second part 1

2
1
d+1−1

and

claim that it is assymptotically similar to d
ln(2) . This follows from

lim
d→∞

1
d

2
1
d+1 − 1

= lim
d→∞

− 1
d2

− 2
1
d+1 ·ln(2)
(d+1)2

=
1

ln(2)
,

which completes the proof.

Proof of Lemma 24, page 92

Lemma. Consider a resource e, a player i with flow f ie and a set T of k players

with total weight FTe , where f te =
FTe
k for t ∈ T . Assume that the set of players

{i} ∪ T ′, for some T ′ ⊆ T , is using a resource where players’ cost shares are
computed by weighted Shapley values with sampling weights λz(f

z
e ) = (fze )γ , for

each player z. Let j ∈ T ′. Then (a) for γ > 0

lim
k→∞

χie =Ce

(
|T ′| · F

T
e

k
+ f ie

)
− Ce

(
|T ′| · f je

)
, (58)

lim
k→∞

χje =
1

|T ′| · Ce
(
|T ′| · F

T
e

k

)
, if |T ′| 6= ∅, (59)
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and, (b) for γ < 0

lim
k→∞

χie = Ce(f
i
e), (60)

lim
k→∞

χje =
1

|T ′| ·
(
Ce

(
|T ′| · F

T
e

k
+ f ie

)
− Ce

(
f ie
))

, if |T ′| 6= ∅. (61)

Proof. First, notice that if |T ′| = ∅, equations (58) and (60) of the lemma follow
immediately, since only player i uses the resource. We now prove the lemma for
the case where |T ′| 6= 0.

(a) Assume that the sampling weights are given by λz(f
z) = (fz)γ for γ > 0

and let k →∞. We show that player i is the last player who enters the resource
with probability 1− o(1), i.e., she is among the first δ · (|T ′|+ 1) players being
drawn by the sampling procedure, for any arbitrary small δ > 0. Consider now
the probability p that player i is not among the first δ · (|T ′|+ 1) drawn players.
Then p is upper bounded by the probability that player i is not drawn among
everyone in set {i} ∪ T ′ for δ · (|T ′|+ 1) times,

p ≤

1− f ie

f ie + |T ′| ·
(
FTe
k

)γ
δ·(|T ′|+1)

. (62)

Let β = |T ′|
|T | = |T ′|

k where β ∈ (0, 1]. By substituting in (62), we have

1− f ie

f ie + β · k ·
(
FTe
k

)γ
δ·(β·k+1)

=

(
1− f ie

f ie + β · k1−γ · (FTe )γ

)δ·(β·k+1)

.

(63)

For γ ≥ 1, we have

(63) ≤
(

1− f ie
f ie + (FTe )γ

)δ·(β·k+1)

which goes to 0 as k →∞. Since (1− x) ≤ e−x, we have for all 0 < γ < 1,

(63) ≤ exp

(
−δ · β · k · f ie

f ie + β · k1−γ · (FTe )γ

)

= exp

−δ · β · f ie
fie
k + β ·

(
FTe
k

)γ
 ,

which also goes to 0 as k → ∞. Therefore probability p is upper bounded by
an arbitrarily small ε.

According to the weighted Shapley value method, the cost share of a player
equals the expected marginal contribution she causes to the resource cost. Thus
her cost share is affected by any player who enters resource before her. For any
small δ > 0, player i is with probability 1 − o(1) among the last δ · (|T ′| + 1)
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players who enter the resource. Therefore her cost share is affected by the
players who enter the resource earlier. Thus player i incurs a cost of

lim
k→∞

χie = Ce(|T ′| · f je + f ie)− Ce(|T ′| · f je )

= Ce

(
|T ′| · F

T
e

k
+ f ie

)
− Ce

(
|T ′| · F

T
e

k

)
.

In contrast, the cost of each player j ∈ T ′ is not affected by the flow of player
i. Therefore for each j ∈ T ′, we have

lim
k→∞

χje =
1

|T ′| · Ce(|T
′| · f je ) =

1

|T ′| · Ce
(
|T ′| · F

T
e

k

)
which completes the first part of the proof.

(b) Assume now that the sampling weights are given by λ(fz) = (fz)γ

for γ < 0 and let k → ∞. We prove that, for any δ > 0, player i is, with
probability 1− o(1), among the first δ · (|T ′|+ 1) players entering the resource.
This probability equals the probability that player i is not drawn for the first
(1− δ) · (|T ′|+ 1) sampling rounds. The following formula gives the probability
that a player i is not drawn for the first q sampling rounds:

q∏
r=1

1− f ie

f ie + (|T ′| − (r − 1)) ·
(
FTe
k

)γ
 . (64)

The probability of a player i being drawn increases with the number of sampling
rounds. This implies that the probability of player i not being drawn becomes
the smallest in the last sampling round. That is, when r = q = (1−δ) ·(|T ′|+1),
we get the smallest term of (64). Thus we can lower bound (64) by1− f ie

f ie + (δ · |T ′|+ 1) ·
(
FTe
k

)γ
(1−δ)·(|T ′|+1)

. (65)

Define β = |T ′|
|T | = |T ′|

k where β ∈ (0, 1]. By substituting in (65), we have1− f ie

f ie + (δ · β · k + 1) ·
(
FTe
k

)γ
(1−δ)·(β·k+1)

which is lower bounded by(
1− f ie

f ie + δ · β · k1−γ · (FTe )γ

)2·β·k

(66)

since β ≥ 1
k (due to |T ′| 6= ∅ in this case). By letting k →∞, we get that

lim
k→∞

(66) ≥ lim
k→∞

(
1− f ie

δ · β · k1−γ · (FTe )γ

)2·β·k1−γ ·kγ

. (67)
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To simplify, let x =
fie

δ·(FTe )γ
. Then (67) equals to

lim
k→∞

((
1− x

β · k1−γ

)β·k1−γ−1

·
(

1− x

β · k1−γ

))2·kγ

. (68)

Since (1− x
n )n−1 ≥ e−x for any positive x and n, we lowerbound (68) by

lim
k→∞

(
e−x ·

(
1− x

β · k1−γ

))2·kγ

which equals to 1 for any γ < 0.
As we mention in part (a) of the proof, the cost share of a player under the

weighted Shapley value method equals to the marginal contribution she causes
to the resource cost. As we proved, player i is the first player who enters the
resource with probability 1−o(1). Therefore her cost share is not affected by any
player who enters after her. Even if some of the players in T ′ are introduced
before player i in the resource, they will infinitesimally affect player i’s cost.

This is due to the fact that f je =
FTe
k → 0 for any player j ∈ T ′, since k → ∞.

Therefore the cost share of player i is given by

χie = Ce(f
i
e)

while the cost share of any player j ∈ T ′ is given by

lim
k→∞

χje =
1

|T ′| ·
(
Ce
(
f ie + |T ′| · f je

)
− Ce

(
f ie
))

=
1

|T ′| ·
(
Ce

(
f ie + |T ′| · F

T
e

k

)
− Ce

(
f ie
))

,

since they enter resource after player i, which completes the proof of the Lemma
24.
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