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Abstract

Introduction

Outcomes in colorectal cancer (CRC) might be improved by identification of novel drug
targets. Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-
metabolising pathways; it is inhibited by the naturally occurring quassinoid brusatol. This
thesis assessed the expression of Nrf2 in CRC and explored the effect of Nrf2 modulation
alone and in combination with irinotecan in vitro and in an orthotopic syngeneic mouse

model, developed as part of this thesis.

Methods

Tissue microarrays (TMA) were constructed from normal colon, primary CRC tumours and
liver metastases from the same patient and stained for Nrf2. Cell viability and irinotecan
cytotoxicity were assessed in murine (CT26) and human (HCT116) CRC cell lines following
siRNA or pharmacological modulation of Nrf2. In vitro findings were validated in the murine
model, utilising bioluminescent imaging to quantify disease burden following caecal
implantation of luminescent CT26 cells. iTRAQ proteomic pathway analysis was
subsequently undertaken on liver tissue from mice exposed to brusatol over a two-week
period in attempt to determine the specificity of brusatol as an Nrf2 inhibitor and its safety

profile.

Results

An orthotopic syngeneic murine model of CRC was developed using the CT26 cell line
transfected with the luciferase gene and cloned by serial dilution. This model allowed the
monitoring of disease burden in mice through the measurement of luminescent signal
longitudinally over the study period. Disease development in mice was a reasonable
recapitulation of the disease process in humans; tumours developed in the correct
microenvironment in the presence of an intact immune system with up to 20% of mice

developing liver metastases.

12



Nrf2 expression was significantly higher in primary CRC and metastatic tissue than in
normal colon (p<0.01), with a positive correlation between Nrf2 expression in matched
primary and metastatic samples included in the TMA. In vitro viability was decreased in
human and mouse CRC cell-lines by Nrf2 siRNA, confirming a role for Nrf2 in cell survival.
The Nrf2 inhibitor, brusatol, also resulted in a loss of cell viability, in concordance with the
effect of Nrf2 siRNA. Furthermore, inhibition of Nrf2 by siRNA or brusatol significantly
enhanced the cytotoxicity of irinotecan in vitro, with drug synergy noted for combinations

of brusatol with irinotecan in both cell lines.

Brusatol effectively abrogated tumour growth in orthotopically-allografted mice, resulting
in an average 8-fold reduction in luminescence at the study end-point (p=0.02). There was
a trend toward enhanced cytotoxicity of irinotecan when combined with brusatol in the

mouse model.

Nrf2 inhibition was confirmed in the livers of mice receiving brusatol treatment by western
immunoblotting prior to iTRAQ analysis. Many of the pathways significantly altered in the
analysis of murine livers following prolonged brusatol therapy could be linked to Nrf2,

implying that brusatol may exert much of its effect through Nrf2.

Conclusions

Nrf2 offers a promising drug target in the treatment of CRC. Brusatol provides the potential
for translation to clinical trials, although further work is required to determine the

mechanism by which brusatol achieves inhibition on Nrf2 and how specific this effect is.
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SCPRT Short-course pre-operative radiotherapy

SD Standard deviation
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142

2.21
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2.23

Photograph and histology from a large caecal carcinoma (marked by *)
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invading into the muscularis.
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a) Study plan and b) dosing regimens used in the pilot study comparing
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a) Representative tissue cores as analysed by Tissue Studio v.2.0
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nucleus) and Nrf2 staining intensity as assigned by the software; white
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and red strongly positive cells. b) Nrf2 expression, measured by the
calculation of H-scores, confirmed a positive correlation between
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p=0.03, Pearson).
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= 6, Kruskal-Wallis with Dunn’s multiple comparisons test). (Graphs
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Confirmation of significant inhibition of Nrf2 48 hours after transfection
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Representative western blot images and bar charts displaying significant
Nrf2 inhibition at 100nM and 300nM of brusatol as assessed by
densitometry in the a) CT26 and b) HCT116 cell lines respectively.
Significant induction was demonstrated at 30nM of CDDO-me in both.
(one-way ANOVA with Holm-Sidak’s multiple comparison test, N=4, bar
charts display mean +/- SD, C= 0.5% DMSO vehicle control)
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Representative western blot images and graphs displaying the transient
inhibition of Nrf2 by brusatol as assessed by densitometry in a) CT26
and b) HCT116 cell lines respectively. CDDO-me induction resulted in
upregulation of Nrf2 for greater than 24 hours. (N=3, graphs display
mean +/- SD, C= 0.5% DMSO vehicle control)
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Representative western immunoblotting images of CRC cell lines
confirmed induction of CES1 expression following overexpression of
Nrf2 using siRNA to inhibit Keap1 in a) CT26 and b) HCT116 cells. The
effect of siRNA inhibition of Nrf2 on CES1 expression was minimal. Nrf2
induction by CDDO-me in c) CT26 and d) HCT116 cells also increased the
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expression in e) CT26 and b) HCT116 were minimal.
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Representative western immunoblotting images of CRC cell lines
confirmed induction of NQO1 expression following overexpression of
Nrf2 using siRNA to inhibit Keaplin a) CT26 and b) HCT116 cells. siRNA
inhibition of Nrf2 did inhibit NQO1 expression in the a) CT26 but not in
the b) HCT116 cell lines. Nrf2 induction by CDDO-me in ¢) CT26 and d)
HCT116 cells also increased the expression of NQO1. The effects of Nrf2
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176

3.11

Representative western immunoblotting images of CRC cell lines
confirmed induction of HO-1 expression following overexpression of
Nrf2 using siRNA to inhibit Keap1 in a) CT26 and b) HCT116 cells. siRNA
inhibition of Nrf2 did not inhibit HO-1 expression in either CRC cell line.
Nrf2 induction by CDDO-me in ¢) CT26 and d) HCT116 cells also
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brusatol on HO-1 expression in e) CT26 and b) HCT116 were minimal.
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Bar charts displaying the significant decrease in cell viability noted with
siRNA inhibition of Nrf2 in a) CT26 and b) HCT116 cells as assessed using
the MTS assay 96 hours after transfection and compared with the siRNA
control. siRNA inhibition of Keap1 only produced an increase in
proliferation / viability in the HCT116 cell line. (one-way ANOVA with
Holm-Sidak’s multiple comparison test, N=6 in triplicate, graphs display
mean +/-SD)
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a) Graph displaying dose-response curves for the CT26, HCT116 and
benign colonic cell line CCD-33Co, as assessed using the MTS assay 48
hours after the application of CDDO-me or brusatol. (N=3 in triplicate,
graphs display mean +/-SD, results expressed as a percentage of cells
treated with the vehicle 0.5% DMSO control). b) Table demonstrating
the significantly different IC50 values between cell lines, as assessed by
the sum-of-squares F test.
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3.14

Assessment of reproductive integrity following exposure to brusatol
confirmed inhibition of colony formation, represented graphically by
calculation of surviving fractions expressed as a percentage of
untreated cells, and as representative images of wells, in a) CT26 and b)
HCT116 cells. (N=5 in triplicate, graphs display mean +/-SD, * C= 0.5%
DMSO vehicle control)
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Graphs display the effect of siRNA modulation of Nrf2 on cell lines
dosed with irinotecan as measured by the MTS assay. siRNA inhibition
of Nrf2 significantly increased the cytotoxicity of irinotecan in a) CT26
and c) HCT116 cells as reflected by the decreased IC50 values when
compared with treatment with irinotecan alone, displayed in tables b)
for CT26 cells and d) for HCT116 cells (extra sum-of-squares F test). The
cytoprotective effect of overexpression of Nrf2 by Keap1 inhibition was
non-significant in the CT26 but reached significance in the HCT116 cell
line. (IR =irinotecan, siRNA cont = siRNA control, N=3 in triplicate,
graphs display mean +/-SD, NS = non-significant, NA = not applicable)
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Graphs display the effect of pharmacological modulation of Nrf2 with
brusatol and CDDO-me in combination with irinotecan dosing of cell
lines using the MTS assay. The same trends were noted as observed
with siRNA in both the a) CT26 and b) HCT116 cell lines. Tables c) and d)
demonstrate the change in the irinotecan IC50 values with the
pharmacological modulation of Nrf2 in the CT26 and HCT116 cell lines
respectively (extra sum-of-squares F test). (IR = irinotecan, N=3 in
triplicate, graphs display mean +/-SD, NS = non-significant, NA = not
applicable)
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Heat map tables displaying calculated combination indexes for
treatment with varying concentrations of irinotecan and brusatol. These
confirm drug synergy in a) CT26 and b) HCT116 cells across a range of
concentrations. Red, yellow and orange signify decreasing degrees of
synergy, with cells highlighted in green demonstrating an antagonistic
effect. (Synergy assumed at Cl<1)
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Graphs display the effect of siRNA modulation of Nrf2 on cell lines
dosed with 5-FU as measured by the MTS assay. siRNA inhibition of Nrf2
significantly increased the cytotoxicity of 5-FU in a) CT26 and c) HCT116
cells, as reflected by the decrease IC50 values, when compared with
treatment with 5-FU alone as displayed in tables b) for CT26 cells and d)
for HCT116 cells (extra sum-of-squares F test). The cytoprotective effect
of overexpression of Nrf2 by Keap1 inhibition meant IC50 values could
not be calculated. (siRNA cont = siRNA control, N=3 in triplicate, graphs
display mean +/-SD)
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Graphs display the effect of pharmacological modulation of Nrf2 with
brusatol and CDDO-me in combination with 5-FU dosing of cell lines
using the MTS assay. The same trends were noted as observed with
irinotecan in both the a) CT26 and b) HCT116 cell lines, although to a
lesser extent. Tables c) and d) demonstrate the change in the 5-FU IC50
values with the pharmacological modulation of Nrf2 in the CT26 and
HCT116 cell lines respectively (extra sum-of-squares F test). (N=3 in
triplicate, graphs display mean +/-SD, NS = non-significant, NA = not
applicable)
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3.20

Heat map tables displaying calculated combination indexes for
treatment with varying concentrations of 5-FU and brusatol. Drug
synergy was seen at fewer concentrations and to a lesser extent in a)
CT26 and b) HCT116 cells than noted with irinotecan. Red and orange
signify a degree of drug synergy, with cells highlighted in yellow and
green demonstrating an antagonistic effect. (Synergy assumed at CI<1)
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a) Representative IVIS® images of a BALB/c mouse from the brusatol-
treated and control group after sc flank injection of the CT26lucA6c cell
line. b) Graph displays the significant inhibition of tumour growth in
mice treated with brusatol in comparison to vehicle-treated controls
(multiple t-tests, n=3/group, mean +/-SEM). c) Photos of the flank
tumours excised from mice (scale in Imm increments) 21 days after
implantation.
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A significant positive correlation was observed between caliper
measurements and luminescence for brusatol-treated and untreated
mice sc injected with the CT26lucA6c cell line (r*=0.94, p < 0.0001,
Pearson R).
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3.23

a) Western blotting and b) densitometry confirmed significant inhibition
of Nrf2 in the flank tumours excised from mice treated with brusatol
(p=0.03, unpaired t-test). (Bar chart displays mean +/- SD, C = control,
BRU = brusatol)
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3.24

a) Representative serial IVIS® images from BALB/c mice orthotopically
implanted with CT26lucA6c cells and randomised to treatment groups.
b) Data displayed graphically as fold change in luminescence from the
first day of treatment. All treatments inhibited tumour growth
significantly when compared with the control group (one-way ANOVA
comparing tumour growth rate calculated from lines of best fit). c) Fold
change in luminescence on the 14" day post-treatment was significantly
different in mice on the combination therapy rather than irinotecan
alone (Mean fold change = 144.1, SEM 46.34 versus 26.4, SEM 8.4
unpaired t-test with welch correction). (N=8, IR = irinotecan, BRU =
brusatol, graphs display mean +/- SEM)
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3.25

a) Representative serial IVIS® images from BALB/c mice from the onset
of treatment with brusatol (day 0). Treatment was stopped after 14
days and imaging continued for a week. b) Data displayed graphically as
fold change in luminescence from the first day of treatment with the
signal increasing exponentially after the cessation of therapy. (N=3,
graph displays mean +/- SEM)
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3.26

Graph displaying the bodyweight of BALB/c mice orthotopically
implanted with the CT26lucA6c cell line over time. Treatment was
initiated on day 7 post-surgery. (Graph displays mean +/- SEM, IR =
irinotecan, BRU = brusatol
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3.27

Light microscopy example images from tissue stained for Nrf2 by IHC.
Strong staining is demonstrated in the a) positive control of liver from
BALB/c mice treated with CDDO-me. b) Livers from Nrf2 knockout mice
were used as a negative control and displayed weak staining. There was
strong staining demonstrated in caecal tumours excised from mice in
the c) control group and staining was reduced in the tumours from mice
treated with d) brusatol. e) Graphical display of data reveals significantly
(p=0.04 unpaired t-test with Welch's correction) reduced Nrf2 H-scores
in brusatol-treated mice (N=3, graph displays mean +/- SD)
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4.1

Schematic of the labelling and analysis of iTRAQ samples. iTRAQ allows
the simultaneous quantification of up to eight samples. a) Proteins in
each sample undergo tryptic digestion prior to labelling of peptides with
a reporter tag. b) Each reporter tag is associated with a balance to
ensure all tags have the same mass. The balance and reporter tags
separate during MS with analysis permitting the relative quantification
of peptides in each sample after proteins are identified through
comparison to a database.
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4.2

a) Western immunoblot image displaying inhibition of Nrf2 in colon
tissue excised from BALB/c mice after dosing with brusatol for two
weeks. b) Graphical display of densitometry confirmed significant
inhibition of Nrf2 (p = 0.01 unpaired t-test with Welch's correction).
(N=3, graph displays mean +/- SD, c = saline control, BRU = brusatol)
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4.3

a) Western immunoblot image displaying inhibition of Nrf2 in liver
tissue excised from BALB/c mice after dosing with brusatol. b) Graphical
display of densitometry confirmed significant inhibition of Nrf2 (p = 0.02
unpaired t-test with Welch's correction). (N=7, graph displays mean +/-
SD, C = saline control, BRU = brusatol)
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4.4

Image of a Coomaissie stain of normal liver tissue samples used in the
iTRAQ analysis excised from BALB/c mice treated with either brusatol or
a saline control. (C = saline control, BRU = brusatol, MW = molecular
weight)
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4.5

Relative levels of mMRNA expression in livers of control and brusatol-
treated BALB/c mice as detected by Microfluidic TagMan low density
array analysis. Decreased mRNA expression was noted in 35 of the 45
Nrf2 related genes measured. (Bar chart displays mean +/- SEM)
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Al

a) Graph displays the growth rate of the CT26 parent population in
comparison to the CT26lucA6c clonal cell line used in vivo, assessed by
cell counting using the Countess™ automated cell counter. No
significant differences were observed. b) Brusatol dose-response curves
demonstrated similar IC50 values in the parent and clonal population
(CT26 versus CT26lucA6c Brusatol IC50 = 266 versus 290, non-significant
by sum of squares F-test)
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A2

a) Graph displays the lines of best fit for fold change in luminescence for
each individual mouse, with the slope representing tumour growth rate;
colours divide mice by treatment group. b) Scatter plots display the
slope values for each individual mouse with the mean +/- SD for each
treatment group. All treatments inhibited tumour growth significantly
(one-way ANOVA). (IR = irinotecan, BRU = brusatol)
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Chapter 1 - General Introduction and literature review
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1.1 Epidemiology of Colorectal Cancer

According to the 2011 data set published by Cancer Research United Kingdom (UK),
colorectal cancer (CRC) is the fourth most common carcinoma and the second leading
cause of cancer related death in the UK. CRC makes up 12.4% of the total cancer burden in
the UK and the incidence continues to increase, rising by 6% over the last ten years. There
were approximately 41 600 new cases of CRC diagnosed in the UK in 2011 with a slight
preponderance for the disease in men. The lifetime risk of CRC is 5% in the general
population and increases with age; 95% of cases occur in those over the age of 50.

(http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/)

Duke's Stage TNM Stage Frequency 5-year survival
A T1-2, NO,MO 8.70% 80-95%
B T3, NO, MO 24.20% 72-75%
T4, NO, MO 65-66%
Cc1 T1-2, N1, MO 23.60% 55-60%
T3-4,N1, MO 35-42%
c2 Any T, N2, MO 25-27%
D M1 9.20% 0-7%
Unknown 34.30% 35.40%

Table 1.1 - Percentage of cases and 5 year survival by Dukes' and TMN (Tumour, Node and

Metastases) stage at diagnosis for colorectal cancer patients [1, 2].

The best predictor of prognosis remains radiological and histopathological staging (Table
1.1), and whilst survival across all stages of CRC continues to improve, with 57% of patients
alive at five years, outcomes for those presenting with metastatic disease remain poor (7%
five-year survival). Metastatic disease may be confined to the lymphatic nodal tissue which
follows the arterial blood supply of the tumour or to the liver through haematological
spread via the portal venous system. Approximately 25% of CRC patients present with
metastases while an additional 25-35% will develop them during the course of their
disease. Metastatic disease is confined to the liver alone in 20-30% of patients at
presentation and 50% of recurrent disease following resection occurs in the liver [3].
Spread may also be transcoelomic to the omentum or peritoneal cavity and metastatic to

the lungs.

29


http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/

Serosa

Muscularis propria Y ~

o \
Mucosa / Submucosa { 1?‘? \ \\
{

| \
:"‘"l’. :
| I \_,4\ .
Blood stream " =

T1 T2 T3 T4

Lymph nodes

Figure 1.1 — Local staging of colorectal cancer by T (local tumour stage) stage with common sites of

metastases

Surgical resection remains the cornerstone of curative treatment but is not always possible
or advantageous in those with advanced disease, whose only therapeutic options are
chemo- or radiotherapy. Others will benefit from adjuvant or neoadjuvant chemo- or
radiotherapy in conjunction with oncological resection. Advances in chemotherapy have
increased survival, reduced recurrence rates and prolonged life in advanced disease but
more can be accomplished through the utilisation of improved or novel therapies.
Achieving this will require a greater understanding of the pathogenesis of CRC and the
pharmacology of chemotherapeutic and biological treatment agents on an individual
patient basis. The ultimate aim is the personalisation of treatment for all CRC patients
based on the genetic and biological characteristics of their tumour, and the enhancement
of chemotherapy through the manipulation of novel targets to improve tumour response,

whilst minimising side effect profiles.

1.2 Aetiology of Colorectal Cancer

The aetiological factors and patho-genetic mechanisms underlying CRC development are
complex and heterogeneous. Contributory agents and mechanisms in CRC include lifestyle
factors in addition to inherited and genetic mutations. Many factors have been examined
for their influence on the development of sporadic CRC and, although knowledge of
molecular genetics has increased in recent years, the stimuli that lead to malignant change

remain obscure.
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1.2.1 Diet

Numerous dietary factors have been linked with the development of or protection against
CRC. There is good evidence that eating red and processed meat increases CRC risk as
assessed in four separate meta-analyses. These reported a 17-30% increase in the risk of
CRC with ingestion 100-120g of red meat per day and a 9-50% increase on consuming 25-
50g of processed meat per day [4-7]. High quality level 4 evidence suggests that a diet high
in fibre reduces the risk of developing CRC. Meta-analysis of 25 prospective studies
involving over 2 million participants revealed that CRC risk was reduced by 10% for every
10g of total dietary fibre ingested per day [8]. Evidence consistently reports that garlic and
milk have a protective effect against CRC, while limited inconsistent evidence suggests
vegetable and fruit consumption may offer some risk reduction, although this may be due
to the fibre content [9-11]. It is possible that eating cheese [10] and sugary foods [12, 13]
may increase risk, but evidence is inconsistent and no definite conclusions can be drawn.
Other possible dietary influences on CRC pathogenesis include calcium, vitamin D [14, 15],
folate [16-19], vitamin B6 [20] and vitamin B12 [21, 22] but published data reveal

conflicting outcomes between studies.

1.3.2 Alcohol

Evidence consistently demonstrates that alcohol intake increases CRC risk, even at
relatively moderate levels of consumption. In 2011 a systematic review reported relative
risks (RR) were 1.21 for moderate (2-3 drinks/day) and 1.52 for heavy (>4 drinks/day)
alcohol drinkers when compared with light drinkers (<1 drink/day). Dose-response analysis
revealed a 7% increase in risk for every 10g per day of alcohol consumed [23]. The
association between an increased risk of CRC and alcohol have been confirmed by two

other meta-analyses conducted in 2007 [24] and 2011 [25].

1.3.3 Smoking

Three meta-analyses explored the effect of having been a smoker on bowel cancer risk,
finding smokers were significantly more likely to develop CRC than those who have never
smoked [26-28]. Laing et al. included 36 studies, involving over 3 million participants, in
their 2009 review. Separate analyses were performed for smoking status, daily cigarette
consumption, duration, pack-years and age of initiation. Compared with those who had
never smoked, current smokers had a 17% higher chance of developing CRC while in

former smokers the RR for CRC incidence was 1.25 [26].
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1.3.4 Obesity

Studies consistently report an association between CRC risk and increasing Body Mass
Index (BMI). Meta-analysis of 56 case-control and cohort studies involving 93 812
individuals with CRC examined this relationship. Compared with those whose BMI was less
than 23.0 kg/mz, the increased risk of colorectal cancer was 14% for individuals with a BMI
of 23.0 to 24.9 kg/m? 19% for a BMI of 25.0 to 27.4 kg/m?, 24% for a BMI of 27.5 to 29.9
kg/m? and 41% for a BMI of 30.0 kg/m? or more. The association was stronger for men than
women and for the colon than the rectum [29]. In a separate meta-analysis of prospective
studies colon cancer risk increased by 33% and 16% for men and women respectively per

10-cm increment in waist circumference [30].

1.3.5 Physical activity

Three meta-analyses report that physically active individuals have a lower risk of colon
cancer. The association between physical activity levels and rectal cancer risk is less well
defined with one of these studies reporting a non-significant 6% reduction in risk [31], the
second no reduction in risk [32] and the third only focusing on colon cancer [33]. These
studies report that the most active men and women can reduce their risk of colon cancer
by up to 28% and 32% respectively in comparison to the least active. These analyses suffer
from a lack of consistency in defining activity levels in individuals between studies.
Examined outcomes varied significantly with some studies focusing on the duration of

activity with no assessment of intensity.

1.3.6 Medication

Aspirin taken for several years at doses of at least 75 mg daily reduced long-term incidence
and mortality due to colorectal cancer in a review of four randomised control trials. These
trials were conducted to assess the benefit of aspirin in reducing thromboembolic events
but it was noted that allocation to daily aspirin reduced the 20-year risk of colon cancer
significantly (incidence hazard ratio 0-76, p=0.02). This effect was more pronounced for
proximal than distal tumours and there was no significant reduction in the risk of rectal
cancer. There was no increase in benefit as the dose of aspirin was increased from 75 mg
daily [34]. Aspirin may be considered in patients deemed to be a high risk of colon cancer

based on family history or previous polyp disease.
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Preclinical studies have suggested that statins may protect against CRC by inducing
apoptosis, an upregulation of pro-apoptotic proteins and inhibiting tumour angiogenesis.
No definitive conclusions can be drawn from meta-analysis of clinical data. These report a
modest trend towards reduced CRC risk (RR 0.94, p=0.23) with statin therapy [35]. Current

evidence is too inconsistent to recommend the routine use of statins in preventing CRC.

Two meta-analyses from the late 1990s reported a reduction in the incidence of CRC in
women who had or were taking hormone replacement therapy (HRT). The more recent of
these examined 18 epidemiologic studies of postmenopausal hormone therapy and
colorectal cancer. They found a 20% reduction (RR = 0.80) in colon cancer risk and a 19%
decrease (RR = 0.81) in the risk of rectal cancer for postmenopausal women who had ever
taken hormone therapy [36]. More recent studies report mixed findings. Oestrogen-only
HRT was found to have no effect on bowel cancer risk in a randomised trial [37], but a
significant risk-reducing effect in a large nested case-control study [38]. Combined HRT did
not affect CRC risk in the two large cohort studies [39, 40] and did not reduce colon cancer
risk significantly in a randomised trial of women with pre-existing cardiovascular disease
[41]. This contrasts findings from a randomised control trial demonstrating a significant
44% decrease in the risk of CRC with hormonal therapy versus placebo [42]. The evidence is
not consistently in favour of supplementation with HRT to reduce CRC risk, especially given

the well-publicised side-effects associated with hormonal therapy.

1.3.7 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is associated with an increased risk of developing CRC. A
2001 meta-analysis reported cumulative probabilities of 2% by 10 years, 8% by 20 years,
and 18% by 30 years in patients with ulcerative colitis [43]. More recent data publish a
cumulative risk of CRC in patients with ulcerative or Crohn’s colitis of 1%, 2%, and 5% after
10, 20, and >20 years of disease duration, respectively [44]. This decreased risk may reflect
improving treatments of IBD reducing the incidence of CRC, in combination with improved
surveillance identifying those at high risk of malignancy due to polyps or dysplasia and

selection to resection.

The sheer number of causative factors associated with CRC is indicative of the complex
genetic alterations associated with its development. Knowledge of these continues to
improve through gene sequencing and bioinformatics, leading to a better understanding of

potential therapeutic targets.
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1.3 Genetics of Colorectal Cancer

The development of a colorectal malignancy was believed to follow a series of genetic
mutations in oncogenes and tumour suppressor genes from benign polyp to invasive
cancer (figure 1.2) [45]. The genes responsible for the various stages were identified as
Adenomatous Polyposis Coli (APC), KRAS and TP53 and the process labelled the adenoma-
carcinoma sequence. Since this model was proposed, understanding of the molecular
pathogenesis of CRC has advanced considerably. Sequencing of CRC genomes has revealed
numerous mutations in the average colon cancer, determining which of these mutations
have a pathogenic role is challenging. Analysis of approximately 13,000 genes revealed
mutations in the coding sequences of approximately 67 of these [46], while recent genome
sequencing highlighted twenty-four genes that were commonly mutated in CRC. As
expected, mutations commonly occurred in APC, TP53, SMAD4, PIK3CA and KRAS but there
were also frequent mutations in ARID1A, SOX9 and FAM123B [47].

It is now appreciated that there are multiple molecular pathways associated with the
development of CRC and it is possible separate CRC into three phenotypical groups based
on their genetic profile; tumours with microsatellite instability (MSI), those that are
microsatellite stable but have chromosomal instability (CIN) and those with CpG island

methylator phenotype (CIMP).

Normal Hyper-proliferative Adenoma Carcinoma
— —  ——
Colon Epithelium

APC KRAS TP53
DCC

MLH1 and MSH2

SMAD4 and E-cadherin

Figure 1.2 — The adenoma-carcinoma sequence; from normal colonic epithelium through adenoma
to carcinoma. The increasing loss of cellular differentiation and capacity to metastasise

correspond to the accumulation of genetic mutations as originally described by Vogelstein.
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1.3.1 Microsatellite instability

MSI is identified by the presence of frequent insertion and deletion mutations in short
tandem repeats of nucleotide sequences that are 1-6 base pairs long and known as
microsatellites. These make up 3% of Deoxyribonucleic acid (DNA) and are found
throughout the genome. Microsatellites are prone to errors in replication that, if missed by
DNA polymerase, are corrected by the mismatch repair (MMR) system in normal cellular
function. As microsatellite sequences are present in the coding regions of genes that
regulate cell growth and apoptosis, defective MMR can result in frameshift mutations that
create an environment promoting cell survival and carcinogenesis. Inactivation of the MMR
system may be due to epigenetic mechanisms or mutations that alter the function of the

MMR genes, for example MLH1, MSH2, MSH6 and PMS2 [48].

In 1998 the National Cancer Institute recommended the testing of five microsatellite
biomarkers by polymerase chain reaction (PCR) and immunohistochemistry (IHC) for
determination of MSI status; these markers include BAT-25, BAT-26, D25123, D55346 and
D17S250 [49]. Two or more positive markers demonstrate instability and define the
tumour as microsatellite high (MSI-H). Although this is often adequate for determining MSI-
H tumours it may not select between microsatellite low (MSI-L) and microsatellite stable
(MSS) tumours. A large number of markers may be required to make this distinction with
MSI-H tumours defined as having instability in 230% of the markers tested; MSI-L defined
as the presences of instability in 10%—29% of markers, and MSS defined as no unstable

markers [48].

MSI tumours account for approximately 15%-20% of sporadic CRCs and have specific
clinical and histopathological features [50, 51]. These tumours tend to be proximal to the
splenic flexure, have a high histological grade, a mucinous histology with prominent
numbers of tumour-infiltrating lymphocytes and display a Crohn’s like inflammatory
response. They are associated with an improved prognosis despite studies suggesting a lack

of efficacy with 5-fluorouracil (5-FU) based chemotherapy [52].

1.3.2 Chromosomal instability

CIN refers to accelerated rates of gain or loss of whole or large portions of chromosomes
and fits more with the traditional view of the adenoma-carcinoma sequence [45]. The

genomic changes associated with the CIN pathway include activation of KRAS, inactivation
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of APC, loss of TP53 and loss of heterozygosity at chromosome 18q, which contains the
tumour suppressor genes SMAD2, SMAD4 and deleted in colon cancer (DCC). These
mutations were believed to occur in a stepwise fashion as the tumour progressed from
adenoma to carcinoma. This model continues to be refined as evidence emerges on the
complexity and number of mutations associated with the development of CRC. However, it
did establish the key principle that multiple genetic hits were required for the progression
to CRC. Genome-wide sequencing has demonstrated up to 80 mutated genes per CRC but
a smaller group of mutations (less than 15) were considered to be drivers of
tumourigenesis [53]. The consequence of CIN is aneuploidy, genomic amplifications and
l