

@graemeleehickey

www.glhickey.com

graeme.hickey@liverpool.ac.uk

Checking model assumptions with regression diagnostics

Graeme L. Hickey *University of Liverpool*

Conflicts of interest

- None
- Assistant Editor (Statistical Consultant) for EJCTS and ICVTS

"All models are wrong, but some are useful."

George E. P. Box

Question: who routinely checks model assumptions when analyzing data?

Outline

- Illustrate with multiple linear regression
- Plethora of residuals and diagnostics for other model types
- Focus is not to "what to do if you detect a problem", but "how to diagnose (potential) problems"

My personal experience*

- Reviewer of EJCTS and ICVTS for 5-years
- Authors almost never report if they assessed model assumptions
- Example: only one paper submitted where authors considered sphericity in RM-ANOVA at first submission
- Usually one or more comment is sent to authors regarding model assumptions

^{*} My views do not reflect those of the EJCTS, ICVTS, or of other statistical reviewers

Linear regression modelling

- Collect some data
 - y_i : the observed continuous outcome for subject i (e.g. biomarker)
 - $x_{1i}, x_{2i}, ..., x_{pi}$: p covariates (e.g. age, male, ...)
- Want to fit the model

•
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{i2} + \dots + \beta_p x_{pi} + \varepsilon_i$$

- Estimate the regression coefficients
 - $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, ..., $\hat{\beta}_p$
- Report the coefficients and make inference, e.g. report 95% Cls
- But we do not stop there...

Residuals

ullet For a linear regression model, the residual for the i-th observation is

$$r_i = y_i - \hat{y}_i$$

• where \hat{y}_i is the predicted value given by

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{pi}$$

• Lots of useful diagnostics are based on residuals

Linearity of functional form

- Assumption: scatterplot of (x_i, r_i) should not show any systematic trends
- Trends imply that higher-order terms are required, e.g. quadratic, cubic, etc.

В Α 80 -10 -60 **-**Residual 5 **-**40 -> 0 -20 --5 **-**0 --10 **-**15 10 X 10 X 15 20 20 С D 80 -8 -60 -Residual > ⁴⁰ 20 -15 20 10 X 15 20 5

Fitted model:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

Homogeneity

- We often assume assume that $\varepsilon_i \sim N(0, \sigma^2)$
- The assumption here is that the variance is constant, i.e. homogeneous
- Estimates and predictions are robust to violation, but not inferences (e.g. *F*-tests, confidence intervals)
- We should not see any pattern in a scatterplot of (\hat{y}_i, r_i)
- Residuals should be symmetric about 0

Homoscedastic residuals

Heteroscedastic residuals

Normality

- If we want to make inferences, we generally assume $\varepsilon_i \sim N(0, \sigma^2)$
- Not always a critical assumption, e.g.:
 - Want to estimate the 'best fit' line
 - Want to make predictions
 - The sample size is quite large and the other assumptions are met
- We can assess graphically using a Q-Q plot, histogram
- Note: the assumption is about the errors, not the outcomes y_i

Normal residuals

Skewed residuals

Independence

- We assume the errors are independent
- Usually able to identify this assumption from the study design and analysis plan
 - E.g. if repeated measures, we should not treat each measurement as independent

• If independence holds, plotting the residuals against the time (or order of the observations) should show no pattern

Independent

Non-independent

Multicollinearity

- Correlation among the predictors (independent variables) is known as collinearity (multicollinearity when >2 predictors)
- If aim is inference, can lead to
 - Inflated standard errors (in some cases very large)
 - Nonsensical parameter estimates (e.g. wrong signs or extremely large)
- If aim is prediction, it tends not to be a problem
- Standard diagnostic is the variance inflation factor (VIF)

$$VIF(X_j) = \frac{1}{1 - R_i^2}$$
 Rule of thumb: VIF > 10 indicates multicollinearity

Outliers & influential points

Diagnostics to detect influential points

• DFBETA (or $\Delta\beta$)

- Leave out i-th observation out and refit the model
- Get estimates of $\hat{\beta}_{0(-i)}$, $\hat{\beta}_{1(-i)}$, $\hat{\beta}_{2}(-i)$, ..., $\hat{\beta}_{p(-i)}$
- Repeat for i = 1, 2, ..., n

Cook's distance D-statistic

- A measure of how influential each data point is
- Automatically computer / visualized in modern software
- Rule of thumb: $D_i > 1$ implies point is influential

Residuals from other models

GLMs (incl. logistic regression)

- Deviance
- Pearson
- Response
- Partial
- Δβ
- ...

Cox regression

- Martingale
- Deviance
- Score
- Schoenfeld
- Δβ
- •

Useful for exploring the influence of individual observations and model fit

Two scenarios

Statistical methods routinely submitted to EJCTS / ICVTS include:

- 1. Repeated measures ANOVA
- 2. Cox proportional hazards regression

Each has very important assumptions

Repeated measures ANOVA

- Assumptions: those used for classical ANOVA + sphericity
- Sphericity: the variances of the differences of all pairs of the within subject conditions (e.g. time) are equal

Patient	T0	T1	T2	T0 – T1	T0 – T2	T1 – T2
1	30	27	20	3	10	7
2	35	30	28	5	7	2
3	25	30	20	- 5	5	10
4	15	15	12	0	3	3
5	9	12	7	-3	2	5
Variance				17.0	10.3	10.3

• It's a questionable a priori assumption for longitudinal data

Mauchly's test

- A popular test (but criticized due to power and robustness)
 - H_0 : sphericity satisfied (i.e. $\sigma^2_{T_0-T_1}=\sigma^2_{T_0-T_2}=\sigma^2_{T_1-T_2}$)
 - H₁: non-sphericity (at least one variance is different)
- If rejected, it is usual to apply a correction to the degrees of freedom (df) in the RM-ANOVA *F*-test
- The correction is ϵ x df, where ϵ = epsilon statistic (either Greenhouse-Geisser or Huynh-Feldt)
- Software (e.g. SPSS) will automatically report ϵ and the corrected tests

Proportionality assumption

- Cox regression assumes proportional hazards:
- Equivalently, the hazard ratio must be constant over time

- There are many ways to assess this assumption, including two using residual diagnostics:
 - Graphical inspection of the (scaled) Schoenfeld residuals
 - A test* based on the Schoenfeld residuals

^{*} Grambsch & Therneau. Biometrika. 1994; 81: 515-26.

- Simple Cox model fitted to the North Central Cancer Treatment Group lung cancer data set*
- If proportionality is valid, then we should not see any association between the residuals and time
- Can formally test the correlation for each covariate
- Can also formally test the "global" proportionality

^{*}Loprinzi CL et al. Journal of Clinical Oncology. 12(3):601-7, 1994.

Conclusions

- Residuals are incredibly powerful for diagnosing issues in regression models
- If a model doesn't satisfy the required assumptions, don't expect subsequent inferences to be correct
- Assumptions can usually be assessed using methods other than (or in combination with) residuals

- Always report in manuscript
 - What diagnostics were used, even if they are absent from the Results section
 - Any corrections or adjustments made as a result of diagnostics

atment Dose (x)

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Thanks for listening Any questions?

Statistical Primer article to be published soon!

Slides available (shortly) from: www.glhickey.com