

Performing repeated measures analysis UNIVERSITY OF

Schicht/ Datum

g/m

m/min

m/min

mmWs

bar

10

mm

mm 1/min

1/min mm

% / Vmin % / Vmin % / Vmin % / Vmir mbar

mbar mbar

mbar mbar mbar

mm

mbar

mbar

mbar

mbar

mbar

mba

graeme.hickey@liverpool.ac.uk

1.

Stoffverhälnis DIP / Etik FLG

-V - Sieb

V - Poperoller

Arbeitsbreite

Stoffauflauf

Austautverhaltnis

Druck

PD Innendruck

Druckwaage / Spülung

Lippenötfnung

Vorderwand

FU- Stoffaulaufpumpe

LIVERPOOL

1.Formationszone / Zone

2. Zone (Trockengehalt

Trennsauger

Flachsauge

SSW

Graeme L. Hickey

@graemeleehickey

0

www.glhickey.com

Press

PU Haltezon

PU Predzon

Conflicts of interest

- None
- Assistant Editor (Statistical Consultant) for EJCTS and ICVTS

What are "repeated measures" data

"Condition": chocolate cake

"Condition": lemon cake

"Condition": cheesecake

Measurement: taste score

Measurement: taste score

Measurement: taste score

Same people score each condition

What are "repeated measures" data

Measurement: systolic BP

Measurement: systolic BP

Measurement: systolic BP

Same people provide BP at every follow-up appointment

Why do we need special methodology?

- Data are not independent: repeated observations on the same individual will be more similar to each other than to observations on other individuals
- Guidelines for reporting mortality and morbidity after cardiac valve interventions also propose the use of longitudinal data analysis for repeated measurement data

Simplest case: 2 measurement times

Measurement: AV gradient

Measurement: AV gradient

Suitable methods: paired t-test or Wilcoxon signed-rank test

What if we have treatment groups?

before treatment after treatment Active treatment B D А Η Η Ε Ε

Question: if patients are randomised to treatment arms, how can we test whether active treatment is more effective than placebo?

Measurement taken

Placebo

Measurement taken

Methods: shoulder pain example

	Placebo (<i>n</i> = 27)	Acupuncture (<i>n</i> = 25)	Difference between means (95% CI)	Р
Follow-up	62.3 (17.9)	79.6 (17.1)	17.3 (7.5 to 27.1)	<0.001
Change score	8.4 (14.6)	19.2 (16.1)	10.8 (.3 to 19.4)	0.014
ANCOVA			12.7 (4.1 to 21.3)	0.005

General rule-of-thumb: analysis of covariance (ANCOVA) has the highest statistical power

Note: never use percentage change scores!

More general scenario

- We record measurements of each patient >2 times
- Two (or more treatment groups)

Design considerations

• Balanced versus unbalanced

- Balanced follow-up (e.g. baseline, 1-hr, 2-hr, 8-hr, 16-hr, 24-hr)
- Unbalanced (e.g. patient A visits their physician on days 1, 4, 6, 9, 12, and patient B visits only on days 5, 9, and 15)

Missing data

• E.g. patient fails to attend *scheduled* follow-up appointment

How *not* to proceed

- Multiple testing issues
- No account of same patients being measured ⇒ successive observations likely correlated
- Visualization + reporting issues

Source: Matthews et al. *BMJ*. 1990; 300: 230–5.

Data format / collection

Wide format

Subject	Jan 01	Aug 30	Dec 08
А	120	113	115
В	94	94	110
С	140	145	160
D	100	101	100

Good for balanced datasets

Good for unbalanced datasets

Long format

Subject	Date	BP (mmHg)
А	Jan 01	120
А	Aug 30	113
А	Dec 08	115
В	Jan 01	94
В	Aug 30	94
В	Dec 08	110
:	:	:
D	Aug 30	101
D	Dec 08	100

First step (always!): visualize the data

Source: Gueorguieva & Krystal. Arch Gen Psychiatry. 2004; 61: 310–317.

Source: Matthews et al. BMJ. 1990; 300: 230–5.

Analysis options

- Repeated measures analysis of variance (RM-ANOVA)
- Linear mixed models (LMMs)
- Summary statistics / data-reduction techniques
- Multivariate analysis of variance (MANOVA)
- Generalized least squares (GLS)
- Generalized estimating equations
- Non-linear mixed effects models
- Empirical Bayes methods

Test for: interaction effect

Sphericity

Tomorrow (14:15 – 15:45): Checking model assumptions with regression diagnostics

- RM-ANOVA depends on the usual assumptions for ANOVA...
- ... and the assumption of sphericity

$$SD_{T2-T1} \cong SD_{T3-T1} \cong SD_{T3-T2} \cong ...$$

- Restrictive for longitudinal data ⇒ measurements taken closely together are often more correlated than those taken at larger time intervals
- Test for sphericity using Mauchly's test

When sphericity is violated

- If sphericity is violated, then type I errors are inflated and interaction term effects biased – that is serious
- A Mauchly's test may not reject sphericity if the sample size is small, even if the variances are vastly different

Correction proposal:

- 1. Calculate the epsilon statistic
 - i. Greenhouse-Geisser
 - ii. Huynh-Feldt
- 2. Multiply the *F*-statistic degrees of freedom by epsilon

Linear mixed models

- Generalizes linear regression to account for correlation in repeated measures within subjects
- Also described as random effects models, mixed effects models, random growth models, multi-level models, hierarchical models, ...

Linear mixed models

• A compromise is the model

$$Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})t_{ij} + \varepsilon_{ij}$$

- (b_{0i}, b_{1i}) are called subject-specific random intercepts: intercept and slope respectively, distributed $N_2(0, \Sigma)$
- Observations within-subjects are more correlated than observations between-subjects
- Can be adjusted for other (possibly time-varying) covariates and baseline measurements

Summary statistics

- A two-stage approach:
 - 1. Reduce the repeated measurements for each subject to a single value
 - Apply routine statistical methods on these summary values to compare treatments, e.g. using independent samples *t*-test, ANOVA, Mann-Whitney *U*-test, ...
- Benefits
 - Easy to do, and conceptually easy to understand
 - Can be used to contrast different features of the data
 - Encourages researchers to think about the features of the data most important to them in advance
- Choice of summary statistic depends on the data

If the data display a 'peaked curve' trend...

Area under the curve

Mean follow-up – baseline

Maximum measurement

Time to reach maximum

If the data display a 'growth curve' trend...

Change score

Final value

Slope

Time to a certain % increase/decrease

Missing data

Method	Can it handle missing data?	Can it handle unbalanced data?
RM- ANOVA	No – typically exclude patients with 1 or missing value	No
LMM	Yes – for data that is missing (completely) at random	Yes
Summary statistics	Depends on the choice of summary statistic	Depends on the choice of summary statistic

Software

• All methods implemented in standard statistical software

 Summary statistics usually require 'manual' calculation, but can be done easily in Microsoft Excel or programmed in a statistics software package

Thank you for listening... any questions?

Statistical Primer article to be published soon!

Slides available (shortly) from: www.glhickey.com