

Graeme L. Hickey University of Liverpool

Sample size determination: why, when, how?

@graemeleehickey

 \sim

www.glhickey.com

graeme.hickey@liverpool.ac.uk

Why?

Scientific: might miss out on an important discovery (testing too few), or find a clinically irrelevant effect size (testing too many)

Ethical: might sacrifice subjects (testing too many) or <u>unnecessarily</u> expose too few when study success chance low (testing too few)

Economical: might waste money and time (testing too many) or have to repeat the experiment again (testing too few)

Also, generally required for study grant proposals

When?

- Should be determined in advance of the study
- For randomised control trials (RCTs), must be determined <u>and</u> specified in the study protocol <u>before</u> recruitment starts

What not to do

Use same sample size as another (possibly similar) study *Might have just gotten lucky*

Base sample size on what is available Extend study period, seek more money, pool study

Use a nice whole number and hope no one notices Unless you want your paper rejected

Avoid calculating a sample size because you couldn't estimate the parameters needed *Do a pilot study or use approximate formulae, e.g.* $SD \approx (max - min) / 4$

Avoid calculating a sample size because you couldn't work one out *Speak to a statistician*

Example

- A physician wants to set a study to compare a new antihypertensive drug relative to a placebo
- Participants are randomized into two treatment groups:
 - Group N: new drug
 - Group P: placebo
- The primary endpoint is taken as the mean reduction in systolic blood pressure (BP_{sys}) after four weeks

What do we need?

ltem	Definition	Specified value
Type I error (α)		
Power (1 – β)		
Minimal clinically relevant difference		
Variation		

Errors

Hypothesis test

	No evidence of a difference	Evidence of a difference
No difference	True Negative	False positive Type I error (α)
Difference	False negative Type II error (β)	True Positive

Truth

What do we need?

ltem	Definition	Specified value
Type I error (α)	The probability of falsely rejecting H_0 (false positive rate)	0.05
Power (1 – β)	The probability of correctly rejecting H ₀ (true positive rate)	0.80
Minimal clinically relevant difference		
Variation		

Minimal clinically relevant difference

- Minimal difference between the studied groups that the investigator wishes to detect
- Referred to as minimal clinically relevant difference (MCRD) different from statistical significance
- MCRD should be biologically plausible
- Sample size \propto MCRD⁻²
 - E.g. if n=100 required to detect MCRD = 1, then n=400 required to detect MCRD = 0.5
- Note: some software / formula define the 'effect size' as the standardized effect size = MCRD / σ

Where to get MCRD or variation values

- Biological / medical expertise
- Review the literature
- Pilot studies
- If unsure, get a the range of values and explore using sensitivity analyses

Example: continued

- From previous studies, the mean BP_{sys} of hypertensive patients is 145 mmHg (SD = 5 mmHg)
- Histograms also suggest that the distribution of BP is normally distributed in the population
- An expert says the new drug would need to lower BP_{sys} by 5 mmHg for it to be clinically significant, otherwise the side effects outweigh the benefit
- He assumes the standard deviation of BP_{sys} will be the same in the treatment group

What do we need?

ltem	Definition	Specified value
Type I error (α)	The probability of falsely rejecting H_0 (false positive rate)	0.05
Power (1 – β)	The probability of correctly rejecting H ₀ (true positive rate)	0.80
Minimal clinically relevant difference	The smallest (biologically plausible) difference in the outcome that is clinically relevant	5 mmHg
Variation	Variability in the outcome (SD for continuous outcomes)	5 mmHg

Sample size formula*

$$n \approx 2 \frac{\left[Z_{1-\frac{\alpha}{2}} + Z_{1-\beta} \right]^{2} \sigma^{2}}{(\mu_{1} - \mu_{0})^{2}}$$

- $\mu_1 \mu_0$ is the MCRD
- Z_p is the quantile from a standard normal distribution
- σ is the common standard deviation

*based on a two-sided test assuming σ is known

Therefore we need 16 patients per treatment group NB: we always round up, never down

Sensitivity analyses

- Sample size sensitive to changes in α, β, MCRD, σ
- Generally a good idea to consider sensitivity of calculation to parameter choices
- If unsure, generally choose the largest sample size

Boo

G*POWER 3

Sample size calculation software

- Standalone tools: G*Power (<u>http://www.gpower.hhu.de/)</u>
- Many statistics software packages have built-in functions
- Lots of web-calculators available
- Lots of formulae published in (bio)statistics papers

Practical limitations

- What if the study duration is limited; the disease rare; financial resources stretched; etc.?
- Calculate the power from the maximum sample size possible (reverse calculation)
- Possible solutions:
 - change outcome (e.g. composite)
 - use as an argument for more funding
 - don't perform the study
 - reduce variation, e.g. change scope of study
 - pool resources with other centres

Estimation problems

- Study objective may be to estimate a parameter (e.g. a prevalence) rather than perform a hypothesis test
- Sample size, n, chosen to control the width of the confidence interval (CI)
- E.g. if a prevalence, the approximate 95% CI is given by

where \hat{p} is the estimated proportion

Example

- David and Boris want to estimate how support among cardiothoracic surgeons for the UK to leave the EU
- They want the MOE to be <3%
- SE maximized when $\hat{p} = 0.5$, so need $\frac{1.96}{2\sqrt{n}} < 0.03$
- So need to (randomly) poll *n* = 1068 members

Drop-outs / missing data

- Sample size calculation is for the number of subjects providing data
- Drop-outs / missing data are generally inevitable
- If we anticipate losing x% of subjects to drop-out / missing data, then inflate the calculated sample size, n, to be:

$$n^{\star} = \frac{n}{\left(1 - \frac{x}{100}\right)}$$

Sample size formula and software available for other...

• Effects:

- Comparing two proportions
- Hazard ratios
- Odds ratios
- ...

•

- Study designs:
 - Cluster RCTs
 - Cross-over studies
 - Repeated measures (ANCOVA)

- Hypotheses:
 - Non-inferiority
 - Superiority
 - ...

Observational studies

Issues

- Study design features:
 - Non-randomized \Rightarrow bias
 - Missing data
 - Assignment proportions unbalanced
- Far fewer 'closed-form' formulae

How to approach (depending on study objective)

- Start from assuming randomization as a reference
- Correction factors (e.g. [1,2])
- Inflate sample size for PSM to account for potential unmatched subjects

[1] Hsieh FY *et al. Stat Med.* 1998; 17: 1623–34.
[2] Lipsitz SR & Parzen M. *The Statistician*. 1995; 1: 81-90.

Reporting

- Six high-impact journals in 2005-06*:
 - 5% reported no calculation details
 - 43% did not report all required parameters
 - Similar reporting inadequacies in papers submitted to EJCTS/ICVTS
- Information provided should (in most cases) allow the statistical reviewer to reproduce the calculation

* Charles et al. *BMJ* 2009;338:b1732

For scientific and ethical reasons, the sample size for a trial needs to be planned carefully,

Final comments

- All sample size formulae depend on significance, power, MCRD, variability (+ possible additional assumptions / parameters, e.g. number of events, correlations, ...) no matter how complex
- Lots of published formula (search of course... statisticians – need to find the one right for your study
- A *post hoc* power calculation is worthless
 - Instead report effect size + 95% CI

Thanks for listening Any questions?

Statistical Primer article to be published soon!

Slides available (shortly) from: www.glhickey.com