To inform or confuse with tables and figures: the EJCTS experience

* EACTS *

Graeme L. Hickey *University of Liverpool*

Conflicts of interest

- None
- Assistant Editor (Statistical Consultant) for EJCTS and ICVTS

Summarizing data

- Very small number of statistics report in-line
 - E.g. "The in-hospital mortality was 10% (n = 20)"

 Many unrelated statistics (e.g. different patient characteristics) or displaying fine-level detail – report in tabular format

• Many related statistics (e.g. biomarker values over time) or data to complex for modelling – report in graphical format

Figures as the natural presentation tool

Flowcharts

Figure 1: Flow diagram of study inclusion and exclusion criteria. Dx = diagnosis.

Forest plots

Study IDs	Intervention group n/N ⁽¹⁾	Control group n/N	Relative risk (fixed) 95% Cl (2)	Weight (3) (%)	Relative risk (fixed) 95% Cl (2)
Rowling JK 2000 ³	1/131	2/133		17.8	0.50 (0.05 - 5.49)
Albus D 2003 ⁴	7/279	9/290	_ = _8	77.7	0.84 (0.36 - 1.93)
Hermione G 2005 ⁵	3/102	1/101		4.5	3.00 (0.12 - 72.77)
Total	512	542	→	100.0	0.87 (0.41 - 1.87) (4)
			Left Right		
		0.01	0.1 1 10	100	

Test for herterogeneity Chi-square = 0.79, df = 2, p = 0.67, $l^2 = 0.0\%$ (5) Test for overall effect z = 0.35, p = 0.7 (6)

- (1) N = total number in group, n = number in group with the outcome.
- (2) Outcome of interest in picture and in number. Fixed effect model used for meta-analysis.
- (3) Influence of studies on overall meta-analysis.
- (4) Overall effect.
- (5) Heterogeneity (I^2) = 0%. So, we use fixed effect model.
- (6) p value indicating level of statistical significance

Source: Benchimol et al. *PLoS Med* 2015; 12(10): e1001885.

Source: http://uk.cochrane.org/news/how-read-forest-plot

Tables as the natural presentation tool

Summarizing + comparing data of different types

 Table 1: Patient and operative characteristics data by CPB technique with statistical comparison

	Overall		On-pun	np	Off-pun	пр	Δ (%)	P
Total number	n = 3	402	n = 1	173	n = 2	229		
Logistic EuroSCORE (%)	2.4 ± 2.5		2.4 ± 2.8		2.3 ± 2.3		1.8	0.965
Age (years)	61.7 ± 10.6		61.1 ± 10.3		61.9 ± 10.7		-8.1	0.026
BMI (kg/m ²)	28.5 ± 4.6		28.7 ± 4.7		28.4 ± 4.5		6.1	0.090
	N	%	N	%	N	%		
Female	880	25.9	325	27.7	555	24.9	6.4	0.083
Preoperative AF	69	2.0	28	2.4	41	1.8	3.8	0.343
Urgent	733	21.5	271	23.1	462	20.7	5.7	0.119
NYHA III/IV	645	19.0	225	19.2	420	18.8	0.9	0.846
History of neurological dysfunction	53	1.6	25	2.1	28	1.3	6.8	0.070
Diabetes (insulin- or diet-controlled)	600	17.6	207	17.6	393	17.6	0.0	>0.999
History of hypertension	2269	66.7	764	65.1	1505	67.5	-5.1	0.172
Recent MI	480	14.1	177	15.1	303	13.6	4.3	0.255
Creatinine >200 µmol//l	33	1.0	11	0.9	22	1.0	-0.5	>0.999
History of pulmonary disease	361	10.6	115	9.8	246	11.0	-4.0	0.293
Extracardiac arteriopathy	226	6.6	89	7.6	137	6.1	5.7	0.126
Previous PCI	815	24.0	299	25.5	516	23.1	5.5	0.139
Left ventricular function								
Good (LVEF >50%)	3004	88.3	1011	86.2	1993	89.4	-9.9	0.018
Fair (LVEF 30-50%)	355	10.4	146	12.4	209	9.4	9.9	
Poor (LVEF <30%)	43	1.3	16	1.4	27	1.2	1.4	
Critical preoperative state	34	1.0	15	1.3	19	0.9	4.2	0.314
Preoperative IV nitrates or heparin for treatment of unstable angina	41	1.2	15	1.3	26	1.2	1.0	0.904

BMI: body mass index; MI: myocardial infarction; PCI: percutaneous coronary intervention; LVEF: left ventricular ejection fraction; CVD: coronary vessel disease; IV: intravenous; CABG: coronary artery bypass graft; AF: atrial fibrillation; NYHA: New York Heart Association.

Statistics reported as mean ± standard deviation for continuous variables, and number (%) for categorical/binary variables.

 Δ is the standardized difference: $100(\bar{x}_{on} - \bar{x}_{off})/\sqrt{(s_{on}^2 + s_{off}^2)/2}$, where \bar{x}_{off} and \bar{x}_{on} denote the sample means for the off- and on-pump groups, respectively, and s_{off}^2 and s_{on}^2 the respective sample variances.

P is the P-value: χ^2 test for all categorical variables (some with Yates' continuity correction as appropriate); independent samples t-test for age and BMI; the Mann-Whitney U-test for logistic EuroSCORE.

Summarizing the results of a regression model when the exact coefficients are required

Risk factor	Coefficient	Standard error	z	$P \ge z $	[95% confidence inte
NYHA					
II	0.1070545	0.1463849	0.73	0.465	[-0.1798547, 0.39396
III	0.2958358	0.141466	2.09	0.037	[0.0185674, 0.57310
IV	0.5597929	0.1697565	3.30	0.001	[0.2270763, 0.89250
CCS4	0.2226147	0.1462888	1.52	0.128	[-0.0641061, 0.5093
IDDM	0.3542749	0.145863	2.43	0.015	[0.0683887, 0.64016
Age	0.0285181	0.0065954	4.32	0.000	[0.0155914, 0.04144
Female	0.2196434	0.0953505	2.30	0.021	[0.0327599, 0.4065]
ECA	0.5360268	0.1106046	4.85	0.000	[0.3192458, 0.75280
CPD	0.1886564	0.1232126	1.53	0.126	[-0.0528358, 0.43014
N/M mob	0.2407181	0.1729494	1.39	0.164	[-0.0982564, 0.57969
Redo	01.118599	0.1226272	9.12	0.000	[0.8782539, 1.35894
Renal dysfunction					(
On dialysis	0.6421508	0.3083468	2.08	0.037	[0.0378021, 1.2464
CC < 50	0.8592256	0.1446758	5.94	0.000	[0.5756663, 1.14278
CC 50-85	0.303553	0.1240518	2.45	0.014	[0.0604159, 0.54669
AE	0.6194522	0.2046001	3.03	0.002	[0.2184433, 1.02046
Critical	1.086517	0.147657	7.36	0.000	[0.797115, 1.375920
LV function					(0,,
Moderate	0.3150652	0.1036182	3.04	0.002	[0.1119773, 0.51819
Poor	0.8084096	0.1498233	5.40	0.000	[0.5147614, 1.10205
Very poor	0.9346919	0.2917754	3.20	0.001	[0.3628227, 1.50656
Recent MI	0.1528943	0.136257	1.12	0.262	[-0.1141646, 0.4199
PA systolic pressure	011020710	01100201		0.202	[0.1.1.10.10, 0.1.1.2.1
31-55 mmHg	0.1788899	0.1266713	1.41	0.158	[-0.0693812, 0.42716
≥55	0.3491475	0.1676641	2.08	0.037	[0.0205318, 0.67776
Urgency	0.0 17 17 17		2.00		[0:0200010, 0:01111
Urgent	0.3174673	0.1174178	2.70	0.007	[0.0873326, 0.54760
Emergency	0.7039121	0.1719835	4.09	0.000	0.3668306, 1.04099
Salvage	1.362947	0.33706	4.04	0.000	[0.7023221, 2.0235]
Weight of procedure				5**	
1 non-CABG	0.0062118	0.1463574	0.04	0.966	[-0.2806434, 0.29306
2	0.5521478	0.1268137	4.35	0.000	[0.3035975, 0.80069
3+	0.9724533	0.1463969	6.64	0.000	[0.6855206, 1.25938
Thoracic aorta	0.6527205	0.221183	2.95	0.003	[0.2192097, 1.08623
Constant	-5.324537	0.1682446	-31.65	0.000	[-5.65429, -4.994783

NYHA: New York Heart Association; CCS: Canadian Cardiovascular Society; IDDM: insulin-dependent diabetes mellitus; ECA: extracardiac arteriopathy; CPD: chronic pulmonary dysfunction; N/M mob: neurological or musculoskeletal dysfunction severely affecting mobility; Redo, previous cardiac surgery; CC: creatinine clearance; AE: active endocarditis; Critical: critical preoperative state; IV: left ventricle; MI: myocardial infarction; PA: pulmonary artery; CABG: coronary artery bypass grafting. Weight of procedure '1 non-CABG': single major cardiac procedure which is not isolated CABG; 2: two major cardiac procedures; 3*: three or more major cardiac procedures. For age, X_i = 1 if patient age s60; X_i increases by one point per year thereafter (age 60 or less X_i = 1; age 61 if X_i = 2; age 62 if X_i = 3 and so on).

Source: Nashef SAM et al. *EJCTS*. 2012; 41: 1-12.

Source: Hickey GL et al. *EJCTS*. 2015; 49: 1441–1449.

Figures or tables

But avoid repetition/duplication

Table 1, Baseline Characteristics of Patients With CAS Versus CEA Before and After **Propensity Score Matching Before Propensity Score** After Propensity Score Matching Matching CAS CEA CAS CEA **Parameter** (n=1025)(n=2387) (n=836)(n=836)Age (SD), y 68±10 72±9 < 0.001 70±9 69±9 0.260 1604 569 Men, n (%) 709 0.242 557 0.531 (69.2)(67.2)(68.1)(66.6)656 577 0.958 White, n (%) 1849 < 0.001 576 (64.0)(77.5)(69.0)(68.9)Hypertension, n (%) 870 2026 0.999 719 726 0.617 (84.9)(84.9)(86.0)(86.8)0.006 365 0.255 Diabetes mellitus, n 434 892 342 (42.3)(37.4)(40.9)(43.7)820 655 Dyslipidemia, n (%) 1893 0.645 655 1.000 (80.0)(79.3)(78.3)(78.3)

	Δ (%): before PS matching	Δ (%): after PS matching
Age (years)	42.1	-11.0
Men	-4.3	-3.2
White	30.0	-0.2
Hypertension	0.0	2.3
Diabetes mellitus	-10.0	5.7
Dyslipidemia	1.7	0.0

+ extra columns

Source: Bangalore et al. Circulation. 2010; 122: 1091-1100

Don't trust summary statistics alone

Source: Matejka & Fitzmaurice (2017) https://dx.doi.org/10.1145/3025453.3025912

Show all the data

We will ask authors, where possible, not to use bar graphs, and instead to use approaches that present full data distribution.

Show all the data: dynamite plot

Shows:

- mean
- 1 standard deviation (SD)

Hides:

- the data
- asymmetry
- multi-modality
- lower error bar

Show all the data: dynamite plot

Shows:

- mean
- 1 standard error (SEM)

Show all the data: dynamite plot

Shows:

- mean
- 95% confidence interval (CI)

Show all the data: error bar plot

Shows:

- mean
- 95% confidence interval (CI)

A little better, but still shares a lot of limitations

Show all the data: box and whisker plot

Shows:

- median
- lower & upper quartiles
- outliers
- lowest/highest values within 1.5 IQR

Up until now, my preferred choice of plot

Show all the data: dot plot

Shows:

raw data only

Doesn't show:

summary statistics

Show all the data: violin plot

Shows:

densities

Limitations:

- unfamiliar
- symmetry in densities arbitrary

Show all the data: violin + dot plot

Shows:

- densities
- raw data

Show all the data: ridgeline plot

The anatomy of a (non-)informative figure

Tables that confuse

	A (N=56)	B (N=56)
Age (years)	64.5	63.2746
Female	24 (42.8%)	32 (57.14%)
NYHA		
1	7	1
II	23	19
III	22	25
IV	3	10
Creatinine 4	1.2 (0.9 – 1.5)	1.6 (1.1 to 3.2)
Abnormal CRP	8 (14.3%)	28 (50.0%)

Some of the things that I comment on most frequently:

- Missing statistics (e.g. standard deviation)
- Inappropriate precisions
- Inconsistent precisions
- Percentages incorrectly calculated
- Data don't add up
- Missing measurement units (e.g. mg/dL or μmol/L?)
 - Undefined statistics
 - Undefined variables

• ...

3D charts

Figure 2. Age-Adjusted Rate of End-Stage Renal Disease Due to Any Cause per 100,000 Person-Years, According to Systolic and Diastolic Blood Pressure in 332,544 Men Screened for MRFIT.

- 3rd dimension adds no information
- Difficult for comparison
- Often can't read-off values

Superfluous plots

- Waste of page space
- Often repeating information in main text

Source: Klag et al. *N Engl J Med* 1996; 334:13-18

Pie charts

- Unusable for large amounts of data
- Difficult for comparison
- Can't display trends / patterns

Truncated axes

Is truncating the Y-axis misleading?

- Easily misinterpreted
- Often not consistent across multiple plots

Dual y-axis graphs

- Confusing and distracting
- Often poorly labelled

ROC plots

 Graphs presented often provide no extra information beyond the AUROC

Source: Keating et al. The Annals of Thoracic Surgery. 2011; 92: 1893-6

Source: Nashef SAM et al. Eur J Cardio-Thoracic Surg. 1999;16: 9–13.

Where to get EJCTS/ICVTS specific advice

EJCTS & ICVTS Statistical and Data Reporting Guidelines

EJCTS/ICVTS Instructions for Authors webpage

Source: https://academic.oup.com/ejcts/pages/Manuscript_Instructions

Conclusions

- Tables and figures should (ideally) be:
 - Used only if required
 - Self-contained (i.e. can be read standalone)
 - Easy to interpret
 - Clearly labelled (legends, column titles, etc.)
 - Neatly presented (high quality figures, legible font sizes, etc.)
- Figure + Table legends are effective constructs for conveying extra information that facilitates interpretation

I always look at the figures and tables first when reviewing a paper

Thank you for listening... any questions?

Slides available (shortly) from: www.glhickey.com